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ABSTRACT. Some general remarks are made about likelihood factorizations, distinguishing

parameter-based factorizations and concentration-graph factorizations. Two parametric

families of distributions for mixed discrete and continuous variables are discussed. Condi-

tions on graphs are given for the circumstances under which their joint analysis can be split

into separate analyses, each involving a reduced set of component variables and parameters.

The result shows marked differences between the two families although both involve the

same necessary condition on prime graphs. This condition is both necessary and suf®cient

for simpli®ed estimation in Gaussian and for discrete log linear models.
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1. Introduction

For a given parametric family of models likelihood factorizations play an important role in

formal studies of inference. Factorizations of the likelihood may also arise from the

conditional independencies expressed in graphical Markov models. In this paper we explore

the relations between these two ideas, with particular reference to distributions of mixtures

of binary and Gaussian variables.

2. Parameter based factorizations

Suppose for a family of models speci®ed by a parameter è taking values in a parameter

space Ùè we can write the likelihood for an observed vector x in the form

L(è; x) � L1(è1; x)L2(è2; x),

where

è1 2 Ù1, è2 2 Ù2

and Ù1 3 Ù2 � Ù. That is, the parameters split into variation independent components, any

combination of allowable values of è1 and è2 being possible.

Then

(1) the maximum likelihood estimate è̂ � (è̂1, è̂2) is obtained by separate maximization of the

factors;

(2) a pro®le likelihood for, say, è1 can be obtained solely from the factor L1 and may often be

the preferred base for inference about è1;

(3) under suitable regularity conditions the estimates è̂1, è̂2 are asymptotically independent and

are asymptotically normally distributed around è1, è2 with asymptotic covariance matrices

determined from the separate factors;
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(4) if ö � ö(è1, è2) is a parametric function depending on both è1 and è2, then the correspond-

ing maximum likelihood estimate is ö̂ � ö(è̂1, è̂2) and its asymptotic covariance matrix

can be calculated directly from 3 above, although construction of a pro®le likelihood for ö
will in general require calculations not con®ned to the separate factors.

We call such factorizations parameter based. In some cases stronger small-sample properties,

such as `̀ exact'' con®dence limits, are available. The de®nition extends directly to more than

two factors.

For example, if (Y1, Y2) have a bivariate normal distribution with all parameters unknown,

factorizations via marginal and conditional distributions are available with variation independent

parameters in the two components. Under restrictions such as equal marginal variances no such

factorizations are possible.

An important special case of a parameter-based factorization is that of a cut in a regular

exponential family (Barndorff-Nielsen, 1988). Here we are able to separate a suf®cient statistic

T and a conditioning statistic C such that the conditional distribution of T given C depends only

on a parameter of interest whereas the marginal distribution of C depends only on a variation-

independent nuisance parameter. The present notion is, however, more general and has no

necessary connection with exponential families.

An important example is that of the parametric analysis of survival data subject to un-

informative censoring speci®ed by a parametric distribution of censoring time. Here the full

likelihood factorizes into a term from the failure-time distribution and a second term from the

censoring-time distribution.

Sometimes, also it may be useful to consider partially variation independent components. If

with two factors it is possible to write the likelihood as

L1(ö1, ë; x)L2(ö2, ë; x),

where (ö1, ö2, ë) are variation independent, there can be some gain in computation

especially if ë is of small dimension. If, further, it can be arranged that ë is orthogonal

(Cox & Reid, 1987) to (ö1, ö2) then the maximum likelihood estimates of (ö1, ö2) from

the separate factors are asymptotically fully ef®cient.

3. Concentration-graph factorizations

Factorizations of the likelihood often arise in a more general way via the conditional

independencies expressed in graphical structures. We consider a graph with a set V of

nodes, each node representing a variable. We suppose that there is at most one edge for

each pair of nodes, each edge present being a full line. The absence of an edge between

two nodes expresses conditional independence of the corresponding variable pair given all

other variables in V . Such a graph has been called a concentration graph (Cox & Wermuth,

1993, 1996) because in a multivariate Gaussian distribution absence of an edge corresponds

to a zero in the concentration or inverse covariance matrix. See also Wermuth (1998).

It is known (Lauritzen, 1996, prop. 3.8) that for such an undirected graph the factorization of

any corresponding probability distribution implies the following separation criterion. Let a, b, c

denote disjoint subsets of V with, for example, X a denoting the set of random variables de®ned

on a. If c separates a, b, that is if every path from a node in a to one in b has a node in c, then,

X a ?? X b j X c,

i.e. the set of variables de®ned on a is conditionally independent of those in b given those

in c. If the conditional independence property holds for all individuals given data on a set
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of independent individuals it follows that the likelihood within any parametric family of

models based on (X a, X b, X c) can be factorized in several ways, namely as

L(è; x) � Lajc(è; xajxc)Lbjc(è; xbjxc)Lc(è; xc)

� Lajc(è; xajxc)Lbc(è; xb, xc)

� Lac(è; xa, xc)Lbjc(è; xbjxc):

We call these concentration graph-factorizations of the likelihood.

Of course we can always use the recursive law of conditional probability to produce

factorizations of a joint density and hence of likelihood, but in general these will not lead to

useful simpli®cations. Sometimes, however, we may have a parametric family such that a given

factorization of the likelihood is both parameter-based and corresponds to a given concentration

graph. Then, in particular, maximum likelihood estimation is simpli®ed.

4. A simple example

We give a simple illustration involving three variables, i.e. the sets a, b, c consist of a

single node each. It is a special case of what we shall call the partially dichotomized

Gaussian distribution, de®ned in generality in section 6. Suppose that (Ya, Ub, Yc) are

trivariate normal with (Ya, Ub) conditionally independent given Yc and with Ub having

zero mean and unit variance. Suppose further that Ub is dichotomized to form a binary

variable I b, i.e. I b � 1 for Ub larger than some cutoff point á and I b � ÿ1, otherwise.

The conditional independence property is retained, i.e. Ya ?? I bjYc. In the associated

concentration graph, the node c separates the nodes a, b. To simplify the results we make

the inessential simpli®cation that (Ya, Yc) have zero means. The likelihood from a single

individual can be factorized in the form

p
óÿ1

aa:cö
ya ÿ âac ycp

ó aa:c

� �
Ö ib

ÿá� âbc ycp
ó bb:c

� �p
óÿ1

cc ö
yp
ó cc

� �
:

Here (Ö(x), ö(x)) are respectively the standard normal distribution and density functions, and

the convention for parameters is that, for example, ó aa denotes the unconditional variance of

Ya, the regression coef®cient of Yc in the regression of Ya on Yc is denoted by âac and the

conditional variance of Ya given Yc by ó aa:c. The resulting factorization thus involves the

parameters

ó aa:c, âac; á=
p
ó bb:c, âbc=

p
ó bb:c; ó cc:

These three parameter spaces are not subject to constraints and together form the full ®ve

dimensional space of the original speci®cation. Thus the concentration graph factorization is

also a parametric factorization for the appropriate choice of parameters.

5. Simpli®ed estimation for Gaussian and log-linear models

When the variables are either all continuous with a joint Gaussian distribution or all have a

discrete distribution they may restricted only by independence statements (Wermuth, 1976)

which are conveniently captured by a concentration graph. Corresponding statistical models

have been introduced as respectively covariance selection models (Dempster, 1972) and as

graphical (log-linear) models (Darroch et al., 1980). For both, the condition for sim- pli®ed

maximum-likelihood estimation has been directly speci®ed in terms of the concentration

graph as follows. If a, b, c are non-overlapping subsets of V which give all nodes of V , if

Scand J Statist 25 Likelihood factorizations 211

# Board of the Foundation of the Scandinavian Journal of Statistics 1998.



c separates a from b and if c is a complete separator, then the estimation problem for all

variables simpli®es into two separate problems involving a [ c and b [ c (Lauritzen, 1996,

discussions of collapsibility).

The condition that a, b, c form a partition of V ensures that the estimation concerns the joint

distribution of all variables and not some marginal distribution. When c is a complete separator

no conditional or marginal independence statement is implied by the model for variables of c. If

there were such an independency, as for instance in Fig. 1a, it would not imply such a restriction

on the association of the involved variable pair in any marginal distribution obtained by

marginalizing over all variables along a path outside c connecting the two nodes. As a

consequence the marginals a [ c or b [ c would not contain the information about the

independency in the joint distribution.

Figure 1 illustrates further the notion of a separator in a case when a, b, c does not partition

V . Note that in general separation of a, b by c in the joint distribution implies also an

independence statement X a ?? X b j X c in the distribution of X a, X b, X c obtained after margin-

alizing over the remaining variables.

Using the convention that dots indicate discrete variables and circles denote continuous

variables, Fig. 2 gives an example of a speci®c log-linear model in nine variables for which

simpli®ed estimation is possible.

Since c is a complete separator the analysis of the graphical model corresponding to this

concentration graph can be reduced to two separate analyses involving a ®ve-dimensional

contingency table for a [ c and a six-dimensional contingency table for b [ c.

Then the maximum-likelihood estimates for the joint table of all variables can be obtained

from the smaller marginal tables, the power of tests is increased and, most importantly,

interpretation may be considerably simpli®ed.

Since there are typically several complete separators the question arises whether there is a

way of choosing those which give in some sense the best simpli®cation. This is possible by

Fig. 2. Concentration graph of log-linear graphical model with nine variables. Simpli®ed estimation

possible since c complete. Possible via tables corresponding to a [ c and b [ c, respectively.

Fig. 1. Examples of separators for a, b, c (1-1) incomplete separator c; after marginalizing for instance over

common adjacent node to left of c independence no longer implied for the two nodes in c; (1-2) complete

separator c, no independence implied conditionally or marginally for nodes of c.
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using the important notion of prime graphs. Prime graphs are a direct generalization of the

concept of prime numbers in the sense that prime graphs also cannot be further divided.

The prime graphs of an undirected graph are the maximal subgraphs without a complete

separator. There are ef®cient algorithms to ®nd all prime graphs of any undirected graph

(Leimer, 1993).

Figure 3 shows the three prime graphs of the nine-node graph in Fig. 2 and Fig. 4 illustrates

the different types of prime graphs: complete graphs, which have no separating set, chordless n-

cycles, n > 4, with each pair without edge being an incomplete separator and more complex

graphs containing a visually hidden cycle or several chordless n-cycles.

Results concerning simpli®ed estimation for Gaussian and for log-linear concentration graph

models may be summarized as follows.

1. Simpli®ed maximum-likelihood estimation for the joint distribution is possible involving a

reduced set of component variables and parameters if and only if the concentration graph is

not a prime graph.

2. For any given concentration graph a computationally ef®cient simpli®cation is obtained by

Fig. 4. Examples of different types of prime graph (4-1) complete graphs; (4-2) chordless n-cycles; (4-3)

more complex graphs with visually hidden 4-cycle (left) and several such cycles (right).

Fig. 3. Prime graphs corresponding to concentration graph of Fig. 2 pointing to tables with which

computationally ef®cient simpli®cations can be achieved.
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splitting the estimation problem into separate analyses by taking one at a time the prime

graphs from a proper full sequence of all prime graphs.

3. If all prime graphs are complete, then each separate analysis concerns a saturated marginal

distribution, and hence closed-form estimation for the joint distribution is possible. Such

models have been called decomposable.

4. If a model is decomposable, estimation in the joint distribution reduces to a series of

univariate calculations (Wermuth, 1980; Wermuth & Lauritzen, 1983) since then single-

clique nodes may be chosen one at a time and deleted from the concentration graph until all

nodes are exhausted. For computational purposes each chosen node de®nes a response

variable in a system of univariate recursive regressions with the direct adjacent nodes in the

reduced graph being its explanatory variables.

The requirement that the concentration graph is not a prime graph is no longer on its own a

suf®cient condition for simpli®ed estimation in distributions of mixed discrete and continuous

variables.

6. Models for mixed discrete-continuous variables

Suppose that the variables are divided into two types, discrete, often to be treated as binary,

and continuous, in fact having Gaussian, i.e. normal, distributions. Let the corresponding

two sets of nodes in the graph be Ä and Ã . We denote the continuous components by Y,

having dimension p, and the discrete components by I, having dimension q. The full

observed random variable is then X � (Y , I).

One important family of models for the joint distribution of such variables is the HCG

(homogeneous conditional Gaussian) family (Lauritzen & Wermuth, 1989). Here the set of I of

all discrete components has a multinomial distribution and given I � i, the set Y of all

continuous components has a multivariate normal distribution of mean ìi and covariance matrix

ÓYY :I . In the heterogeneous CG case, which we do not consider here, the conditional covariance

matrix depends on i.

We may contrast the HCG distribution with the partially dichotomized multivariate Gaussian

distribution, PDG, taken here for binary components and obtained as follows, generalizing the

example of section 4. Let (U , Y ) be multivariate normal with mean (0, ì) and covariance matrix

Ó partitioned in the usual way and suppose that U is not directly observed but is dichotomized

at á to form I , that is the components of I are de®ned by

I s � 1 if Us .ás, I s � ÿ1 if Us < ás:

Both distributional types stem from a long history in the analysis of discrete data. For early

references on the CG distribution, see Lauritzen & Wermuth (1989). The PDG distribution plays

an important role in the study of linear structural relations (JoÈreskog, 1981; Bollen, 1989).

Let Ö p(y; Ó) denote the p-dimensional cumulative normal integral corresponding to zero

mean and covariance matrix Ó and ö p(y; Ó) the corresponding density function. Then for an

observation on a single individual we have that the joint density of a component Y1, of

dimension p1, of the continuous variable and the probability that the component I1, of

dimension q1 of the binary variable takes value (1, . . ., 1) given that the complementary

components Y2, I2 of dimensions ( p2, q2), takes values y2 and (1, . . ., 1) is

Öq(ÿá� BUY1:Y2
(y1 ÿ ì1)� BUY2:Y1

(y2 ÿ ì2); ÓUU :Y )

3 fÖq2
(ÿá2 � BU2 Y2

(y2 ÿ ì2); ÓU2 U2:Y2
)gÿ1

3 ö p1
(y1 ÿ ì1 ÿ BY1 Y2

(y2 ÿ ì2); ÓY1 Y1:Y2
),
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where, for example, BUY1:Y2
denotes the matrix of least squares regression coef®cients of

components Y1 when regressing U on both Y1 and Y2.

If more generally the vector binary random variables take values i1, i2, vectors of 1s and ÿ1s,

the denominator is changed to

fÖq2fi2 � (ÿá2 � BU2 Y2
(y2 ÿ ì2)g; iT

2 � ÓU2 U2:Y2
� i2gÿ1,

where v � w denotes the Hadamard product with elements (v1w1, v2w2, . . .) and there is a

corresponding change in the ®rst term in the numerator. Here U is the q � q1 � q2

dimensional random variable formed from U1 and U2. For arbitrary random variables X ,

W , Z, we have BXW :Z � ÓXW :ZÓ
ÿ1
WW :Z , where the common notation for conditional covari-

ance matrices is used, i.e.

ÓXZ:W � ÓXZ ÿ ÓXWÓ
ÿ1
WWÓWZ :

Various special cases follow, such as the multivariate probit regression of I given Y , and

the conditional distribution of Y given I , a special case of which is used by Azzalini &

Dalla Valle (1996) as a ¯exible set of asymmetric multivariate distributions.

A number of special features of the partially dichotomized Gaussian distribution follow from

the above form. These include the following:

(i) if the conditioning variable is continuous, q2 � 0, the second term in the expression is

absent and there is a parameter-based factorization;

(ii) if a conditional independence statement involves a discrete variable as conditioning

variable then a stronger independence holds: I1 ?? Y1|(I2, Y2) only if either (I1, I2) ??
Y1 j Y2 or (Y1, I2) ?? I1 j Y2;

(iii) Y1 ?? Y2 j I2 only if either Y1 ?? (Y2, I2) or Y2 ?? (Y1, I2);

(iv) Y1 ?? I1 j I2 only if either Y1 ?? I or I1 ?? (Y1, I2);

(v) I1 ?? I2 j I3 only if one of I1, I2 is independent of the other two;

(vi) I1 ?? Y1 j Y2 if and only if U1 ?? Y1 j Y2;

(vii) I1 ?? I2 j Y2 if and only if U1 ?? U2 j Y2.

There is, however, some specialization when all variables are median dichotomized, i.e. when

the cut-points are medians in the marginal distributions. Their joint distribution can be written

as a log linear model with interaction terms of only even order (Edwards, 1995, app. C).

Therefore I1 ?? I2 j I3 can hold without a stronger independence. The corresponding condition

on the underlying Gaussian variables is then not U1 ?? U2 j U3, see Section 7. Thus, conditional

independencies in the underlying Gaussian distribution are retained in the partially dichoto-

mized distribution if and only if all involved conditioning variables are continuous.

We compare ®rst the two joint distributions of (I , Y ) without parametric restrictions, i.e. for

the saturated models. The distribution-based factorizations which are also parameter-based are

then

LY jI (ìi, ÓYY : I ; y)LI (èI ; i),

LI jY (á, BUY , ÓUU :Y ; i)LY (ì, ÓYY ; y)

for the homogeneous conditional Gaussian and the partially dichotomized Gaussian distribu-

tion, respectively.

For the complementary factorizations the parameter spaces are, except in degenerate cases,

variation dependent. The reason is that the marginal distribution of the continuous variables Y is

a discrete mixture of normal distributions in the former model and the conditional distribution

of Y given I involves a continuous mixture of truncated normal distributions in the latter model.
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More generally the quite different behaviour of the two distributions under conditioning and

marginalization is best seen by partitioning V into (a, b) so that the discrete variable I is split

into (I a, I b) and the continuous variable into (Ya, Yb). Then the marginal distribution of

(I b, Yb)

(1) for a homogeneous conditional Gaussian distribution of (I , Y ) is itself homogeneous

conditional Gaussian if and only if I a ?? YbjI b, that is for Yb having a Gaussian distribution

with means depending only on I b (Frydenberg, 1990);

(2) is partially dichotomized Gaussian whenever (I , Y ) also is partially dichotomized Gaussian.

The second result follows by integrating over ua and ya in the assumed multivariate Gaussian

distribution of (U , Y ) underlying (I , Y ). Furthermore the conditional distribution of (I a, Ya)

given (I b, Yb) � (ib, yb) is such that

(1) for a homogeneous conditional Gaussian distribution of (I , Y ) it also is homogeneous

conditional Gaussian (Lauritzen & Wermuth, 1989, prop. 2.3);

(2) for a partially dichotomized Gaussian distribution of (I , Y ) it also is partially dichotomized

Gaussian if and only if either (I a, Ya) ?? I bjYb or Ya ?? I jYb.

The necessity part of the last result is proved by examining the circumstances under which

the multivariate normal integral in the numerator of the conditional density can be

factorized into the appropriate form.

A more general possibility is obtained by combining the two types of distribution, splitting

the binary components as (I , J ). Suppose that (U , Y ) have a homogeneous Gaussian distribu-

tion given J � j, J itself having an arbitrary distribution. Suppose further that (I , Y ) has a

partially dichotomized Gaussian distribution given J � j. Then the properties listed above hold

with the full set J included in the conditioning sets. The distribution of I given (Y � y, J � j)

has the form

ÖqI (ÿá� BUY :J (yÿ ì)� BUJ :Y j; ÓUU :YJ )

and Y given J � j has the homogeneous Gaussian density

ö p(yÿ ìÿ BYJ j; ÓUU :J ):

7. Factorization for a special dichotomized Gaussian distribution

A special case of a fully dichotomized Gaussian distribution occurs for median dichoto-

mized variables. If the concentration graph is such that the largest prime graph has no

more than three nodes, that is any subgraph with more than three nodes has a complete

separator, then any factorization achieved is both concentration graph and parameter-based.

We may consider three binary variables, denoted by A, B, C, say, with A ?? B j C. Because

of the median dichotomy the marginal likelihood of C is constant and there is the

factorization LAjC LBjC . Now the dichotomized Gaussian distribution in question is deter-

mined by just two parameters and therefore if these are taken as correlations, or

equivalently odds ratios, in the (A, C) and (B, C) tables a parameter-based factorization is

achieved. The explicit one-to-one relation between a marginal odds-ratio (or) and a margin-

al correlation coef®cient r is

or (A, B) � (1� rAB)2=(1ÿ rAB)2, rAB � tanh(c), c � 1
4

logfor (A, B)g:
If it is required to relate this to the underlying distribution of the multivariate normal variable

U we argue as follows. The median dichotomized Gaussian distribution in three variables is
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both a linear in probabilities model and a quadratic exponential model with no three-factor

terms in either representation (Cox & Wermuth, 1992; Edwards, 1996, app. C). The conditional

independency can thus be expressed directly in terms of the product moment correlations of the

binary variables as

rAB � rACrBC

from which the maximum likelihood estimate of rAB can, if required, be found. Estimates

of the whole table may be built up in a recursive fashion analogous to the Gaussian case

(Wermuth & Cox, 1998, app. 1).

Because of Sheppard's formula relating the correlation of the binary variables and that of the

underlying normal distribution, we have, for example,

rAB � sinÿ1 rUA UB

so that the maximum likelihood estimate of the underlying correlation matrix can be

computed.

Note that the hypothesis of conditional independence of the resulting binary variables is

expressed via the non-linear constraint

sinÿ1 rUA UB
� sinÿ1 rUA UC

sinÿ1 rUB UC
:

No analogous exact results hold for four variables because the dichotomized Gaussian

distribution has a, possibly small, four-factor interaction.

This special family of a median-dichotomized Gaussian distribution is one example of a

quasi-linear system (Wermuth & Cox, 1998) of discrete variables and as such having some

properties very similar to the those of Gaussian distribution.

8. Factorization conditions for mixed distributions

We now consider a structure for a mixture of discrete and continuous variables described

as above by a concentration graph, GV
con, with nodes V divided into two sets Ä �

f1, . . ., q} and Ã � f1, . . ., pg corresponding to discrete and continuous components. When

we consider a homogeneous conditional Gaussian distribution which is itself partially

dichotomized we divide Ä into two parts Ä I and ÄJ as explained at the end of section 6.

Suppose that there are three sets of nodes a, b, c which also partition V , and are such that a

conditional independence is represented by c being a separator of a and b, and that the separator

c is complete so that there is no such independence restriction for nodes in c.

We ask for the distributions outlined in section 6: when is a resulting concentration graph

factorization also a parameter-based factorization? The answer is

(i) for a homogeneous conditional Gaussian distribution if c � Ä or if either a � Ã or

b � Ã;

(ii) for a partially dichotomized Gaussian distribution if c � Ã;

(iii) for a homogeneous conditional Gaussian distribution which itself is partially dichoto-

mized if ÄJ � c and all further components of separator c are continuous, i.e. are

from Ã .

The ®rst statement is a reformulation of a result by Frydenberg & Lauritzen (1989) who

consider sets a, b, c with the above properties but being ordered, in addition. The results stem

from the behaviour of the distributions under marginalizing and conditioning given in section 6.

For a partially dichotomized Gaussian distribution the factorization of an arbitrary conditional

distribution of, say, (I a, Ya) given Yc depends only on the parameters in the conditional
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distribution of (Ua, Ya) given Yc. When, however, the conditioning variable has binary compo-

nents an essential complication is introduced via the term in the denominator of the conditional

distribution.

In the present context the essence of the distinction between the two forms of distribution is

that the homogeneous conditional distribution retains simple structure under conditioning

whereas the partially dichotomized Gaussian does so under marginalization.

The simple concentration graphs of Fig. 5 illustrate already a main difference between the

two families of distributions.

In both cases c separates a from b, but the separating set c is continuous in the ®rst case and

discrete in the second. In this and the followings graphs open circles represent again continuous

components and dots represent binary components.

In Fig. 5-1 with variables A, B, X the independence A ?? B j X holds. This is simply

represented via the partially dichotomized Gaussian distribution, because the model results if

there is conditional independence given X in the underlying trivariate Gaussian distribution. In

the conditional Gaussian distribution, however, this conditional independence is complicated,

because it is not directly connected with the generating process, where the distribution of X

arises conditionally given the marginal distribution of the two discrete components. The

conditional independence of the discrete components can hold but maximum-likelihood ®tting

is not direct; it is iterative, involving simultaneously observations on all three variables, even

though the graph separates into two complete prime graphs.

In Fig. 5-2 with variables Y , X , A the independence Y ?? X j A holds. This is simply

represented via the homogeneous conditional Gaussian distribution by having zero correlation

between Y and X at each level of A. However, the partially dichotomized Gaussian distribution

represents this conditional distribution only in the degenerate situation where in addition either

A ?? Y or A ?? X holds. This is proved by calculating the conditional joint distribution of X , Y

given, say A � 1 as a function of x, y and noting that a positive function h(x, y) factorizes if

and only if @ log h(x, y)=@x is a function of x alone.

The concentration graphs in Figs 6 and 7 with ten nodes are slightly more complicated.

The ®rst two (Figs 6-1, 6-2) have the same set of missing edges; they differ just in the number

and location of discrete and continuous nodes. They are nondecomposable graphs since not all

their prime graphs are complete (MatuÂsÆ, 1994).

There are four prime graphs in both Figs 6-1, 6-2, two are complete (of three nodes at the

left end and of four nodes at the right end), and two are incomplete (of four and six nodes).

The graph of Fig. 7-2 is a decomposable graph with the largest prime graph having four

nodes.

Figures 6 and 7 show structures in which a concentration graph factorization is also parameter

based: for the homogeneous conditional Gaussian (Figs 6-1, 6-2), for the partially dichotomized

Gaussian distribution (Fig. 7-1) and for none of the two (Fig. 7-2). See the legend for more

detailed explanation.

Fig. 5. (5-1). Continuous component separates two binary components. Corresponding parameter-based

factorization for partially dichotomized Gaussian but not for homogeneous conditional Gaussian. (5-2).

Binary component separates two continuous components. Corresponding parameter-based factorizations for

homogeneous conditional Gaussian but for partially dichotomized Gaussian conditional independency does

not hold without additional edge missing.
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If the concentration graph can be repeatedly split by a complete separator c into two parts

a [ c and b [ c, each containing only complete prime graphs then the graph is decomposable. If

the resulting graph factorizations of the likelihood are also parameter-based then the model is

called decomposable. As a consequence maximum likelihood analysis can be reduced to a series

of analyses each involving just the component variables of a prime graph.

For a decomposable concentration graph the independence structure may equivalently be

expressed by a directed acyclic graph for ordered nodes, that is by a recursive sequence of

independence statements, each involving an individual variable X r and subsets of X s, s . r. As

mentioned before a corresponding split of analysis into a sequence of univariate regressions is

then possible for a joint Gaussian distribution and for an arbitrary discrete distribution but as

shown here only under quite different and strong conditions for homogeneous conditional

Gaussian and for partially dichotomized Gaussian distributions.

In a speci®c application the choice between the two different models for mixed discrete and

continuous variables will often be based on some combination of consistency with an interpre-

table generating process, on empirical ®t and on the ease of statistical analysis. For instance, if

no binary variable is considered as a response to a continuous explanatory variable, an initial

preference for a conditional Gaussian distribution is indicated. If the marginal distributions of

all continuous variables are Gaussian with no suggestion of being mixtures of Gaussian

distributions an initial preference for the partially dichotomized Gaussian distribution arises.

Often the most effective route in applications is to build up a parametric model as a recursive

system of regressions. Associated with this there is always a factorization of the likelihood but

the joint distribution of all variables may be of a rather complex form.

Fig. 6. (6-1). Mixed components a, b separated by c. Complete separator c discrete. Lajc Lbjc Lc parameter-

based only for homogeneous conditional Gaussian distribution. (6-2). Continuous component a separated by

c from b; b, c both mixed; Lajc Lbc parameter based only for homogeneous conditional Gaussian.

Fig. 7. (7-1). Mixed components a, b separated by c, which is complete and continuous; no node pair has

minimal separator containing discrete nodes; Lajb Lbjc Lc parameter-based only for partially dichotomized

Gaussian. (7-2). Mixed components in each of a, b, c; no parameter-based factorization for partially

dichotomized Gaussian or homogeneous conditional Gaussian. If conditionally on discrete component in

separator c there is underlying Gaussian distribution for all remaining variables then Lajb Lbjc Lc parameter-

based.
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