
Graphical chain models

Graphical Markov models represent relations, most frequently among random vari-

ables, by combining simple yet powerful concepts: data generating processes, graphs
and conditional independence. The origins can be traced back to independent work in
genetics (S. Wright, 1921, [30]), in physics (W. Gibbs, 1902, [10]) and in probability

theory (A. A. Markov, 1912, [20]). Wright used directed graphs to describe processes
of how his genetic data could have been generated and to check consistency of such

hypotheses with observed data. He called his method path analysis. Gibbs described
total energy of systems of particles by the number of nearest neighbors for nodes in

undirected graphs. Markov suggested how some seemingly complex structures can
sometimes be explained in terms of a chain of simple dependencies using the notion
of conditional independence.

Development of these ideas continued largely independently in mathematics, physics,
and engineering. In the social sciences and econometrics an extension of path anal-

ysis was developed, called simultaneous equation models, which does not directly
utilize the notion of conditional independence and which does not incorporate non-

linear relations or time-dependent variation. In decision analysis, computer science,
and philosophy extensions of path analysis have been called influence diagrams, belief

networks, or Bayesian networks, and are used among others for constructing so-called
expert systems and systems with learning mechanisms.

A systematic development of graphical Markov models for representing multivariate

statistical dependencies for both discrete and continuous variables started in the 1970’s
with work on fully undirected graph models for purely discrete and for Gaussian

random variables and on linear models with graphs that are fully directed and have no
cycles. This work was extended to models permitting sequences of response variables

to be considered on equal footing, that is without specifications of a direction of
dependence. Joint responses can be modeled in quite different ways, some define

independence structures of distinct types of graphical chain model. Properties of
corresponding types of graph have been studied intensively, so that, in particular,
all independencies, implied by a given graph, can be derived by so-called separation

criteria.
Several books give overviews of theory, analyses and interpretations of graphical

755

beruflich
In: Encyclopedia of Behavioral Statistics, II. B. Everitt and David C. Howell (eds). Wiley, Chichester, 755-759).



Markov models in statistics, based on developments on this work during the first few

decades, see [7], [15], [2], [29], and a wide range of different applications has been
reported, see e.g. [11], [16]. For some compact descriptions and for references see [26],

[27].
Applicability of fully directed graph models to very large systems of units has been

emphasized recently, see e.g. [6] and is simplified by free source computational tools

within the framework of the R-project, see [19], [18], [1].
Special extensions to time series have been developed ([5],[8],[9]) and it has been

shown that the independence structure defined with any structural equation model
(SEM) can be read off a corresponding graph [13]. The result does not extend to the

interpretation of SEM parameters. Extensions to point processes and to multilevel
models are in progress. Graphical criteria for deciding on the identifiability of special
linear models including hidden variables have been derived [23], [21], [25], [12], [24].

A new approach to studying properties of graphical Markov models is based on
binary matrix forms of graphs [28]. This uses analogies between partial inversion of

parameter matrices for linear systems and partial closing of directed and of undirected
paths in graphs. The starting point for this is are stepwise generating processes either

for systems of linear equations or for joint distributions.
In both cases the graph consists of a set of nodes, with node i representing random

variable Yi and a set of directed edges. Each edge is drawn as an arrow outgoing from
what is called a parent node and pointing to an offspring node. The graph is acyclic if
it is impossible to return to any starting node by following arrows pointing in the same

direction. The set of parent nodes of node i is denoted by pari and the graph is called
a parent graph if there is a complete ordering of the variables as (Y1, . . . , Yd). Either

a joint density is given by a recursive sequence of univariate conditional densities or
a covariance matrix is generated by a system of recursive equations.

The joint density fN , generated over a parent graph with nodes N = (1, . . . , d) and
written in a compact notation for conditional densities in terms of nodes, is

fN =
∏

i
fi|i+1,...,d =

∏
i
fi|pari

. (1)

The conditional independence statement i ⊥⊥ j|pari is equivalent to the factorization
fi|pari,j

= fi|pari
and it is represented by a missing ij-arrow in the parent graph for

i < j.
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The joint covariance matrix Σ of mean-centered and continuous variables Yi, gen-

erated over a parent graph with nodes N = (1, . . . , d), is given by a system of linear
recursive equations with uncorrelated residuals, written as

AY = ε, (2)

where A is an upper-triangular matrix with unit diagonal elements and ε is a residual

vector of zero-mean uncorrelated random variables ε. A diagonal form of the residual
covariance matrix cov(ε) = ∆ is equivalent to specifying that each row of A in (2)

defines a linear least squares regression equation ( [4], p.302) for response Yi regressed
on Yi+1, . . . , Yd. For the regression coefficient of Yj in this regression it holds for i < j:

−aij = βi|j.{i+1,...,d}\j = βi|j.pari\j
. (3)

The vanishing contribution of Yj to the linear regression of Yi on Yi+1, . . . , Yd is rep-
resented by zero value in position (i, j) in the upper triangular part of A.

The types of question that can be answered for these generating processes are:

which independencies (either linear or probabilistic) are preserved if the ordering the
variables is modified or if some of the variables are considered as joint instead of

univariate responses or if some of variables are explicitly omitted or if a subpopulation
is selected? [28]. Joint response models which preserve exactly the independencies of

the generating process after omitting some variables and conditioning on others form
a slightly extended subclass of SEM models [22], [14].

Sequences of joint responses occur in different types of chain graphs. All these
chain graphs have in common that the nodes are arranged in a sequence of say dCC

chain components g, each containing one or more nodes. For partially ordered nodes

N = (1, . . . , g, . . . , dCC) a joint density is considered in the form

fN =
∏

g
fg|g+1,...,dCC

. (4)

Within this broad formulation of chain graphs one speaks of multivariate-regression

chains whenever for a given chain component g, variables at nodes i and j are consid-
ered conditionally given all variables in chain components g + 1, . . . , dCC. Then the

univariate and bivariate densities

fi|g+1,...,dCC
, fij|g+1,...,dCC

(5)
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determine the presence or absence of a directed ij-edge, which points to node i in

chain component g from a node j in g +1, . . . , dCC, or of an undirected ij-edge within
g when j itself is in g.

The more traditional form of chain graphs results if for a given chain component g

variables at nodes i and j are considered conditionally given all other variables in g

and the variables in g + 1, . . . , dCC. Then the univariate and bivariate densities

fi|g\{i},g+1,...,dCC
, fij|g\{i,j},g+1,...,dCC

(6)

are relevant for a directed ij-edge which points to node i in chain component g from
a node j in g + 1, . . . , dCC, as well as for an undirected ij-edge within g.

These traditional chain graphs are called blocked-concentration graphs or some-
times LWF (Lauritzen, Wermuth, Frydenberg) graphs. Chain graphs with the undi-

rected components as in blocked-concentration graphs and the directed components
as in multivariate regressions graphs are called concentration-regression graphs or

sometimes AMP (Andersson, Madigan, Perlman) graphs. The statistical models cor-
responding to the latter for purely discrete variables are the so-called marginal models.
These belong to the exponential family of models and have canonical parameters for

the undirected components and moment parameters for the directed components.
Stepwise generating processes in univariate responses arise both in observational

and in intervention studies. With an intervention the probability distribution is
changed so that the intervening variable is decoupled from all variables in the past

that relate directly to it in an observational setting, see [17]. Two main assumptions
distinguish ”causal models with potential outcomes” (or counterfactual models) from

general generating processes in univariate responses. These are (1) unit-treatment ad-
ditivity and (2) a notional intervention. These two assumptions taken together assure
that there are no unobserved confounders and that there is no interactive effect on the

response by an unobserved variable and the intervening variable. One consequence of
these assumptions is for linear models that the effect of the intervening variable on the

response averaged over past variables coincides with its conditional effects given past
unobserved variables. Some authors have named this a causal effect. For a compar-

ison of different definitions of causality from a statistical viewpoint, including many
references, and for the use of graphical Markov models in this context see [3].
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