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Graphical Markov models represent relations among random variables by combining sim-
ple yet powerful concepts: data generating processes, graphs and conditional independence.
The origins can be traced back to independent work in genetics (S. Wright, 1921, [35]), in
physics (W. Gibbs, 1902, [12]) and in probability theory (A. A. Markov, 1912, [22]). Wright
used directed graphs to describe processes of how his genetic data could have been gener-
ated and to check consistency of such hypotheses with observed data. He called his method
path analysis. Gibbs described total energy of systems of particles by the number of nearest
neighbors for nodes in undirected graphs. Markov suggested how some seemingly complex
structures can sometimes be explained in terms of a chain of simple dependencies using the
notion of conditional independence.

A systematic development of graphical Markov models for representing multivariate sta-
tistical dependencies for both discrete and continuous variables started in the 1970’s with work
on fully undirected graph models for purely discrete and for Gaussian random variables and on
linear models with graphs that are fully directed and have no cycles. This work was extended
to models permitting sequences of response variables to be considered on equal footing, that is
without specifications of a direction of dependence. Joint responses can be modeled in quite
different ways, some define independence structures of distinct types of graphical chain model.
Properties of corresponding types of graph have been studied intensively, so that, in particular,
all independencies, implied by a given graph, can be derived by so-called separation criteria.

Several books give overviews of theory, analyses and interpretations of graphical Markov
models in statistics, based on developments on this work during the first few decades, see [9],
[17], [4], [34], and a wide range of different applications has been reported, see e.g. [13], [18].
For some compact descriptions and for references see [29], [30]. Applicability of directed acyclic
graph (DAG) models to very large systems of units has been emphasized, see e.g. recently [8],
and is simplified by free source computational tools within the framework of the R-project,
see [21], [20], [3]. For deriving well-fitting Gaussian models a procedure distinguishing between
significant, indeterminate and nonsignificant associations has been proposed [2] and for densities
of arbitrary form compatible priors for DAG models have been derived [25].

Special extensions to time series have been developed ([7],[10],[11]) and relations to struc-
tural equation models (SEM) have been discussed with respect to independencies [15], and the
interpretation of parameters [32]. Models which preserve exactly the independencies of the
generating process after omitting some variables and conditioning on others form a slightly
extended subclass of SEM models [24], [16]. Extensions to point processes and to multilevel
models are work in progress. Graphical criteria for deciding on the identifiability of special
linear models including hidden variables have been derived [26], [23], [28], [14], [27] and for
proving identification of a large subclass of SEM models in only observed variables [1], [32].

One approach to studying properties and consequences of graphical Markov models is
based on binary matrix forms of graphs [31]. This uses analogies between partial inversion of
parameter matrices for linear systems and partial closing of directed and of undirected paths
in graphs [33]. The starting point for this are stepwise generating processes either for systems
of linear equations or for joint distributions.
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In both cases the generating graph consists of a set of nodes, with node i representing
random variable Yi and a set of directed edges. Each edge is drawn as an arrow outgoing from
what is called a parent node and pointing to an offspring node. The graph is acyclic if it is
impossible to return to any starting node by following arrows pointing in the same direction.
The set of parent nodes of node i is denoted by pari and the graph is called a parent graph if
there is a complete ordering of the variables as (Y1, . . . , Yd). Either a joint density is given by
a recursive sequence of univariate conditional densities or a covariance matrix is generated by
a system of recursive equations.

The joint density fN , generated over a parent graph with nodes N = (1, . . . , d) and written
in a compact notation for conditional densities in terms of nodes, is

(1) fN =
∏

i
fi|i+1,...,d =

∏
i
fi|pari

.

The conditional independence statement i ⊥⊥ j|pari is equivalent to the factorization fi|pari,j =
fi|pari

and it is represented by a missing ij-arrow in the parent graph for i < j.
The joint covariance matrix Σ of mean-centered and continuous variables Yi, generated

over a parent graph with nodes N = (1, . . . , d), is given by a system of linear recursive equations
with uncorrelated residuals, written as

AY = ε,(2)

where A is an upper-triangular matrix with unit diagonal elements and ε is a residual vector of
zero-mean uncorrelated random variables ε. A diagonal form of the residual covariance matrix
cov(ε) = ∆ is equivalent to specifying that each row of A in (2) defines a linear least squares
regression equation ( [6], p. 302) for response Yi regressed on Yi+1, . . . , Yd. The vanishing
contribution of Yj to the linear regression of Yi on Yi+1, . . . , Yd is represented by zero value
in position (i, j) in the upper triangular part of A with corresponding direct consequences for
Σ−1 = AT∆−1A.

Sequences of joint responses occur in different types of chain graphs. All these chain graphs
have in common that the nodes are arranged in a sequence of say dCC chain components g,
each containing one or more nodes. For partially ordered nodes N = (1, . . . , g, . . . , dCC) a joint
density is considered in the form

(3) fN =
∏

g
fg|g+1,...,dCC

.

The types of question that can be answered now for these types of joint response models induced
by a stepwise generating process are: Which independencies (either linear or probabilistic) are
preserved if the ordering the variables is modified or if some of the variables are considered
as joint instead of univariate responses or if some of variables are explicitly omitted or if a
subpopulation is selected? Which of the associations contained in a new parametrization are
merely induced? [31]. Which types of confounding may occur and, can one correct for them at
least in linear systems? [32].

Stepwise generating processes in univariate responses arise both in observational and in
intervention studies. With an intervention the probability distribution is changed so that the
intervening variable is decoupled from all variables in the past that relate directly to it in
an observational setting, see [19]. Two main assumptions distinguish ”causal models with
potential outcomes” (or counterfactual models) from general generating processes in univariate
responses. These are (1) unit-treatment additivity and (2) a notional intervention. These two
assumptions taken together assure that there are no unobserved confounders and that there is
no interactive effect on the response by an unobserved variable and the intervening variable.
One consequence of these assumptions for linear models is that the effect of the intervening



variable on the response averaged over past variables coincides with its conditional effects given
past unobserved variables. Different definitions of causality have recently been compared from
a statistical viewpoint [5].

As more results become available on independence equivalence and on parameter equiv-
alence of different models, on identification of latent variable models, on different types of
confounding and different types of selection bias, the more likely it becomes that we can better
design and draw conclusions from observational studies with many variables.
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