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Summary

Developments in the recent past have substantially increased our ability to measure, compute, and
communicate. We take the view that a corresponding improved understanding of processes in the life
sciences will come about only through more intensive studies of properties of statistical methods and
algorithms and transparent, open source computing environments.
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1 Introduction

Human welfare is a main topic of the life sciences. In a narrow sense this comprises health and
biology, in a broader sense it includes psychological, educational, environmental and social issues.
Empirical evidence is needed to understand thestatus quo and developmental processes, or to form
the basis for decisions affecting individuals directly, or indirectly via changes in institutions and
societies. Within the statistical sciences, methods to evaluate empirical evidence are developed and
studied, methods both for the design of studies and for the analysis and interpretation of relevant
data.

The innovative technical developments in the recent past have substantially increased our ability to
measure, compute and communicate. We can measure many more features of individuals, institutions,
regions and societies, whether it be surveillance information for a patient in an intensive care unit,
the decoding of genes of individuals, performance indicators of health and educational systems or
measures of stability, growth and equality in different regions. We can easily record study protocols,
combine data from different sources, use complex statistical analyses, and make results available in
both numerical and graphical form. Communication across different fields of specializations, across
institutions, countries and continents has become feasible and can be extremely fast.

Why then is there not a corresponding increase in our understanding and in decisions that are
solidly evidence-based? Some provisional answers are (1) that we need more discussion of common
goals and more studies of properties of measurements, methods, and algorithms; and (2) that, for
some, there may still be severe access restrictions to available knowledge and technologies due, for
instance, to economic, ideological or institutional pressures.

Surely, we cannot as individuals remove the many different forms of misuse of power, but as
statisticians we can contribute significantly to the transparency of empirical studies and methods of
analysis as well as to the availability of open source software, tested for reliability. With the support
of scientific and professional societies we can promote discussions and come to agreement on general
goals and important achievements.
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2 Randomized Intervention Studies

Arguably the most successful types of empirical study in the life sciences are interventions in which
treatments are allocated to individuals via randomization (Mosteller & Baruch, 2002; Armitage,
2003; Zeger, Diggle & Liang, 2005). It is closest to the laboratory experiment of the natural sciences.
Agreement on study protocols improves the chances for direct comparisons of results. Trust in results
is increased with easily accessible documentation provided, for instance, for effects of health care
by the Cochrane collaboration and for effects of educational, behavioral and social interventions by
the Campbell collaboration. Both of these nonprofit organizations were started in the UK but turned
rapidly into larger international collaborations.

A typical path to understanding includes individual case studies, retrospective and prospective
case-control studies, randomized interventions and animal experiments. For example, this was the
case with malformations in the eye of a newborn caused by a first exposition of the mother to Rubella
during the initial three months of pregnancy, and for lung cancer caused by intensive cigarette
smoking.

It is worth mentioning that randomization has been introduced into case studies of single individuals
(Sackettet al., 1996). And that in case-control studies in epidemiology, the comparison of a treatment
group with a control group is preserved, which is another main principle used in intervention studies.

Even though a randomized intervention is the best strategy for studying treatment effects, results
of such studies may still be misleading for a number of reasons. For instance, one main assumption
is treatment-unit-additivity, that results in the lack of interactive effects of treatment and background
variables. But this may not hold, especially if an illness has a genetic component or if the same
symptoms can be caused by two very different types of health status.

There may also be important unobserved variables that are intermediate between treatment and the
finally measured outcome variable. In this case, the overall treatment effect computed by omitting
all intermediate variables may deviate strongly from the effect that describes pathways from the
treatment to the response (Cox & Wermuth, 2003). Without mentioning such potential drawbacks
and how they may possibly be corrected, statistics is likely to not appear as a trustworthy science to
insightful collaborators from other fields.

3 Studying Causality with Potential Outcome Models

The attempt to understand possible causal effects is the motivation behind much empirical re-
search in the life sciences. Also, there appears to be agreement that models consistent with causal
interpretations are advantageous. However, there has also been an attempt to distinguish probability
models from what have been termed causal models.

There is a concise description by Lindley (2002) of the effects of assuming a notional intervention
in counterfactual reasoning and the potential outcome model. LetR denote a response,C a poten-
tially causal treatment variable, andB a background variable. Then the joint density of the three
variables would, in general, be different without and with intervention. More precisely, by observing
or seeing, we would obtain the density for the given order of the variables as

fsee � fR�CB fC�B fB �

whereas by intervening withC or doing, actual or notional, the potential cause becomes decoupled
from the past so that the joint density is changed to

fdo � fR�CB fC fB �

Both are proper probability models. In the linear case, an overall effect ofC on R is � R�C �

�R�C�B��R�B�C�B�C under the first, in contrast with�R�C � �R�C�B under the second. Thus, assuming
treatment-unit-additivity and a notional intervention a situation is produced in which the conditional
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effect ofC on R given the background featuresB coincides with the overall effect ofC on R. This
is an important insight but hardly justifies speaking of a causal model, also claimed by some to
be outside common probabilistic reasoning. For a detailed review of different statistical notions of
causality, see Cox & Wermuth (2004).

4 Graphical Markov Models

Graphical Markov models extend the notion of a linear data generating process as studied by Sewall
Wright under the name of path analysis, to more general situations using the notion of conditional
independence, so permitting joint responses, sequences of treatment and intermediate outcome
variables and a set of background variables. Many common statistical models are special cases. A
wide range of new results have become available recently (Lauritzen & Sheehan, 2003; Wermuth
& Cox, 2004; Wermuth, 2005). They provide a flexible class of models permitting extensions, for
example to time series and point processes.

Stepwise data-generating processes in terms of recursive univariate regressions in a general sense
can be modelled, including interactive and nonlinear effects. In particular, this makes it possible to
check whether some of the assumptions of the potential outcome model can reasonably be made for
a given set of data.

5 The Open Source Computing Environment R

Arguably the most promising development regarding transparent computing was started with the
concerted work of a group of statisticians from Canada and New Zealand (Ihaka & Gentleman, 1996)
and is at present the widely respectedR project, providing open source software for many traditional
statistical methods including Bayesian inference, graphical Markov models and genetic analyses.
Access is via http://cran.r-project.org .

6 Other Topics

Intensive work on the decoding of genes has also led to the many studies involving statistical
inference. It is particularly encouraging that statistical principles of design are being adapted to
this special important area (Yang & Speed, 2002; Glonek & Solomon, 2004). Undoubtedly the next
step will be a critical assessment of the properties of methods and algorithms, and discussion of
permissable target populations.

Such assessments have been carried out for performance indicators (Birdet al., 2005), the use
of different weighting schemes in survey research (Firth & Bennett, 2002), ecological inference
(Wakefield, 2004), and hierarchical modeling (Heagerty & Zeger, 2000; Firth, 2005). Many more
are needed, especially with the rapid increase of methods proposed and implemented in statistical
packages.
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