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Student, who used the divisor n in computing the
variance. Using the unpaired z-test we obtain a 1 =
1.86 with 18 df and a P value of 0.0792. By pair-
ing the observations, as we should, the result is
t =1.58/(0.39/+/10) = 4.06 with 9 df and a P value
of 0.0028. It is better to report the mean of the differ-
ences and its standard deviation rather than showing
only the r statistic or the P value (or worse, NS for
“not significant”, or some number of asterisks!).

Robustness

The robustness properties correspond to those of the
one-sample 7 test. The effect of nonnormality is fairly
small if n is at least 30, since the distribution of d
will be close to normal in that case. If one difference
(or a few) appear to be quite large (i.e. outliers) the
results can be affected. Outliers can be considered
a form of nonnormality. They affect the variance of
the observations, and can also affect the skewness
of the distributions. The P values reported from an
analysis are often given as P < 0.05 or P < 0.01.
Since the P value depends on the behavior of the
distribution in its tails, nonnormality generally means
that statements such as P < 0.001 are rarely accurate
(the quoted P value for the example thus should be
regarded as P < 0.01). Lack of independence among
the pairs (which might arise if multiple members of
a litter or a family were included in a study, i.e.
clustering) can seriously affect the level of the test.
If the correlation between any pair of differences
is y, the variance of the differences is o2(1 + 2y).
Thus, the estimated variance is biased. If y > 0, the
denominator of the 7 statistic is too small, and the sig-
nificance levels are incorrect. If the correlation holds
only among certain pairs (e.g. independent clusters
would lead to a block diagonal covariance matrix),
the analysis is more complex, but the estimated vari-
ance 1s still biased. Lack of common variance in X
and Y does not formally affect the analysis. How-
ever, unless the primary interest is in the difference
between the observations, the lack of common vari-
ance indicates that X and Y do not have the same dis-
tribution, although they might have the same mean.
If the variance differs over the pairs, heteroscedastic-
ity concerns arise (see Scedasticity). Rosner [4] has
suggested a random effects model which accounts
for this. Missing values can create problems. Usually,
only one member of the pair is missing. If the missing

value is related to the mean value within the pair, the
missingness is not random, and the ¢ test is affected
(see Missing Data). For further discussion of these
points, see Miller [2] or Madansky [1].

Several alternatives exist to the paired 7 test. These
are useful if the distribution is not normal and there is
concern that this may affect the performance of the
test. The sign test uses the number of positive (or
negative) signs as a binomial variable with probabil-
ity parameter 1/2 under Hy, and, for large samples,
computes the standard normal deviate, z, to test H.
The asymptotic relative efficiency (ARE) of this test
is 0.637 when the differences are normal. The signed-
rank test ranks the absolute values of the differences
and sums the ranks corresponding to the positive (or
negative) signs. The ARE of this test is 0.955. The
normal scores test replaces the ranks of the differ-
ences by their expected values under normality and
computes a ¢ test on these. Its ARE is 1.0. For obser-
vations from nonnormal distributions, the efficiencies
of the nonparametric procedures may be higher than
indicated here and the ¢ test can be very inefficient.
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Pairwise Concordance see Twin
Concordance

Pairwise Independence

Suppose that two variables are considered as poten-
tially explanatory for a further variable, called the


beruflich
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Table 1 Dependence reversal because of strongly associated explanatory variables

C, site Overall; that is,
k=1 k=2 summed over sites
A B, treatment B, treatment B, treatment

outcome j=1 j=2 j=1 j=2 j=1 j=2

i = 1 (success) 96 600 400 4 496 604

(96%) (60%) (40%) (4%) (45%) (55%)

i=2 4 400 600 96 604 496

Sum 100 1000 1000 100 1100 1100
Odds ratio 16 16 0.67

response, and that the dependence of the response on
each of the variables taken alone and on both acting
jointly is of main interest. For an appropriately chosen
scale and measure of dependence, suppose further-
more that the effects of both variables turn out to
be (essentially) additive (see Additive Model). This
means that the effect of one of them on the response
is (nearly) the same no matter at which level the other
explanatory variable is fixed. Often, this is described
as the absence of an interaction but the presence of
two main effects.

An important role of pairwise independence of
explanatory variables is then as follows: it is cer-
tain that no dependence reversal can occur for the
(nearly) additive effect of one of the explanatory vari-
ables in comparison with the effect of this variable
taken alone. To put it differently, if the explanatory
variables are nearly independent, and have essen-
tially additive effects on the response, then the overall
effect of just one of them coincides at least qual-
itatively with the corresponding effects considered
conditional given the other variable. A strong rever-
sal of treatment success as related to variable B
occurs instead in the 2° contingency table displayed

in Table 1, since the explanatory variable pair B, C
is highly dependent.

For both discrete and for continuous responses,
further discussions of dependence reversal in spite of
essentially additive main effects are to be found, for
instance, in Snedecor & Cochran [5, p. 472}, Good &
Mittal [1], Wermuth [6, 7], and Guo & Geng [2]. In
a contingency table context early insights are due to
Yule [8] and Simpson [4], (see Simpson’s Paradox).

Mutual Dependence in Spite of Pairwise
Independences

In general, no mutual independence results even
if several variables are all pairwise independent.
Instead, more complicated types of dependencies
may still exist, which are often called higher-
order interactions. An important implication is
that methods of analysis relying completely on
pairwise associations, correlation-based techniques
or correspondence analysis, will overlook the
existing dependencies in such situations and are
therefore likely to lead to misleading interpretations.

Table 2 Symptoms after LSD intake: mutual dependence and pairwise inde-

pendence
C, dimming of consciousness
k=1 (yes) k=2
A, distorted B, distorted thinking B, distorted thinking
affective behavior Jj =1, (yes) j=2 j =1, (yes) j=2
i =1 (yes) 21 5 4 16
i=2 2 13 11 1
Odds ratio 27.30 0.023
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An empirical example with four binary variables
is due to Lienert [3]. He reported on symptoms
after LSD intake. The 23 contingency table shown
in Table 2 is an adaptation of his results. The three
transient symptoms, recorded to be present (level 1)
or absent (level 2), are distortions in affective behav-
ior (A), distortions in thinking (B), and dimming of
consciousness (C). There is a strong three-way inter-
action, as reflected for instance in the quite distinct
odds ratios at the two levels of C; at the same time,
the frequencies in the three marginal tables show
all three symptom pairs as being close to indepen-
dence.

With completely randomized designs (see Rando-
mization) it will typically occur that - at the time a
study starts - not only observed variables but also
unobserved variables will essentially be both pair-
wise, and mutually, independent. Note, however, that
even with this technique it is not possible to avoid
dependencies with unobserved intermediate variables,
i.e. with unrecorded variables related to both treat-
ment and outcome, but occurring unnoticed before
observing outcome. Typical examples are noncompli-
ance of some patients (see Compliance Assessment
in Clinical Trials) or, more -generally, unrecorded
treatment effects or changes in measurement devices
before treatment outcome is established.
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(See also Statistical Dependence and Indepen-
dence)
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Panel Study

In a panel study a number of individuals are followed
for a given period of time. At each of a predetermined
set of time points several measurements on each
individual are taken. Data obtained from a panel study
are called panel data. A panel study designed to have
observations at k time points is called a k-wave panel
design. Under this definition the term panel study
could be used to refer to a large range of studies in
biostatistics, particularly in epidemiology and clinical
trials, although in many cases the term panel study is
not used. The main advantage of a panel study is that
individual changes over time can be modeled and the
unobserved heterogeneity across individuals and over
time can be taken into account.

In many panel studies, especially those lasting
for a long period, attrition or loss to follow-up is
an important issue. To keep the study population
at a proper size during the study, two variations
of the simple panel study can be used [3]. - One is
the rotating panel study, which replaces a part of
the previous panel by a new panel at some time
points and each individual only stays in the study for
a certain period. Another is the split panel design,
which recruits a new panel at some time points
and keeps following all the panels until the end of
the study.

Two important design issues are the calculation
of sample size and the choice of time points to take
the observations. For studies with continuous or cat-
egorical outcomes, standard sample size calculation
procedures for repeated measurement models can be
used. For panel studies that measure time to event
(see Survival Analysis, Overview) the exact time



