
eighteenth century social scientists that Beniger and
Robyn (1978) describe. Whatever the reason, there is
little justification for this to continue. Software pack-
ages such as S-Plus, SAS, SPSS, and SYSTAT (used
for the graphics in this article) now offer statistical
graphics and publishing standards such as Adobe
PDF format now make it possible to display graphics
as easily as text.

See also: Bayesian Graphical Models and Networks;
Graphical Models: Overview
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Graphical Models: Overview

1. Some General and Historical Remarks

Graphical models aim to describe concisely the poss-
ibly complex interrelationships between a set of
variables. Moreover, from the description key, proper-

6379

Graphical Models: O�er�iew

beruflich
In: International Encyclopedia of the Social and Behavioral Sciences. P.B. Baltes and N.J. Smelser (eds). Elsevier, Amsterdam, 9, 6379-6386.



Y,
success of
treatment

Primary
response

After
treatment

Za,

type
of
pain

Xa,

depression

Before
treatment

Zb,

type
of
pain

Xb,

depression

U,
chron-
icity
of pain

A,
site
of
pain

V,
number
of
previous
illnesses

and
further
back-
ground
variables

Secondary
responses

Intermediate
variables

Background
variables

Figure 1
Initial partial ordering of variables in chronic pain
study for a multivariate regression chain. Variables in
the same box are treated on an equal footing. Variables
in any one box are considered conditionally given all
variables in boxes listed to their right. Associations
among background variables in the double-lined box
are not analyzed but taken as given

ties can be read directly. The central idea is that each
variable is represented by a node in a graph. Any pair
of nodes may be joined by an edge. For most types of
graph a missing edge represents some form of in-
dependency between the pair of variables. Because the
independency may be either marginal or conditional
on some or all of the other variables, a variety of types
of graph are needed.

A particularly important distinction is between
directed and undirected edges. In the former an arrow
indicates the direction of dependency from an ex-
planatory variable to a response. If, however, the two
variables are to be interpreted on an equal footing then
an edge between them is undirected, or cyclic depen-
dencies are permitted. For instance, systolic and
diastolic blood pressure would typically be treated on
an equal footing because they are two aspects of a
single phenomenon, namely the blood pressure wave.

Graphical models started to be developed by
Darroch et al. (1980) and Wermuth (1976) as special
subclasses of loglinear models for contingency tables
and of multivariate Gaussian distributions which are
interpretable in terms of conditional independencies
and can be represented by undirected graphs. See
Multi�ariate Analysis: O�er�iew; Multi�ariate Anal-
ysis: Discrete Variables (Loglinear Models).

The first extension was to problems in which the
variables can be arranged in sequence so that each
variable is regarded as a response to all variables to the
right of it in the sequence. This leads to representation
by a directed acyclic graph. Then there are joint
response models with graphs having blocks of undir-
ected components, the blocks being again connected in
a directed and acyclic way. Much recent and ongoing
research is for more specialized situations such as

models for confounded dependencies, for event history
data, for time series data, and for simultaneous
dependencies in multivariate Gaussian distributions.
The latter correspond, for instance, to independence
graphs having directed cyclic components.

As an example of some of the above ideas we report
here on a study concerning chronic pain. One main
research question is: when investigating the devel-
opment of this illness, is it necessary to include
information on the patient’s site of main pain? Figure
1 shows a first partial ordering of a set of variables
within boxes. It reflects some of the prior knowledge
on the development of chronic pain and its treatment.
It also determines important aspects of the types of
analysis to be carried out: relations among several
background variables are taken jointly as given,
univariate conditional distributions are studied when
there is a single variable within a box, and joint
conditional distributions are studied when there are
several variables within a box. We return to a graph
resulting from such statistical analyses in Sect. 6

We concentrate in this article on the use of models
for the analysis and interpretation of empirical data,
and mention some of their other uses in Sect. 7 on
suggested further reading. The more recent statistical
work quoted here by authors only is referenced in
Edwards (2000), Studeny� and Bouckaert (1998),
Richardson (1998), or Wermuth (1998).

2. Models for Contingency Tables and the Need
for Extensions

For a q-dimensional contingency table, i.e., for counts
on q categorical variables, the most complex undir-
ected graph model has no constraints. It is called the
saturated model and is represented by a graph in q
vertices or nodes, with each node pair having exactly
one edge, i.e., being connected by a full line. Each full
line represents the conditional association of the
connected variable pair given all remaining q�2
variables. Removing a line from the graph introduces
a particular independence constraint for the corres-
ponding variable pair: the pair are to be conditionally
independent given all remaining variables. In a log-
linear model formulation this is achieved by setting the
two-factor and all higher-order interaction terms
involving this variable pair to zero. If all full lines are
removed, the graph of q disconnected nodes results. It
represents the simplest model in the class, the one of
mutual independence of all q variables.

This development built on previous work (quoted in
monographs on graphical models) by M. S. Bartlett,
M. W. Birch, L. A. Goodman, Y. Y. Bishop, S. E.
Fienberg and P. Holland and much earlier work by
A. A. Markov, who used the notion of conditional
independence around 1900 to formulate simple multi-
variate models, now called Markov chains. A Markov
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chain for q categorical variables can be represented by
an undirected graph which is a single path of full lines,
i.e., a sequence of nodes i

�
, i

�
,…, i

q
where just each con-

secutive pair is connected by a full line.
Compared to the larger class of loglinear models the

graphical models are attractive for three main reasons:
(a) the interpretation of a model can be much simpler
if independencies are taken into account compared to
only loglinear interactions; (b) parameter estimation
can be strengthened by basing it on a sequence of pos-
sible small contingency tables which depends on the
unique decomposition of a given graph into its prime
graphs, i.e., into graphs which in a graphical sense can-
not be split any further; and (c) a powerful separation
criterion permits one to read all independence state-
ments implied by a model directly off the graph.

This separation criterion forundirected graphs takes
any three nonoverlapping subsets a, b, c of nodes in
the graph of which the set c may be empty. Then the
corresponding variables X

a
are conditionally indepen-

dent of X
b
given X

c
if every path from a to b has a node

in c. This holds provided two conditions are satisfied:
all pairwise independence statements specified with the
missing edges of the undirected graph hold, and a tech-
nical positivity condition is fulfilled. One sufficient
condition for checking the latter fromanobserved con-
tingency table is that there are no zero frequencies.

In graphical models represented by undirected
graphs all variables are treatedonan equal footing, i.e.,
response variables and possible explanatory variables
are not distinguished. This is appropriate for various
different types of data, for instance for symptoms of a
given disease, for items which are to measure slightly
varying aspects of a particular attitude or of a
behavior of persons, or for several aspects which all
might contribute to a specific risk factor. However, for
much multivariate research some response variables
are of primary interest. There is in addition a set of
background or context variables, and there are pos-
sibly sequences of intermediate variables which play
the role of potential response variables to some and
of potential explanatory variables to other variables
under investigation. Typically, not all variables are
only categorical; some are nominal, some are ordinally
scaled, and still others are quantitative measurements.
Subsets of variables may have to be considered as joint
responses instead of univariate responses.

3. Questions Regarding Applications and
Statistical Research

The original formulation of graphical models has
already been extended in various directions to ac-
commodate the need posed by different substantive
research questions, to describe properties of different
classes of independence models, and to prove cor-
responding results.

For research in different substantive fields such as
genetics, economics, social, and life sciences, some
important questions arising in applying graphical
Markov models are:

(a) How do graphical Markov models relate to
techniques applied traditionally in the given field?
What additional possibilities do they offer to gain
better insight into any given research question?

(b) How can a given graphical Markov model be
best fitted to data? Is software available which permits
fast application as well as comparison and integration
into existing techniques and strategies of data analysis?

(c) Which of the associated new results in statistical
theory are most useful for the substantive research at
hand? Are case studies available in which graphical
Markov models have been used fruitfully?

(d) Are criteria available to decide among alterna-
tive types of model to be considered for a given set of
data?

The answers must depend partly on the specific
substantive research questions. Also, the kinds of
research questions which may be analyzed in the
context of graphical Markov models widen as more
theoretical results become available, and as new classes
of model are developed. But many positive answers
have become available, especially since, as described in
Sect. 2 for general loglinear models, representations
interpretable in terms of conditional independencies
often result as a subclass of widely used tools for data
analysis.

The following are some of the associated research
questions in statistical theory.

(a) Which sets of independence statements can be
specified within different classes of independence
graphs? In particular, what are the defining indepen-
dencies, i.e., what are (possibly alternative) sets of
independence statements by which a given graph can
be characterized? Which independence statements are
implied in addition to those in a defining set?

(b) Under what conditions are two different graphs
independence-equivalent; that is, when do they charac-
terize the same independence structure, so that they
imply an identical list of independence statements?

(c) Under what distributional assumptions do all
models in a given class of independence graphs exist?
When are they not only independence-equivalent but
when are they also distribution-equivalent; that is,
when do they define the same joint distribution?

(d) For which graphical Markov models do unique
maximum-likelihood estimates exist? With which
types of algorithm can maximum-likelihood estimates
or parameter estimates in posterior distributions be
obtained? When can large estimation problems be
decomposed into smaller, simpler ones? When can
complicated estimation problems be embedded in
larger, simpler ones?

(e) Can the implied independence structure be
predicted that results, for instance, after marginalizing
over some of the variables and after conditioning on
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other variables? When can even the strength and
direction of implied conditional associations be de-
rived explicitly?

(f) How can deterministic transformations of vari-
ables be utilized systematically in model building?
Should definitions of variables, i.e., measurement
questions, be integrated into the formulation of a
graphicalMarkovmodel, or should they be introduced
and studied separately?

While the last set of questions involve ongoing
research, at least partial answers are available to all
the others for most subclasses of graphical Markov
models known until now. Here we give only examples
of results, and point to the researchers who developed
them.

4. Types of Independence Graph and
Corresponding Marko� Models

As mentioned before, there are a number of different
types of graph which differ with respect to their
defining sets of independencies. To describe them we
denote by Y

V
a random vector variable of d

V
individual

components. A graph for the node set V captures an
independence structure for the joint distribution of all
d
V

components. For nonoverlapping subsets S and C
of V, with S having at least two nodes, a graph for the
node set S gives an independence structure for the
joint conditional distribution of Y

S
, given Y

C
. When C

is empty the graph is for the joint marginal distribution
of Y

S
. Conditional independence of Y

i
and Y

j
, given

Y
C
, is written more compactly as i� j �C.
For each member of the following types of graph,

there exists the corresponding independence structure
for mixtures of discrete and continuous variables in
some exponential family distribution, defined either
locally for conditional Gaussian regressions, or glo-
bally for a general conditional Gaussian distribution
or for one having no higher than two-factor inter-
actions. For simplicity we illustrate here the different
typesofmodelonly foramean-centeredvectorvariable
Y

V
having a joint Gaussian distribution and being

partitioned into at most three components V�
(a, b, c). The overall covariance matrix as well as its
inverse, the overall concentration matrix, are written
accordingly, partitioned as

Σ�

E

F

Σ
aa

Σ
ab

Σ
ac

� Σ
bb

Σ
bc

� � Σ
cc

G

H

, Σ−��

E

F

Σaa Σab Σac

� Σbb Σbc

� � Σcc

G

H

(1)

where the dots denote symmetric entries.
The concentration matrix in the marginal distri-

bution of Y
c
is denoted by Σcc�ab, and the one in the

joint marginal distribution of Y
b

and Y
c

has comp-
onents Σbb�a, Σbc�a, Σcc�a. In the latter, the notation

reminds one that marginalizing is over a. Similarly, the
conditional covariance matrix of Y

a
is denoted by

Σ
aa�bc

, and the conditional covariance matrix of Y
a
and

Y
b
given Y

C
has components Σ

aa�c
, Σ

ab�c
, Σ

bb�c
. Here the

notation reminds one that conditioning is on c.
Finally, the matrix of regression coefficients of Y

c

when regressing Y
b
on Y

c
is Π

b�c
, while in the regression

of Y
a

on both Y
b

and Y
c

the regression coefficient
matrix is in partitioned as (Π

a�b.c
, Π

a�c.b
). For example,

Π
a�b�c

are the coefficients of Y
b
. The notation reminds

one that regression is also on c.

4.1 Directed Acyclic Graph

A directed acyclic graph of Y
V

is a graph of arrows in
d
V
nodes without directed cycles, i.e., starting from any

one node it is impossible to return to this node by
following any path in the direction of the arrows. The
(i, j) arrow is missing in it if

i� j � parents of i. (2)

Nodes from which an arrow points directly to node i
are called the parents of i.

For a Gaussian distribution, the independencies
show as zero coefficients in recursive linear equations
having independent residuals. More precisely, we have
equations AY

V
� ε, with residuals ε having zero mean

and covariance matrix, cov (ε), being a diagonal matrix
T. Further, A is upper triangular with ones along the
diagonal, giving Σ−��ATT−�A. Therefore (A, T−�) is
a triangular decomposition of the concentration
matrix and off-diagonal elements in row i and A are
negative values of regression coefficients when regress-
ing Y

i
on all its potentially explanatory variables,

i.e., variables ordered to have indices larger than i.
Thus, the independencies show as zeros in A. If only a
directed acyclic graph is given, typically more than one
set of recursive equations is compatible with it, i.e.,
with several different orderings of the variables, an
upper triangular matrix can result which reflects the
same independence structure as the given graph.

However, often a unique full ordering is provided
from substantive knowledge about how the data could
have been generated. This was how the geneticist S.
Wright introduced and used path diagrams for recur-
sive linear relations. For other than linear relations, a
generating process in terms of univariate conditional
distributions still determines uniquely the edge matrix
in a directed acyclic graph and a corresponding
factorization of the joint density. Separation criteria
for directed acyclic graphs apply therefore to any joint
distribution generated in this way over a directed
acyclic graph. A first path criterion was given by J.
Pearl, who called it d-separation (for separation in
directed graphs). Two other equivalent criteria are due
to S. L. Lauritzen and coworkers, and D. R. Cox and
N. Wermuth.
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4.2 Types of Undirected Graph

A conditional concentration graph of Y
S
, given Y

C
, is an

undirected graph of full lines in d
S
nodes. The full (i, j)

line is defined to be missing in it if

i� j �C, S excluding i, j. (3)

For a Gaussian distribution, the independencies
show as zeros in the conditional concentration matrix
Σ−�

SS.C
. Such models have been introduced by A. P.

Dempster under the name of covariance selection. The
name concentration graph model for Gaussian vari-
ables is more common now. It records that for
Gaussian distributions the above independence state-
ment is equivalent to the vanishing of a concentration,
which is amultipleof thepartial correlationofY

i
andY

j

given all remaining variables in S and C.
The name concentration graph model does not

imply that for general distributions concentrations
vanish, but only that the distribution satisfies a set of
independence statements of the above type. The
separation criterion in Sect. 2 holds for such general
concentration graph models and was given by J.
Darroch, S. L. Lauritzen and T. P. Speed.

A conditional co�ariance graph of Y
S
, given Y

C
, is an

undirected graph of dashed lines in d
S

nodes. The
dashed (i, j) line is missing in it if

i� j �C. (4)

For a Gaussian distribution, the independencies
show as zeros in the conditional covariance matrix
Σ

SS.C
. The models are a special case of T. W.

Anderson’s linear in covariance models. They may not
have a unique maximum likelihood estimate.

In general a covariance graph structure can capture
all independencies in a joint distribution only if it has,
just as a Gaussian distribution, no higher than two-
factor interactions. For binary variables this holds, for
instance, for the quadratic binary exponential dis-
tribution. For mixed variables it can be achieved for
the conditional Gaussian distribution with all three
and higher-order interactions being zero. Separation
criteria were given by G. Kauermann and by
Richardson (2001).

4.3 Types of Chain Graph

A chain graph of Y
V

is a graph in d
V

nodes which may
be arranged in a sequence of ordered boxes (1,…, k,
k�1,…, K) such that there are undirected edges
within boxes and arrows between boxes all pointing in
one direction, e.g., from k to 1,…, k�1; the arrows
form no directed cycle, i.e., starting from any one box
it is impossible to return to this box by following the
direction of the arrows.

A chain graph of block regressions contains full lines
within boxes and full arrows between boxes. The full

(i, j) line is missing within box k or the full (i, j) arrow
pointing from a node in one of the boxes k�1,…, K to
a node in box k is missing if

i� j � all nodes in boxes k,…, K excluding i, j. (5)

For three chain components in a Gaussian dis-
tribution, each independence statement corresponds to
a zero entry (possibly symmetric) in one of the
following concentration matrices: Σaa, Σab, Σac, Σbb�a,
Σbc�a, Σcc�ab. The name block regression arises in spite of
this concentrationmatrix representation since dividing
all elements in row i of, say (Σbb�a, Σbc�a), by the element
in position (i, i), a transformation into corresponding
block-regression coefficients results. Two different
equivalent separation criteria were given by M.
Frydenberg and by M. Studeny� .

Models of this type for the special kind of model for
mixtures of continuous and discrete variables called
CG-regressions are known to have unique maximum
likelihood estimates, but it took more than 20 years
before an algorithm was made available by D.
Edwards and S. L. Lauritzen that converges in reason-
able time.

A chain graph of multi�ariate regressions contains
dashed lines within boxes and dashed arrows between
boxes. The dashed (i, j) line is missing within box k if

i� j � all nodes in boxes k�1,…, K (6)

the full (i, j) arrow pointing from a node in one of the
boxes k�1,…, K to a node in box k is missing if

i� j � all nodes in boxes k�1,…, K excluding j. (7)

For three chain components in a Gaussian dis-
tribution each independence statement corresponds
to a zero entry (possibly symmetric) in one of the
following matrices of covariances or of regression
coefficients: Σ

aa�bc
, Π

a�b�c
, Π

a�c�b
, Σ

bb�c
, Π

b�c
, Σ

cd
. A

separation criterion was given by N. Wermuth and
D. R. Cox and by T. S. Richardson.

A chain graph of concentration regressions is a
mixture of a concentration graph and a multivariate
regression graph. It contains full lines within boxes
and dashed arrows between boxes. The full (i, j) line
is missing within box k if

i� j � all nodes in boxes, k,…, K excluding i, j (8)

the dashed (i, j) arrow pointing to box k is missing if

i� j � all nodes in boxes k�1,…, K excluding j. (9)

For three chain components in a Gaussian dis-
tribution, each independence statement corresponds to
a zero entry (possibly symmetric) in one of the
following matrices of concentrations or of regression
coefficients: Σaa, Π

a�b�c
, Π

a�c�b
, Σbb�a, Π

b�c
, Σcc�ab. For
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Figure 2
Simple examples of the four types of joint response
graphs in Sects. 4.3 and 4.4. In each the joint responses
are Y and X, and the explanatory variables are
marginally independent: V�W. The only additional
independencies represented by each graph are in the (a)
chain graph of block regressions: Y�W � (X, V) and
X�V � (Y, W), (b) chain graph of multivariate
regressions: Y�W �V and X�V �W, (c) chain graph of
concentration-regressions: Y�W �V and X�V �W; and
(d) cyclic graph: V�W � (Y, X).
Graphs (b) and (c) are examples of two independence
equivalent graphs. In fact a distinction in
independencies would emerge only with a third
response Z in the left-hand box. Then a missing edge
between, say X and Z, in (c) would refer to
independency conditional on Y, V, W, and in (b)
conditional only on V, W

exponential families the concentration graph com-
ponents refer to canonical parameters and the arrows
correspond to (conditional) mean parameters. One
intensively studied special case is for categorical data
in which joint responses are modeled by loglinear
interactions and dependencies via so-called marginal
models. A separation criterion was given by S. A.
Andersson, D. Madigan and M. Perlman.

Of these three types of chain graph only the second
class, the graph of multivariate regressions, contains
the general linear models in which every regression is
of each component of the response separately on the
same set of explanatory variables and the residual
covariance matrix contains the remaining parameters.
The class also contains seemingly unrelated re-
gressions.

4.4 Cyclic Independence Graphs

Some fully directed graphs may contain directed cycles
among a set of different variables and even for the
same pair of variables. It has been shown by P. Spirtes
and by J. Koster that the d-separation criterion can be
applied to these graphs in unchanged form. Graphs of

traditional structural equation models may be slightly
modified (Koster 1999) to have in our notation dashed
lines, arrows, or combinations of both, as well as cyclic
dependencies. Then a slightly extended version of the
d-separation criterion can be applied to them as well.
However, missing edges in these graphs need not point
to any independence statement for the variable pair
involved, and the meaning of edges in terms of
distributional properties may have to be derived from
scratch for a given graph.

Figure 2 shows examples of graphs for all four types
of joint responsemodelsofSects. 4.3and4.4.Theyhave
in common two connected joint responses, two marg-
inally independent explanatory variables, and missing
edges for two further pairs: (X, V ) and (Y, W ).

5. Independence Graphs and Generating Processes

As mentioned above, multivariate models which have
a univariate recursive generating process can be
expressed in a stepwise fashion in terms of univariate
conditional distributions. They are sometimes called
association models generated over a directed acyclic
graph. Because they can be compatible with causal
interpretations they are attractive for much subs-
tantive research driven by causal hypotheses. See
Causal Inference and Statistical Fallacies.

Multivariate regression chains are closest to a
recursive generating process, since residual association
may be regarded as a secondary feature. Also, after
replacing each dashed line separately by two arrows
starting from a common additional node, called a
synthetic common source node, a directed acyclic
graph results which implies the correct independence
structure for the variables, in the given multivariate
regression chain. It also implies covariance graph
components which do not have interactions involving
more than two variables.

In general, no similar simple generating processes
are available for the other two types of chain graph
containing chordless undirected cycles. The reasons
were that (a) it is not possible to order the nodes in a
chordless cycle of a concentration graph to generate it
recursively in the given variables and (b) it is also not
possible to enlarge the graphs by synthetic common
sake nodes to generate undirected chordless cycles.
At present the only ways known to generate such
cycles are by conditioning on synthetic common
responses or by postulating a dynamic process obser-
ved cross-sectionally in statistical equilibrium.

Experience suggests that multivariate regression
chain structures fit well data from panel studies in
several waves. Also, they permit prediction of in-
dividual responses without involving response vari-
ables consideredonanequal footing,butonlyvariables
prior to all the joint responses. For many applications
in medicine and social science this is an explicit goal of
the investigation.
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6. A Chain Graph as Partial Summary of Data
Analysis

We now return to the variables in Fig. 1. The
multivariate regression chain in Fig. 3 is derived by
statistical analyses based on data provided by Judith
Kappesser of the Department of Psychology at the
University of Mainz. The data are for 201 chronic pain
patients who have been given a three-week stationary
treatment at a chronic pain clinic.

The response of primary interest in Fig. 1 is self-
reported success of treatment. It is measured three
months after discharge by a score which comprises
several aspects of successful treatment. The back-
ground or context variables are age, gender, marital
status, years of formal schooling, number of previous
other illnesses, and duration of pain. There are a
number of intermediate variables. Before and directly
after treatment, questionnaire scores are available of
depression and of self-reported type of pain, ranging
from ‘no pain’ to ‘pain as strong as imaginable.’ The
chronification index is a score incorporating different
aspects of time, spreading of pain, use of pain relievers,
and the patient’s pain treatment history. The main site
of pain has two categories: ‘back pain’ and pain on the
‘head, face, or neck.’

The chain graph of Fig. 3 summarizes some im-
portant aspects of the results of analysis. It shows, in
particular, which of the variables are needed for each
response such that adding one more of the potentially
explanatory variables does not improve prediction.
Site of pain is an important intermediate variable and
information on it should therefore be included in
studies of chronic pain.

Some of the directions and types of dependency
which cannot be read off the graph are as follows.
Patients with many years of formal schooling (13 years
or more) are more likely to be headache patients, while
the others are more likely to be backache patients,
while possibly because more of them have jobs invol-
ving physical work, and they are more likely to reach
higher stages of intensity of pain before treatment.
Backache patients reach higher stages of chronifi-

Y

Za Zb

Xa Xb

U

A
BB

V

Figure 3
Multivariate regression chain of significant relations,
well compatible with the data. Discrete variables are
drawn as full circles, continuous ones as open circles

Y, success of treatment
40

30

20

10

0
0 2 4 6 8 10

Za, type of pain after treatment

Figure 4
Form of dependence of primary response Y on Z

a

cation and report higher intensity of pain after
treatment. Figure 4 shows that treatment is more suc-
cessful the lower the intensity of pain, but for scores of
intensity of pain of about six or higher this dependence
vanishes. One path of development is that patients
with shorter periods of formal schooling may get
chronic backache, and patients with chronic backache
get help too late and respond less well to the type
of treatment offered.

Screening for nonlinear relations and interactive
effects did not point to important other relations. The
model is said to fit the data well because for each
response taken separately no indication was found
that adding a further variable would improve pre-
diction. Had there been no nonlinear relations and no
categorical variables as responses the overall model fit
could have been tested within the context of available
software for models of linear structural relations.

7. Suggested Further Reading

We have described some of the statistical aspects of
graphical Markov models. Statistical monographs
documenting the development are by Wermuth (1978),
Whittaker (1990), Edwards (2000), Lauritzen (1996),
Cox and Wermuth (1996). For an exposition of impor-
tant different types of independence structure present
in small data sets containing only linear relations,
see Cox and Wermuth (1993). Models for single and
joint response chain graphs can be viewed as a genera-
lization of Sewall Wright’s path analysis different from
the generalization to models of linear structural
relations (Bollen 1989). The two model classes have
some subclasses in common, for instance linear syst-
ems represented by directed acyclic graphs and linear
multivariate regression chains.
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Monographs treating the use of graphical Markov
models as a basis for probabilistic calculations in
expert systems and for artificial intelligence appli-
cations are by Pearl (1988) and by Cowell et al. (1999).
For their use in a specifically decision-making context,
seeOliver and Smith (1990). For discussions in relation
to causal reasoning, see the monographs by Spirtes et
al. (1993) and by Pearl (2000).

See also: Bayesian Graphical Models and Networks;
Graphical Methods: Presentation
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Green Parties

Greenparties havebecomeestablishedpolitical players
in most industrialized democracies and are emerging
in several industrializing ones. The electoral strides of
green parties, especially in Western Europe, have
resulted in a situation unimaginable a decade ago:
green parties in many national parliaments, green
ministers sharing power in several European national
governments, greens in the European Parliament
forming one of the largest party groups, as well as
sustained green representation at subnational levels of
government. Yet greens’ electoral fortunes are de-
cidedly uneven: electoral success in northern countries
contrasts with near invisibility in the South. Moreover,
electoral success has brought new strategic dilemmas
for the greens as they struggle to maintain their
alternative ‘green’ credentials while joining parlia-
ments and supporting, if not forming, national govern-
ments.

1. Emergence

The emergence of green parties needs to be understood
in the context of a broader shift from industrial to
‘postindustrial’ politics. For younger, better-educated
citizens in particular, the prosperity and rise in living
standards enjoyed in the postwar era formed the
backdrop for a change from materialist to ‘post-
materialist’ values, or from ‘old politics’ to ‘new
politics’ (see Inglehart 1977, Poguntke 1993). As the
basic material needs (food, shelter, etc.) of a far higher
share of the population were being satisfied, political
attention shifted from materialist concerns to ‘quality
of life’ issues, such as enhanced political participation,
gender and racial equality, and, perhaps above all,
environmental protection.

Growing environmental concern among the public
was heightened by the continued degradation of the
environmentand increasedmediaattentionof environ-
mental issues. Toxic chemical spills in major rivers, air
pollution alerts in cities, and oil slicks in pristine
coastal waters further increased public anxiety, es-
pecially in Europe and the USA. Meanwhile, the
accelerated construction of nuclear plants in the wake
of the energy crisis, as well as the increased deployment
of nuclear weapons, awakened or reinforced fears
about the safety of nuclear power, the problems of
disposing nuclear waste, and fears of nuclear annihil-
ation.

To many citizens in advanced democracies, none of
these concerns was adequately addressed by existing
parliamentary structures. A proliferation of extra-
parliamentary, nonpartisan citizens’ movements em-
erged in the 1960s and 1970s to protest issues of peace,
ecology, and women’s rights. These new social move-
ments served as the antecedents for a new type of
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