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Summary. We consider joint probability distributions generated recursively in terms of univari-
ate conditional distributions satisfying conditional independence restrictions. The independen-
ces are captured by missing edges in a directed graph. A matrix form of such a graph, called the
generating edge matrix, is triangular so the distributions that are generated over such graphs
are called triangular systems. We study consequences of triangular systems after grouping or
reordering of the variables for analyses as chain graph models, i.e. for alternative recursive
factorizations of the given density using joint conditional distributions. For this we introduce
families of linear triangular equations which do not require assumptions of distributional form.
The strength of the associations that are implied by such linear families for chain graph models
is derived. The edge matrices of chain graphs that are implied by any triangular system are
obtained by appropriately transforming the generating edge matrix. It is shown how induced
independences and dependences can be studied by graphs, by edge matrix calculations and
via the properties of densities. Some ways of using the results are illustrated.

Keywords: Chain graphs; Concentration graphs; Covariance graphs; Directed acyclic graphs;
Graphical Markov models; Univariate recursive regressions

1. Introduction

1.1. Triangular systems and induced chain graph models
Analysis and interpretation of multivariate data can often be simplified when knowledge about
independences is available or can be derived. A summary of such independences can be given in
graphs in which variables are represented by nodes. Conditional associations between pairs of
variables can then be represented by edges between nodes and independences by missing edges.
For different perspectives on the statistical models that are associated with such independence
graphs, see Cox and Wermuth (1996), Edwards (2000), Green et al. (2003), Lauritzen (1996)
and Whittaker (1990).

One important type of independence graph is directed and without cycles. It has at most one
directed edge for each node pair, which we call an arrow, and it is acyclic because we cannot
start from any one node, follow arrows pointing in the same direction, and return to the starting
node. In our context each arrow points from the node of a directly explanatory variable to the
node of a response variable. A variable which is a response to one variable and explanatory to
another is called intermediate.
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Often substantive knowledge is sufficiently strong to relate a response of primary interest via
a sequence of intermediate single variables to a purely explanatory variable. Then the corres-
ponding independence graph is directed and acyclic. However, sometimes more complex types
of independence graphs are of interest which may have several types of edge and possibly more
than one edge for a node pair.

We consider a set N of nodes, completely ordered as N= .1, . . . , dN/ and having node i corre-
spond to random variable Yi. Their joint distribution is said to be generated over a directed and
acyclic graph by starting with the marginal distribution at node dN , continuing with the distri-
bution for the variable at node dN − 1 given dN , and with conditional univariate distributions
at nodes i given i+ 1, . . . , dN up to the distribution of Y1 depending possibly on all previous
variables. A direct proper dependence of Yi is thereby defined to be on only those Yj of the
potentially explanatory variables Yi+1, . . . , YN for which an arrow points from node j to node
i. Such nodes j are called parents of i and form the set pari. In a condensed notation the joint
density fN is

fN =
dN∏
i

fi|i+1,:::,dN
=

dN∏
i

fi|pari
, .1/

and we concentrate here on non-degenerate families of distributions of this type. For such a
factorization each missing ij-arrow with i < j means conditional independence of Yi and Yj

given the variables at the parent nodes of node i. This is written compactly as i � j|pari.
The collection of all missing edges is equivalent to a set of independence statements. It defines

the independence structure of the graph, i.e. the set of all independences satisfied by all distri-
butions generated over the graph. A directed and acyclic graph with a complete ordering of
the nodes is called the parent graph. It prescribes a stepwise process for generating the distri-
bution. We are concerned in this paper with implications of such generating processes when
conditioning sets of variable pairs are changed to those specified by different types of chain
graph models.

For chain graphs the nodes are arranged in a sequence of dCC chain components g, each
containing one or more nodes, so that N= .1, . . . , g, . . . , dCC/ and the joint density is reconsid-
ered in the form

fN =
dCC∏
g=1

fg|g+1,:::,dCC : .2/

Within this broad formulation of chain graphs there are two main different possibilities which
we call multivariate regression chains and blocked concentration chains.

In graphs of multivariate regression chains all edges are shown in a broken fashion; we call
them dashed edges. For a given chain component g, variables at nodes i and j are considered
conditionally given all variables in chain components g+1, . . . , dCC. Thus, the univariate and
bivariate densities

fi|g+1,:::,dCC ,

fij|g+1,:::,dCC

.3/

determine the presence or absence of a dashed ij-arrow, which points to node i in chain com-
ponent g from a node j in g+1, . . . , dCC, and of a dashed ij-line within g when j itself is in g.
Accordingly, the meaning of a missing dashed ij-arrow and of a missing dashed ij-line is
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i � j|{g+1, . . . , dCC}\j,
i � j|g+1, . . . , dCC:

.4/

In graphs of blocked concentration chains all edges are shown in a solid fashion; we call them
full edges. For a given chain component g, variables at nodes i and j are considered condition-
ally given all other variables in g and the variables in g+ 1, . . . , dCC. Thus, the univariate and
bivariate densities

fi|g\{i},g+1,:::,dCC
,

fij|g\{i,j},g+1,:::,dCC

.5/

are relevant for a full ij-arrow pointing to node i in g and for a full ij-line within g. Accordingly,
the meaning of both a missing full ij-arrow and a missing full ij-line is

i � j|{g, g+1, . . . , dCC}\{i, j}: .6/

Chain graphs which we draw with full edges, dashed edges and with mixtures of full lines and
dashed arrows have been studied by many researchers; see for example Lauritzen and Wermuth
(1989), Frydenberg (1990), Wermuth (1992) and Studený and Bouckaert (1998) for the first
type, Cox and Wermuth (1993, 1996) and Richardson (2003) for the second type, Levitz et al.
(2001) for a mixture and Wermuth and Cox (2001) for these three types.

One central theme of this paper is the examination of the set of independences that results
when, starting with a triangular system, the comparison with an analysis is contemplated in
which roles of some explanatory and some response variables may be interchanged and joint
responses are permitted. Put differently, we derive chain graphs which are induced, i.e. implied,
by the parent graph of a given triangular system, whenever some subsets of variables are recon-
sidered, possibly jointly and with different, fixed conditioning sets. In the induced chain graph
an edge is missing if and only if the corresponding independence statement is implied by the
generating process (1). Such reconsiderations arise typically when there is some uncertainty
about the actual ordering of the variables or when there are alternative substantive hypotheses
(Wermuth and Lauritzen, 1990) for the variables under study.

This is illustrated here with the following small example from interdisciplinary research on
diabetes. Physicians and psychologists searched for important determinants of whether patients
succeed well in controlling their chronic disease. The data are reproduced in the appendix of Cox
and Wermuth (1996). For each of two patient groups with different levels of formal schooling
the parent graph that is shown in Fig. 1 fits the data well. It postulates a stepwise process by
which the data could have been generated, corresponding to the ordering N= .Y , X, Z, W/ and
to the factorization of the joint density (1) read directly off the graph as

fN =fY |XW fX|ZfZ|W fW :

It might now be argued that acquiring knowledge about diabetes and controlling the blood
sugar are both consequences of the illness or that having high blood sugar levels leads a patient
to learning more about the illness. This questions the above ordering of the variables and we
might ask: supposing that the generating process of Fig. 1 is correct, what are the consequences

Fig. 1. Postulated generating graph for data on glucose control
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for analysing the variables Y and X as responses on an equal footing or for regarding X as a
response to Y?

Such questions concerning relationships that are induced by a given parent graph for a pre-
specified chain graph may be answered in several ways. One is to use the factorization of the
joint density as implied by the generating graph and to find directly whether it induces a fac-
torization in the relevant densities (3) or (5). Another is by tracing special paths, i.e. by finding
sequences of adjacent edges in the generating graph identified by a separation criterion. Such
criteria specify conditions under which a directed and acyclic graph induces any given condi-
tional independence statement. Different but equivalent criteria have been formulated so far
exclusively in terms of paths in graphs (Pearl, 1988; Lauritzen et al., 1990; Wermuth and Cox,
1998a). A further possibility is pursued in the present paper. It is to obtain the information on
the presence and absence of the edges induced in a prespecified chain graph by transformations
of a matrix form of the generating graph. The approach and formulation that are adopted here
are different from other generalizations of directed acyclic graphs analysed by Koster (2002),
by Richardson and Spirtes (2002) or by Cox and Wermuth (1996), chapter 8.

For a chain order specified by N= .{Y , X}, {Z}, {W}/ two chain graphs that are induced by
the parent graph of Fig. 1 are shown in Fig. 2. For the multivariate regression chain that is
induced by Fig. 1 an additional dashed YZ-edge results from marginalizing implicitly over X,
an intermediate variable between Y and Z in Fig. 1. For the blocked concentration chain an
additional full XW -edge results from conditioning implicitly on the common response Y of both
X and W in Fig. 1.

For the remainder of this paper we use for illustration the parent graph of moderate size that
is shown in Fig. 3. All arrows in it point from nodes with larger numbers to nodes with smaller
numbers. The matrix form of such a parent graph is upper triangular. Node i corresponds to
row i in the matrix that is obtained from an identity matrix of dimension dN by inserting an
ij-1, i.e. a 1 in position .i, j/ for i<j, if and only if there is an ij-arrow in the parent graph. We
call this matrix the edge matrix of the parent graph or the generating edge matrix.

As one application we show with Fig. 8 in Section 9 the graph of a selected blocked concen-
tration chain as it is induced by the generating graph of Fig. 3. In this case four chain com-
ponents have been chosen: N = .a, b, c, C/ with a= {7, 12, 14}, b= {1, 4, 11, 13}, c= {2, 8, 9},
C={3, 5, 6, 10} and C playing the role of a general conditioning variable. This choice of chain

(a) (b)

Fig. 2. Chain graphs induced by the graph of Fig. 1 for N D .{Y , X},{Z},{W}/ in (a) a multivariate regression
chain and in (b) a blocked concentration chain

Fig. 3. Generating graph in 14 nodes
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components requires from expression (2) the joint density to be reconsidered in the form

fN =fa|b,c,Cfb|c,Cfb|CfC:

Then the choice of a family of chain graphs fixes the conditioning set for each variable pair.
The new factorization shows that in induced chain graphs it is simple to condition on all

variables at nodes in the last chain component C, or to marginalize over all variables in the
first component. This is especially important whenever two investigations and analyses are to
be compared which agree on a core set of variables but differ somewhat, for example because
in one study there are no observations on a subset of variables or only a subpopulation corre-
sponding to fixed level combination of another subset of variables is investigated.

1.2. Outline of the paper
The paper starts in Section 2 by distinguishing a number of types of graph that are central to
our discussion of graphs that are induced by triangular systems (1). An edge in such a graph
has for Gaussian random variables a direct interpretation as a particular linear association.

Linear triangular systems, for which a full distributional specification is not needed, are
introduced in Section 3 and results are developed in Sections 4–6 which lead to induced linear
associations in covariance, concentration and regression coefficient matrices. One key idea is
that of orthogonalizing relationships between vector variables so that, when one component is
held fixed, the relationships of the other component remain unaffected.

To link the results for linear triangular systems to those for arbitrary distributions generated
over the same parent graph, we introduce edge matrix forms of graphs, i.e. matrices of 0s and 1s,
with 0s specifying missing edges in induced graphs and, at the same time, so-called structural
0s in induced linear associations.

In Section 7 the connection to arguments based directly on the factorization of densities is
shown. The interplay between these and edge inducing paths in graphs derived from edge matri-
ces is the basis for extending the results for linear systems to arbitrary distributions. In Section
8 the general results for induced chain graph models are given. Some ways of using the results
are illustrated in Section 9.

2. Graph terminology and special induced chain graphs

2.1. Types of nodes and paths in parent graphs
A subgraph that is induced by a subset of nodes in a given graph consists of the nodes in the
subset and of the edges among them in the graph. In a directed and acyclic graph there are three
different types of subgraphs in three nodes having two edges and called V-configurations:

i← j←k, j← l→k, i→h← j:

We use throughout the convention that h < i < j < k < l. A node that is connected to another
by an edge is called a neighbour. In the above V-configurations a common neighbour of two
nodes is either a transition node, having an incoming and an outgoing arrow (left), a common
source node, having two outgoing arrows (middle) or a common sink or collision node, having
two incoming arrows (right). Accordingly, the three types of V-configuration are said to be
transition oriented, source oriented and sink oriented. It has also become a convention to say,
interchangeably, for the left-hand case that node i is a descendant of j and k, but a child only of
j and that k and j are ancestors of i, but only j is a parent of i. A path is a sequence of adjacent
edges, irrespective of their orientation. A path of arrows leaving from l and leading to i, with
only transition nodes along it, is a direction preserving path with l being an ancestor of i. Node
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l is a common ancestor of nodes i and j if a direction preserving path leads from l to both i and
j. Any given node may play different roles with respect to different neighbours.

The statistical meaning of variables corresponding to the different types of node is as follows.
The variable at a parent node is directly explanatory for the variable at a child node. The variable
at an ancestor but not parent node is indirectly explanatory for the variable at the descendant
node. The variable at a common ancestor node is a common explanatory variable. Further the
variable at a transition node is an intermediate variable, at a common sink node it is a common
response and at a common source node it is a common directly explanatory variable.

Given this interpretation it is almost immediate that for V-configurations marginalizing over
a transition node or over a common source node and conditioning on a common sink node are
all edge inducing. An induced edge in an independence graph means in general that a specific
independence statement in the parent graph no longer holds in all distributions that are gen-
erated over the new graph. In particular, an association may become induced for some such
distributions after ignoring an important intermediate variable or a common directly explana-
tory variable and after selecting a subpopulation defined by the levels of a common response.
Induced edges may correspond to strong induced associations. For examples see Wermuth and
Cox (1998b) and Wermuth (2003).

We now summarize the types of induced chain graph, i.e. graphs implied by the generating
graph. From expression (2), in particular, a chain graph with a single chain component is an
undirected graph and an ordering in which each chain component contains a single node gives
again a graph which is directed and acyclic.

To describe different types of induced systems we proceed in a few steps. First we define
undirected graphs for the node set N. We then suppose that the nodes of N are divided into
two sets a and b such that the variables in set a are regarded as being on an equal footing and
as responses to the variables in b. This leads to considering conditional densities fa|b as joint
response regressions and to calling their independence graphs joint response regression graphs.
Finally we view chain graphs as an ordered sequence of joint response regression graphs.

2.2. Overall concentration and covariance graphs
We consider two types of undirected graph. Both have at most one edge for each node pair but
differ in the meaning of their edges. If defined for the overall node set N the undirected graph
with full, i.e. solid, lines is called the overall concentration graph. It concerns the conditional
relations of each pair given all remaining variables of N. We use throughout relations as the
generic term for both independences and associations.

In contrast, an undirected graph that is defined for node set N with dashed, i.e. broken, lines is
called a covariance graph. It concerns the marginal pairwise relations. The dashed lines remind
us that the conditioning set for each edge, be it present or missing, is smaller in a covariance
graph than in the full line graph. The conditional independence statements attached to a missing
ij-edge differ accordingly. We write them again in terms of nodes, as respectively

i � j|N\{i, j}, i � j:

2.3. Joint response regression graphs
Suppose next that the nodes of N are divided into just two sets, N= .a, b/, associated with vector
random variables Ya and Yb. Then the joint response regression graph is an independence graph
for the conditional distribution of Ya given Yb. We represent the conditioning on Yb in a diagram
by enclosing b with a doubly lined box and by not showing any edges within b. Any remaining
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Fig. 4. Simple examples of three types of joint regression graphs for Ya with a D{1, 2, 3, 4} given Yb with
b D{5, 6}: graphs of (a) blocked concentrations (block regression), (b) multivariate regressions and (c) con-
centration regressions, e.g. 2 �6jNn{2, 6} in (a) but 2 �6j5 in (b)

pair of nodes in N is connected by at most one edge. An edge is undirected if both nodes are
in a and directed from b to a if one node is in b, and the other in a. Three types of such joint
response graphs are illustrated in simple form in Fig. 4. A blocked concentration graph, which
in the literature has also been named a block regression graph (Fig. 1(a)), has full lines within a

and full arrows pointing from b to a. Each ij-edge concerns a conditional relation of Yi and Yj

given all remaining variables in N. Thus, the independence statement that is attached to each
missing ij-edge is

i � j|N\{i, j}:

A multivariate regression graph (Fig. 4(b)) has dashed lines within a and dashed arrows point-
ing from nodes in b to nodes in a. An ij-edge concerns the conditional relation between Yi and
Yj given all remaining variables in b. Thus, the independence statement that is attached to a
missing ij-edge is

i � j|b or i � j|b\j,

depending on whether i and j are both in a, or i is in a and j is in b.
A concentration regression graph (Fig. 4(c)) is a mixture of the other two types of regression

graph, having full lines within a and dashed arrows pointing from nodes in b to nodes in a.
Thus, in particular, a missing ij-edge means

i � j|N\{i, j} or i � j|b\j,

depending on whether i and j are both in a, or i is in a and j is in b.
The graphs that are formed from full arrows and dashed lines, which are not considered here,

may correspond to models with variation-dependent parameter sets even in the linear case.

2.4. Chain graphs as sequences of regression graphs
Chain graphs can now be viewed as recursive sequences of joint response regression graphs to
which a marginal covariance or concentration graph has been added for component dCC. For
just two chain components the meaning of missing lines within a and missing arrows between
a and b is as described above in Section 2.3. A missing edge in the marginal concentration and
covariance graph of b⊂N means respectively

i � j|b\{i, j}, i � j:

More generally, for a chain that is defined by N= .1, . . . , dCC/, the variables in each chain com-
ponent g are considered on an equal footing and as potential responses to the explanatory vari-
ables in r={g+1, : : : , dCC}, the relevant joint conditional density being fg|g+1,:::,dCC =fg|r.
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3. Matrix terminology and linear triangular systems

3.1. Partitioning and transforming matrices
We write an invertible square matrix M and its inverse M−1 partitioned into two components a

and b as

M=
(

Maa Mab

Mba Mbb

)
,

M−1=
(

Maa Mab

Mba Mbb

)

and summarize three standard matrix results as follows.

Lemma 1 (block triangularization of a square matrix). A square matrix M is block triangular-
ized by premultiplying it by a matrix T , where

T =
(

Iaa 0
−MbaM−1

aa Ibb

)
,

TM=
(

Maa Mab

0 Mbb:a

)
,

I denotes an identity matrix, M−1
aa means throughout .Maa/−1 and Mbb:a=Mbb−MbaM−1

aa Mab.

Lemma 2 (block diagonalization of a triangular matrix). An upper triangular matrix N is
block diagonalized by premultiplying it by a matrix D, where

D=
(

Iaa −NabN−1
bb

0 Ibb

)
,

DN=
(

Naa 0
0 Nbb

)
:

Lemma 3 (block diagonalization of a symmetric matrix). A symmetric matrix Σ is block
diagonalized by premultiplying it by a matrix P and post-multiplying it by the transpose PT of
P , where

P=
(

Iaa −ΣabΣ−1
bb

0 Ibb

)
,

PΣPT=
(

Σaa:b 0
0 Σbb

)
:

There are two rather different interpretations of the last result. Let Y be a mean-centred
random vector variable having covariance matrix Σ and concentration matrix Σ−1 and let Πa|b
be the matrix of regression coefficients of Yb in linear least squares regression of Ya on Yb, hav-
ing βij:b\j as elements. For an account of linear least squares regression for random variables
emphasizing the absence of detailed distributional assumptions, see Cramér (1946), page 302.
Then the following expressions of regression coefficients in terms of covariances and in terms
of concentrations

Πa|b=ΣabΣ−1
bb =−.Σaa/−1Σab

result from an equality that is derived for the symmetric partitioned matrices Σ and Σ−1 for
which a statistical interpretation has been given by Dempster (1969), pages 113 and 177, namely
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Σaa:b ΣabΣ−1

bb

· Σ−1
bb

)
=
(

.Σaa/−1 −.Σaa/−1Σab

· Σbb:a

)
, .7/

where Σbb:a=Σbb− .Σab/T.Σaa/−1Σab. Here and throughout we use a dot to denote the lower
off-diagonal section of a symmetric matrix. Therefore, the matrix product PY transforms Ya

into Ya|b = Ya −Πa|bYb which corresponds for mean-centred joint Gaussian distributions to
subtracting from Ya its conditional mean

E.Ya|Yb=yb/=Πa|byb:

Alternatively, we can say that the matrix P orthogonalizes the random vector Y into uncorrelated
components Ya|b and Yb with

PY =
(

Iaa −Πa|b
0 Ibb

)(
Ya

Yb

)
=
(

Ya|b
Yb

)
:

For an ordered partitioning into three components N= .a, b, c/ the partitioned forms may be
written with H = .a, b/ and K= .b, c/ as

ΣHH:c=
(

Σaa:c Σab:c

: Σbb:c

)
,

Σ−1
KK=

(
Σbb:a Σbc:a

: Σcc:a

)
:

By using Σ−1
bb:c=Σbb:a (see for example Dempster (1969)), it follows that

(a) the covariance matrix of Yb|c is the .b, b/ submatrix of ΣHH:c= .ΣHH/−1, i.e. corresponds
to components within b,

(b) the concentration matrix of Yb|c is the .b, b/ submatrix of Σ−1
KK=ΣKK:a and

(c) the regression coefficient matrix for linear regression of Yb on Yc is the .b, c/ submatrix
of ΠH |c, i.e. rows correspond to components b and columns to components c,

Σbb:c= [ΣHH:c]b, b,

Σ−1
bb:c= [ΣKK:a]b, b,

Πb|c= [ΠH |c]b, c:

.8/

Matrix versions of recursion relations for covariances and concentrations are

Σab:c=Σab−ΣacΣ−1
cc Σcb, .9/

Σbc:a=Σbc−Σba.Σaa/−1Σac: .10/

The matrix version of Cochran’s (1938) recursion relation among regression coefficients gives
the matrix of least squares partial regression coefficients, Πa|c:b, in the form

Πa|c:b=Πa|c−Πa|b:cΠb|c: .11/

We obtain this from(
Iaa −Πa|b:c −Πa|c:b

0 Ibb −Πb|c
0 0 Icc

)−1

=
(

Iaa Πa|b:c Πa|c
0 Ibb Πb|c
0 0 Icc

)
:

The strength of the linear relation between random variables Yi and Yj given YC is measured
by the partial correlation coefficient ρij:C, which may be found from any one of ΣSS:C, ΣNN and
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βij:C, where N= .S, C/ and S={.i, j/}, as

ρij:C=σij:C=.σii:Cσjj:C/1=2=−σij=.σiiσjj/1=2=βij:C.σjj:C=σii:C/1=2: .12/

For a joint Gaussian distribution the statements ρij:C=0 and i � j|C are equivalent. Therefore,
a missing edge in an induced chain graph for Gaussian triangular systems indicates both an
independence statement and a structural 0 correlation in a concentration, covariance or regres-
sion coefficient matrix. Structural 0s in this context are defined to be zero entries which are
determined by a given parent graph, i.e. which hold for all linear equations generated over the
same graph, and which do not occur only because of special combinations of parameters and
their particular values.

3.2. Linear triangular systems
For a linear triangular system which has uncorrelated residuals "i we start with a mean-centred
column vector variable Y of dimension dN . A family of models is defined by the equations

AY = ", .13/

where A is a family of upper triangular matrices with 1s along the diagonal, with certain off-diag-
onal elements specified to be 0, and the remainder to be non-zero. The non-singular covariance
matrix of the residuals, ∆=diag.δii/, is a diagonal matrix. In effect, therefore the ith row specifies
Yi via a linear least squares regression on Yi+1, . . . , YdN with a residual uncorrelated with these
latter variables. No special form of distribution is assumed for the residuals. In econometrics
equation (13) is known as a system of linear recursive regression equations with uncorrelated
errors. The covariance matrix of Y and its inverse, the concentration matrix, are respectively

cov.Y/=Σ=A−1∆A−T ,

con.Y/=Σ−1=AT∆−1A:

An element in position .i, j/ of A is −βij:i+1,:::,j−1, j+1,:::,dN
, i.e. is minus the regression coeffi-

cient of Yj in linear regression of Yi on Yi+1, . . . , YdN . The diagonal elements δii of ∆ are the
residual variances, δii=σii:i+1,:::,dN

. An element in position .i, j/ of B=A−1 is βij:j+1,:::,dN
, the

regression coefficient of Yj in linear regression of Yi on Yj, . . . , YdN . This follows by inverting
the triangular matrix A defining the family (Wermuth and Cox (1998a), appendix 1), and sim-
plifying the results by the recursion relations for regression coefficients.

For an arrangement of Y into an arbitrarily chosen component a and the remaining part
b=N\a, the corresponding two sets of equations are written in matrix form as

Ã

(
Ya

Yb

)
=
(

Aaa Ãab

Ãba Abb

)(
Ya

Yb

)
=
(

"a

"b

)
: .14/

The matrix Ã can be expressed as A premultiplied and post-multiplied by a permutation matrix
and it is in general not of upper triangular form. The two matrices Ãab and Ãba have jointly at
most dadb non-zero elements, since they arise from the upper triangular matrix A after having
changed the ordering of the variables. The identities Ãaa≡Aaa and Ãbb≡Abb indicate that the
original ordering of indices in A is preserved within subsets a and b. For N= .a, b/ the condi-
tional concentration matrix of Ya|b, Σ−1

aa:b, and the marginal covariance matrix of Yb, Σbb, which
are submatrices of the overall concentration and covariance matrix, can now be written in terms
of parameters of the linear triangular system as

Σ−1
aa:b=Σaa= [AT∆−1A]a,a,

Σbb= .Σbb:a/−1= [A−1∆A−T ]b,b:
.15/
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3.3. Edge matrices of overall graphs induced by a parent graph
The parent graph of a linear triangular system is defined for node set N by attaching no arrow
pointing from node j to node i if and only if aij = 0 in the family of matrices A. Repeated
application of the recursion relation (11) gives the non-zero parameters as

aij=−βij:pari\j,

δii=σii:pari
:

.16/

We now consider three types of graph that are induced by a given parent graph for all nodes:
the overall concentration graph, the overall ancestor graph and the overall covariance graph.
For a linear triangular system a missing ij-edge in each of these induced graphs indicates a
structural 0 in the corresponding induced parameter matrix, i.e. a 0 in position .i, j/ of Σ−1, of
B=A−1 and of Σ for every member in the family generated over the given parent graph.

To illustrate the following ideas in simplest form, consider Ar for r=1, 2, 3:

2 →1← 3 , 1← 2 ← 3 , 1← 3→ 2 ,

A1=
(1 a12 a13

0 1 0
0 0 1

)
, A2=

(1 a12 0
0 1 a23
0 0 1

)
, A3=

(1 0 a13
0 1 a23
0 0 1

)
:

Then a multiple of a12a13 is introduced in position (2,3) of Σ−1=AT
1 ∆−1A1, a multiple of a12a23

in position (1,3) of B=A−1
2 and a multiple of a13a23 in position (1,2) of Σ=A−1

3 ∆A−T
3 . In all

three cases the conditioning set of the non-adjacent variable pair in the parent graph is modified
by a common neighbour node. For instance, the zero element a23 in A1 corresponds to a zero
marginal correlation and it leads to a non-zero partial correlation corresponding to position
(2,3) of Σ−1. For instance, in the first example, node 1 is a common sink node and the sink-
oriented V-configuration induces an edge for the non-adjacent pair (2,3); it is also association
inducing.

We derive induced graphs exclusively via transformations of a matrix form of the generating
graph. The definition of a corresponding parameter matrix of a linear system in terms of the
parameters A and ∆ provides guidance for the type of transformations that are needed and for
the type of paths that induce additional edges.

Let M be any matrix. Then the indicator matrix of M, denoted by In[M], is a matrix of 0s and 1s
which has a zero element if and only if the corresponding element of M is 0. The generating edge
matrix A is defined to be the indicator matrix that is associated with the family of matrices A,

A= In[A],

i.e. A has a 0 if and only if every member of the family has a 0, the corresponding edge in the
parent graph being missing. Then edge matrices of induced graphs arise, as shown below, as
matrices of 0s and 1s by appropriately transforming A. A family of densities may be generated
over a parent graph with a given edge matrix A; then this graph defines a corresponding family
of matrices A and we use also the notation A=Ed[A].

Let L be a parameter matrix, such as a covariance matrix, defined in terms of components of
the matrices A and ∆ of a linear triangular system, and let L=Ed[L] denote the edge matrix of
the corresponding induced graph. Then the following statements are equivalent by definition:

(a) there is a missing ij-edge in the induced graph,
(b) there is an ij-0 in the edge matrix L and
(c) there is a structural ij-0 in the parameter matrix L.

For a generating graph in node set N with edge matrix A, the edge matrix of the induced
overall concentration graph is denoted by SNN and is defined to be SNN =Ed[AT∆−1A], of
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the induced overall ancestor graph it is B=Ed[A−1] and of the overall covariance graph it is
SNN =Ed[A−1∆A−T ].

Lemma 4 (edge matrices of overall graphs induced by parent graph). The edge matrices just
defined are indicator matrices of the following non-negative matrices:

(a) SNN = In[ATA];
(b) B= In[.2I−A/−1];
(c) SNN = In[BBT]:

Proof. The results are a direct consequence of the structural 0s that were obtained in the
underlying matrix products defined for families of triangular systems and generated over the
parent graph with edge matrix A.

For case (a) in the matrix product HTH for any upper triangular matrix H , an element in
position .j, k/ is of the form hjk+Σi<j hijhik. Applied to the non-negative matrix product ATA
this implies that an entry in position .j, k/ of the product is 0 if and only if the jk-arrow is missing
in the parent graph and the non-adjacent node pair .j, k/ has no common sink node in the parent
graph. The product ATA is edge inducing since for a jk-0 in A a non-zero entry results for the
product in position .j, k/ whenever the node pair has a common sink node in the parent graph.
In the underlying matrix product AT∆−1A multiplication of AT by the diagonal matrix ∆−1

amounts to rescaling the elements in AT and does not affect the position of structural 0s and
non-zeros. Accordingly, diagonal matrices can be ignored when deriving induced edge matrices.

For case (b), the definitions that are given in Section 3.1 for an element in position .i, j/ of A

and of B=A−1 imply that there is a structural non-zero ij-entry in B if and only if j is connected
to i by a direction preserving path. Now the non-negative matrix .A− I/r counts the number of
distinct direction preserving paths of length r between each node pair in the parent graph. Since
the longest direction preserving path among dN nodes has dN −1 edges nothing is added to the
sum for r > dN −1. Thus there is a non-zero entry in position .i, j/ of Σr .A− I/r if and only if
node j is an ancestor of node i in the parent graph. The equality .2I−A/−1= I+Σr .A− I/r is
based on the matrix analogue of the sum of an infinite geometric series; see for example Searle
(1966), page 94. Thus case (b) is a matrix formulation for shortening every ancestor–descendant
path in the parent graph by an arrow pointing in the same direction.

For case (c), in the matrix product HHT for any upper triangular matrix H an element in
position .i, j/ is hij+Σk>j hikhjk. Applied to the non-negative matrix product BBT this implies
that an entry in position .i, j/ of the product is 0 if and only if the ij-arrow is missing in the
overall ancestor graph and the non-adjacent node pair .i, j/ has no common source node in the
overall ancestor graph. An additional ij-1 is introduced whenever non-adjacent node pair .i, j/

has a common source node in the overall ancestor graph. ��
Fig. 5(a) shows a parent graph in node set N ′ = {1, 2, 3, 4, 5, 6, 10}, with the three types of

overall induced graphs of lemma 4 in Figs 5(b), 5(c) and 5(d). This parent graph is the subgraph
that is induced by nodes N ′ in Fig. 3.

A path condition on the parent graph for an additional ij-edge induced in the overall covari-
ance graph results from the path interpretation of the matrices involved in cases (b) and (c) of
lemma 4: node j is either an ancestor of i or nodes i and j are connected by a common source
path, i.e. there is a node k which is an ancestor both of i and of j.

For the three induced graphs of lemma 4 the sum of products of the edge matrices is edge
inducing, i.e. edge inducing paths are specified by the form of the sum of products of the edge
matrices. These sums of products are also edge preserving, i.e. an ij-1 present in one of its matrix
components is also present in the sum of products.
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(a) (b) (c) (d)

Fig. 5. (a) Parent graph for node set N 0 D{1, 2, 3, 4, 5, 6, 10}, (b) the overall induced concentration graph,
(c) the overall induced ancestor graph and (d) the overall induced covariance graph

For the derivation of edges in an induced graph it is essential that the defining sum of prod-
ucts of edge matrices can be edge inducing and is edge preserving. Thus, the adjacency matrix
.A− I/, customarily defined in the graph theory literature as the matrix representation of a
directed acyclic graph, is not suitable: it is edge inducing but not edge preserving when premul-
tiplied by its transpose. Similarly, the inverse of a proper edge matrix .A �= I/ is not used since
it contains negative elements and it may also be edge cancelling, such as in

A=
(1 1 1

0 1 1
0 0 1

)
,

A−1=
(1 −1 0

0 1 −1
0 0 1

)
,

where the non-zero (1,3) element in A has become 0 on inversion. Note also that In[.2I−B/−1]
is never edge inducing since every direction preserving path in the parent graph is already closed
for B. Thus, matrices of these types are never used when edge matrices for induced graphs are
derived; see Sections 3.4 and 6.

3.4. Components of induced graphs and stepwise derivations
In this section we derive the matrix formulations of two types of subgraph of the induced overall
graphs with edge matrices SNN and SNN that were obtained in lemma 4. We also give the matrix
formulations of different components of what we call the a-line ancestor graph.

We denote by Saa|b=Ed[Σ−1
aa:b] the edge matrix of the subgraph that is induced by nodes a

in the overall concentration graph, and by Sbb=Ed[Σbb] the edge matrix of the subgraph that
is induced by nodes b=N\a in the overall covariance graph. We use Ã ordered as the under-
lying matrix Ã in equation (14) and B̃ from lemma 4, part (b), being accordingly ordered and
partitioned, and we obtain

Saa|b= In[AT
aaAaa+ ÃT

baÃba], .17/

Sbb= In[BbbBT
bb+ B̃baB̃T

ba]: .18/

These equations are proved by starting from equations (15). It then follows that Saa|b =
Ed[AT∆−1A]a, a. After replacing the parameter matrices by corresponding edge matrices and
writing the submatrices explicitly, equation (17) is obtained. The product AT

aaAaa is of the same
form as the product in lemma 4, part (a), and is thus edge preserving. Also, for every non-
adjacent node pair within a in the parent graph an additional edge is induced by AT

aaAaa if the
pair has a common sink node in a and by ÃT

baÃba if it has a common sink node in b. Hence all
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relevant edge inducing V-configurations are covered from equation (17). There is a similar type
of argument for equation (18) completing the proof.

Next for stepwise evaluation of B we introduce first the notation inva.Ã/ for a generalization
of equation (7) to the invertible non-symmetric matrix Ã, which we call its partial inversion on
components a, and identify components as follows:

inva.Ã/=
(

A−1
aa φa|b
θb|a Abb:a

)
=
(

A−1
aa −A−1

aa Ãab

ÃbaA−1
aa Abb− ÃbaA−1

aa Ãab

)
: .19/

Direct matrix computation shows that inva.Ã/ turns into B̃, the inverse of Ã, after it has been
partially inverted on components b. The components of the edge matrix counterpart of equa-
tion (19), denoted by Ed[inva.Ã/], are

Ed[inva.Ã/]=
(

Aaa Fab

Tba Abb:a

)
=
(

In[.2Iaa−Aaa/−1] In[AaaÃab]
In[ÃbaAaa] In[Abb+TbaÃab]

)
: .20/

To prove these results, we use equation (19) to choose the edge matrix components accord-
ingly for equation (20). Then lemma 4, part (b), is applied to A−1

aa and negative signs are ignored
as irrelevant for positions of structural 0s. The result then follows from the matrix forms of the
sums of products of edge matrices for each component: an edge in Ã is preserved in Ed[inva.Ã/]
and an additional ij-1 arises for a non-adjacent pair .i, j/ if and only if j is an a-line ancestor
of i, i.e. an ancestor with all nodes along the ancestor–descendant path in a⊂N, thus completing
the proof.

With equation (20) every a-line ancestor becomes a parent. By turning next every b-line ances-
tor in this graph into a parent, all direction preserving paths are closed, and hence the induced
overall ancestor graph results.

To illustrate the construction of the edge matrix of an induced partial ancestor graph we
take the subgraph that is induced by N ′ ={1, 2, 3, 4, 5, 6, 8, 10} in Fig. 3 as the parent graph in
Fig. 6(a). Fig. 6(b) shows the a′-line ancestor graph with a′ = {2, 6, 8} and Fig. 6(c) shows
the overall ancestor graph with b′ =N\a′ that is obtained as the b′-line ancestor graph of
Fig. 6(b).

We now use a numerical example to illustrate several issues. Zero off-diagonal elements in A

correspond to 0s in the generating family. We take Ãba=0, so that

Πa|b=−A−1
aa Aab=−.Σaa/−1Σab=ΣabΣ−1

bb =BabB−1
bb ,

Σaa:b=A−1
aa ∆aaA−T

aa ,

Σ−1
bb =AT

bb∆
−1
bb Abb

(a) (b) (c)

Fig. 6. (a) Parent graph with node set N 0 D {1, 2, 3; 4, 5, 6, 8, 10}, (b) its a0-line ancestor graph, where
a0 D{2, 6, 8}, and (c) its overall ancestor graph
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holds, a= .1, 2, 3/ and b= .4, 5, 6/, and as numerical values of the parameters we take ∆= I and

Aaa=
(1 1 −2

0 1 0
0 0 1

)
,

Aab=
(1 1 0

1 1 0
0 0 1

)
,

Abb=
(1 1 0

0 1 1
0 0 1

)
:

Here Aab≡Aab and Abb≡Abb. From equations (19) and (20) we obtain Aaa=Ed[−A−1
aa ]≡

In[Aaa] and

Ed[Πa|b]= In[AaaAab]=
(1 1 1

1 1 0
0 0 1

)
,

In[Πa|b]= In[−A−1
aa Aab]=

(0 0 1
1 1 0
0 0 1

)

illustrates that with the induced edge matrix it is possible to distinguish between structural 0s
and additional 0s which occur only because of special combinations of parameter values.

The example illustrates also that some of the equivalent forms of induced parameter matrices
may be unsuitable for deriving structural 0s, since some of their components are never edge
inducing. Here, some of the matrix products contain explicitly B−1

bb and implicitly A−T
aa AT

aa or
B−T

bb . There is no transition-oriented V-configuration in the graph with edge matrix Bbb since it
is a subgraph of the overall ancestor graph. Hence no additional edge can ever be introduced
from it by closing direction preserving paths, i.e. with In[.2Ibb−Bbb/−1]. Similarly, the product
AaaA−1

aa = Iaa, or its transpose, can never lead to an edge inducing path.
In general it may not be possible to deduce from one induced graph which edges are miss-

ing in another graph that is induced by the same parent graph. For instance there may be
more structural 0s in Σaa:b= .Σaa/−1 than in Σaa. This is the case also in the above numer-
ical example where the conditioning set for pair (2,3) excludes its common sink node 1 in
Σaa:b but includes it in Σaa. Then the missing edge for pair (2,3) in the induced covariance
graph of .Σaa/−1 cannot be recovered from the induced concentration graph of Σaa. There
may also be more structural 0s in the induced Σ−1

bb than in the induced Σbb. This is the case
in the above numerical example, where the conditioning set for pair (4,6) includes its com-
mon transition node 5 in Σ−1

bb but excludes it in Σbb. Then the missing edge in the induced
concentration graph of Σ−1

bb cannot be recovered from the induced covariance graph of Σbb.
By contrast, as shown in this and the previous section, definitions of the induced param-
eter matrices directly in terms of components of the generating family of matrices A and ∆
can lead to edge inducing paths and hence to the proper sets of structural 0s and missing edges.

To summarize, let L and M denote two of the induced parameter matrices derived in this paper,
such as−A−1

aa and Aab, for which the edge matrices L and M are known, and for which the matrix
product LM defines another parameter matrix with a corresponding induced graph of interest.
Then the edge matrix of the induced graph is Ed[LM]= In[LM] provided that this product can
be edge inducing and is edge preserving. Similarly, if the sum of two such matrices L and M

of the same size defines another such parameter matrix, then Ed[L+M]= In[L+M] provided
that this sum can be edge inducing and is edge preserving, one example being L=Bbb∆bbBT

bb
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and M= B̃ba∆aaB̃
T
ba for equation (18). This extends to sums of products containing compo-

nents in which more than two matrices are relevant for the positions of structural 0s, such as to
Abb:a=Abb− ÃbaA−1

aa Ãab for equation (20).
Whenever Ãba �=0, the derivation of the induced graph of a regression coefficient matrix, as

well as of induced marginal concentration graphs and of induced conditional covariance graphs,
becomes more complex. The form of corresponding induced parameter matrices is derived with
corollary 1 in equations (23) and (26) in Section 5.1 and extended in applicability with theorem 2
in Section 6, and Section 4 contains the preliminary results that are needed.

4. Orthogonalizing general weighted sums of variables

We now consider a vector random variable Z which is specified by the linear system MZ= η,
where η is a vector of random terms of zero mean and given covariance matrix; M is a non-
singular matrix of constants. Suppose that Z is partitioned into two parts Za and Zb and that it
is required to study the marginal distribution of Zb and of the random variable Za|b having the
conditional distribution of Za for a given value of Zb. For this the key idea is the following. We
solve in MZ=η for Zb having a residual denoted by ηb−a. We express Za in terms of Zb and a
residual denoted by ηa|b−a and formed to be orthogonal to ηb−a, i.e. to be uncorrelated with it.
On conditioning on Zb this residual is unchanged so we have two separate systems, one for Zb

and one for Za given Zb.
Here we wish to express this procedure in a matrix form which

(a) decomposes into three different interpretable steps of transforming MZ,
(b) leads to explicit expressions when applied repeatedly to linear triangular systems and
(c) permits us to connect the matrix results for linear triangular systems to transformations

of edge matrices of triangular systems of densities.

To achieve this we derive the following key matrix result by using the three basic results in
lemmas 1–3.

Theorem 1 (orthogonalization of weighted sums of variables). Let Z be a column vector of
mean-centred random variables having covariance matrix ω and partitioned into two com-
ponents Za and Zb. Then the weighted sums of Za and Zb specified by MZ=η, i.e.(

MaaZa+MabZb

MbaZa+MbbZb

)
=
(
ηa

ηb

)
,

are modified into two new uncorrelated systems written as(
Maa 0

0 Mbb:a

)(
Za|b
Zb

)
=
(
ηa|b−a

ηb−a

)
,

where cov.ηa|b−a, ηb−a/=0, by taking .DTMP−1/.PZ/=DTη, with

DTMP−1=
(

Maa 0
0 Mbb:a

)
,

PZ=
(

Za|b
Zb

)
,

DTη=
(
ηa|b−a

ηb−a

)
:
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Here P is the matrix which orthogonalizes Z into components Za|b and Zb, i.e. block diago-
nalizes their covariance matrix, T is the matrix which block triangularizes M as well as MP−1

and D is the matrix which block diagonalizes the matrix TMP−1 as well as the covariance
matrix τ of Tη. The matrix ωabω

−1
bb of least squares regression coefficients in the linear regres-

sion of Za on Zb is related to the weights, i.e. to components of M, and to the covariance
matrix τ by

ωabω
−1
bb =M−1

aa .τabτ
−1
bb /Mbb:a−M−1

aa Mab: .21/

Proof. The result follows from lemmas 1–3 with

P=
(

Iaa −ωabω
−1
bb

0 Ibb

)
,

T =
(

Iaa 0
−MbaM−1

aa Ibb

)
,

D=
(

Iaa −ψa|b
0 Ibb

)
,

where

ψa|b= .Maaωabω
−1
bb +Mab/M−1

bb:a,

and by realizing that the covariance matrix of the residuals DTη is block diagonal for non-zero
τab if and only if ψa|b= τabτ

−1
bb , since

DτDT=
(
τaa−ψa|bτba− τabψ

T
a|b+ψa|bτbbψ

T
a|b τab−ψa|bτbb

· τbb

)
:

If τab=0 then

0=ψa|b= .Maaωabω
−1
bb +Mab/M−1

bb:a

and hence ωabω
−1
bb =−M−1

aa Mab satisfies equation (21) as required.

5. Orthogonalizing two components of a linear triangular system

5.1. Uncorrelated linear triangular systems rearranged into two parts
We now apply theorem 1 of Section 4 to two uncorrelated weighted vector variables which arise
from a given linear triangular system (13) by reordering the variables as for equation (14).

Corollary 1 (induced orthogonal linear systems in Ya|b and Yb). Let the uncorrelated weighted
sums AaaYa+ ÃabYb and ÃbaYa+AbbYb be derived from equation (14) by taking the ordering
N= .a, b/ in the linear triangular system (13) and by using ÃY = " of equation (14). Let Ã be
block triangularized by T . Then the two induced uncorrelated systems in Ya|b and Yb are(

Aaa 0
0 Abb:a

)(
Ya|b
Yb

)
=
(

"a|b−a

"b−a

)
=
(

"a−ψa|b"b−a

"b−θb|a"a

)
, .22/

where cov."a|b−a, "b−a/=0, but residuals within the two components may be correlated. The new
residuals and Πa|b in Ya|b=Ya−Πa|bYb are given in terms of the appropriate M and τ =cov.T"/,
where

τ = cov.T"/=T ∆̃T T=
(

∆aa −∆aaθ
T
b|a

: ∆bb−a

)
,
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θb|a= ÃbaA−1
aa ,

φa|b=−A−1
aa Ãab, .23/

ψa|b=−∆aaθ
T
b|a∆

−1
bb−a,

Πa|b=−A−1
aa ∆aaθ

T
b|a∆

−1
bb−aAbb:a+φa|b:

Proof. This results from theorem 1 with the appropriate form of .DT ÃP−1/.PY/=DT". ��
The associations within the two sets of uncorrelated residuals in DT" are most compactly

given by the covariance matrix of "b−a and by the concentration matrix of "a|b−a as

cov."b−a/=∆bb−a=∆bb+θb|a∆aaθ
T
b|a= τbb, .24/

con."a|b−a/=∆aa+b=∆−1
aa +θT

b|a∆
−1
bb θb|a= τ−1

aa:b, .25/

where τaa:b= τaa− τabτ
−1
bb τba denotes the residual covariance of "a after linear least squares

regression on "b−a. The notation ∆bb−a is chosen to remind us that it is the covariance matrix
of residuals for the variable in the margin, Yb, and the notation ∆aa+b to remind us that it is the
concentration matrix of residuals for the variable Ya considered conditionally given Yb=yb.

By using corollary 1 and results (24) and (25) the induced parameter matrices Σaa and Σbb in
equations (15) can now be expressed as

Σaa=Σ−1
aa:b=AT

aa∆
aa+bAaa,

Σbb= .Σbb:a/−1=A−1
bb:a∆bb−aA−T

bb:a,
.26/

so that they and their inverses can be readily interpreted in terms of parameters that are derived
from the linear triangular system and can be used to compute the strength of induced linear
associations as prescribed in equation (12) at the end of Section 3.1.

5.2. Correlated linear triangular systems rearranged into two parts
We now apply theorem 1 to two correlated weighted vector variables which arise after having
marginalized in the linear triangular system (13) over a. This amounts to splitting the node set
of a triangular system repeatedly, first as N= .a, K/ and then with K= .b, c/. We take the linear
system that is given by the second of equations (22) in a mean-centred column vector variable
YK and let the original ordering be preserved within K. Then we can write

AKK:aYK= "K−a, .27/

where AKK:a is an upper triangular matrix with 1s along the diagonal and the covariance matrix
of the residuals "K−a, denoted by ∆KK−a, is in partitioned form

cov."K−a/=∆KK−a=
(

∆bb−a θb|a∆aaθ
T
c|a

: ∆cc−a

)
:

For an arrangement of YK into component b and the remaining part c=K\b, the correspond-
ing two sets of equations are written in matrix form as

ÃKK:a

(
Yb

Yc

)
=
(

Abb:a Ãbc:a

Ãcb:a Acc:a

)(
Yb

Yc

)
=
(

"b−θb|a"a

"c−θc|a"a

)
=
(

"b−a

"c−a

)
: .28/
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Here the two matrices Ãbc:a and Ãcb:a have jointly at most dbdc non-zero elements, since they
arise from the upper triangular matrix AKK:a after having changed the ordering of the variables.
The two weighted sums are orthogonalized as follows.

Corollary 2 (induced orthogonal linear systems in Yb|c and Yc). Let the correlated weighted
sums Abb:aYb+ Ãbc:aYc and Ãcb:aYb+Acc:aYc result from taking N = .a, b, c/, H = .a, b/ and
K= .b, c/ in a linear triangular system (13), after having marginalized over a. Let ÃKK:a be
block triangularized by T . Then the two induced uncorrelated systems in Yb|c and Yc are(

Abb:a 0
0 Acc:H

)(
Yb|c
Yc

)
=
(

"b−a|c−H

"c−H

)
=
(

"b−a−ψb|c"c−H

"c−θc|H"H

)
, .29/

where cov."b−a|c−H , "c−H/= 0, but residuals within the two components may be correlated.
The new residuals and Πb|c in Yb|c=Yb−Πb|cYc are given in terms of the appropriate M and
τ = cov.T"K−a/, where

τ =T cov."K−a/T T=
(

∆bb−a θb|a∆aaθ
T
c|a−∆bb−aθ

T
c|b:a

: ∆cc−H

)
,

Acc:H =Acc− ÃcHA−1
HHÃHc=Acc:a− Ãcb:aA−1

bb:aÃbc:a,

θc|H = ÃcHA−1
HH = .θc|a:b, θc|b:a/= .θc|a−θc|b:aθb|a, Ãcb:aA−1

bb:a/,

ψb|c= .θb|a∆aaθ
T
c|a−∆bb−aθ

T
c|b:a/∆−1

cc−H = τbcτ
−1
cc ,

Πb|c=A−1
bb:a.τbcτ

−1
cc /Acc:H −A−1

bb:aÃbc:a:

Proof. This results from theorem 1 with

P=
(

Ibb −Πb|c
0 Icc

)
,

T =
(

Ibb 0
−Ãcb:aA−1

bb:a Icc

)
,

D=
(

Ibb −.Abb:aΠb|c+ Ãbc:a/A−1
cc:H

0 Icc

)

and with .DT ÃKK:aP−1/.PYK/=DT"K−a. The covariance matrices of the residuals in the two
uncorrelated systems of Abb:aYb|c and Acc:HYc are

cov."b−a|c−H/= τbb:c,

cov."c−H/= τcc,

where τbb:c is the residual covariance of "b−a after linear least squares regression on "c−H .
To prove that the recursion relation among θs holds which permits us to write

"c−a−θc|b:a"b−a= "c−θc|b:a"b− .θc|a−θc|b:aθb|a/"a

= "c−θc|b:a"b−θc|a:b"a

= "c−θc|H"H ,

the special form of the inverse of the following triangular matrix may be used:(
Iaa 0 0
−θb|a Ibb 0
−θc|a:b −θc|b:a Icc

)−1

=
(

Iaa 0 0
θb|a Ibb 0
θc|a θc|b:a Icc

)
,
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which relates θc|a:b to θc|b:a as

θc|a:b=θc|a−θc|b:aθb|a,

an expression that is analogous to the recursion relation for regression coefficient matrices (11)
that was derived in Section 3.1. ��

Thus, the parameters in equation (29) have all been expressed in terms of those in the starting
system AKK:aYK= "K−a. The induced covariance and concentration matrices of Yb|c are

Σbb:c=A−1
bb:aτbb:cA

−T
bb:a,

Σ−1
bb:c=AT

bb:aτ
−1
bb:cAbb:a:

6. Orthogonalizing three components of a linear triangular system

6.1. Parameters in induced orthogonal systems
We now extend the results for induced systems to any three disjoint components a, b and c of N

in such a way that all induced parameter matrices are expressed in terms of repeated splits into
just two components as given with corollary 1.

Theorem 2 (induced orthogonal linear systems in three components).For N= .a, b, c/ three
orthogonal systems are induced by the linear triangular system (13) as(

Aaa 0 0
0 Abb:a 0
0 0 Acc:ba

)(
Ya|bc

Yb|c
Yc

)
=
(

"a|K−a

"b−a|c−H

"c−H

)
: .30/

To obtain the induced parameter matrices with H = .a, b/ and K= .b, c/, we define for
example A−1

HH , θc|H , φH |c and Acc:H by taking H = a and c= b, as in the discussion before
corollary 1: thus,

(a) for Yb|Yc,

Σbb:c= [A−1
HH.∆HH+c/−1A−T

HH ]b,b,

Σ−1
bb:c=Σbb:a= [AT

KK:a.∆KK−a/−1AKK:a]b,b,
.31/

Πb|c= [−A−1
HH∆HHθ

T
c|H.∆cc−H/−1Acc:H +φH |c]b,c; .32/

and,

(b) for Ya|YK,

Σaa:K=A−1
aa .∆aa+K/−1A−T

aa ,
Σ−1

aa:K=Σaa=AT
aa∆

aa+bAaa= [AT∆−1A]a,a,

Πa|K=−A−1
aa ∆aaθ

T
K|a.∆KK−a/−1AKK:a+φa|K;

and, finally,

(c) for Yc,

Σcc=A−1
cc:H .∆cc−H/A−T

cc:H = [B∆BT]c,c,

Σ−1
cc =Σcc:H =AT

cc:H .∆cc−H/−1Acc:H :
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Proof. The results follow by combining corollaries 1 and 2 and equations (8). All parameter
matrices are either submatrices of the overall covariance or concentration matrix or they are of
the form derived from corollary 1 in equations (23) and (26).

6.2. Edge matrices for induced orthogonal linear systems
For orthogonal linear systems in two and in three components the edge matrices that are needed
additionally to those of lemma 4 are the following three, obtained from equations (23) and (26),
and denoted by Sbb=Ed[Σ−1

bb ], Saa|b=Ed[Σaa:b] and Pa|b=Ed[Πa|b]:

Sbb=Ed[AT
bb:a∆

−1
bb−aAbb:a],

Saa|b=Ed[A−1
aa .∆aa+b/−1A−T

aa ],

Pa|b=Ed[−A−1
aa ∆aaθ

T
b|a∆

−1
bb−aAbb:a+φa|b]:

To derive them in terms of indicator matrices we need some preliminary results for Dbb−a=
Ed[∆bb−a] and Daa+b=Ed[∆aa+b]. From equations (24) and (25) they are defined and from
equation (20) they are obtained in terms of the indicator matrix Tba, which is one of the parts
of Ed[inva.Ã/], as

Dbb−a=Ed[∆bb+θb|a∆aaθ
T
b|a]= In[I+TbaT T

ba], .33/

Daa+b=Ed[∆−1
aa +θT

b|a∆
−1
bb θb|a]= In[I+T T

baTba]: .34/

To find whether there is an ij-edge in the graph with edge matrix Dbb−a we interpret again
the appropriate matrix products. An edge is required for families of models if and only if nodes
ib and jb, two nodes within b, have a common source node in a in the a-line ancestor graph.
Since ∆bb−a is the covariance matrix of residuals "b−a it is the edge matrix of an induced
dashed line graph. Similarly, there is an ij-edge in the graph with edge matrix Daa+b if and
only if nodes ia and ja have a common sink node in b in the a-line ancestor graph. Since
∆aa+b is the concentration matrix of residuals "a|b−a it is the edge matrix of an induced full line
graph.

As a further preliminary result we need Ed[∆−1
bb−a] and Ed[.∆aa+b/−1]. On inverting the

covariance matrix ∆bb−a the conditioning set for the covariance of pair .i, j/ is increased by
all remaining nodes in b. On inverting the concentration matrix ∆aa+b the conditioning set for
the concentration of pair .i, j/ is decreased by all remaining nodes in a. By these changes none
of the configurations that generated edges in these graphs is removed; instead every connected
subgraph is turned into a complete graph.

Let S denote the edge matrix of an undirected graph for which every V-configuration becomes
edge inducing whenever the underlying symmetric matrix S is inverted. Then the edge matrix of
S−1, denoted by clos.S/=Ed[S−1], is obtained by closing every V-configuration in S. This leads
to Ed[.∆aa+b/−1]= clos.Daa+b/, arising from the closing of sink-generated, full line paths, and
to Ed[∆−1

bb−a]= clos.Dbb−a/, arising from the closing of source-generated, dashed line paths.
For a matrix formulation to obtain clos.S/ of an undirected graph we use S1= In[triu.S/],

where triu.S/ is the upper triangular part of S including the diagonal, and we interpret S1 as an
edge matrix of a directed graph. Then all three types of V-configurations are closed by computing
S2= In[ST

1 S1], S3= In[{2I− triu.S2/}−1] and clos.S/= In[S3ST
3 ]. This follows from lemma 4.

Theorem 3 (induced edge matrices of orthogonal linear systems). Let a⊂N be an arbitrarily
chosen set a and b=N\a. Let the parameter matrices of the orthogonalized linear system
derived from equation (13) either be split into two components (corollary 1) or be split into
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three components (theorem 2). Then the following edge matrices specify, together with those
of lemma 4, their structural 0s:

.a/ Sbb= In[AT
bb:a clos.Dbb−a/Abb:a/],

.b/ Saa|b= In[Aaa clos.Daa+b/.Aaa/T],

.c/ Pa|b= In[AaaT T
ba clos.Dbb−a/Abb:a+Fab],

where definitions of the edge matrix given above in equations (20), (33), (34) and of clos.S/

are used.

Proof. The result follows from the calculations and properties of induced edge matrices that
were given in Sections 3.3 and 3.4, from the additional matrix and edge matrix results that were
summarized above in this section and because the sums of products are edge preserving and
edge inducing. ��

Note that for a matrix product of the type Σi,h ajibihahk, which defines Sbb in case (a), there
is an additional jbkb-1 if and only if the non-adjacent nodes jb and kb are connected by the
following edge inducing path or by one of the V-configurations derived from it:

jb→ ib—hb←kb:

This path shows up in the a-line partial ancestor graph having edge matrix Ed[inva.Ã/]
which is given in equation (20) to which is appended the full line graph with edge matrix
clos.Dbb−a/.

Similarly it follows for case (b) from the matrix product which defines Saa|b that an additional
iaha-1 is induced if and only if the non-adjacent nodes ia and ha are connected by the following
edge inducing path or by one of the V-configurations derived from it:

ia← ja- - -ka→ha:

This path shows up in the a-line partial ancestor graph, with edge matrix Ed[inva.Ã/] which is
given in equation (20) appended by the dashed line graph with edge matrix clos.Daa+b/.

For the induced edge matrix Pa|b in case (c) the graphs having edge matrices inva.Ã/ and
clos.Dbb−a/ are combined first. It then follows from the form of Pa|b that compared with the
edge matrices Fab and Tba there is an additional ialb-1 in Pa|b if and only if the non-adjacent
nodes ia and lb are connected by the following edge inducing path or by one of the three- or
two-edge paths derived from it that lead from a node in b to a node in a:

ia←ka→ jb—hb← lb:

The construction of the edge matrix for the conditional covariance graph of Ya|b is illus-
trated in Fig. 7. With a split of the node set N ′ = {1, 2, 3, 4, 5, 6, 8, 10} of the parent graph of
Fig. 6(a) into two components N ′ = .a′, b′/, with a′ ={2, 6, 8} and b′ ={1, 3, 4, 5, 10}, the edge
matrix Sb′b′ of the induced concentration graph of Yb′ is obtained with a matrix product as
Sb′b′ = In[AT

b′b′:a′ clos.Db′b′−a′/Ab′b′:a′ ], where

(a) (b)

Fig. 7. (a) Subgraph induced by b0 D{1, 3, 4, 5, 10} in the a0-line ancestor graph of Fig. 6(b) combined
with the source-generated concentration graph with edge matrix clos.Db0b0�a0/ and (b) induced marginal
concentration graph of Yb0 with edge matrix Sb0b0



Joint Response Graphs 709

Ab′b′:a′ =




1 3 4 5 10

1| 1 1 1 0 0
3| 0 1 0 0 0
4| 0 0 1 0 0
5| 0 0 0 1 1

10| 0 0 0 0 1




, clos.Db′b′−a′/=




1 3 4 5 10

1| 1 0 0 0 0
3| 0 1 1 1 0
4| 0 1 1 1 0
5| 0 1 1 1 0

10| 0 0 0 0 1




:

A stepwise path derivation of the graph with edge matrix Sb′b′ is as follows. The two source-
generated edges of the covariance graph with edge matrix Db′b′−a′ arise from the induced sub-
graphs 3←8→4 and 4←6→5 in Fig. 6(b). After the path from node 3 to 5 via node 4 in this
graph is closed by a (3,5)-edge the edges of the concentration graph result, which has edge matrix
clos.Db′b′−a′/. This concentration graph is combined with the subgraph that is induced by b′ in
Fig. 6(b), which has edge matrix Ab′b′:a′ , to give the graph of Fig. 7(a). Then, for the marginal
concentration graph with edge matrix Sb′b′ , which is shown in Fig. 7(b), two additional edges
are induced. This follows from theorem 3, case (a). The corresponding edge inducing paths
3—5←10 and 4—5←10 connect the non-adjacent node pairs (3,10) and (4,10) in Fig. 7(a).

Thus for the edge matrices that are discussed in this section the equivalence has been estab-
lished between an additional 1 in the induced edge matrix and an additional edge generated
in the corresponding induced graph, as well as between an edge inducing path in particular
graphs or combinations of graphs and the calculation of special sums of edge matrix products
which define an additional edge in an induced graph. Next we discuss when an induced edge in
a system of triangular densities corresponds to a lack of factorization of the densities.

7. Factorizations of densities and dependences induced by triangular systems

We now can prove that a structural 0 correlation, ρik:C=0, that is induced in a linear triangular
system by a given parent graph implies that the corresponding independence statement, i � k|C,
holds for all possible distributions generated over the same parent graph. This happens because
every structural 0 correlation is equivalent to the absence of particular types of edge inducing
paths. This absence implies that if a triangular system of densities were to be generated over the
same graph then the corresponding factorization of densities is preserved.

The connection of these results with earlier work is in outline as follows. That work focused on
properties deriving from the notion of conditional independence and the resulting factorization
of densities. For Gaussian distributions the results can be expressed in terms of correlations
and partial correlations. Smith (1989) (especially example 3.1) noted that in the proofs of impli-
cations of independences only three special properties of conditional independence are usually
involved and these properties hold for vanishing correlations and partial correlations and thus
apply to linear least squares regression systems. The approach and proof that are used in the
present paper are different.

We proceed to show how a non-zero correlation ρik:C �=0 generated via an edge inducing path
in a linear triangular system will also lead to a dependence in triangular systems of densities
in which some families of distributions are characterized by the technical condition of com-
pleteness. Completeness of a family of distributions for a random variable W means that any
function of W with zero mean for all distributions in the family is identically 0 (see, for example,
Kotz et al. (1982)). For instance a regular exponential family is complete.

The essence of the argument is that marginal densities fik of such families of distributions do
not factorize if obtained as

∫
fi|jfj|kfk dFj or

∫
fi|lfk|l dFl, i.e. by integrating over a common

transition or over a common source node respectively. Further the conditional densities fik|h of
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such families do not factorize if obtained as

fh|ikfifk

/∫
fh|ik dFi dFk:

The argument derives from a convex combination of separable functions being not itself sepa-
rable except in degenerate cases. A simple combination of this type is a1.x/ b1.y/+a2.x/ b2.y/,
where each of the two components is a separable function of variables x and y. It is itself of the
form a.x/ b.y/ only exceptionally. The following discussion focuses on a set of conditions which
excludes such exceptions for densities and which therefore justifies the conclusion that a new
dependence is indeed induced.

To derive the results we use the term integration and density for both continuous and discrete
variables. We also assume that all random variables have densities such that the calculation of
conditional and marginal densities leads to proper distributions. We recall from equations (12)
and (16) that in a triangular system of linear equations (13), written as AY = ", a zero element
in position .i, k/ of A means ρik:pari

= 0, for pari⊆ {i+ 1, . . . , dN}, and that this is equivalent
to a missing ik-edge in its parent graph. By contrast a missing ik-edge in the parent graph of
a triangular system of densities (1), written as fN =Πifi|pari

, means that i � k|pari holds for all
distributions that are generated over this parent graph.

For some simple motivating cases we note from the recursion relation for regression coeffi-
cients that for three variables U, V and W of a linear triangular system and an arbitrary condi-
tioning set C the conditions under which the regression coefficient βuv:wC is collapsible over W

are that

βuv:wC=βuv:C if and only if ρuw:vC=0 or ρwv:C=0: .35/

As one consequence, the correlation coefficient that is induced for the end points of an edge
inducing path is proportional to the product of the correlation coefficients that are associated
with each edge along the path.

We note next that the collapsibility conditions for regression coefficients in condition (35) are
U �W |V , C or W �V |C for a Gaussian distribution and that these coincide with the sufficient
conditions for discrete distributions under which constant relative risks for a binary response
U with respect to V given W are collapsible over W (Wermuth (1987), proposition 4). Then we
note that one of these two types of independence is satisfied at each of the successive V-configu-
rations defining an edge inducing path. In the subsequent arguments concerning distributions
we assume a fixed conditioning set C which will not be shown explicitly.

As two examples of joint distributions generated over a four-node path given C we now take

U→W←V←X,

U→W←V→X:

Both paths are defined by two successive V-configurations, by those for .U, W , V/ and for
.W , V , X/. In both cases the subgraph that is induced by nodes U, W and V is a sink-
oriented V-configuration. The V-configuration that is attached to nodes W , V and X is transition
oriented in the path on the top and source oriented in the path on the bottom. The two joint
densities which factorize from equation (1) are then

fW |UV fV |XfUfX,

fW |UV fX|V fUfV :

The paths imply the independence U �X as a logical consequence of both generating processes.
This may in such simple cases be derived directly from the given density factorizations or from
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one of the separation criteria formulated in terms of paths. Equivalently, it follows from lemma
4 that in both cases the parent graph induces no edge for pair .U, X/ in the overall covariance
graph. From theorem 3, case (b), it follows that there is, however, an edge induced for pair
.U, X/ in the covariance graph of U, V and X given W . Thus, U �X|W is not implied by the
parent graphs. For a joint Gaussian distribution the induced partial correlation coefficient ρux:w
is a positive multiple of −ρuwρwvρvx. But, there are special types of distribution generated over
each of the above two paths which nevertheless satisfy U �X|W . We now study why this will or
will not happen.

Lemma 5 (conditional and marginal independence). Let three random variables U, V and W

have density fUVW and let both U and V be marginally dependent on W . Then U �V |W and
U �V imply that both W |U and W |V belong to an incomplete family of distributions.

Proof. Lemma 5 is proved by using and extending a result (Darroch, 1962) for discrete distri-
butions to general types of distribution and relating it to completeness. In the discrete case,
with puvw denoting the joint probability Pr.U=u, V = v, W =w/ for u= 1, . . . , I, v= 1, . . . , J

and w= 1, . . . , K and with p:vw=Σupuvw, and p::w=Σvp:vw denoting marginal probabilities,
Darroch showed that U �V |W and U �V both hold if and only if the probabilities are from
what he called a perfect contingency table. This implies in particular that the bivariate marginal
distributions of U and W , and V and W are restricted by∑

w
pu:wp:vw=p::w=pu::p:v::

Birch (1963) gave an example for a 2× 2× 3 table and Studený (personal communication) an
example of a family. This condition generalizes as follows. Under the assumptions of lemma 5,
the independences U �V |W and U �V imply

fUVW =fUW fVW =fW ,∫
fUVW dW =fUfV ,

.36/

where for instance fVW =
∫

fUVW dU and fW =
∫

fVW dV denote marginal densities that are
derived from fUVW . Now condition (36) implies that the distributions of both W |U and of W |V
are members of an incomplete family of distributions. For it follows from condition (36) after
dividing by fV that∫

.fU|W −fU/ fW |V dW =
∫

fUW fVW

fW fV
dW −fU

∫
fW |V dW =0: .37/

But, if U and W are dependent, then fU|W �=fU so the left-hand side specifies a non-zero func-
tion of W with zero expectation under the conditional distribution of W given V = v for all v.
Therefore W |V belongs to an incomplete family of distributions. The same type of argument
applies to W |U after dividing expression (36) by fU . ��

Darroch’s restrictions are never satisfied for a distribution of three binary variables and never
for a Gaussian distribution, i.e. simultaneous marginal and conditional independence for any
pair, say for U and V , can only hold for these distributions if a stronger independence statement
is satisfied, i.e. if U �V , W or V �U, W .

Corollary 3 (dependence induced after changing the conditioning set). Let three random
variables U, V and W have density fUVW , let both U and V be marginally dependent on W and
let W |U or W |V be a member of a complete family of distributions. Then
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(a) U �V |W implies that U is marginally dependent on V and
(b) U �V implies that U is conditionally dependent on V given W .

Proof. Re-expression of lemma 5 with either W |U or W |V being a member of a complete
family of distributions gives the implications of cases (a) and (b). ��

Lemma 6 (trivariate association inducing families of distributions). Let a family of trivariate
distributions for U, V and W be such that both families of the conditional distribution of W |V
and of W |U are complete and such that one independence statement is given to hold for pair
.U, V/. Then this family of distributions is association inducing for pair .U, V/, i.e.

(a) U �V |W implies that U is marginally dependent on V and
(b) U �V implies that U is conditionally dependent on V given W .

Proof. The assumption of lemma 6 excludes families of distributions for which a single
independence statement for .U, V/ cannot hold. It excludes further families in which the two
bivariate margins of U and W , and V and W are constrained by Darroch’s restriction.
Finally it excludes bivariate margins, of U and W or of V and W , that are constrained by
an additional independence. If for instance V were marginally independent of W , so that
fW |V = fW , then equation (37) would be trivially satisfied for fU|W �= fU , i.e. the distribu-
tion of W |V would be a member of an incomplete family. Thus, by the assumed com-
pleteness both U and V are marginally dependent on W and the result follows from
corollary 3. ��

More specifically lemma 6 excludes the family of partially dichotomized Gaussian distri-
butions, i.e. those which are obtained from a joint Gaussian distribution for U, V and W ′
by dichotomizing W ′ to give W , as not sufficiently rich to be association inducing in the case
U �V |W . The reason is that this independence can hold in such a partially dichotomized Gauss-
ian distribution only if either U �W or V �W , in addition to U �V |W (see Cox and Wermuth
(1992, 1999)). Some trivariate families included as being association inducing are those in which
the complete families of W |U and W |V are conditional Gaussian distributions or conditional
Gaussian regressions (Lauritzen and Wermuth, 1989). And, these include arbitrary discrete
distributions and Gaussian distributions as special cases.

Lemma 6 applied to families of distributions generated over the three types of V-configura-
tions in a parent graph gives a general condition under which a dependence is induced by
marginalizing over a transition or a common source node and under which a dependence is
induced by conditioning on a common sink node. Put differently, it gives a sufficient condition
under which an edge inducing V-configuration is also association inducing, irrespective of the
type of V-configuration.

Theorem 4 (relations induced by triangular systems). For a given parent graph with edge
matrix A=Ed[A] let C be an arbitrary conditioning set for a pair of nodes .i, k/.

(a) Suppose that with this parent graph ρik:C=0 is implied for every linear triangular system.
Then i � k|C is implied for every triangular system of densities that are generated over the
same parent graph.

(b) Suppose that with this parent graph a non-zero ρik:C can be generated for some linear
triangular systems. Then with this parent graph a dependence of i and k given C can
also be generated for some members of distributions of abitrary form, provided that all
successive trivariate families along at least one edge inducing path for .i, k/ given C are
association inducing.
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Proof. For case (a) let C̄ denote the nodes outside C. No ik-edge is induced in the conditional
covariance graph of nodes C̄ given C because, if such an edge were induced, a non-zero corre-
lation ρik:C could be generated. In more detail it follows from theorem 3, case (b), that either

(i) k would be a C̄-line ancestor of i, or
(ii) i and k would have a common C̄-line ancestor, or
(iii) a C̄-line ancestor of one of the nodes i or k would have become connected by a sink-

generated edge from clos.DC̄C̄+C/ to the other node or
(iv) a C̄-line ancestor of i and a C̄-line ancestor of k would have become connected by such

an edge.

It then follows from the lack of such paths and from the definition of a missing edge in the
conditional covariance graph given C for triangular systems of densities that i � k|C is implied
for any system of densities that are generated over the given parent graph. Put differently, a
factorization given in the density (i) for pair .i, k/ is retained if there is no edge inducing path
for .i, k/ given C.

For case (b) and a single edge-inducing path for .i, k/ given C the claim follows with repeated
application of lemma 6, where for each node along the path the marginal family of distributions
is also complete. When there are several edge inducing paths the same argument applies to at
least one of these paths. ��

In the case of several edge inducing paths an independence instead of a dependence may occur
for a particular member of the generated family owing to the cancellation of the contributions
to the dependence by different paths. Such situations have been called parametric cancella-
tion (Wermuth and Cox, 1998a) or lack of faithfulness of the graph (Spirtes et al., 1993). For
a detailed discussion for Gaussian distributions, see Wermuth and Cox (1998a). For related
results on the existence of distributions in which an edge inducing path implies dependence, see
Geiger and Pearl (1990) and Meek (1995).

In the present paper we provide matrix tools to decide for any chain graph model that is
derived from a given triangular system whether an independence statement or a zero correla-
tion is due to parametric cancellation or whether it is a logical consequence of the generating
process.

In summary, there are three approaches to the study of both independences and dependences
arising from a triangular system: using edge matrices, using paths in graphs or using factoriza-
tion properties of densities. We have now established the type of intimate relations between the
three approaches and can turn to induced chain graph models.

8. Induced chain graph models

8.1. Parameter matrices induced by linear triangular systems
The results (30)–(32) for three orthogonalized systems can be directly applied to induced linear
chain graph models after noting from equation (2) that each chain component g of a chain
graph defines an ordered partioning of the node set into three components with N = .l, g, r/,
where l={1, . . . , g−1} is the set of nodes in the future of g which we draw to the left of g and
where r= {g+ 1, . . . , dCC} is the set of nodes in the past of g which we draw to the right of
g. The following matrix expressions use different splits into two components with N = .l, R/,
R={g, r}, and N= .L, r/, L={l, g}.

Theorem 5 (induced parameters of linear regression chains). The induced parameters for
component g are of the general form that is given with theorem 2. In detail:
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(a) for a linear multivariate regresssion chain they are

Σgg:r= [A−1
LL.∆LL+r/−1A−T

LL ]g,g,

Πg|r= [−A−1
LL∆LLθ

T
r|L.∆rr−L/−1Arr:L+φL|r]g,r,

.38/

where .∆LL+r/ is diagonal and equal to the inverse of ∆LL if r is the empty set;
(b) for a linear blocked concentration chain they are

Σgg:l=Σ−1
gg:r= [AT

RR:l.∆RR−l/
−1ARR:l]g,g,

Σgr:l= [AT
RR:l.∆RR−l/

−1ARR:l]g,r;
.39/

(c) for a linear concentration regression chain they are Σgg:l and Πg|r.

Proof. The results follow from theorem 3 and the parameter matrices in linear regression
chains (see for example Wermuth and Cox (2001)).

8.2. Edge matrices of chain graphs induced by triangular systems of densities
With the same notation for two different splits of N as used in Section 8.1 and Sgg|r=Ed[Σgg:r],
Pg|r=Ed[Πg|r], Sgg|r=Ed[Σgg:l] and Cg|r=Ed[Σgr:l] we can now turn to chain graphs that are
induced by triangular systems of densities (1).

Theorem 6 (edge matrices of induced chain graphs). Edge matrices for component g are of
the general form given by theorem 3. In detail:

(a) for a multivariate regresssion chain graph, defined with expressions (2)–(4), they are

Sgg|r= In[ALL clos.DLL+r/.ALL/T]g,g,

Pg|r= In[ALLT T
rL clos.Drr−L/Arr:L+FLr]g,r;

.40/

(b) for a blocked concentration chain graph, defined with expressions (2), (5) and (6), they
are

Sgg|r= In[AT
RR:l clos.DRR−l/ARR:l]g,g,

Cg|r= In[AT
RR:l clos.DRR−l/ARR:l]g,r;

.41/

(c) for a concentration regression chain they are Sgg|r and Pg|r.

Proof. The results are a direct consequence of theorems 4 and 5. ��
In summary, 0s in induced edge matrices in equations (40) and (41) identify structural 0s in

induced parameter matrices (38) and (39) of linear systems and missing edges in chain graphs,
as well as independences in chain graph models implied by triangular systems of densities (1).

9. Using the results

9.1. Joint response graphs induced after explicitly marginalizing and conditioning
We now illustrate induced chain graphs that are obtained after conditioning on a subset C of the
variables and after marginalizing over another subset M so that only the remaining variables are
of interest. The factorization (2) of the density in a chain graph model implies that marginalizing
over the first component and conditioning on the last will leave the densities of the remaining
variables unchanged.
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Fig. 8. Chain graph of blocked concentrations induced by the parent graph of Fig. 3 for N D .a, b, c, C/ with
a D{7, 12, 14}, b D{1, 4, 11, 13}, c D{2, 8, 9} and C D{3, 5, 6, 10}, shown after having conditioned on C

(a) (b)

Fig. 9. Two chain graphs induced by the parent graph of Fig. 3 for N D .M, a, b, c, C/ with M D{1, 2, 3, 6},
a D{4, 5, 10, 13}, b D{8, 9}, c D{11, 12} and C D{7, 14}, shown after having marginalized over M and con-
ditioned on C: (a) for multivariate regressions and (b) for blocked concentrations

For the blocked concentration graph that is shown in Fig. 8 and induced by the parent graph
in Fig. 3 the overall node set N containing 14 nodes is ordered with the selected chain compo-
nents as N= .a, b, c, C/. The nodes within each of the four components are as shown in Fig. 8.
The set C denotes an overall conditioning set. The factorization of the density due to the chosen
chain is given by equation (2), the meaning of the edges of the chain graph type is defined by
expressions (5) and (6), and the edge matrix and hence the edges that are present and absent in
Fig. 8 are given by case (b) of theorem 6.

The stacked boxes in Fig. 8 indicate mutual independence of components of the joint responses
within a given chain component conditionally given C and the variables in chain components
g+1, . . . , dCC. For instance, for chain component b of Fig. 8 we have the independence .4 �1 �
11, 13/|{2, 8, 9, C}. By theorem 6 three further arrows are added to both the induced multivari-
ate regression and the concentration regression chain: for (13,9), (12,13) and (14,11). Thus, in
this example the three types of induced chain graph are similar.

By contrast the two induced chain graphs in Fig. 9, both for the same partitioning N =
.M, a, b, c, C), differ much in the edges that are present. For instance, node 10 has three neigh-
bours in the multivariate regression chain in Fig. 9(a), but six in the blocked concentration
chain in Fig. 9(b). In this example the concentration chain is considerably more complex than
the multivariate regression chain.

9.2. A matrix criterion for separation in triangular systems of densities
The equivalence of the following matrix criterion for separation to the path criteria that have
been given previously in the literature has been proved elsewhere.

Corollary 4 (separation in triangular systems). For triangular systems of densities (1) the
following statements for three disjoint node subsets α, β and C of N are equivalent:
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(a) the independence α �β|C is implied by the parent graph;
(b) no edge connects the subgraph of nodes α and the subgraph of nodes β in the induced

covariance graph for α and β given C;
(c) the edge matrix of the induced covariance graph for .α,β/ given C is block diagonal.

Proof. The results follow from theorem 6. ��
Note that the edge matrix for the induced conditional covariance graph can be computed

with S={a, b} and C̄=N\C from theorem 3 as SSS|C= In[AC̄C̄ clos.DC̄C̄+C/.AC̄C̄/T]S,S . After
rearranging the nodes of α to correspond to rows 1–dα of this edge matrix and those of β
to the remaining rows, block diagonality in α and β is seen to be equivalent to the required
factorization of the joint conditional density as fS|C=fα|Cfβ|C. Note that from equation (28)
the corresponding covariance matrix that is induced for a given linear triangular system (13)
is ΣSS:C = [A−1

C̄C̄
.∆C̄C̄+C/−1A−T

C̄C̄
]S,S , from which the direction and strength of induced linear

associations can be judged in terms of corresponding induced partial correlations.
The edge matrix of the chain graph that is induced by a triangular system, be it a covari-

ance graph as in corollary 4 or a more general graph as in theorem 6, indicates which of the
independences in the chain graph model are logical consequences of the generating process.
All remaining independences are then due only to special constellations in a given generating
system. Indicator matrices of particular sums of products of edge matrices define the induced
chain graphs that were discussed here. With each such sum of products the number of edge
inducing paths of a particular kind is computed for the variable pairs contained in the induced
graph. This knowledge is relevant for judging the absence or possible presence of confounding
effects: with only one edge inducing path no confounding of an induced association is possible.

In addition, for linear triangular systems the direction and strength of the relevant induced
correlations are given in theorem 5 and are presented in the same matrix form as the edge matrix.
This may be relevant also for linear approximations to triangular systems of densities, which
are of interest when interactive effects are absent and non-linearities are weak.
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Studený, M. and Bouckaert, R. (1998) On chain graph models for description of conditional independence struc-

tures. Ann. Statist., 26, 1434–1495.
Wermuth, N. (1987) Parametric collapsibility and the lack of moderating effects in contingency tables with a

dichotomous response variable. J. R. Statist. Soc. B, 49, 353–364.
Wermuth, N. (1992) On block-recursive linear regression equations (with discussion). Rev. Bras. Probil. Estatist.,

6, 1–56.
Wermuth, N. (2003) Analysing social science data with graphical Markov models. In Highly Structured Stochastic

Systems (eds P. Green, N. Hjort and S. Richardson), pp. 47–52. Oxford: Oxford University Press.
Wermuth, N. and Cox, D. R. (1998a) On association models defined over independence graphs. Bernoulli, 4,

477–495.
Wermuth, N. and Cox, D. R. (1998b) Statistical dependence and independence. In Encyclopedia of Biostatistics

(eds P. Armitage and T. Colton), pp. 4260–4267. Chichester: Wiley.
Wermuth, N. and Cox, D. R. (2001) Graphical models: overview. In International Encyclopedia of the Social and

Behavioral Sciences (eds P. B. Baltes and N. J. Smelser), vol. 9, pp. 6379–6386. Amsterdam: Elsevier.
Wermuth, N. and Lauritzen, S. L. (1990) On substantive research hypotheses, conditional independence graphs

and graphical chain models (with discusssion). J. R. Statist. Soc. B, 52, 21–72.
Whittaker, J. (1990) Graphical Models in Applied Multivariate Statistics. Chichester: Wiley.


