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1. Introduction

In the recent extensive research on the use of independence or Markov graphs to study

associations and dependences in multivariate systems, each variable is represented by a node;

some pairs of nodes are joined by edges, sometimes directed and sometimes undirected and a

key role is played by conditional independence. The absence of an edge between two nodes

means that the corresponding variables are conditionally independent, the conditioning set

depending on the nature of the graph. See Lauritzen and Wermuth (1989), Cox and Wermuth

(1993, 1996), Edwards (1995), Lauritzen (1996) and Wermuth (1997). For a description of

various kinds of special dependence which may be so represented.

The following qualitative distinction is important in applications but rather dif®cult to

capture formally in probabilistic theory. In a statistical model corresponding to a given

graph an edge that is present typically corresponds to a free parameter, e.g. a correlation or

regression coef®cient, which may take any value in the relevant parameter space, including

values at zero, the value for a particular independence. On the other hand in a substantive

research hypothesis (Wermuth and Lauritzen 1990) an edge that is present is to represent a

dependence large enough to be of subject-matter interest. Now the magnitude of such an

effect depends on the context. All that we can require for a general discussion is to

characterize situations in which rules for specifying and reading off a given graph

conditional independences and conditional associations do not overlook some of these
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relations. We stress that often the representation of dependences is at least as important as

representing independences and that the stronger interpretation can be essential.

We are mainly concerned with applications of independence graphs to observational

studies in the social sciences. In that context it is typical that the number of variables is not

very large, that associations are of moderate strength and that for the variables analysed no

event occurs with probability one.

In the present paper we ®rst summarize some terminology for independence graphs and

state known so-called separation criteria and some of their implications. A separation

criterion answers one central question: are variables corresponding to two sets A, B

conditionally independent given variables in set C? Here A, B, C are arbitrary disjoint

subsets of the set of all nodes V and the independence statements refer to the family of

joint distribution associated with the given graph.

Second, we introduce and discuss the notion of parametric cancellation. It characterizes

situations in which one special member of a family of distribution satis®es more independence

statements than those implied by an associated independence graph, that is more than those

given by the appropriate separation criterion. In particular, we give examples with few variables

and present some suf®cient conditions under which there is no parametric cancellation.

Third, we prove a theorem for relations induced in joint Gaussian distributions generated

over a directed acyclic graph in such a way that every edge present in a directed graph

corresponds to a particular, strictly non-zero regression coef®cient and that in addition there

is no parametric cancellation relative to a particular set of variables conditioned on.

The theorem gives several reformulations of the separation criterion for directed acyclic

graphs to answer the question: does the generating process imply two variables corresponding

to nodes i and j to be conditionally dependent or independent given the variables in some

other subset C of V? In this formulation the primary aim is to assert dependence whereas the

separation criteria had been formulated to derive independences implied by a graph.

Finally, we introduce the notion of quasi-linearity to extend the usefulness of the theorem

to some systems containing interactive effects and nonlinear dependences.

Note that independences connected with a given Markov graph do not require

speci®cation of the form of distribution involved. Moreover joint distributions are here

typically de®ned only implicitly via a sequence of (conditional) distributions and the

independences speci®ed by the graph. In any particular application, particular families of

distributions are used. When we discuss parametric cancellation we are concerned with

additional independences holding for very special members of the fuller family. Similarly,

induced dependences are relevant only for the special members corresponding to an

assumed physical generating process.

2. Terminology, separation criteria and induced graphs

2.1. Graph terminology

We consider graphs of p nodes V � f1, . . . , pg indicating random variables Y1, . . . , Y p and

at most one edge i, j between each pair of nodes i and j. Edges represent conditional
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association parameters in the distribution of YV , assumed here to be non-degenerate. An edge

may be directed and then drawn as an arrow, or it may be undirected and then drawn as a

line. If a graph has only lines, then it is an undirected graph. The graph is said to be fully

directed if all its edges are arrows, and partially directed if some of its edges are lines and

some are arrows. In undirected and in partially directed graphs, two types of edge, dashed or

full, may be present, indicating different conditioning sets for associations.

An edge i, j has no orientation if it is a line or it has one of two possible orientations

when it is an arrow, either pointing from j to i, i.e. having the arrow point at i, or pointing

from i to j. A path of length nÿ 1 nodes is a succession of edges connecting nodes

i1, . . . , in, irrespective of the orientation of the edges. Note that a path of length 1 is an

edge present in the graph. The graph obtained from any given one by ignoring type and

orientation of edges is called the skeleton graph.

Two nodes i, j are said to be adjacent or neighbours if they are connected by an edge

and are said to have a common neighbour t, if t is adjacent to both i and j. Three types of

common neighbour node t of i, j can be distinguished along any fully directed path as

shown in Figure 1. Two arrows point to i and to j from a source node t (Figure 1a); a

transition node t has one incoming arrow, say from j, and one outgoing arrow (Figure 1b);

a sink node t has two arrows pointing at it one from each of i and j (Figure 1c). Because

two arrows meet head on at a sink node, it is also called a collision node or a node having

converging arrows. With several paths passing through a node, the same node may take on

different roles along different paths.

A path containing a collision node is a collision path and a path is said to be

collisionless otherwise. A path of arrows pointing to i from j via transition nodes is called

a direction-preserving path; an example is given in Figure 1b. In such a path, i is named a

descendant of node j and node j is called an ancestor of i.

A graph constructed from a given one by keeping nodes and edges present within a

selected subset S of nodes is an induced subgraph. The subgraph preserves type and

orientation of the edges. If the induced subgraph of three nodes i, t, j has exactly two edges

it is named a V-con®guration and if it is one of the paths of Figure 1a, b and c, it is called

source, transition and sink oriented, respectively.

In a directed acyclic graph GV
dag, all edges are directed and there is no direction-

preserving path from a node back to itself. Given the set of ancestors adjacent to a node i,

this graph de®nes Yi to be conditionally independent of the remaining ancestors of i.

In the contexts that we are mainly concerned with, a complete ordering of the variables

is typically speci®ed from subject-matter knowledge about the variables. Given such an

order we have a univariate recursive regression system that is a sequence of conditional

distributions with Y1 regressed on Y2, . . . , Y p, with Y2 regressed on Y3, . . . , Y p, and so on

up to Y pÿ1 regressed on Y p. Each response Yi has then potentially explanatory variables

i t ji t ji t j

(a) (b) (c)

Fig. 1. The three distinct types of common neighbour node t along paths in a fully directed graph:

(a) a source node; (b) a transition node; (c) a sink or collision node.
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Yi�1, . . . , Y p and we assume that its conditional dependence on Y j given its remaining

potentially explanatory variables can be captured by a set of parameters, the null values of

which imply the corresponding independence statement: Yi ?? Y jjYfi�1,:::, pgnf jg, for i , j.

For instance, in Gaussian systems these parameters are partial regression coef®cients; for

binary quadratic exponential distributions (Cox and Wermuth 1994) they are constant partial

log-odds-ratios, for general logistic regressions and analyses of variance models they are

main- and higher-order effects. Not covered by this type of speci®cation are most

regressions for binary responses which are linear in probabilities, since conditional

independence shows there in several parameters being equal; see Cox and Wermuth (1992)

for some further discussion of this point.

The graphical representation of such a system is sometimes called a univariate recursive

regression graph. It is a directed acyclic graph with two additional features: each edge

present represents a speci®c non-vanishing conditional dependence and each edge absent

represents one particular conditional independence statement for the variable pair involved.

We then say that the joint distribution is generated over the given GV
dag or that GV

dag is a

generating graph because it is intended to represent a process by which the data could have

been generated.

For the same directed acyclic graph the nodes can often be numbered in more than one

way without changing the independences implied by a directed acyclic graph (Frydenberg

1990). Therefore, the recursive ordering of the generating regressions is often indicated by

drawing a chain of boxes around nodes 1, . . . , p. Whenever there are several conditionally

independent responses given their common ancestors, then the nodes of this set are drawn

in stacked boxes; such variables are mutually independent given the variables in all boxes to

the right. Examples are in Figures 2 and 3 below.

We now turn to systems whose properties are conveniently speci®ed via covariances or

concentrations, as is especially appropriate for Gaussian systems. Given a selected triplet of

nodes S � fi, t, jg, a set `m' of nodes denoting a (vector) variable X m over which

marginalization has taken place, a set `c' referring to the (vector) variable X c on which

conditioning has occurred, and an ordering V � (m, S, c), we can write the covariance and

the concentration matrix of the set S given the set c as

ÓSS:c �
ó ii:c ó it:c ó ij:c

: ó tt:c ó tj:c

: : ó jj:c

0@ 1A, Óÿ1
SS:c � ÓSS:m �

ó ii:m ó it:m ó ij:m

: ó tt:m ó tj:m

: : ó jj:m

0@ 1A,

and, for instance, the partial correlation coef®cient rij:c can be expressed in terms of linear

regression coef®cients, covariances and concentrations (Wermuth 1976) via

rij:c � âij:c
ó jj:c

ó ii:c

� �1=2

� ÿó ij:m(ó ii:mó jj:m)ÿ1=2,

âij:c � ó ij:c

ó jj:c
� ÿ ó ij:m

ó ii:m
,

where in a non-degenerate system all variances ó ii:c, . . . , and all precisions ó ii:m, . . . are

positive.

480 N. Wermuth and D.R. Cox



The dot notation denotes conditioning for covariances and marginalizing for concentra-

tions. It is particularly useful to express recursion relations such as

âij:c � âij:tc � âit:jcâ tj:c,

ó ij:c � ó ij:tc � ó it:có jt:c

ó tt:c
,

ó ij:m � ó ij:tm � ó it:mó jt:m

ó tt:m

(see Cochran (1938), Anderson (1984) and Dempster (1969), respectively).

With the help of these, the important consequences of a ®xed order can be emphasized:

each edge missing and each edge present has a precise interpretation for the involved

variable pair. Let the selected triplet S refer to V-con®gurations of a large generating graph,

let m denote descendants of S and c ancestors of S. Then for Gaussian systems the source-

oriented V-con®guration of Figure 1a speci®es 0 � rij:tc, âit:c 6� 0, â jt:c 6� 0 and implies that

rij:c 6� 0. The transition-oriented V-con®guration in Figure 1b speci®es 0 � âij:tc, âit:jc 6� 0,

â tj:c 6� 0 and implies that rij:c 6� 0. The sink-oriented V-con®guration of Figure 1c speci®es

0 � ó ij:c, â ti:jc 6� 0, â tj:ic 6� 0 and implies that rij:tc 6� 0. In each case the implied non-zero

correlation for the missing edge i, j results because the con®guration corresponds to exactly

one zero element in ÓSS:c or Óÿ1
SS:c and hence to a non-zero element in the same position of

the corresponding inverse matrix.

2.2. Separation criteria for the directed acyclic graph GV
dag

As mentioned before, conditions which help to decide which independence statements are

implied by any given graph have been called separation criteria. Such separation criteria

were given for two types of undirected graph by Darroch et al. (1980) and by Kauermann

(1996) and for partially directed graphs by Frydenberg (1990). We restate here two different

separation criteria for directed acyclic graphs. These have been shown to be equivalent and

for all disjoint subsets A, B, C of V one may conclude under very general conditions that YA

is independent of YB given YC provided that the criterion is satis®ed (Lauritzen et al. 1990).

Separation Criterion 1 for GV
dag (Pearl 1988, p. 117; Pearl and Verma 1988). If A, B, C are

three disjoint subsets of nodes in a directed acyclic graph, then C is said to d-separate A from

B if there is no path between a node in A and a node in B along which the following

conditions hold: (1) every node with converging arrows is in C or has a descendant in C; (2)

every other node is outside C.

Separation Criterion 2 for GV
dag (Lauritzen et al. 1990). A and B are separated by C in the

directed acyclic graph, whenever in the moral graph formed from the smallest ancestral set

containing A [ B [ C every path from A to B has a node in C.

This moral graph is constructed in three steps: (1) obtain from GV
dag the subgraph induced

by nodes of the union of A, B, C and their ancestors; (2) join in it every sink-oriented V-
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con®guration by a line; (3) replace every arrow in the resulting graph by a line. Then the

separation criterion for undirected graphs is used to decide on separation in the directed

graph.

Figure 2 illustrates an application to a generating graph with seven nodes.

2.3. Induced covariance and concentration graphs

Whenever a joint distribution is generated over a given directed acyclic graph GV
dag, the above

separation criteria may be used to derive further features of the joint distribution, for instance

those represented by the following two types of undirected graph.

The overall covariance graph GV
cov is an undirected graph of dashed lines. In it an edge

i, j is absent if GV
dag implies that the variables Yi and Y j are marginally independent

(Yi ?? Y j) and an edge is present otherwise. The overall concentration graph GV
con is an

undirected graph of full lines. In it an edge between nodes i, j is absent if GV
dag implies that

the variables Yi and Y j are conditionally independent given all other pÿ 2 variables

(Yi ?? Y jjYVnfi, jg): In a multivariate normal distribution the absence of an edge in the

overall covariance graph means that there is a zero in a corresponding position of the

covariance matrix Ó, while the absence of an edge in the overall concentration graph is

equivalent to there being a zero in a corresponding position of the concentration matrix, i.e.

in the inverse covariance matrix Óÿ1.

The following formulation of results derived by Pearl and Wermuth (1994) is a direct

consequence of the above Separation Criterion 1. A given generating graph GV
dag induces an

edge i, j in the overall covariance graph GV
cov if and only if in the generating graph there is

a collisionless path between the two nodes. Further, it induces an edge between nodes i and

j in the overall concentration graph GV
con if and only if in the generating graph either i, j is

an edge or nodes i and j have a common collision node. Figure 3 shows the two undirected

graphs GV
con (Figure 3b) and GV

cov (Figure 3c) induced by the directed acyclic graph of

Figure 3a.

1 2

3

4

5

6

7

1 2

3

4

5

6

7

2

3

4

5

6

7

(c)(b)(a)

Fig. 2. (a) A generating graph in seven nodes; the corresponding moral graphs for the same sets

A � f2g and B � f7g but different conditioning sets C: (b) C � f3, 4, 5g separates A and B in the

undirected graph since every path from A to B has a node in C; (c) C � f1, 3, 4g does not separate A

and B, since the path 2,5,6,7 is outside C.

482 N. Wermuth and D.R. Cox



It follows that covariance and concentration graphs have at least as many edges as the

generating directed graph from which they are induced. Thus, neither can imply more

independence statements than the generating graph GV
dag. Two graphs are independence

equivalent if they imply the same set of independence statements, i.e. whenever every

independence statement derived in one graph can also be derived via the appropriate

separation criterion for the other graph. If two graphs are independence equivalent, then

they have identical skeleton graphs.

A given generating graph GV
dag is independence equivalent to its induced concentration

graph GV
con if and only if there is no sink-oriented V-con®guration in GV

dag (Wermuth 1980;

Wermuth and Lauritzen 1983; Kiiveri et al. 1984; Frydenberg 1990).

Similarly, for Gaussian distributions a generating graph GV
dag is independence equivalent

to its induced covariance graph GV
cov if and only if in GV

dag there is no source- or transition-

oriented V-con®guration (Pearl and Wermuth, 1994).

More generally, covariance and concentration graphs of a subset of variables YS may be

considered conditionally given another subset YC (Wermuth 1995). Such a covariance graph

GS:C
cov will have an (undirected dashed line) edge i, j if Yi ?? Y jjYC is not implied by the

generating graph and such a concentration graph GS:C
con will have an (undirected full line)

edge i, j if Yi ?? Y jjYC[Snfi, jg is not implied by the generating graph. For a multivariate

normal distribution of YV the absence of an edge in the covariance graph GS:C
cov means that

in the conditional distribution of YS given YC there is a zero in a corresponding position of

the covariance matrix, in ÓSS:C , while the absence of an edge in the concentration graph

GS:C
con is equivalent to there being a zero in a corresponding position of the concentration

matrix, in Óÿ1
SS:C .

We say that a generating graph GV
dag is completed by conditioning on C if it is modi®ed

by joining with a line the non-adjacent nodes of every sink-oriented V-con®guration having

a descendant in C.

Construction of an induced covariance graph. The covariance graph GS:C
cov induced by GV

dag

has an edge for nodes i, j if and only if in the generating graph, completed by conditioning

on C, there is a collisionless path between i and j outside C.

Construction of an induced concentration graph. The concentration graph GS:C
cov induced by

1
2

3

4

5 1
2

3

4

5 1
2

3

4

5

(c)
(b)(a)

Fig. 3. (a) A generating graph GV
dag with ®ve nodes; (b) the overall concentration graph GV

con induced

by it; (c) the overall covariance graph GV
cov induced by it.
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GV
dag has an edge for nodes i, j if and only if in the generating graph, completed by

conditioning on S [ C, there is an edge i, j or there is a collisionless path between i and j

outside S [ C:

Both construction criteria are direct adaptations of Separation Criterion 1 to the special

cases considered.

3. Parametric cancellations and stable paths

A parametric cancellation is a very special constellation among parameters such that an

independence statement holds even though it is not implied by the generating graph, i.e. even

though it cannot be derived from the separation criteria. Then the speci®c numerical values of

the parameters are such that an independence arises that does not hold in general for

structures associated with the given graph. Spirtes et al. (1993) assume this feature to hold

when they speak of a `faithful graph' and Pearl (1988) uses the term `accidental

cancellation'.

3.1. Examples of parametric cancellation

We assume again that GV
dag is a generating graph, so that each edge present corresponds to a

non-vanishing conditional dependence in a system of univariate recursive regressions and

distinguish parametric cancellations for edges present and those for edges absent in the

generating graph.

3.1.1. Examples for edges present in GV
dag

The graph in Figure 4a de®nes marginal independence for variable pair (B, C) and implies no

other independence statements.

In the corresponding joint distributions of three binary variables, each taking values ÿ1

and 1 with probability 1
2
, there is parametric cancellation for both pairs (A, B) and (A, C) if

the joint probabilities are log P(A � i, B � j, C � k) � ì� áijk, because these special

A
B

C

(a) (b) (c)

X1

X2
X3

X1

X2

X4

X3

Fig. 4. Simple situations in which parametric cancellation could occur: (a) a binary response A

directly dependent on two binary variables B, C being marginally independent; (b) a complete

Gaussian system in three variables; (c) an incomplete Gaussian system in four variables.
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probabilities imply marginal independence for the two pairs even though they have an edge

in the generating graph.

The graph in Figure 4b implies no independence statement in the system. For Gaussian

variables of mean zero it is such that

EfX1j(X 2, X3)g � â12:3 X 2 � â13:2 X3, EfX 2jX 3g � â23 X 3:

For joint distributions with the special constellation â12:3 � ÿâ13:2â23, marginal independence

results for pair X 1, X2, so that there is parametric cancellation.

3.1.2. Examples for edges absent in GV
dag

The graph in Figure 4c speci®es X 1 ?? X 4j(X2, X 3), X2 ?? X 3jX4 and implies no marginal

independence for pair X 1, X 4 and no conditional independence for X 2, X 3 given X 1. This

means for Gaussian variables of mean zero that

EfX 1j(X 2, X 3, X4)g � â12:3 X 2 � â13:2 X3,

EfX 2jX4g � â24 X4, EfX 3jX4g � â34 X4,

and, in particular that ó23 � â24â34ó44. However, for Gaussian distributions following this

given system with ó23 � ó12ó13=ó11 the independence X 2 ?? X3jX 1 holds even though it is

not implied by the graph. If, instead, we have â12:3â24 � ÿâ13:2â34, then the effects (de®ned

below) of the two paths present between nodes 1 and 4 cancel so that â14 � 0 and hence

X1 ?? X4 holds in such a special Gaussian system to Figure 4c.

An example of near-parametric cancellation for an edge absent is a Markov chain in p

Gaussian variables in which p becomes large. The generating graph GV
dag consists in that

case of a single direction-preserving path with node p, say, denoting the last ancestor of

node 1 and the implied marginal correlation r�1 p is

r�1 p � r12r23 . . . r pÿ1, p,

where rrs denotes the marginal correlation of X r, X s with edge r, s being present in the

graph. It results by taking repeatedly expectations of conditional means in the recursive

system or by the matrix argument given at the end of Appendix 1. Provided that most of the

rrs are not close to one, the implied correlation r�1 p tends to zero rapidly with increasing p.

For observations on any given set of variables it can be checked directly whether a

parametric cancellation occurs. For such a check, point estimates may be regarded as

parameters of an assumed family of distributions and the implied strength of the association

of interest can be computed under that model. If (near-)parametric cancellation were

observed and especially if repeated in independent studies, a rational explanation in subject-

matter terms would be called for. For general discussion and as guidance in speci®c

applications it is helpful to know that there are some general conditions under which

parametric cancellation is impossible.

We could show that special Gaussian and other distributions can be generated over

directed acyclic graphs such that parametric cancellations do not occur, no matter which

conditioning sets are chosen. However, these systems have very specialized features.
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Therefore we consider properties of paths instead, such that they imply a conditional

association whenever with the separation criterion no corresponding conditional indepen-

dence can be deduced.

3.2. Stable paths in Markov graphs

Let D denote a subset of V without any nodes along a given path between nodes i and j.

Then the path is said to be stable relative to D if every edge r, s along it indicates a strictly

non-zero conditional association for X r and X s after conditioning on X D.

Thus, in a stable path of the generating graph GV
dag the property of strictly non-zero

associations corresponding to each edge present is preserved after conditioning on D, where

for each node along the path D may contain some of its ancestors as well as some of its

descendants.

The property may again be directly checked in applications. It has the consequence that

relative to D there is no parametric cancellation for edges along the given path. Also,

whenever there are several paths between i and j in GV
dag which are all stable relative to D,

then parametric cancellation can only occur if the effects of the different paths cancel.

As direct consequences we have that there can be no parametric cancellation between i

and j relative to a set D if in GV
dag (i) there is just one path between i and j and it is stable

relative to D or (ii) there are several paths between i and j which are all collisionless and

stable relative to D and the conditional associations corresponding to each edge along the

paths can be described as having all the same sign conditionally given D.

Note that in Gaussian systems which are totally positive of order two (Karlin and Rinott

1983) the association of each edge present in the generating graph is positive and never

becomes negative, no matter which conditioning set is considered (Bolviken 1982).

4. Relations induced by univariate recursive regressions

In this section we prove the main result, which builds on the available separation criterion for

directed acyclic graphs but is formulated to see more directly the stronger statements about

associations needed for applications to observational studies. First, however, we de®ne a path

to be active because it is correlation inducing in Gaussian systems provided that the path is

also stable.

4.1. Active paths and stable active paths

A path between nodes i and j, i < j in a directed acyclic graph GV
dag is active relative to C,

C � Vnfi, jg, if either of the following holds.

(i) It is collisionless with every node along it outside C.

(ii) A collisionless path wholly outside C is generated from it by conditioning on C, i.e.

by completing with a line the non-adjacent nodes of every sink-oriented V-

con®guration along it having a descendant in C.
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The de®nition is illustrated in Figure 5. If a generating graph consists just of one of the

paths shown in Figure 5a±c, it induces in each of the three cases an identical-looking

concentration graph for nodes outside C considered conditionally given C: a single

undirected path between i and j.

Note that a path is collisionless if i is a descendant of j (Figure 5a) so that Y j is directly

or indirectly explanatory for Yi or if there is a source node t which is an ancestor to both i

and j (Figure 5b) so that Yi and Y j have Yt as a common explanatory variable.

Furthermore, if a collisionless path outside C is induced as illustrated in Figure 5c, then

either path end-point variable becomes indirectly explanatory for the other end-point

variable conditionally given C. This provides a qualitative justi®cation for the following

result.

Let C, C � Vnfi, jg, be again a conditioning set of interest and consider a path present

in GV
dag between i and j which is active relative to C. Further, for all sink-oriented V-

con®gurations along the given path, let C p denote the set of ®rst descendants which are in

C. We say that there is a stable active path relative to C if the edges along the given path

and along its relevant direction-preserving paths leading into C are stable relative to CnC p.

In Figure 5c we have C � C p � fc1, c2g:

Effect of a stable active path relative to C. In a system of linear regressions in Gaussian

variables generated over GV
dag a stable active path between i and j relative to C provides a

strictly non-zero contribution to the correlation coef®cient rij:C .

Note that with several stable active paths the contributions all add to the covariance of

X i on X j given X C .

Proof. By the assumption of a stable active path between i and j relative to CnC p there is a

non-zero (partial) correlation corresponding to each edge along it and along the paths leading

into C after conditioning on the variables in CnC p. We note that C p is empty if the given

path is collisionless and treat the three types of active path in turn.

In the active collisionless path in which i is a descendant of j a non-zero contribution is

...

... ...

...i j

(a)

(b)

ti j

i j

c1

c2
C

(c)

t

Fig. 5. Examples of the three types of active path, each correlation inducing for pair (i, j) given

C provided that it is a stable active path relative to C: (a) collisionless with i descendant of j;

(b) collisionless with i and j descendants of t; both paths having all nodes along it outside C; (c) a

collision path (with collision nodes c1 and t) from which a collisionless path wholly outside C is

generated by conditioning on C, i.e. by joining with a line the non-adjacent nodes of every sink-

oriented V-con®guration having a descendant in C.
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introduced to âij:C and hence to rij:C by marginalizing over all nodes along the path by the

argument of tracing paths given in Appendix 1.

In the active collisionless path with i and j having common source node t a non-zero

contribution results by the same argument both in âit:C and in â jt:C . With these two

coef®cients being non-zero and rij:tC � 0, it follows, as explained at the end of Section 2.1,

that rij:C 6� 0.

For the active collision path we consider the path itself and the relevant paths leading

into C conditionally given D � CnC p so that all nodes along these paths are outside the set

D. By marginalizing over the transition nodes along these paths we introduce for each node

h of C p and a pair of nodes (r, s), satisfying rrs:D � 0, two non-zero correlations rhr:D and

rhs:D. This con®guration implies in turn, that rrs:hD is non-zero. Hence, after conditioning

further on all variables of C p a stable collisionless path is created between i and j relative

to C so that by tracing the path a non-zero rrs:C is implied. u

Note that absence of any active path is the condition stated in Section 2.2 as Separation

Criterion 1 of Pearl and Verma.

4.2. Relations induced in Gaussian systems generated over GV
dag

In the context of the present paper the key point of the following theorem is the equivalence

of (i) and (ii); the relations with (iii) and (iv) are included to provide links with other work

and with other graphical representations.

Theorem (induced relations in Gaussian systems). Let the joint distribution in Gaussian

variables Y1, . . . , Y p be generated by linear regressions over GV
dag such that relative to C,

C � Vnfi, jg, every active path is a stable active path and effects of different such paths do

not cancel, then the following statements are equivalent.

(i) Yi depends on Y j given YC .

(ii) In the generating graph GV
dag there is at least one active path between i and j

relative to C.

(iii) In the concentration graph of the union of i, j, C, and their ancestors there is

outside C at least one path between i and j which is stable relative to C.

(iv) In covariance graphs which include nodes i and j and are considered conditionally

given C there is a stable edge i, j relative to C.

Proof. First, (i) implies (ii). As mentioned before, this has been proven to hold in fact in

much greater generality than for Gaussian distributions (Lauritzen et al. 1990) by showing

that the absence of any active path relative to C implies conditional independence:

Yi ?? Y jjYC .

For completeness we give a proof for the special case considered here, for non-

degenerate Gaussian systems. Suppose that there is no active path between i and j relative

to C. Then there is no edge i, j in the generating graph and the paths possibly connecting i,
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j in GV
dag can be characterized as follows: (1) there is at least one collision node t along the

path, which is not in C and does not have a descendant in C, or (2) there is at least one

transition node t along the path and it is in C, or (3) there is at least one source node t

along the path and it is in C.

The ®rst implies for consideration of nodes i, j and set C that we marginalize in a

collision path over one collision node and over all its descendants, but then the path end-

points become disconnected and no dependence can be induced. If this case is excluded,

there remain paths between i and j with at least one transition or source node which is in

C. By conditioning on such a node the conditional independence of its direct neighbors is

preserved and the path endpoints become again disconnected so that no dependence can be

induced for them.

The latter may alternatively be derived from the properties of triangular decompositions

of covariance matrices and their inverses or, equivalently, from the rule of tracing paths in

linear systems, which in its simplest form is due to Wright (1923) and which is illustrated

here in Appendix 1. The rule says that by marginalizing over collisionless paths present in

GV
dag a non-zero contribution to rij:C can result only from those paths which do not have a

node in C. Hence none of the above-mentioned collisionless paths can introduce a non-zero

contribution to rij:C . Finally, from rij:C � 0 it follows for Gaussian distributions that Yi and

Y j are independent given YC .

Second, to show that (ii) implies (i), we note that a stable active path has a strictly non-

zero contribution to rij:C. If there are several such paths, their effects combine additively

and hence, in the absence of cancellation of effects of different paths, rij:C 6� 0 and Yi and

Y j are dependent given YC .

Third, (ii) implies both (iii) and (iv) by construction; see Section 2.3. Then relative to C

each of the relevant undirected edges is stable relative to C because it corresponds either to

a directed edge present in GV
dag with that property or because it is generated from a stable

active path after conditioning on C.

Fourth, (iii) implies (iv). Suppose that in the concentration graph of the union of nodes i,

j, C and their ancestors there is a path between i and j outside C which is stable relative to

C. Then after marginalizing over all nodes outside C a non-zero contribution to the partial

correlation rij:C results so that dependence of Yi and Y j given YC is implied and there is in

any conditional covariance graph given C an edge i, j which is stable relative to C.

Fifth, (iv) implies (i). Suppose that in the induced covariance graph there is an edge i, j

which is stable relative to C, then by de®nition (i) follows and this completes the proof.

u

The proof that the absence of any active path implies conditional independence ((i)

implies (ii)) does not use parametric cancellation and, indeed, the more general results on d

separation show that this notion is irrelevant for deducing conditional independences.

The induced concentration graph of variables in the union of i, j, C as well as their

ancestors is the `moral graph' used by Lauritzen et al. (1990) to show separation in the

directed graph with the help of separation in an undirected full-line graph; see Separation

Criterion 2 in Section 2.2. Lack of separation of non-adjacent i and j by C in such an

induced concentration graph is equivalent to the presence of a path between i and j outside
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C. Note that the induced overall concentration graph may, in general, not be used in a

similar way to judge the absence or presence of separation. The reason is that it can include

paths which have a collision node in the generating graph with all its descendants outside

C. Such a path gets disconnected, i.e. removed, by marginalizing over nodes outside C and

hence it would not be correlation inducing relative to C.

The covariance graph of all variables given C can be interpreted as the graphical

representation of marginal correlations implied to be zero and non-zero by the generating

process for ®xed conditions speci®ed with C. Thus, if data are in fact generated over GV
dag,

then marginal correlations observed under such conditions C should be near zero for edges

absent in the covariance graph and non-zero otherwise, unless there is parametric

cancellation.

4.3. Relations induced in quasi-linear systems generated over GV
dag

To extend the usefulness of the above theorem we introduce the notion of quasi-linear

dependence. For this we use the result that any conditional or marginal dependence can be

written as a linear least-squares regression plus an error term, uncorrelated with the

explanatory variables; this contrasts strongly with the assumption of linear regression with an

independent error term which is a major restriction on the form of the dependence.

By quasi-linear dependence we mean (1) that any dependence present has a linear

component, i.e. the vanishing of a partial least-squares regression coef®cient implies exactly

or to a close approximation a conditional independence statement about the conditional

mean, and (2) a conditional independence statement implies that the corresponding partial

correlation coef®cient does not deviate much from zero. By this we essentially exclude

dependences that are so curved or involve such high-order interactions that they lead to

vanishing correlation and systems in which a strong partial correlation is present in spite of

conditional independence (for an example of the latter situation, see Wermuth and Cox

(1998)).

As a special case take a regression of Y on explanatory variables X and Z, where X is a

scalar and Z a vector random variable and assume that E(Y ) � gfâX , h(Z, ã)g where g(:)
is strictly increasing in its ®rst argument, h(:) is arbitrary and ã is a vector of parameters.

We want the partial correlation of Y with X given Z to have the same sign as â and to

vanish if and only if â � 0. It is proved in Appendix 2 that this holds if given Z the

expected value of either Y or X is linear in Z.

There are several consequences of an assumption of quasi-linear dependence. If in the

directed acyclic graph there is an arrow to i from j, and no other edge to i, then

Yi � âijY j � Eij, where âij 6� 0 and the error Eij is uncorrelated with Y j (but in general not

independent of Y j) and with variables directly or indirectly explanatory to Y j. Further, we

may reverse the direction of a single arrow and write Y j � â jiYi � E ji, where the error is

uncorrelated with Yi and with the variables directly or indirectly explanatory to Y j. Finally,

suppose that two or more arrows point to i, say from j, j9, j0 and so on. In general the

effects would combine nonlinearly, but in a quasi-linear distribution we may take a linear
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least-squares regression with non-zero coef®cients of the contributing variables and with

uncorrelated error.

As mentioned before, in actual applications it may be checked directly whether such

paths are stable relative to a conditioning set of interest. If they are, then every stable active

path between i and j relative to C induces a dependence between Yi and Y j given YC just

as in a Gaussian system.

Appendix 1: Tracing paths present in the generating graph

We summarize here some known results for triangular decompositions (A, D) of a

concentration matrix Óÿ1 and (B, T ) of a covariance matrix Ó and show, in addition, how

in linear systems generated over GV
dag all elements of B may be read off the generating

directed acyclic graph. This involves tracing collisionless paths in GV
dag relative to a given

conditioning set C and generalizes Wright's (1923) result for `implied correlations' which

involves tracking collisionless paths in the case that C is the empty set.

Every joint distribution generated with linear main-effect regressions over GV
dag in

responses ordered as (Y1, . . . , Y pÿ1) has a covariance matrix Ó and a triangular

decomposition of its inverse Óÿ1 � AT DA, such that every edge i, j (i , j) missing in

the generating graph GV
dag corresponds to a zero element aij of A and every edge present

corresponds to a strictly non-zero off-diagonal element of A. The reason is that the linear

independence statement connected to the missing edge i, j implies a zero partial regression

coef®cient âij:i�1,:::, jÿ1, j�1,:::, p and element aij of A is a multiple of this: aij �
ÿâij:i�1,:::, jÿ1, j�1,:::, p (Wermuth 1980).

An element of B in the triangular decomposition of the covariance matrix Ó � BTBT,

where B � Aÿ1 and T � Dÿ1, has a less direct interpretation although it is a particular

linear least-squares regression coef®cient as well (Dempster 1969; Wermuth 1989, 1992). In

column j of B we have for rows h � 1, . . . jÿ 1 coef®cients obtained by regressing X h on

X j conditional on X j�1, . . . X p, i.e. bhj � âhj:j�1,:::, p for h � 1, . . . , jÿ 1. The ith element

of the diagonal matrix T is the residual variance ó ii:i�1,:::, p corresponding to the regression

equation of Yi speci®ed implicitly with row i of A.

Example. For p � 4 variables and a complete generating graph, the elements of A and B

have the following explicit form in terms of regression coef®cients:

A �
1 ÿâ12:34 ÿâ13:24 ÿâ14:23

0 1 ÿâ23:4 ÿâ24:3

0 0 1 ÿâ34

0 0 0 1

0BB@
1CCA, B �

1 â12:34 â13:4 â14

0 1 â23:4 â24

0 0 1 â34

0 0 0 1

0BB@
1CCA:

If we simplify the notation to denote the generating regression coef®cients in A by

ãij � âij:i�1,:::, jÿ1, j�1,:::, p, then direct computations show that the elements of B can be

expressed as follows:
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B �
1 ã12 ã13 � ã12ã23 ã14 � ã12ã24 � ã13ã34 � ã12ã23ã34

0 1 ã23 ã24 � ã23ã34

0 0 1 ã34

0 0 0 1

0BB@
1CCA:

In general, the conditioning set of a regression coef®cient in position (i, j) of B, for i , j

is the set f j� 1, . . . , pg.

Tracing paths to compute the inverse B of the triangular matrix A. Element bij of B, for

j . i � 1, . . . , pÿ 1, results by tracing all collisionless paths present in GV
dag between i and j

outside f j� 1, . . . , pg.

For instance, position (1, 3) of the above matrix B contains the regression coef®cient

â13:4. Its de®ning conditioning set is {4} and, in a complete generating graph of four nodes,

there are two additive contributions to the regression coef®cient â13:4: one is ã13 from the

edge (1, 3) present; the other is from the collisionless path from 1 to 3 via node 2 not

touching node 4. Position (1, 4) of B contains the marginal coef®cient â14. Its de®ning

conditioning set is empty and in a complete generating graph there are additive

contributions of four collisionless paths between 1 and 4.

If the system is incomplete in such a way that all elements aij � 0, for j . i� 1, i.e. if

there is just one path along nodes 1, 2, . . . , p, then there is still a non-zero contribution to

correlation r1 p provided that each element ai,i�1 of A for i � 1, . . . , pÿ 1 is non-zero, i.e.

provided that every edge along the path has a corresponding non-zero partial correlation

coef®cient associated with it.

Appendix 2: Increasing dependence and partial correlation

Here we show that in a quasi-linear system of special nonlinear form, in which â captures the

conditional dependence of Y on X given Z, the partial correlation of Y with X given Z has the

same sign as â and vanishes if and only if â � 0.

Consider the regression of Y on explanatory random variables X and Z, where X is a

scalar and Z is a vector. We assume that

E(Y jX , Z) � gfâX , h(Z, ã)g,
where g(:) is strictly increasing in its ®rst argument, h(:) is arbitrary and ã is a vector of

parameters.

Write RY :Z , RX :Z for the residuals in the linear least-squares regressions of Y on Z and of

X on Z, respectively.

The partial correlation of Y and X given Z is proportional to the simple covariance of the

residuals RY :Z and RX :Z which we can write as

cov (RY :Z , RX :Z)g � E Zcov (RY :Z , RX :Z jZ)� cov Z fE(RY :Z), E(RX :Z)jZg:
The second term vanishes if either Y or X has linear regression on Z alone, making one
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of the expectations involved zero. More generally, it vanishes if the nonlinearities in the

dependence of Y on Z and of X on Z are uncorrelated. We assume one of these conditions

holds.

To calculate the ®rst term, we assume further that we can write

gfâX , h(Z, ã)g � gfâfX ÿ E(X jZ)g, h(Z, ã�)g,
where ã� is a new value of the parameter vector. This will hold if, for example,

g(u, v) � g(u� áv) and E(X jZ) is linear in Z and h(Z, ã) includes the family of linear

functions as possible special cases.

Then, because cov(RY , Z , RX , Z) � cov( Y , X jZ)

E Z cov (Y , X jZ) � E ZEY ,X jZfYfX ÿ E(X jZ)gjZ)g

� E ZEX jZ gfâfX ÿ E(X jZ)g, h(Z, ã�)gfX ÿ E(X jZg:

The inner expectation vanishes at â � 0 and its partial derivative with respect to â, being the

expectation of

fX ÿ E(X jZ)g2 @ g

@â
,

is strictly positive. Therefore the conditional covariance of Y and X given Z and the partial

correlation, r yx:z, vanish if and only if â � 0.

Note that in this discussion the monotonic function involved may be a logistic function.

Suppose for example that Y is a binary random variable, which we denote by A, taking

values 1, ÿ1 and having logistic regression on two scalar random variables B, Z where B is

binary and Z is continuous. If there are no interactive and no nonlinear effects we may

write

E(AjB, Z) � gfâB� (ã0 � ã1 Z)g,
where g(u) � tanh (u=2). The model is that of two binary regressions parallel on the logistic

scale. Suppose further that B has on Z a regression that is linear in the logistic scale. Then,

the condition that E(BjZ) is linear in Z can be exactly true only if Z has ®nite range. It holds

approximately if E(AjB, Z) depends only on Z; then the partial correlation between A and B

given X deviates from 0 by at most 0.01 provided that the logistic regression coef®cients of A

on Z and of B on Z are less than 1, corresponding to correlation coef®cients of less than 0.41

for variables standardized to have means zero and variances one.
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