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Summary 

A special log linear parameterization is described for contingency tables which exploits prior knowledge 
that an ordinal scale of the variables is involved. It is helpful, in particular, in guiding the possible merging 
of adjacent levels of variables and may simplify interpretation if higher-order interactions are present. 
Several sets of data are discussed to illustrate the types of interpretation that can be achieved. The simple 
structure of the maximum likelihood estimates is derived by use of Lagrange multipliers. 
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1 Introduction 

Many different methods have been proposed for the analysis of ordinal data; for systematic reviews, 
see the books of Agresti (1 984, 1990) and Clogg & Shidadeh (1994) and also McCullagh & Nelder 
(1989, pp.15 1-155). However, despite recent intensive interest in using the notion of conditional 
independence (see Wermuth & Cox, 1998a; 1998b) to simplify multivariate systems (Edwards, 1995; 
Cox & Wermuth, 1996; Lauritzen, 1996; Wermuth, 1998) such possibilities have not been set out in 
detail for ordinal variables. 

The outline of the present paper is as follows. First we present a motivating 5 x 5 example and give 
for general two-way tables a detailed account of the suggested special log linear parameterization. 
It has the advantage of clear interpretation because the vanishing of each interaction term indicates 
independence in  a specific associated 2 x 2 subtable. Vanishing of a suitable set of such parameters 
suggests the possible merging of adjacent levels of variables. After an explanation of the model, 
analyses of further two-way tables are shown. 

We then present a direct extension to higher dimensional tables. It is demonstrated by examples 
that this is particularly useful whenever the log linear model for the whole table is such that a 
table of two-way frequencies is a component of the minimal sufficient statistics or the same type of 
independence for a variable pair holds at all level combinations of the other variables. 

Finally we give a new derivation via Lagrange multipliers of the simple structure of the maximum 
likelihood estimates under such models and relate the result to more general considerations. 
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2 The I x J Table 

2.1 An Example of Ordinal Variables in a 5 x 5 Table 

From two general social surveys of adults in West Germany (Central archive, 1993) the observed 
counts shown in Table 1 were obtained on type of formal schooling and age group for all respondents 
in years 1991 and 1992. 

Table 1 

Observed und fitted counts. West Germunv 1991/92: n = 3673 
Type of Age group 
schooling 18 - 29 
basic. incomplete 12 

(7.7) 
basic. complete 215 

(2 19.3) 
medium 277 

(277) 
upper medium 52 

( 52) 
intensive 233 

(233) 

30 - 44 
13 

(17.7) 
507 

(502.3) 
300 

(300) 
91 

225 
(225) 

(91) 

45 - 59 
12 

(17.2) 
493 

(487.8) 
I92 

(192) 
47 

( 47) 
I02 

(102) 

60 - 74 
20 

(16.4) 
460 

(464.4) 
I26 

(126.4) 
1s 

( 16.2) 
74 

(7 I .7) 

274  sum 

(4.9) 

(138.3) 

(37.6) 

(4.8) 

(21.3) 

7 64 

137 1812 

38 933 

6 211 

19 653 

sum 789 I136 846 695 207 3673 

The displayed fitted counts, which agree well with the observed counts, correspond to both of the 
following constraints: (1)  independence of schooling from age group for the last two categories of age 
above 60 years and (2) independence of age group from the two lowest categories of type of schooling. 
These categories mean that at most basic, i.e. compulsory, education has been completed. A good 
fit of the observed values to this special reduced model points to the possibility of combining levels 
1 and 2 of the row variable and levels 4 and 5 of the column variable for a simplified interpretation 
of the association or, to state it differently, of concentrating on the association in the reduced 4 x 4 
table. 

As will be explained in detail below, under the chosen reduced model all seven 2 x 2 subtables in 
the first two rows and in the last two columns of the 5 x 5 table have an odds ratio of one, and all 
other fitted counts match the observed counts. 

Table 2 
Observed undfitted column percentuges .for Tuhle I 

Type of Age group 
schooling 1 8 - 2 9  3 0 - 4 4  45 - 5 9  6 0 - 7 4  >74 
basic, incomplete 2 1 1 3 3 

( 1 )  (2) (2) ( 2 )  (2) 
basic, complete 27 45 58 66 66 

(28) (45) ( 5 8 )  (67) (67) 
medium 35 26 23 18 18 

(35) (26) (23) (18) (18) 
upper medium 7 8 6 2 3 

( 7 )  ( 8 )  ( 6 )  ( 2 )  ( 2) 
intensive 30 20 12 I 1  9 

(30) (20) (12) (10) (10) 

100% 100% 100% 100% 100% 
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The column percentages in Table 2 show that the observed conditional distributions of schooling 
are very close for age groups 60-74 and over 74 years and that they are identical for the fitted counts. 

Table 3 
Observed und fitted row percentups ,fiw Tuble I 

Type of Age group 
schooling 18-29 30-44 45-59 60-74 > 74 
basic, incomplete 19 20 19 31 

(12) (28) (27) (26) 
basic, complete 12 28 27 25 

(12) (28) (27) (26) 
medium 30 32 21 14 

(30) (32) (21) (14) 
upper medium 25 43 22 7 

(25) (43) (22) (8) 
intensive 36 34 16 I 1  

(36) (34) (16) (11) 

I 1  100% 
(8) 

8 100% 
(8) 

4 100% 
(4) 

3 100% 
(2) 

3 100% 
(3) 

Most of the observed row percentages for age groups in the first two rows of Table 3 look similar, 
but some of the pairwise differences for these two categories ‘basic schooling incomplete’ versus 
‘basic schooling complete’ appear to be quite large. By use of associated tests for goodness of fit 
these are nevertheless judged to be mere random fluctuations. The reason is that there are relatively 
few respondents at the first level of the row variable so that corresponding counts in row 1 of Table 
1 are estimated only imprecisely. Again, for the fitted counts the two conditional distributions by 
construction do not differ. 

Table 4 
Observed andfitted studentized y-pururneters,fi)r Tuble 1 

Levels, Studentized Levels, Studentized 
subtables y -terms subtables y - terms 

row column observed fitted row column observed fitted 

12 
23 
34 
45 
12 
23 
34 
45 

12 I .9 0 
12 -6.7 -6.5 
12 2.5 2.5 
12 -3.0 -3.0 
23 0.1 0 
23 -3.7 -3.7 
23 - 1 . 1  - 1 . 1  
23 -0.6 -0.6 

12 34 -1.6 
23 34 -2.7 
34 34 -2.3 
45 34 2.5 
12 45 -0.3 
23 45 0.1 
34 45 0.6 
45 45 -0.8 

0 
-3.0 
-2.3 

2.4 
0 
0 
0 
0 

Table 4 contains studentized interactions corresponding to our parameterization for ordinal vari- 
ables, that is they are log odds ratios for neighbouring levels divided by their estimated standard 
deviation. Hence for large samples and under the hypothesis of a zero log odds ratio a studentized 
value is to be treated like a value from a standard Gaussian distribution in which absolute values 
larger than 3 are very unlikely and therefore point to a dependence in the corresponding 2 x 2 
subtable. For instance, for the row variable (type of schooling) at the first two levels, 1, 2, and for 
the column variable (age group) at the last two levels, 4 5 ,  the observed studentized value of the log 
odds ratio is -0.3 and it is equal to zero under the reduced model. 
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Yp2 

YL 

A 
Y23 

A B  

A.B 

Y12.12 

2.2 Interactions Based on Level Comparisons 

For a general I x J contingency table of variables A ,  B we write for probabilities n,, = Pr(A = 

We define an I J  by 1 vector of log linear parameters y in terms of a suitable I J  x I J matrix, 
i ,  B = j )  and denote observed counts by ni, for levels i = 1 ,  . . . , I of A and j = 1, . . . , J of B.  

C/ J ,  and a column vector of probabilities nAB as 
AB Y A B  = CIJ logn . 

Because C/ J contains weights defining contrasts of log probabilities we call C the contrast matrix. 
For instance, in a 3 x 2 table y A B  = C32 log r A B  is for our special representation 

( 1  1 1  1 1 1  
- 1  1 0 - 1  1 0  

0 - 1  1 0 - 1 1  
-1 -1 -1 1 1 1 

1 -1 0 -1 1 0 
\ o  1 - 1  0 - 1  1 

For example the interaction y.&f2 is then defined by 

the log odds ratio in subtable 2,3 of A and 1,2 of B .  

1.e. 
For variables with more categories and probabilities listed such that the levels of A change fastest, 

- - (n11, n 2 1 9 . .  . , ~ I I , n 1 2 ,  7522,.  . . n / 2 7  7113 , .  . . 9 Z / J ) T ,  

the log linear parameters are generated in the following type of lexicographical order 
AB A A A B A B A . B  A . B  B A B  A.B  

Y- 1 Y121 y237 ' .  . Y I - I , / >  Y129 Y12.123 y23.12' . ' .  YI-1.1.12' Y131 Y12.131 . ' . 7 y / - I , I . J - I . J '  

In general we denote by yif;;,, the log odds in the 2 x 2 subtable of levels i ,  i l  of A and levels 
j ,  j /  of B ,  the variable names being omitted if the context is clear. These are local odds ratios 
(Goodman, 1979a, b) to be contrasted with global odds ratios (Williams & Grizzle, 1972; Dale, 
1984; Molenberghs & Lesaffre, 1994). If merging of adjacent levels is of potential interest, local 
ratios are likely to be more helpful, as in our examples below, whereas if the levels represent a 
well-judged spacing of an underlying continuous latent variable, global ratios may prove a better 
base for study of the underlying continuous distribution. 

The matrix of contrasts C, J for the log probabilities may be computed via the Kronecker product 
of I by I and J by J matrices C, and CJ of level comparisons for the row and the column variables, 
respectively, where e.g. 

1 1  1 1 1  

c 4 = (  -1 0 -1 ; ;), c 3 = (  -1 0 -1 1 I), c , = (  -; ;) .  
0 0 -1 

We use the left Kronecker product to get 

C I J  = C J  @cl 
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in which the second matrix, C I ,  is multiplied in turn by the elements of the first matrix, C J ,  to give 
for instance for I = 3 and J = 2 

1 1 1  1 1 1  
-1 1 0  - 1  1 0  

0 -1  I 0 -1 
c32 = CZ 8 c3 = 

0 1 - 1  0 - 1  1 

To illustrate further the meaning of interactions based on level comparisons we choose a 3 x 3 
table and show the four special types of independence that result by having zero log odds ratios in 
neighbouring 2 x 2 subtables. 

(1) There is independence in the 2 x 2 subtable with levels 2,3 of A and levels 1,2 of B ( A; 1L B ,  
given i = 2 , 3 ;  j = 1,2)  or 
y23.12 = 0. 

(2) There is independence in the 3 x 2 subtable with all levels of A and levels 1,2 of B ( A 1L B ,  
given j = 1 ,2 )  or 
y12.12 = y23.12 = 0. 

(3) There is independence as in 2. and, in addition, in the 2 x 3 subtable with all levels of B and 
levels 1 ,2  of A ( A 1L B, given j = 1 , 2  and A; 1 B given i = 1,2) or 
y12.12 = y23.12 = y12.23 = 0. 

(4) Variable A is independent of variable B ( A 1L B )  or 
y12.12 = y23.12 = y12.23 = y23.23 = 0. 

For a simplified description of the association between the variables it is possible to merge levels 1 
and 2 of B in case (2) and of both variables in case (3 ) .  

The key point is however that the four degrees of freedom defining the dependence between A 
and B in the 3 x 3 table are captured by four log odds ratios with individual specific implications 
especially appropriate for ordinal variables. 

2.3 Log Linear Parameters Fitted by Maximum Likelihood 

Maximum-likelihood estimates of the log linear parameters are 

jY = c log fi AB 

with fitted probabilities expressed with fitted counts, fii, = G;,/n, where 

( i )  Gij = n;, if i j  E S 

( i i )  hi;. = n;. ,  &,, = n , ,  for all i ,  j 

Here S denotes the subset of cells of the contingency table unaffected by zero constraints ( i i i ) ,  i.e. 
not corresponding to any i i ' ,  j j '  with y$,:7j, = 0 (see also Section 4). 

Note that under an unconstrained model with S being of size (I - 1)(J - l) ,  which is often called 
the saturated model, each fitted count coincides with the observed count. On the other hand if all 
(I - 1)(J - 1) interaction terms yi$Bji, are zero, so that S is empty and A II B holds, only the 
marginal counts are to match the corresponding fitted marginal counts. 

The parameterization suggested here permits the formulation of more subtle forms of indepen- 



186 N. WERMUTH & D.R. Cox 

dency than would be possible by effect coding, i.e. symmetric constraints on log odds ratios, most 
appropriate for nominally scaled variables (Bishop et al., 1979 ,  or as would be possible by indicator 
coding, i.e. with base-line constraints, most appropriate if one of the levels is indeed a natural base- 
line category. See Wennuth & Cox (1992) for a more detailed discussion and for relations between 
different codings and with design (or coding) matrices, the inverses of contrast matrices. 

The estimated covariance matrix of the above estimates f may be expressed as a conditional 
covariance matrix given c, with c being the indices of the constraint cells in the vector n (Cox & 
Wermuth, 1990): 

Cff., = Cf, - C,,C,'C,, 

C = c cbv(l0g I?) CT 

cGv(1ogfi) = n-'(D - e e T )  

with f denoting the remaining indices in the vector, e being acolumn vector of ones, n the sample size, 
and V a diagonal matrix formed from reciprocals of the estimated probabilities. To state it differently, 
C,f ,c .  is the submatrix for the unconstrained parameters in positions (f, f )  after sweeping C on c. 

If the probabilities are estimated under the saturated model this gives an approximation to the 
maximum likelihood estimate of the covariance matrix under the reduced model, while the precise 
maximum likelihood estimate under the reduced model results if the probabilities are estimated under 
this reduced model. 

where C is expressed in terms of the contrast matrix, C, and the estimated covariance matrix of fitted 
probabilities cbv(1og fr) as 

2.4 A Note on Computation 

The actual fitting may be performed as for other log linear contingency table models with iteratively 
reweighted least squares or iterative proportional fitting algorithms. Also, a cyclic fitting algorithm 
may be used. For covariance selection models such an algorithm had been proposed by Dempster 
(1972), a programmed algorithm was given in Wennuth & Scheidt (1977) and its convergence 
properties studied by Speed & Kiiveri ( 1  986). While for covariance selection the cyclic fitting 
algorithm involves repeated inversion of covariance matrices it is much simpler here: if the odds 
ratio in any of the 2 x 2 tables with levels ii' of A and j j '  of B is replaced by the one expected under 
independence then the corresponding log linear interaction parameter f;;t,,,r is zero. 

The cyclic fitting algorithm to compute the fitted counts can be described as follows. At step 1 
the starting values f i ' , '  are the observed counts. At step s, (s = 1, . . . , d, )  of cycle T we have 
notional counts f i T * s  and modify them so that fiT,.'+' has independence in the relevant 2 x 2 subtable 
corresponding to the (s + 1)'th constraint. After the last of d, steps of an iteration cycle we obtain 
f i T + ' . ' .  If the change compared to f i T . '  is small enough the iteration stops. 

To avoid complications related to observed zero cells we have found it useful to add 0.01 to all 
cells in such a case. This increases the formal sample size by 1% of the total number of cells of the 
table. 

Sometimes closed form maximum likelihood estimation is possible, which can also be achieved 
by simple computational steps. For instance, two steps are needed if, as in the initial example of 
Section 2, there is independence of the row and of the column variable for a subset of levels of the 
other variable. Then the independency of the type A 1 B ,  can be directly fitted and to the resulting 
fitted counts the independency of type A; J l  B (or vice versa). Corresponding tests are used within 
the software DIGRAM when looking for mergeable levels (Kreiner, 1990). 

Wilks's (1938) likelihood ratio test of goodness of fit of a reduced model against the saturated 
model gives a statistic which has approximately a chi-squared distribution on as many degrees of 
freedom as log linear interaction terms are set to zero. In chi-squared distributions values smaller 
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than the degrees of freedom occur with probability larger than one half, hence indicate a good or 
excellent goodness of fit. 

The test statistic compares the fitted counts to the observed counts via 

x 2  = 2(1ogn;, - log hi;,). 

Note that for interactions based on level comparisons nonzero contributions can arise only from cells 
affected by zero constraints (see also Section 4). 

Provided there is a well fitting reduced model, say M t ,  with fitted counts hi:,, the goodness of fit 
of a further model with additional constraints and fitted values hi,, can be tested as above with n,, 
replaced by hi;, . 

2.5 Further Examples of I x J Tables 

Before turning to a fuller discussion of the initial example in the context of a higher dimensional 
table we now discuss briefly more analyses and interpretation of three two-way contingency tables 
in terms of level comparisons. 

The 2 x 5 contingency table for 32574 newborns shown in Table 5 was used by Graubard & 
Korn (1987) to illustrate poor properties of midrank scores. The variables are malformations of the 
newborn’s sex organs A,  ( i  = 1: yes, i = 2: no), and average number of alcoholic drinks the mother 
had daily during pregnancy, B .  The authors note that the distinction between less than one and no 
drink per day is likely to be unreliable. In addition, with just 165 women reporting to have had more 
than two alcoholic drinks per day there is in this group essentially no reliable information on the rare 
response. For three of the contrasts the studentized values, that is the fitted values divided by their 
standard deviations, are small. Also the likelihood ratio chi-squared statistic of 1.4 on 3 degrees of 
freedom, shows very good agreement between the observed counts and the reduced model. 

Table 5 
Counts, percentages us observed und us jitted under the reduced model defined by A I B j  given 
j = 1 ,  2 und A I B ;  given j = 3,4 ,  5, together with fitted studentized purumeters .for level 
compurisons; ,for dutu-on mulformutions in newborns; n = 32574 

Levels j of B 
Levels i of A 
Newborn’s malformation of sex organs 0 < I  1-2 3-5 2 6 

Mother’s number of alcoholic drinks per day 

Observed counts for i = l  (yes): nlj 48 38 5 1 1 
0.28% 0.26% 0.63% 0.79% 2.37% 

Fitted counts for i = l  46.6 39.4 5.8 .9 .3 
Observed counts: nIj + n2j  17114 14502 793 127 38 

Fitted studentized y-parameters 
Y12.12 Yl2.23 Y12.34 Y12.45 

Saturated model (with observed counts) 0.314 -1.85 -0.204 -.859 
Reduced model (with fitted counts) 0 -2.52 0 0 

The studentized value -2.5 of p ~ 2 . 2 3  in the reduced model is also the studentized log odds ratio in 
the 2 x 2 table obtained after combining levels 1 and 2 as well as levels 3 ,4  and 5 of variable B .  This 
conclusion captures quantitatively what had been reported by the investigators, namely that at most 
a binary variable B carries information about the association with A.  The increase in the studentized 
value in the reduced model is analogous to that achieved when eliminating unimportant explanatory 
variables in multiple regression. 

Table 6 is a 4 x 5 contingency table for two ordinal variables obtained for 417 adults in an 
epidemiological cohort study in Denmark, the so-called Glostrup study. The variables are self- 
reported health status, A ( i  = I ,  very good; i =2, fair; i =3, bad; i =4, very bad) and habits concerning 
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cigarette smoking five years earlier, B ( j  =1, never smoked; j =2, did not smoke then; j = 3,4,  and 
5 smoked fewer than 10, between 10 and 20 and more than 20 cigarettes per day, respectively). Table 
7 shows the dependence after combining levels into a 3 x 2 table. The choice of levels to be merged 
is made in the light of the studentized estimates of the y ' s  under the saturated model as shown in 
Table 6. 

Table 6 

Counts und studentized level compurison purumeters ?,;I . ] j t  fitted under three modelsfor u 4 x 5 
tuble of ordinal vuriubles; vuriuble A, self-reported heulth stutus, with levels i = 1, . . . ,4: very 
good, ,jiuic bud, very bud; vuriuble B, smoking habits five yews U ~ O ,  with levels j = 1, . . . , 5: 
never smoked, quit smoking, smoked less than 10, between 10 und 20, more than 20 cigurettes per 
duy; ,jiw dutu of the Glostrup-study; n = 417 

Levels Fitted counts Levels Studentized y-terms 
i j  M I  M2 M.7 it' j j '  M I  M2 M.7 

I 1  16 15.53 15.53 
2 1  73 73.06 73.06 12 - 9.35 11.49 11.49 
3 1  6 6.71 6.42 23 - -11.39 -12.18 -12.18 
4 1  I 0.71 0.99 34 - -3.66 -4.01 -4.01 
1 2  15 15.53 15.53 - 12 -0.64 0.00 0.00 
2 2  75 73.06 73.06 - 23 0.51 -1.37 -1.37 
3 2  6 6.71 6.42 - 34 1.93 3.27 2.55 
4 2  0 0.71 0.98 - 45 -3.78 -6.04 -6.04 
1 3  13 12.94 12.94 12 12 0.23 0.00 0.00 
2 3  59 60.88 60.88 23 12 -0.05 0.00 0.00 
3 3  7 5.58 5.35 34 12 -0.64 0.00 0.00 
4 3  I 0.59 0.82 12 23 -0.24 0.00 0.00 
1 4  10 8.42 8.42 23 23 0.69 0.00 0.00 
2 4  81 84.21 84.21 34 23 0.62 0.00 0.00 
3 4  17 15.31 15.92 12 34 1.27 2.11 2.11 
4 4  3 3.06 2.45 23 34 1.23 2.00 2.38 
1 5  1 2.58 2.58 34 34 0.00 0.70 0.00 
2 5  29 25.79 25.79 12 45 1.03 0.00 0.00 
3 5  3 4.69 4.88 23 45 -0.95 0.00 0.00 
4 5  I 0.94 0.75 34 45 0.70 0.00 0.00 

~~ 

M 1:  the saturated model (fitted counts equal the observed counts) 
M2: A I B j  given j = 1.2.3 and A I B, given j = 4 ,5  
M.7: the intersection of model M Z  and Ai I B given i = 3 ,4  

Note that the studentized values of the remaining y ' s  in the 4 x 5 table coincide with those in the 
reduced model of Table 7. 

The likelihood ratio chi-squared statistic for the fit of M2 against the saturated model M 1 ,i.e. 
against the observed counts, has value 3.4 on 9 degrees of freedom, written shorter as x: = 3.4. The 
additional fit of M3 against M:! is still excellent with x f  = 1.5. 

The association in the 3 x 2 table remaining after combining levels accordingly is in the expected 
direction; the risk of reporting poor health is 16.6%, when 10 or more cigarettes had been smoked 
daily five years ago, about twice as high as 7.7%, when the cigarette consumption was lower. Almost 
exactly reversed are the chances of reporting good health, with 16% versus 7.6%. 

By contrast, a reduced model but no level combination is recommended in the 5 x 5 contingency 
table shown in Table 8. It captures responses of 268 chronic pain patients to two items, that are 
questions of a questionnaire in which a score for 'Avoidance of social contacts' is constructed as the 
sum score of answers to six similar questions; items are on a five point ordinal scale. All bivariate 
distributions look very similar to the one in Tables 8 and 9. 

An interpretation of the fitted model is that persons choosing ordinal level i as response to the 
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Table 7 
Counts undpercentuges us observed ujier combining levels ofboth vuriubles ofTuble 
6, together with studentized level compurison purumeters; n = 417 

Number of cigarettes smoked 5 years ago 

189 

Health < loperday > 10 per day Studentized 
status Counts Percent Counts Percent y -terms 

good 44 16.2 1 1  7.6 ~ 1 2 . 1 2 :  2.1 I 
fair 207 76.1 110 75.9 ~ 3 . 1 2 :  2.38 
poor 21 7.7 24 16.6 

Sum 272 100.0 145 1 0 0 . 1  

Table 8 
Counts und studentized level comparison purumeters us observed on h v ~  very simibr 
fivepoint items ofu questionnuire; dutu,for chronic puin patients; n = 268 

Observed counts nij Studentized y-terms 

j ii' 
i 1 2 3 4 5  ti' 12 23 34 45 

1 3 3 1 6  4 I 0  12 2.63 0.63 -0.50 -0.23 

3 12 24 24 6 I 34 0.69 0.88 2.54 -0.32 
2 23 33 13 2 0 23 0.72 2.1 I 0.44 0.08 

4 2 8 1 3 1 5  2 45 -0.96 0.07 0.63 2.06 

first question tend to choose the same level j = i or possibly a neighbouring level j = i - 1 or 
j = i + 1 as response to the second question. This describes plausible behaviour since there is no 
reversal in the pooling of the six items of this questionnaire and since the content of the questions is 
very similar. 

The fit of the model is good, since the likelihood ratio chi-squared statistic has value 6.12 on 
12 degrees of freedom. It is interesting that choosing linear scores for the items is judged to be 
inappropriate by fitting models with orthogonal polynomial comparisons: the quadratic by quadratic 
interaction is needed in addition to the linear by linear one. It might be worthwhile to explore whether 
score construction can be improved by exploiting these features, possibly by modifying the codes 
attached to the extreme responses of the items (Cox & Wermuth, 1994a). 

3 

3. I Interactions Based on Level Comparisons 

Contingency Tables of More Than ' h o  Dimensions 

There is a direct formal extension to more than two variables. For a saturated model in which 
the probabilities are unconstrained other by having to sum to unity, we can write for variables 
A ,  E ,  C ,  . . . 

y A B C . . .  = c, A E C  
J K  ... IT 

where C, J K . . .  is the contrast matrix defined via level comparisons for the single variables. 
For instance, for a 3 x 4 x 2 table C, J K  can be computed as 

and reduced models result by having some of y terms equal to zero. In general only hierarchical 
models are of interest, i.e models with no lower order term being set to zero unless all higher order 
terms involving the same levels of the variables are also zero. 
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Table 9 

Counts und studentried level compurison purumerers for the same dutu us in Tuble 8 us fitted 
under u model with y,,,,,,, = 0 for ull ( i i ’ )  # ( j j ’ ) ;  n = 268 

Fitted counts 61,j Studentized y-terms 

i i j ‘  
i 1 2 3 4 5 i i ’  12 23 34 45 

I 33.00 15.1 I 4.80 0.97 0.12 12 3.9 0.0 0.0 0.0 
2 20.71 36.18 11.50 2.33 0.28 23 0.0 4.4 0.0 0.0 
3 11.99 20.94 27.77 5.63 0.67 34 0.0 0.0 4.9 0.0 
4 4.34 7.59 10.06 16.09 1.93 45 0.0 0.0 0.0 2.9 
5 2.96 5.18 6.87 10.99 10.00 

The log linear y-parameters will be given again in the lexicographic order mentioned above in 
Section 2.2 if in the column vector of joint probabilities the levels of the first variable A change 
fastest and of the last variable slowest. 

In general, the simple independence interpretation of zero individual interaction parameters is lost. 
There are however at least two exceptions. 

If the bivariate distribution of two variables, say of A ,  B is a minimal sufficient component of the 
model, then all higher order interactions terms involving A ,  B vanish and yi;7j, = 0 if and only if 
in the two dimensional A B table the odds ratios are equal to one in the subtables with levels ii’ of A 
and levels j j ’  of B .  

For instance if the joint probabilities factorize as n$‘ = ~:~nf:/nf, so that A 1L C I B ,  then 
any further pairwise conditional association may also be studied in the marginal bivariate distributions 
of AB and B C .  

This prerequisite is in particular satisfied if the variables follow a so-called quadratic exponential 
distribution (Cox & Wermuth, 1994b), that is if no higher order than two-factor interactions are 
present for a given contingency table. This is readily tested with the help of standard log linear 
models (Bishop et al., 1975; Edwards, 1995) and seems to occur quite frequently in observational 
studies, see also Section 3.3. 

On the other hand there is conditional independence for certain fixed levels of two variables, say ii’ 
and j j ’  of A ,  B at all levels of the remaining variables C, . . . , if and only if yl;7,, = 0 and all higher 
order terms involving levels i i ’  and j j ’  are also zero. Thus, the same procedure as in Section 2 can be 
applied to each of the K x L x . . . two-dimensional A B subtables of the larger A B C D ,  . . . -table, 
separately. 

In this case it is not the vanishing of individual two factor y terms, say of A ,  B ,  which has a simple 
interpretation but only their vanishing jointly with all higher order y terms involving the same levels 
of A and B .  This is particularly useful if a higher order interaction is concentrated only on a small 
subset of levels whereas conditional independence holds for other subsets of levels for a given pair 
as is the case in the B C E  table of Section 3.4. 

3.2 Relations Between Conditional and Joint Distribution Models 

For several discrete variables a reduced model may be formulated in at least two ways, as a 
graphical log linear model (Darroch et al., 1980) for all variables considered jointly or via a system 
of univariate recursive conditional distributions (Goodman, 1973; Cox & Wermuth, 1996). The two 
formulations coincide if and only if the log linear model is a so-called decomposablemodel (Wermuth 
& Lauritzen, 1983). 

A slight extension to log linear interaction models (Edwards, 1995) shows that a conditional 
distribution of a response variable gives always the same fitted values as the log linear model (for 
the response and its explanatory variables) if the marginal table of all explanatory variables is one 
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of the minimal sufficient components. If the response is binary then the result implies that answers 
obtained by a logistic regression (Cox & Snell, 1989) coincide with those obtained by fitting the 
corresponding suitable log linear model. An illustration is given here with the examples in Sections 
3.3 and 3.4. 

3 . 3 A  2 x 5 x 2 Table 

We use some of the data from a large scale study of the US National Institutes of Health on women 
and their pregnancies (1972) to investigate the dependence of perinatal mortality, A ,  on the survival 
status of the last born child, B, and on the skin colour of the mother, C. The variables are: 
Perinatal (fetal or neonatal) death, A ( i  = 1: yes, i = 2: no); Survival status of last born child, B 
( j  = 1: alive, j = 2: child death, j = 3: fetal death, j = 4: neonatal death, j = 5 :  unknown); Skin 
colour of mother, C (k = 1: light, k = 2: dark). 

A tentative interpretation of the last category, j =5, where the survival status of previous children 
is not reported, is that it contains a high proportion of women who have given their last child for 
adoption or who were to ill or to isolated to produce records about their last born child. 

Table 10 
Counts, studentized level compurisonpurumeters (?,,I .,,J.kk! ), undpercentuges ofu binury reponse, A, (100 x r?i 1,k ), 

fitted under two models in u 2 x 5 x 2 ruble; response vuriuble is perinatul mortulify, A; explanatory vuriubles 
ure survfvul stutus of lust born child, B ,  und skin colour of moiher, C; n = 22574 

Levels Fitted percent Fitted 
of for level i = 1 studentized 

A B C  Fitted counts of response A Levels y - terms 

i j k  M I  M2 M I  M2 ii' j j '  kk' M I  M Z  
~ ~~ 

1 1 1  
2 1 1  
1 2 1  
2 2 1  
1 3 1  
2 3  1 
1 4 1  
2 4 1  
1 5 1  
2 5 1  

1 1 2  
2 1 2  
1 2 2  
2 2 2  
1 3 2  
2 3 2  
1 4 2  
2 4 2  

270 
9148 

3 
I08 
134 

1678 
17 

173 
56 

389 

37 I 
10502 

5 
144 
I54 

1963 
37 

305 

297.12 
91 11.33 

3.81 
116.75 
132.82 

1679.18 
19.29 

170.71 
59.33 

385.67 

343.67 
10538.88 

4.40 
135.04 
155.18 

1961.82 
34.7 I 

307.28 

2.87 3.16 

2.70 3.16 

7.40 7.33 

8.95 10.15 

12.58 13.33 

3.41 3.16 

3.36 3.16 

7.22 7.33 

10.82 10.15 

- _ -  
12 - - 
- 12 - 

- 23 - 
- 34 - 
- 45 - 
- - 12 
12 12 - 
12 23 - 
12 34 - 

12 45 - 
12 - 12 
- 12 12 
- 23 12 
- 34 12 
- 45 12 
12 12 12 
12 23 12 

- 
32.04 

16.75 

5.63 
2.78 
0.11 

-2.49 
-1.94 

- 1.88 
-0.89 

-23.51 

-22.99 

0.46 

3.16 
-0.67 

-5.04 
-0.06 
-0.32 

- 
65.53 

43.46 

5.64 
5.68 
0.00 

-12.13 
-2.28 

- 1.73 
0.00 
0.00 
0.29 
4.50 

- 7.88 
0.00 
0.00 

-69.81 

-23.91 

1 5 2  46 42.67 14.38 13.33 12 34 12 -0.69 0.00 
2 5 2  274 277.33 12 45 12 0.15 0.00 

M I : the saturated model (fitted counts equal the observed counts) 
M2: A I C I E in intersection with: 

A I B, given j = 1.2  and B, I C given j = 1,2 

We expected that information on the survival status will change the prediction of perinatal mortality, 
but that additional information on the skin colour will not lead to a modification of these predictions. 
Expressed formally we expect a near zero log odds ratio for the binary variables A and C for each 
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How well does 
the political 
system 
function today? 

I 

B, 
Type of 
formal 
schooling 

D, 
Time of 
survey 

E, 
Region 
of survey 

Figure 1. A first ordering ofthe vuriubles derivedfrom substunce mutter knowledge. 

of the five subgroups of women described by the categories of B ,  i.e. A lL C I B .  
Provided this holds we examine further, after inspection of the data, consistency with the lollowing 

two hypotheses. They concern the distinction between the categories ‘last born child alive’ and ‘last 
born child dead, but not due to birth related causes’. The hypotheses are that this distinction is (i) 
irrelevant for perinatal death of the just born child and (ii) it is unrelated to skin colour. That is if 
hypotheses ( i )  and ( i i )  hold, there will be a near zero log odds ratio for A and B, ,  j = 1 , 2  at both 
levels of C, as well as a near zero log odds ratio for B, j = I ,  2 and C at both levels of A.  

The risks of perinatal mortality are shown in  Table 10 as observed and as fitted for the reduced 
model which combines the above specified hypotheses. Indeed, risks estimated under the reduced 
model assumptions differ only little from the observed risks. The chi-squared statistic for the fit of 
this model against the saturated model confirms the visual impression of a good fit; it has value 7.5 
on 7 degrees of freedom. The simplifications achieved supply both a condensed summary of the data 
via the reduced model specifying A lL C I B and a redefinition of categories by combining levels 1 
and 2 of variable B .  Both are well justifiable on subject matter grounds. 

An interpretation of the evidence in the remaining 2 x 4 x 2 table is as follows. Irrespective of 
the skin colour of the mother the risk of perinatal mortality increases from a risk 3.2 % for children 
with a most recent older sibling, who did not die due to birth related causes, to 7.3% and 10.2% if 
the last born child had died as a foetus or within a week after birth, respectively. The risk increases 
to 13.3% for j = 5 ,  characterizing this clearly as the least favourable zategory. 

The predicted risks for perinatal mortality coincide with probabilities estimated in a logistic 
regression of the binary variable A on B ,  C (having 4 and 2 levels) in which only the main effect 
of B is important. As mentioned before, the reason is that the marginal table of the explanatory 
variables ( B C )  is one of minimal sufficient components, i.e. of tables A B and B C ,  in the log-linear 
model with A lL C I B .  

3.4 A 4 x 5 x 5 x 2 x 2 Table 

We return now to the initial example of Section 2 which is taken from a larger context studying the 
question ‘What influences political attitude?’. We analyze here responses from two surveys taken in 
199 1 and 1992 in Germany. The counts are reproduced in a five dimensional contingency table given 
in the Appendix with the variable names, shown in Figure 1, abbreviated by A to E .  Figure 1 is used 
to guide analysis by describing some of our knowledge regarding the variables. It is an example of a 
first ordering of variables for an analysis with graphical Markov models (see Cox & Wermuth, 1996; 
Wermuth, 1998). 
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Political attitude ( A )  is the response variable of primary interest (listed in the first box), for which 
all other variables are possibly explanatory. There are two variables fixed by design (shown in the 
doubly lined last box): time ( D )  and region (E), i.e. West and East Germany, of the survey. For the 
remaining intermediate variables there is a time order, with type of formal schooling (B) possibly 
depending on the age group (C) of a respondent, but not vice versa. Each intermediate variable plays 
the role of both response and explanatory variable, possibly explanatory to some of the variables 
shown to the left and possibly a response to some of the variables shown to the right. 

The levels of the five variables are defined as follows. 

Levels of A Levels of B Levels of C Levels of D Levels of E 
i = 1, very poorly r = 1, West 
i = 2 ,  poorly r = 2, East 
i = 3 ,  well j = 3,  medium k = 3.45 - 59 Germany 
i = 4, very well 

j = 1, basic incomplete 
j = 2, basic 

j = 4, upper medium 

k = 1, 19 - 29 
k = 2,30 - 44 

k = 4,60 - 74 

1 = 1, 1991 
1 = 2, 1992 

j = 5 ,  intensive k = 5,z 75 

There is some further knowledge about the variables involved, which we want to exploit for 
analysis. 

(1) With two separate states having been formed in 1949 different school systems were established 
in East and in West Germany. Therefore a strong three-factor BCE interaction is expected in 
the joint distribution of these three variables, at least for persons aged under 60 at the time of 
the surveys. 

(2) The surveys were planned to be representative for the whole population. Hence if this plan had 
been successful we expect the same type of association between schooling and age for both 
years within each of the two regions. To state it differently, we expect BC lL D given each level 
of E ,  and, if this independence holds in each region, it implies the additional independencies 
B 1 D and C lL D given each level of E. 

(3) Within each region we expect only additive but no interactive effects of B, C, Don the response 
A .  

These different expectations are in the following way well supported by the data. The likelihood 
ratio X*-statistic on 16 degrees of freedom for no three-factor interaction in the BCE table is highly 
significant with a value larger than 200 (x:, = 266.73). We therefore proceed to report results for 
each level of E, separately, which leads to a so-called split model (H0sgard, 1996). The analysis 
reported in Section 2 for the BC table in West Germany could be replicated for East Germany as 
shown with observed counts and those estimated under the model with Ai lL B I i = 1 , 2  and 
A lL B, I j = 4 , 5  in Table 11. We get a good fit to this model in the West (x,” = 7.7) and in the 
East (xf = 6.5). 

Thus, even though there is an extremely strong BCE interaction, simplification can be achieved; 
the chi-squared statistic x:4 = 14.2 = 7.7 +6.5 corresponds to setting all three-factor and two-factor 
y interaction terms to zero which involve on the one hand B at levels 1,2 and C at all levels and on the 
other hand B at all levels and C at levels 43 .  Hence the information on the three-factor interaction is 
concentrated in the 4 x 4 x 2 BC E table remaining after combining levels 1 and 2 of B and levels 4 
and 5 of C as is summarized in Table 12. As a consequence the chi-squared statistic for three-factor 
interaction the BCE table after concatenating levels is almost unchanged in value in spite of fewer 
degrees of freedom: x; = 259.8. 

The main distinguishing features are that in the West the number of persons with intensive schooling 
increased from 10% for those aged 60 or more to 30% in the age group 18-29, while it only doubled 
in the East. However, in the East there were more possibilities to continue formal education after 
having been successful in work so that the observed large difference is slightly misleading. On the 
other hand for those aged 18-29 the percentage of persons with only basic schooling or less had 
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Table 11 
Observed undjitted counts, Eust Germuny 1991/92; n = 2366 

Age group, C 
18-29  30-44  45-59  60 -74  1 75 sum 

Type of 

basic, incomplete 5 10 37 18 5 75 
schooling, B 

(3.2) (10.9) (33.4) (22.4) (5.1) 

(36.8) (127.1) (387.6) (260.6) (58.9) 

(301) (503) (126) (46.5) (10.5) 

(10) (25) (39) ( 11.4) (2.6) 

basic 35 128 384 259 65 871 

medium 301 503 126 50 7 987 

upper medium 10 25 39 1 1  3 88 

intensive 76 139 92 34 4 345 
(76) (139) (92) ( 3 0  (7) 

Sum 427 805 678 372 84 2366 

Table 12 
Column percentuges i f  type of@irmul schooling, B ,  for  the BC counts given in Tubles I und ! I ,  
ufter merging cutegories, 1991D2;n = 6039 

New 
levels 

West Germany ( r  = 1) 

New levels k of C, age group 
East Germany ( r  = 1) 

New levels k of C, age group 
j o f B  18-29 30-44 45-59 2 60 18-29 30-44 45-59 > 60 
basicorless 29 46 60 63 10 17 62 76 
medium 35 26 23 18 70 62 19 12 
upper med. 7 8 6 2 2 3 6 3 
intensive 30 20 12 10 18 17 14 8 

Count 789 1136 846 902 427 805 678 456 

been decreased to 10% in the East but only to about 30% in the West. 
A reasonable fit to the hypothesis BC 1 D in the 4 x 4 x 2 table is observed for West Germany 

(x:, = 21 S). For East Germany, where the survey was carried out for the first time in 1991, the fit is 
less good (x,”, = 38.3). The statistics to test implications of this hypothesis for two-way tables have 
fewer degrees of freedom and could detect specific deviations between observed and fitted values, 
hidden in the statistic with many degrees of freedom. However, they point to a good fit in West 
Germany where values are x: = 3.8 for B J l  D and x: = 3.3 for C U_ D ,  while the less good fit in 
the East concerns both schooling (x,’ = 13.8) and age (x,” = 8.5). This is likely just to reflect the 
fact that the surveys in the East were not yet completely representative when conducted the first few 
times. 

Within each of the two regions the dependence of A on B C D  has only main effects if the marginals 
tables AB,  AC,  A D  and BCD are sufficient to describe the relations between all four variables. 
This hypothesis fits well in the West (x,”, = 73.5) and in the East (x.,?~ = 83.9). As a consequence 
the conditional distribution of A given B C D  can be studied in the marginal two-way tables AB, 
AC, AD.  From these we conclude, after proceeding as in Section 2, that there is no difference for 
our measure of political attitude A for persons with upper medium and with intensive schooling. 
This means for reporting the type of dependence that the corresponding levels may be combined. 
Similarly, there is no gain in distinguishing the categories ‘very poorly’ and ‘poorly’ or ‘very well’ 
and ‘well’ for the response A. 

The three two-way tables show further that disappointment with the political system increased in 
the years after reunification of Germany from 1991 to 1992 in both regions. In the West it is higher the 
shorter the formal schooling and the younger the person is, while there is no systematic dependence 
of this judgement on schooling and age in the East. For West Germany the joint influence of the three 
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explanatory variables can be summarized with estimated probabilities as follows. 

The political system functions poorly or very poorly (in percent) 
B ,  type of formal schooling 

medium ~ l u s  medium basic or less 
C ,  age group 1991 i992 1991 1992 1991 1992 

2 60 7 17 12 25 16 33 
45 - 59 8 20 13 29 18 37 
30 - 44 9 22 15 32 20 20 
18 - 29 1 1  24 17 35 22 43 

The effect of time ( D )  is strongest since the risk for a negative judgement increases at all level 
combinations of age group and schooling by a factor of two or more. There is an increase in risk 
by not quite a factor of two from ‘more than medium level’ schooling ( B )  to ‘basic or less’. The 
weakest but still significant effect is due to age group ( C ) .  

The fitted probabilities shown are identical to those estimated with logistic main effect regressions 
for both regions ( E )  with response A having just two levels and B ,  C ,  D having 3,4 and 2 levels, 
respectively. In East Germany, there were relatively more negative judgements regarding the political 
system than in the West, increasing from 35% in 1991 to 53% in 1992, and the remaining two variables 
B ,  C had only nonsignificant additional contributions to predicting A .  

Some of the similarities and differences in the dependencies are reflected in the recursive regression 
graphs shown separately for each of the two regions in Figure 2. Further analyses of the 1994 data on 
the same variables will show whether the trend to more negative attitudes could by then be stopped 
or even reversed. 

West Germany East Germany 

Attitude Schooling FI wr 
Figure 2. The two univoriure recursive regression gruphs resulring .from unulyses und prior knowledge. They show A 
depending on B ,  C. D in West bur only on D in Eust Germuny, type of,formul schooling depending on uge group for both, 
cind B C being independent of D. 

4 Maximum Likelihood Estimates: Derivation and Properties 

In this more theoretical section we outline the theory of maximum likelihood fitting for the models 

The fitting of a saturated model to multinomial data is by matching fitted counts to observed 
used in this paper. 
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counts. We assume for simplicity that no cell frequencies are zero. For example, to fit the model 

y = C 6 ,  O = D y ,  

where 0 = 71 AB is the vector of log cell probabilities and y the vector of contrasts, we replace 13 by 6 ,  
the vector of log cell proportions, and compute f = C6. The resulting vector of estimated contrasts, 
supplemented by comparison with their standard deviations, may then be inspected for large and for 
near zero elements especially starting with the highest order interaction components. 

We wish to consider the structure of maximum likelihood estimates when a reduced model is 
fitted, i.e. one with some of the components of y set to zero. 

Let nT denote the row vector of observed cell counts, constrained to sum to n ,  regarded as fixed. 
We start again from the saturated model in the above form where we arrange that the first column of 
D has elements all the same. In the log likelihood 

nT6 = n T D y ,  

for example from the multinomial model of mutually independent trials, the first element of y ,  say 
y - ,  has a coefficient proportional to n which is fixed. The normalizing condition can then be used to 
replace y- by a nonlinear function of the other parameters having fixed coefficient, thus leaving for 
the saturated model an unconstrained parameter space in the remaining elements of y .  

Now consider a reduced model in which some of the yf , other than y- are zero. The log likelihood 
is 

nT Dr Yr - k ( y r ) ,  

where D, is obtained from D by deleting the first column and columns corresponding to the yf that 
have been set to zero. Thus, D, is a T x ( T  - 1 - d,) matrix, where d, is the number of yt constrained 
in the reduced model and k(y , )  is the (fixed) function obtained from the elimination of y - .  This gives 
the log likelihood of a (T  - 1 - d,, T - 1 - d,) full exponential family. Therefore, provided there 
are enough observations and a technical condition is satisfied, the maximum likelihood estimate of y 
exists and is unique. The technical condition (Barndorff-Nielsen, 1978) is that the canonical statistic 
nT D, does not lie on the boundary of its possible values. When, as often is the case, the components 
of nT D, are based on subtotals, this means that the subtotals must not contain zeros; if this happens, 
one or more components of f are formally infinite. 

To solve for the maximum likelihood estimates, a possible route is to obtain D ,  hence D,, hence 
the canonical statistics and then to equate them to their expectations. 

Some further light on the form of the estimates can be derived by using Lagrange multipliers, w,. 
Returning to the representation with the full number T components of y ,  each zero ys ( s  = 1, . . . , d,) 
represents a constraint of the form c c,vf of = 0, or c(.~) e = 0, 

where C(s) is the row of the contrast matrix which corresponds to the position of the zero ys in the 
parameter vector y .  Take therefore the Lagrangian 

Formal simplifications are possible whenever each log linear parameter for t = 2, . . . , T is defined 
by a contrast in log nf ,  that is if C,  csf = 0, s = 1, . . . , d,. Then each row of the contrast matrix 
(except for the first) sums to zero. This holds for instance for all contrast matrices C obtained as 
Kronecker product of C-matrices defined for single variables with level comparisons, with orthogonal 
polynomials, or with symmetric constraints (which result from an effect coding for the design 
matrices, D = C-I). 
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After finding a stationary value of the Lagrangian with respect to Inf), we have that wo = n and 

= n .  nl + C,c w.rC,vf 

$1 

It follows that 

where hiT = n7?T denotes the fitted vector of counts. Therefore the row vector of differences 
between fitted and observed counts, nT - G T  is a weighted sum of rows of the comparison matrix, 
where the weights are Lagrange multipliers. 

This implies, in particular, that the maximum likelihood estimate of the cell count matches 
the observed count, for any cell unaffected by the constraints. These may be identified for level 
comparisons directly from the subtables defining the constrained log linear parameters. For instance, 
in a 4 x 3 table using level contrasts with y,$;2 = y,$;3 = 0, the relevant weighted sum of contrasts c,c w , ~  C(s), written as a I x J table corresponding to the levels of A and B ,  is 

1 - 1  0 1 - 1  W l  ( - - W l + W 2 )  - w 2  

-w1 ( W 1 - W 2 )  w ; ) ,  w l ( - i  0 0  ; : ) + w 2 ( ;  -i i)-( 0 0 
0 
0 0  

so that for this particular reduced model the estimated cell counts in the last two rows match the 
observed counts and in the first two rows they are the counts expected under independence in this 
2 x 3 table. In general, for interaction contrasts of values 0, 1, or - 1, with weights w, summing to 
zero over rows i and columns j in the I x J table of A and B, the interpretation of (1) for a given 
reduced model is 

(i) the estimated cell count matches the observed count, that is Gf* = nnf. = nf* for any cell t* 

(ii) the estimated cell counts match the observed one-dimensional margins of each variable; 
(iii) the estimated cell counts satisfy all the constraints. 

unaffected by the constraints, that is for which c,vfs = 0 (s = 1 ,  . . . , d, ) ;  

From (1) results a set of d,  polynomial equations. A sufficient condition for an explicit solution is 
that these are linear equations. In general an iterative procedure is necessary to find the maximum- 
likelihood estimates. 

There is a connection of these results with the forms of maximum likelihood estimation in other 
types of exponential model induced from a saturated model by setting some canonical parameters to 
zero. For example in the multivariate Gaussian covariance selection models of Dempster (1972) the 
saturated model with arbitrary covariance matrix is constrained by setting some concentrations, that 
is elements of the inverse covariance matrix, to zero. In the resulting maximum likelihood estimates 
the elements of the estimated covariance matrix in positions unaffected by the constraints match 
their observed values, the other estimated elements being such as to satisfy the constraints. From the 
viewpoint of general theory an interplay is involved between the canonical and moment parameters 
of the exponential family. 
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RCsum6 
On decrit une parametrisation adapt& particulierement aux des variables ordinales. En particulier celle-ci permettra de 

guider I'operation comment combiner les niveaux adjacents pour simplifier I'interpdtation. Une illustration des possibditts 
d'interpktation de la methode i plusieurs ensembles de d o n n h  est present&. La mtthode de Lagrange expose la structure 
des estimateurs de maximum vraisemblage. 

APPENDIX 

Table A1 
The 4 x 5 x x 5 x 2 x 2 ruble of counts ofdata on poliricul urrirude, n = 6039 

Levels of 
A . C . D :  Levels j of B Levels j of B 

Level of E ,  r = 1 Level of E, r = 2 

I 
1 
3 
I 
2 

0 
I 
1 
0 

0 
2 
I 
0 
2 
6 
I 
I 
I 
I 
0 
I 
0 
2 
3 
0 

0 
4 
6 
I 
I 
2 
6 
0 
I 
4 
5 
0 
0 
3 
I 
0 

- 2 
5 

63 
25 

2 
24 

I35 
34 
2 

26 
I20 
27 

6 
41 

107 
18 
3 
8 

28 
9 
0 
6 

68 
40 

6 
10 

I86 
I02 

14 
19 

I82 
I02 

I 1  
I 1  

I77 
82 
21 
12 
51 
22 

7 

3 
10 
88 
18 
0 

17 
89 
14 

1 

4 
62 
10 
2 

12 
32 

3 
0 
3 
8 
2 
0 
4 

101 
48 

8 
7 

100 
67 

S 

I 1  
76 
24 

3 
7 

57 
10 
5 
2 

16 
6 
I 

- 4 
3 

22 
5 
0 
3 

26 
1 
0 
2 

17 
2 
0 
I 
4 
0 
0 
I 
3 
0 
0 
0 

17 
3 
2 
4 

47 
10 
0 
2 

17 
6 
I 
0 
9 
1 
0 
0 
1 
I 
0 

- 5 
8 

78 
9 
I 

I 1  
68 
10 

I 
5 

29 
3 
0 
7 

26 
2 
0 
2 
6 
0 
0 
7 

100 
29 

1 

8 
99 
25 

3 
9 

42 
13 

1 

4 
26 

6 
3 
I 
6 
4 
0 

1 2  
0 0  
2 13 
1 5  
0 0  
0 3  
3 39 
4 27 
1 7  
0 4  

14 134 
13 61 
1 7  
0 4  
7 81 
6 56 
1 5  
0 3  
5 16 
0 10 
0 1  
0 0  
1 8  
1 8  
0 1  

0 0  
0 28 
1 22 
1 2  
1 2  
2 89 
3 74 
3 13 
0 0  
I 62 
2 4 6  
1 5  
0 3  
0 18 
0 14 
0 0  

3 
2 

103 
53 
4 
7 

198 
86 
9 
0 

50 
18 
3 
1 

15 
8 
0 
0 
1 
1 
0 
0 

58 
68 
13 
0 

104 
86 
13 
0 

25 
27 

3 
0 

16 
9 
1 
0 
4 
1 
0 

4 5  
0 2  
6 29 
1 12 
0 3  
0 1  
7 52 
7 17 
0 1  
0 2  
5 32 
3 18 
0 2  
0 0  
1 12 
1 7  
0 0  
0 0  
1 3  
0 1  
0 0  
0 0  
1 13 
2 16 
0 1  
0 1  
5 26 
3 38 
3 3  
1 0  

14 30 
14 7 
2 1  
1 0  
3 7  
5 6  
0 2  
0 0  
1 0  
1 0  
0 0  
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