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Statistical Dependence
and Independence

Statistical dependence is a type of relation between
any two features of units under study. These units
may, for instance, be individuals, objects, or various
aspects of the environment. Deterministic dependence
and statistical independence can be regarded as the
two opposite extreme types of relation, but also as
being qualitatively distinct from the possible other
forms of relation. If deterministic dependence and
independence are excluded, then the remaining inter-
mediate types of statistical dependence involve both
features as proper variables such that there are differ-
ences in the distributions of one variable for at least
some of the levels of the other.

If proper variables are statistically independent,
then the distribution of one of them is the same no
matter at which fixed levels the other variable is con-
sidered and observations for such variables will lead
coffespondingly to nearly equal frequency distribu-
tions. If there is deterministic dependence, then the
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levels of one of the variables vary in an exactly deter-
mined way with changing levels of the other. In other
words, under independence, knowledge about one
feature remains unaffected by information provided
about the other, while under deterministic dependence
it follows with certainty which level of one variable
occurs as soon as the level of the other variable is
known.

The definition of these opposite extreme types
of relation is symmetrical between the two features
involved, but in its intermediate forms, statistical
dependence may or may not be considered in a
symmetric way, depending on the substance matter
context. A symmetrical type of dependence will be
appropriate if the variables involved are considered
to be on an equal footing, such as symptoms of a
disease, or as length, height and depth of produced
objects, or as personality characteristics of individu-
als. By contrast, an asymmetrical form of dependence
is of main interest if, instead, one of the variables is
considered as a possible response to the other, such
as weight to caloric intake, or as depression to anx-
iety. The terms symmetric association and directed
association are often used to capture this distinction.

Given observations on independent units, statisti-
cal dependence shows in a number of different ways
depending on several aspects. Important are. in par-
ticular, the types of variable involved, the conditions
under which the relation is recorded, and the type
of association measures used to summarize the data.
These issues are addressed next. in turn.

Relations Depending on Tlpes of Variable

One important distinction for variables is whether
they are qualitative or quantitative. Quantitative vari-
ables have levels that are numerical values with a
substantive meaning, such as kilograms, as ranks, or
as sumscores of questionnaires. Qualitative variables
have, instead, categories as possible levels. With a
nominal scale the categories are just of a qualitatively
similar kind such as blood groups; numbers possibly
assigned to them play the role of codes; that is, of
mere labels. In the case in which levels of a qualita-
tive variable can be ranked, the scale becomes ordi-
nal. This information may sometimes be exploited to
improve formal analysis (see Measurement Scale).

First, data summaries appropriate to detect the
form of pairwise dependence change with the types

of variable involved. They are, typically, contingency
tables for qualitative or discretized quantitative vari-
ables, scatter plots for quantitative variables and
frequency distributions (or at least selected character-
istics of the distributions) of the quantitative variable
displayed within each category of the qualitative vari-
able (see Graphical Displays).

Accordingly, a great variety of more formal
techniques is available. In the case of symmetric
associations examples are loglinear models for qual-
itative variables, covariance selection for quantita-
tive variables (see Variable Selection), and mixed
interaction models for both qualitative and quanti-
tative variables. In the case of directed associations
examples are logistic [2] and probit [6] regression
for discrete responses (see Quantal Response Mod-
els), linear regression for quantitative responses, and
combinations of these for mixed joint responses. In
any case it is essential to check systematically [4] for
more complex dependencies involving several vari-
ables or, possibly, nonlinear relations among quanti-
tative variables.

Relations Depending on the
Conditioning Set

Every statistical dependence among observed vari-
ables is a conditional relation, since there is always
some conditioning, at least implicitly on time and
location of the study. A more explicit form of condi-
tioning may result by design or by statistical analysis
involving several recorded variables. In that case the
distinction between conditional and marginal depen-
dence and conditional and marginal independence
becomes relevant. Both may convey different infor-
mation. A marginal dependence of a response on a
potential explanatory variable may, for instance, be
completely explainable in terms of a corresponding
conditional independence statement given an inter-
mediate variable, which itself is strongly related to
both.

One example from the German labor market in
1986 is shown here with the followin1 23 contin-
gency table, adapted from job placement statistics

[1]. The response is successful job placement, A, the
intermediate variable is field of study, B, and the
potential explanatory variable is gender of the appli-
cant, C. If the marginal dependence of job placement
on gender is considered, i.e. the overall association of
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Table 1 Overall dependence in spite of conditional independence

Home economics Mechanical engineering

C, gender

Female

C, gender

B. field of qualification
Overall; that is,
summed over B

C, gender

Female Male
A, successful
job placement Female Male Male

Yes

No

Sum

1 5
(3.6IVo)

400

415

L

(3.64Vo)
53

55

A

(20.jVo)
I 6

20

95
(2I . |Va)

355
450

t9
(4.4Vo)

416
435

91
(I9.ZVo)

408

s05

pair (A, C), shown on the righrhand side of Table 1,
it appears as if there were discrimination against
women, since females have a much lower chance than
men of obtaining a job.

This dependence can, however, be explained in
the following way: home economics was a preferred
field of qualification for women, while mechanical
engineering was strongly preferred by men. At the
same time there were many more successful job
placements for mechanical engineers than for home
economists, simply because many more job openings
were available for the former. Within each of the two
fields of qualification there was the same percentage
of successful job placements for both, women and
men. In other words, A is conditionally independent
of C given B (see Simpson's Paradox).

This conditional independence, together with the
strong marginal associations for pairs (,4, B) and
(8, C) both having variable B in common, imply the
observed dependence for (A, C); that is, this depen-
dence is generated by the intermediate variable B.
The data are also an example of a simple Markov
chain l8l and, more generaily, of a graphical Markov
model, a general framework (see [4], [5], and [7])
within which sequences of response, intermediate and
explanatory variables, both types of variables, quali-
tative and quantitative, distinct levels of conditioning
and interactive as well as nonlinear relations, may be
modeled explicitly.

Judgment of Relations as Dependent on
Measures of Association

In many contexts it is possible to summarize depen-
dencies concisely with a few carefully chosen mea-
sures of association (see Association, Measures of).
One example for a quantitative response and equally

spaced levels of a quantitative explanatory variable
is the set of coefficients of a polynomial regression.
If, for instance, the dependence can be well captured
by an orthogonal polynomial in three coefficients,
then the dependence is additively decomposed into
an overall mean, a linear, and a quadratic effect. A
direct extension is, conceptually though not techni-
cally, the decomposition of a time dependence into a
general level, a linear trend, and seasonal effects.

Some measures of association arise as parameters
in multivariate distributions. In such distributions,
it is typical that discrete random variables model
qualitative features and continuous random variables
model quantitative features. For symmetric associa-
tions one prominent example is the exponential fam-
ily called the conditional Gaussian (CG) distribution,
in which the continuous variables have a joint Gaus-
sian distribution for each level combination of the
discrete variables.

In the bivariate versions of the CG distribution, the
canonical association parameters are log odds ratios
for two discrete variables, muitiples of the simple
correlation coefficient for two continuous variables,
and a weighted difference in means for the mixed
case. In higher dimensions these association param-
eters are generalized in such a way that null values
of all terms involving a particular pair of variables
imply conditional independence of the pair given
all remaining variables: the measures of association
are then conditional log odds ratios, multiples of
partial correlation coefficients, and weighted differ-
ences of means, corrected for effects of the remaining
variables.

The obvious danger in using measures of associa-
tion which are part of a well studied joint distribution
is that the true distribution of the features under study
may be quite different. For instance, if the judgment
of dependencies among quantitative variables were
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based only on simple and partial correlation coeffi-
cients, then substantial misjudgments of the actual
relations might result. If the simple correlation is
zero, then strong nonlinear relations of a particular
type may still be present, but at least, if the simple
correlation is nonzero, the variable pair will always
be marginally dependent. The situation is much worse
with partial correlations.

Every partial correlation coefficient is a simple
correlation coefficient for residuals obtained after
linear regression on some common set of further vari-
ables. As for the simple correlation, there may be
strong nonlinear conditional associations even if a
partial correlation coefficient is zero. However, the
reverse may happen as well; that is, the partial cor-
relation coefficient may be high in spite of condi-
tional independence. This is best illustrated with an
example.

Let Z,U, and V be mutually independent vari-
ables, each having a standardized Gaussian distribu-
tion; that is, in particular, each having mean zero and
variance one. Define I and X as follows:

y:  (Zz  -  D+U,  X:  (22 -  1)+  Z +v.

Then I is conditionally independent of X given Z,
written as Y -I-XIZ, because given Z only U and V
are variable, and they are independent by assumption.
But the simple correlation between the residuals from
linear regression rs 213; that is, the partial correlation
coefflcient pxy.a rs sizeable.

To see this, note that linear - instead of the appro-
priate nonlinear - regression of I on Z and of X on
Z would give as conditional means

Ev""s*(YlZ) : 0, Elinsal(XlZ) : Z,

and hence as residuals from these linear regressions

Ry .z :  Qz  -  D+ rJ ,  Rx7 :  Qz  -  i ) +  Y .

Since the square of a standardized Gaussian variable
has a chi-square distribution on one degree of
freedom, the variable 22 has mean I and variance 2
and the residuals both have zero means. Furthermore,
both residuals have variance 3 and their covariance is

cov(Ry.7, Rv.D : vat(22 - l) : 2,

so that Pxt.z : cov(Ry.7, Ry.Z){var(Ry.7)vat
, " ; - J ' '

(Ry.7)\-lrz : 213 even though the corresponding
conditional independence statement Y -L)-X\Z holds.

Of course, if for corresponding observations system-
atic checks for nonlinearities and interactions were
used [3], then it would certainly be detected that non-
linear associations are present and hence it would be
noticed that correcting for only linear relations of I
on Z and of X on Z is inadequate.

An alternative to assuming that a set of vari-
ables has a particular distribution is to define the
joint distribution only implicitly via a sequence of
recursive conditional distributions. This is typical for
graphical Markov models corresponding to so-called
chain graphs. In that case, conditional dependencies
of potential explanatory variables are modeled sepa-
rately for each response in accordance with available
substance matter knowledge 14, 9); nonlinear rela-
tions and interactions among continuous variables
may be part of the model. In addition, for a given
model it may often be deduced which independencies
and associations are implied under other conditioning
sets than those specified with the given model [10].

Another important additional advantage of such
conditional modeling is that issues such as censoring,
measurement error (see Errors in Yariables), miss-
ing values, time dependencies, and effects of hidden
random variables may in principle be directly inte-
grated into the modeling process. To date, however,
the actual implementation might for some combi-
nations still require substantial further theoretic and
technical developments.
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Statistical Forensics

When genetic evidence is used for individual identifi-
cation, there are generally competing explanations for
the observations. A typical forensic situation arises
when biological material at the scene of a crime is
typed, found to have some profile A, and the circum-
stances of the crime suggest that the material was left
by the perpetrator P. A person S suspected of having
committed the crime is also typed, and is found to
have the same profile. The evidence E is that the two
profiles are of type A.

The competing explanations are:

Hp: the crime sample is from S
Ha: the crime sample is not from S

and the relative merits of these two explanations
are compared by means of a likelihood ratio. This
compares the probability of the evidence under the
two explanations:

r - Pr(ElHp)
( 1 )

Pr(ElHa)

Values of L greater than 1 favor the explanation
Ho over H6. If there are prior odds Pr(Ho)/Pr(Ho)
on S being the contributor, then the posterior odds
Pr(HolE)/Pr(HolE) follow from Bayes' Theorem as

posterior odds: L x prior odds.

One of the most common errors in interpreting
genetic evidence is to confuse the posterior odds
with the likelihood ratio. This transposition of the
conditional is more commonly made by prosecutors,
giving rise to the term "prosecutor's fallacy". It is
generally the case that Pr(ElHp) : 1, and the value

of Pr(ElH6) might be 10-6. The likelihood ratio is
then one million, but the posterior odds depend on
the prior odds. They are not a million to one on
guilt. Although odds on guilt is very much the kind
of information desired by courts, it cannot be found
from genetic evidence alone.

Conditional Probabilities

Eq. (1) can be modified by the rules of conditional
probability. If Sa and Pa mean that S and P, respec-
tively, have genetic profile A, then

Pr(S4, PAIHp)
T -

:

Pr(S4, PelHo)

Pr(Pa lSa, Hp) Pr(Sa lHp)
Pr(Pa lSa, H6) Pr(SalH6)

It may generally be assumed that the profile type of S
does not depend on either explanation of the matching
profiles, so Pr(SalHn) : Pr(SelHa), and that a match
is certain under Ho, so Pr(PalSa, Ho) : 1, and then

L -
Pr(PalSa, H6)

The focus on conditional probabilities greatly sim-
plifies the interpretation of matching profiles. The
question is clearly seen to be "What is the probability
that the perpetrator of the crime is of type A given
that S is of type A, when these two people are not the
same?" The smaller this probability, the stronger the
evidence against S. By emphasizing that L depends
on the probability of an event, comparisons between
L and the size of the population are avoided. There
is no inconsistency between an L of one million and
a population size of one thousand. One has nothing
to do with the other.

In the special case that profile probabilities of dif-
ferent people S and P are independent, the likelihood
ratio reduces to the reciprocal of the profile probabil-
ity ("profile frequency")

L -  _ .  ( 2 \
Pr(Pa)

This equation will not hold if S and P are related,
or if they both belong to the same subpopulation.
In one case the two people are related by virtue of
being in the same family, and in the second they
are related in an evolutionary sense. Althoueh the


