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Summary

In this paper, we define and study the concept of traceable regressions and apply it to some
examples. Traceable regressions are sequences of conditional distributions in joint or single respon-
ses for which a corresponding graph captures an independence structure and represents, in addition,
conditional dependences that permit the tracing of pathways of dependence. We give the properties
needed for transforming these graphs and graphical criteria to decide whether a path in the graph
induces a dependence. The much stronger constraints on distributions that are faithful to a graph
are compared to those needed for traceable regressions.

Key words: Chain graphs; edge-matrix calculus; faithfulness of graphs; graphical Markov models;
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1 Introduction and Motivation

1.1 Single and Joint Response Regressions

Sequences of regressions are arguably the most important statistical tool in observational
and interventional studies for investigating pathways of dependences and hence development
over time. In each regression, one distinguishes response variables and regressor variables; with
responses depending on the regressors.

In applications, the substantive context determines which variable pairs are modelled by a
conditional independence and which are taken to be dependent because they are needed in a
generating process of the joint distribution. Suppose one regressor is a risk factor for a response,
then quite different sizes of dependence strength will be relevant if this response is the occurrence
of a common cold, or the infection with HIV virus or an accident in a nuclear plant, since the
prevention of these risks is judged to be of quite different importance.

There may be single or joint responses, where only the latter permit to model simultaenously
occurring effects of an intervention. Components of joint responses may be discrete or continuous
random variables or be mixed of both types. Typically, a subset of variables is taken as
given, possibly determined by study design, and its components are named context variables
since they describe the context or background or the basic features of individuals under
study.

The generated joint density factorizes into an ordered sequence of conditional densities of the
responses, which we call shortly regressions, and into a joint marginal density of the context
variables. Under mild conditions, estimation of sequences of regressions can be decomposed
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into separate tasks for each response component of the factorization, using well-developed
tools such as linear or logistic regressions or conditional Gaussian regressions, which permit
joint responses to be mixed of discrete and continuous component variables; see Lauritzen &
Wermuth (1989), Edwards & Lauritzen (2001). Tailored to the requirements in many specific
situations, special results are available to estimate the form and parameters of univariate and
joint conditional distributions.

However, many consequences of sequences of regressions can already be derived if one
does not know or estimate the involved parameters but just uses a generating graph and
properties of graph transformations. Relevant, important results concerning independences in
sequences of regressions have been obtained only recently; see Sadeghi & Lauritzen (2012)
and Wermuth & Sadeghi (2012). The additional properties needed to draw conclusions about
induced dependences are set out in this paper.

Sequences of regressions are an essential part of longitudinal studies, named also cohort or
panel studies in medical, economic, and social science research. Prominent examples are the
Framingham heart study, the European Community household panel or the Swiss HIV cohort
study. By using regression graphs, it will become possible to simplify analyses and interpretations
of sequences of regressions and to directly compare dependences arising in different types of
sequences of regressions for the same set of variables, or in sequences of regressions for subsets
of variables studied for subpopulations. The results in this paper prepare for these possibilities
in applications.

1.2 Independences and Dependences Given by Regression Graphs

Sequences of univariate, that is of single-response regressions, have been represented by
directed acyclic graphs. With regression graphs, directed acyclic graphs are extended by
including two types of undirected graph, one for joint responses, the other for joint context
variables. Nodes of the graph represent random variables. Distinct node pairs are coupled by at
most one edge so that a regression graph is one type of what in graph theory are called simple
graphs. Each missing edge of a regression graph corresponds to a conditional independence
where the conditioning set depends on the type and position of the missing edge, the graph is
therefore also one type of independence graph.

Properties or axioms for combining independence statements have been studied by Dawid
(1979) and Pearl (1988). Their connections to graphs have been discussed and modified in
information theory; see Studený (2005) and Lněnička & Matúš (2007). Different types of
extensions have been proposed in the computer science literature; see Castillo et al. (1997),
Flesch & Lucas (2007). But, for instance, by requiring a property called strong transitivity, one
excludes even the whole family of regular joint Gaussian distributions. By contrast, regular
Gaussian families form a subclass of what we introduce here as traceable regressions.

The independence structure of a graph is the set of all independence statements implied
by the graph. These are well-studied for regression graphs, with important results obtained
only recently. For instance, a proof by Sadeghi & Lauritzen (2012) implies equivalence of a
pairwise Markov property, that is of the set of independences attached to the missing edges
of a given regression graph, to the global Markov property, the criterion known to give all
independence statements implied by the graph. For two regression graphs with identical node
sets and with the same set of coupled node pairs but with different types of edge, there is
a simple graphical criterion to decide whether the two graphs define nevertheless the same
independence structure, that is whether they are Markov equivalent; see Wermuth & Sadeghi
(2012).
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1.3 Tracing Pathways of Dependence

Much less is known about the dependence structures that can be captured by graphs. Since
graphs do not distinguish between additive and interactive effects of regressor variables on
responses, nor between linear and nonlinear types of dependences, it has been argued by Wermuth
& Lauritzen (1989) that graphs may represent research hypotheses about dependent variable
pairs needed to generate the joint distribution. For this, each edge present in the graph indicates
a conditional dependence, where the conditioning set depends on the type and position of the
edge present, while the form of the dependence is not specified.

For tracing pathways of dependences, dependence-inducing sequences of edges of different
type are the focus of interest, while independences just lead to simplified strengthened
interpretations of the relevant dependences. In this paper, we set out the properties of traceable
regressions and show, in particular that these properties impose mild constraints on the types
of generated distribution. This contrasts with strong constraints required in general for faithful
distributions. This notion was introduced by Spirtes et al. (1993) for distributions in which all
independence statements hold that are implied by a graph and no others.

Tracing pathways of dependence goes back to the geneticist Sewall Wright (1889–1988),
who introduced it in 1923 as path analysis for sequences of univariate linear regressions. He
suggested to judge the goodness-of-fit of a research hypothesis, represented by a directed acyclic
graph, by comparing observed correlations with those that are expected if the data had been
generated over the graph. His rules for computing expected marginal correlations, trace all
pathways that induce a dependence by marginalizing.

The extension of tracing pathways of dependences, when there is conditioning on variables in
addition to marginalizing, became feasible after a first separation criterion had been formulated
by Pearl (1988) and proven by Geiger et al. (1990) to give the global Markov property of directed
acyclic graphs. When separation fails, then there is at least one path in the directed acyclic graph
that may induce a dependence by marginalizing over one subset of variables and conditioning on
another set. Here, such a path is said to be edge-inducing since it leads to a transformed graph.

1.4 Structure of the Paper

In Section 2, we introduce and discuss dependence base regression graphs and traceable
regressions. Section 3 contains examples of tracing paths and of planning future follow-up
studies on the same topic so that there are no paths distorting a generating dependence of
interest. Small Gaussian families of distributions are used to illustrate independence properties
of traceable regressions. In Section 4, several discrete families of distributions are given to
show how the properties of traceable regressions can be violated. In Section 5, the known
properties of an edge matrix calculus to transform graphs are collected first. These are
used to derive new properties of transforming regression graphs and to distinguish traceable
regressions from distributions that are faithful to regression graphs. A short discussion ends the
paper.

2 Definitions and Terminology

2.1 Some Terminology for Graphs

Most of the following definitions are standard or evocative and listed for completeness.
A graph consist of a node set N = {1, . . . dN } and of edges that couple node pairs. In simple
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Figure 1. A regression graph in 14 nodes and node set partitioned into 8 connected components; single responses in g1, g4, g5
and joint responses in g2, g3, g6; context variables in g7, g8.

graphs, edges couple exclusively distinct node pairs by at most one edge so that the endpoints i
and k of an ik-edge never coincide.

An ik-path connects the path endpoints i and k by a sequence of edges. An ik-path can be an
edge, otherwise it has distinct inner nodes such that each edge visits an inner node once. For an
ik-arrow, i≺ k, node k is commonly named the parent of node i . An ik-path is a cycle if its
endpoints coincide, that is if i = k. A cycle is directed if it contains at least one arrow and one
returns to the starting node by following the direction of the arrow(s).

In a regression graph, G N
reg , such as in Figure 1, there are no directed cycles. There is a split

of the node set, that is an ordered partitioning of N into two components, as N = (u, v). Set u
contains the response nodes, which are possibly coupled by dashed lines and each has possibly
several parent nodes. Set v contains context nodes, which are possibly coupled by full lines
and none has any parent node. There is an additional partial set ordering of u, defined by the
direction of the arrows in the graph.

A regression graph has three types of edge sets, E≺ for directed dependences of responses
on their regressors, E , for undirected dependences among components of a joint response,
and E for undirected dependences among context variables.

Nodes that are connected by an undirected path in G N
reg are named concurrent. The undirected

edges within any set of concurrent nodes of G N
reg , are always of one type. Arrows may point to

any node in u but never to a node in v. An arrow may couple nodes from two different sets of
concurrent responses but only in such a way that no directed cycle results; see again Figure 1.

There is an a-line path, if all its inner nodes are in subset a of N . A path of only arrows
is direction-preserving if all its arrows point in the same direction. For a, b arbitrary disjoint
subsets of N , one says there is an ik-path between b and a if node i is in a and node k is in b or
vice versa. For a direction-preserving ik-path that starts with node k in set b and ends at node i
in set a, we say there is a path from b to a. In a direction-preserving ik-path, node k is named an
ancestor of i and node i a descendant of k.

A subgraph, induced by a subset a of the node set N , consists of the nodes within a and
of the edges present in the graph within a. A special type of induced subgraph, needed in this
paper, consists of three nodes and two edges. It is named a V-configuration or just a V. Thus, a
three-node path forms a V if its induced subgraph has two edges.

In a complete graph, every node pair is coupled by an edge. In a connected subgraph, every
node can be reached by a path. The unique set of connected components of G N

reg consists of
single nodes and the undirected, connected subgraphs that remain when all arrows of G N

reg are
removed but all nodes and all other edges are retained. Whenever there is no arrow between two
or more connected components g j of G N

reg , the graph alone implies only a partial ordering of
its connected components. Then, there is more than one full compatible ordering such that, for
g1 < g2 < . . . gJ , arrows may start from a node in any g j except g1, but never point to a node in
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g> j = g j+1 ∪ g j+2, . . . , ∪gJ . An important consequence is that different compatible orderings
for G N

reg define the same independence structure.
By convention, we number nodes and components g j of G N

reg first from top to bottom, then
from left to right. In Figure 1, g3 = {4, 5, 6} and g8 = {12, 13, 14} contain three nodes, each of
g2 and g6 contain two nodes, all others contain a single node; the connected components g7 and
g8 are in v, all others are in u.

The connected components of two or more elements, that contain concurrent variables, indicate
in statistical terminology which subsets of the variables are joint responses and which are joint
context variables. Single responses correspond in the statistical model to univariate regressions,
joint responses to multivariate regressions, including the seemingly unrelated regressions of
Zellner (1962). In Figure 1, seemingly unrelated regressions belong to the subgraphs induced
by each of the three node sets {2, 3, 5, 6}, {5, 6, 8, 9}, {9, 10, 13, 14}.

2.2 Generating Sequences of Regressions and Graphs

We consider now joint densities fN of a dN -dimensional, real-valued random vector variable
YN , which may have discrete or continuous components or be a mixture of the two types. The
density fN is defined relative to the product distribution; see for instance Lauritzen & Wermuth
(1989) for a more formal discussion. The variables have labels in node set N . In the following,
an element i of N is not distinguished from the singleton {i} and the union sign for combining
subsets of N is often omitted.

For i, k a node pair and c ⊂ N \ {i, k}, we write i ⊥⊥ k|c for Yi , Yk conditionally independent
given Yc. In terms of a joint conditional density fikc, this is equivalent to the following constraints
on conditional densities:

i ⊥⊥ k|c ⇐⇒ ( fi |kc = fi |c) ⇐⇒ fik|c = ( fi |c fk|c).

It has become common to say that a joint family of densities fN can be generated over a chain
graph if it factorizes according to a full set ordering of the nodes, called a chain, and fN satisfies
all independences implied by the graph. Different types of chain graph and corresponding
models for discrete variables are discussed by Drton (2009).

When independence structures are the focus of interest, one starts traditionally with the
chain graph in any one compatible ordering of its connected components g j . As stated before,
regression graphs G N

reg in node set N have three types of edge sets, E≺ , E , and E and
there is a split, N = (u, v), so that response nodes are in u and context nodes in v.

The undirected subgraph induced by v has edges i k and is commonly called a
concentration graph. The undirected subgraph induced by any g j within u has edges i k
and is a conditional covariance graph given g> j . With g>J = ∅, the basic factorization of fN

generated over G N
reg is

fN = fu|v fv with fu|v = ∏
g j ⊆u fg j |g> j and fv = ∏

g j ⊆v fg j . (1)

The independence structure of any given G N
reg can be derived in terms of this factorization and

the constraints on the given densities implied by the missing edges.
When tracing of pathways is of main interest, one starts instead with a stepwise generating

process of fN for which N = (u, v) and one full ordering of g j is given. In this process, the
density of variables in gJ is generated first, the one of gJ−1 given gJ next, up to the density
of g1 given g>1. Then, variable pairs needed to generate fN define the edge set of G N

reg; the
factorization in equation (1) and pairwise independences result as a byproduct of the generating
process.
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For a variable pair Yi ,Yk needed in the generating process of fN , we say it is conditionally
dependent given Yc for some c ⊂ N \ {i, k} and write i � k|c; so that in particular, i ⊥⊥ k|c
does not hold for such a pair. A regression graph is said to be edge-minimal for a distribution
generated over it, if every missing edge in the graph corresponds to a conditional independence
statement and every edge present to a dependence. A family of densities fN , generated over an
edge-minimal graph, changes if any one edge is removed from the graph since then an additional
independence holds in fN .

Definition 1. Defining pairwise dependences of GN
reg .

An edge-minimal regression graph specifies with g1 < . . . < gJ a generating process for fN ,
where the dependences

i k : i � k|g> j for i, k concurrent response nodes in g j of u,

i≺ k : i � k|g> j \ {k} for response node i in g j of u and node k in g> j ,

i k : i � k|v \ {i, k} for i, k concurrent context nodes in g j of v,

(2)

define the edges present in G N
reg . The meaning of each edge missing in G N

reg results with the
dependence sign � replaced by the independence sign ⊥⊥ .

Thus, for the given order of the components g j , the graph implies for each variable pair i, k
either conditional dependence or conditional independence given the same conditioning set, with
i k for two response nodes, with i≺ k for i a response node in g j and k a node in the past
of g j , with i k for two context nodes. Notice that each pair of concurrent responses, Yi , Yk

with i, k ∈ g j , is exclusively conditioned on variables that are in g> j . This permits to model
simultaneously occurring effects on responses with an intervention variable Yl , for l ∈ g> j .
These types of joint effect cannot be modelled with a directed acyclic graph or with another
type of chain graph than G N

reg .

2.3 Compatible versus Covering Models

When different generating processes lead to the same regression graph, we say that there
is another compatible model for the generated density fN . Results on Markov equivalence
prove this, but an intuitive argument is as follows. When there are several compatible orderings
of the connected components, then some components, g j , g j+1, . . . , gt , say of G N

reg , have an
interchangeable labeling because they induce, taken jointly, disconnected undirected subgraphs.
Such components are displayed in Figure 1 within stacked boxes.

In a connected G N
reg , stacked response components g j , . . . , gt have the nodes in g>t as their

common past and nodes in g< j = g1 ∪ g2, . . . , ∪g j−1 as their common future. Thus, for a given
generating process, each arrow starting from a node in g j , g j+1, . . . , gt , points to response nodes
in the common future but never to a node in the common past. For instance in Figure 1 above,
the partial order implied by the arrows in E≺ of G N

reg remains unchanged if just the order
of g3 and g4 is interchanged that is of the two disconnected undirected subgraphs induced by
the set {4, 5, 6, 7}. The constraints on the joint distribution remain then also unchanged so that
a compatible ordering of the g j defines another process to generate the same joint family of
distributions.

Recall that connected components of G N
reg are uniquely obtained as the connected subgraphs

that remain after deleting all arrows from the regression graph and keeping the undirected edges
and all nodes. Thus, for any given graph, it is not necessary to show the stacked boxes, but they
are sometimes included to reflect the first ordering of N , the prior knowledge about a sequence
of joint and single responses and about context variables. The corresponding basic factorization
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is then for a fN with a complete regression graph which has N = (u′, v′), a single connected
component v′ and no independences.

A density fN generated over a given G N
reg can be regarded as a reduced model, as discussed

by Cox & Wermuth (1990), to a partly completed regression graph as covering model whenever
the ordering implied by the arrows of G N

reg is retained. A small covering model is for instance
obtained for Figure 1 by replacing g3 and g4 with a single dashed-line complete graph in node set
{4, 5, 6, 7}. Thereby, the independence structure implied by G N

reg is changed, but the partial order
implied by the arrows, present in G N

reg , is unchanged. Replacing for instance the subgraph of a
seemingly regression by a complete graph, leads for a joint Gaussian distribution to simplified
estimation in the covering model compared to the reduced model.

To each regression graph with g1 < . . . < gJ used in the generating process with an edge-
minimal G N

reg , there exists a unique, fully completed graph which has the same set of context
nodes and no missing edges and which respects the ordering given by E≺ of G N

reg . It is
obtained by inserting a full line for every missing edge within the context node set v, a dashed
line for every missing edge within each set of stacked response components (with g j ⊆ u)
and arrows for all remaining missing edges pointing in the direction defined by E≺ . The
completed regression graph of Figure 1 has five connected components: g

′
1 = g1, g

′
2 = g2,

g
′
3 = g3 ∪ g4, g

′
4 = g5 ∪ g6, g

′
5 = g7 ∪ g8.

In the case of a large sample size n compared to dN and prior information on an ordering, this
provides a justification to start from a generating process for a complete regression graph and
to search for simplifying independences that eventually lead to an edge-minimal graph.

2.4 General and Special Properties of Probability Distributions

For i, h, k single, distinct indices, a, b, c, d disjoint subsets of index set N , where only d
may be empty, there are the common independence properties (i) to (iv) which are satisfied by
all probability distributions. The discussed properties (v) to (viii) constrain distributions, but
they permit the use of just the graph to derive different types of consequences for families of
distributions fN generated over G N

reg .

(i) symmetry: a ⊥⊥ b|c ⇐⇒ b ⊥⊥ a|c,
(ii) contraction: (a ⊥⊥ b|cd and b ⊥⊥ c|d) ⇐⇒ ac ⊥⊥ b|d,

(iii) decomposition: a ⊥⊥ bc|d ⇒ (a ⊥⊥ b|d and a ⊥⊥ c|d),
(iv) weak union: a ⊥⊥ bc|d ⇒ (a ⊥⊥ b|cd and a ⊥⊥ c|bd).

Joint distributions, for which the reverse implications of (iii) and of (iv) hold, have as additional
properties, respectively,

(v) composition: (a ⊥⊥ b|d and a ⊥⊥ c|d) ⇒ a ⊥⊥ bc|d,

(vi) intersection: (a ⊥⊥ b|cd and a ⊥⊥ c|bd) ⇒ a ⊥⊥ bc|d.

Properties (v) and (vi) are needed to derive the independence structure implied by G N
reg . Two

further types of properties are to be considered for tracing pathways of dependence,

(vii) set transitivity: (a ⊥⊥ b|d and a ⊥⊥ b|cd) ⇒ (a ⊥⊥ c|d or b ⊥⊥ c|d) ,

(viii) singleton transitivity: (i ⊥⊥ k|d and i ⊥⊥ k|hd) ⇒ (i ⊥⊥ h|d or k ⊥⊥ h|d).

Distributions that satisfy set transitivity are also singleton-transitive, since a set c may contain
only one element, but distributions that are singleton-transitive need not be set-transitive. For a
conditional independence of Yi , Yk given only Yd and given both Yh and Yd to hold, singleton
transitivity requires that there is at least one additional independence given Yd involving Yh , the
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additional single variable in the conditioning set. For set transitivity, the single variable Yh is
replaced by a vector variable Yc.

For Proposition 3 below, we shall show that with transformations of G N
reg , by which no edge

of the starting graph gets removed, set transitivity, (vii), is implicitly used, while for Propos-
ition 1 only singleton transitivity, (viii), is needed in addition to (i) to (vi) to decide for a given
edge-minimal G N

reg , which Vs along a path are inducing a dependence for their endpoints.
Singleton transitivity is a feature of what we define below as traceable regressions. So far, it

had been known to be common to all positive binary distributions where, for instance, for (1 � 2
and 1 � 3) either 2 ⊥⊥ 3 can hold or 2 ⊥⊥ 3|1 but not both; see Simpson (1951). It also holds in all
regular Gaussian distributions; see for instance Studený (2005), Corollary 2.5 in Section 2.3.6.

On the other hand, set transitivity imposes stronger constraints on distributions; see for instance
Figure 1 for a trivariate binary distribution in Wermuth et al. (2009). It is confusing that, in the
literature, the term “weak transitivity” has sometimes been used for property (vii) and sometimes
for (viii). Set transitivity excludes some regular Gaussian families.

2.5 Regular Gaussian Families Violating Set Transitivity

For N = (u, v), let Yu and Yv be mean-centered vector variables of equal dimension, du = dv ,
having a regular joint Gaussian distribution. The components of Yv be mutually independent with
equal variances ω > 0 so that cov(Yv) = �vv equals the diagonal matrix ωIvv , where I denotes
an identity matrix. Let further �uu = κ Iuu with κω > 1 and all elements in the correlation
matrix of Yu, Yv be nonzero so that every component of Yu is dependent on every component
in Yv . When in addition, �uv = cov(Yu, Yv) is orthogonal, so that �uv�vu = Iuu , the marginal
independences specified with

cov(Yu) = �uu diagonal, cov(Yv) = �vv diagonal.

carry over to conditional independences with

cov(Yu|Yv) = �uu|v diagonal, cov(Yv|Yu) = �vv|u diagonal,

and set transitivity is always violated for d = ∅, a split v = (a, b) and c = {1, . . . , du}. This
family extends the example in equation (8) of Cox & Wermuth (1993).

2.6 Some Important Properties of G N
reg and fN

Two basic types of Vs in G N
reg need to be distinguished. There are collision Vs:

i ◦≺ k, i �◦≺ k, i ◦ k,

and transmittingVs:

i≺ ◦≺ k, i≺ ◦ k, i ◦ k, i≺ ◦ �k, i≺ ◦ k .

Recall that two different graphs in the same node set are Markov equivalent if they define the
same independence structure, the set of all independences implied by the graph. The skeleton of
a graph results by replacing each edge present by a full line.

LEMMA 1. Markov equivalence.
(Wermuth & Sadeghi, 2012). Two regression graphs with the same skeleton are Markov

equivalent if and only if their sets of collisionVs are identical.
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A more compact characterization of the pairwise independences in Definition 1 is based on
the notion of anterior paths. Recall first that with N = (u, v), there are only undirected full-line
paths within v and there are only arrows pointing from v to u. An anterior ik-path is either a
descendant-ancestor ik-path, or a context nodes ik-path, or a descendant-ancestor iq-path with
a context-nodes qk-path attached to it,

i ≺
ancestors of i︷ ︸︸ ︷◦≺ ◦, . . . , ◦≺ q ◦, . . . , ◦ k︸ ︷︷ ︸

anteriors of i

.

The joint set of anteriors of nodes i and k is antik = {anti ∪ antk} \ {i, k}. For any subset c of
N , the anterior set of nodes within c is defined similarly and denoted by antc.

The intersection (vi) and the composition property (v) are needed for the following Lemma
2 and Lemma 3. By using them, the independences attached to the missing edges of G N

reg in
Definition 1 reduce to the more compact statements i ⊥⊥ k|antik and this leads to the definition
of an active path in G N

reg and to the global Markov property proven by Sadeghi (2009) for a more
general class of graphs.

Let {a, b, c, m} partition N , where c denotes a conditioning set of interest for a, b and m the
set of nodes to be ignored that is to be marginalized over. Only c, m or both may be empty
sets. A path in G N

reg is active given c if of its inner nodes, every collision node is in c ∪ antc
and every transmitting node is in m. For graph transformation, such a path is also said to be
edge-inducing.

LEMMA 2. Global Markov property of GN
reg.

(Sadeghi, 2009). The regression graph G N
reg implies a ⊥⊥ b|c if and only if there is no active

path in G N
reg between a and b given c.

LEMMA 3. Equivalence of the pairwise and the global Markov property.
(Sadeghi & Lauritzen, 2012). The independence structure of G N

reg is equivalently defined by
its lists of the three types of missing edges and by its global Markov property.

To derive dependence-inducing Vs, we note first for three-node graphs that by Definition
1, the inner node of each collision V is excluded from the defining conditioning set for its
endpoints, while the inner node of each transmitting V is included in it. This observation is
generalized with the following Lemma 4 that results from Lemma 2.

LEMMA 4. Conditioning sets in GN
reg.

The conditioning set of any independence statement implied by G N
reg for the endpoints of any

of its Vs, includes the inner node if it is a transmitting V and excludes the inner node and all its
descendants if it is collision V .

Let a V in an edge-minimal G N
reg have endpoints i, k and inner node o. Then by Definition 1

and Lemma 4, there is at least one c with c ⊆ N \ {i, k, o} such that i ⊥⊥ k|c is implied by G N
reg if

(i, o, k) is a collision V and i ⊥⊥ k|oc if (i, o, k) is a transmitting V. Now, we want to express
formally that properties (i) to (vi), needed already to derive implied independences, together
with singleton transitivity assures for each V of an edge-minimal G N

reg , that this graph implies
a dependence for nodes i, k, when conditioning sets are changed with respect to the inner node
of the V.
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For this, we take an edge-minimal regression graph of Definition 1, assume properties (i) to
(vi) and (viii) and say that G N

reg forms then a dependence base.

PROPOSITION 1. Dependence-inducing Vs.
For (i, o, k) any V of a dependence base G N

reg and each c ⊆ N \ {i, k, o} for which this
regression graph implies one of i ⊥⊥ k|c or i ⊥⊥ k|oc, the following two equivalent statements are
implied by G N

reg :

− (i, o, k) forms a collision V ⇐⇒ (i ⊥⊥ k|c ⇒ i � k|oc)
− (i, o, k) forms a transmitting V ⇐⇒ (i ⊥⊥ k|oc ⇒ i � k|c) .

Proof . For three-node graphs, collision Vs are Markov equivalent and transmitting Vs are
Markov equivalent by Lemma 1.

For c = ∅ and G N
reg a dependence base, both edges of a V indicate a conditional dependence

for pairs i ,o and k,o and by Definition 1, i ⊥⊥ k holds in fN for an inner collision node and i ⊥⊥ k|o
for an inner transmitting node. Including the inner node of a collision V into the conditioning
set, or excluding the inner node of a transmitting V from the conditioning set, generates an active
path by Lemma 2. Such a path induces a dependence unless singleton transitivity is violated
which contradicts an assumption.

Similarly, for c �= ∅, an independence is implied by G N
reg if there is no active path between

i and k given c by Lemma 4, and an active path that implies i � k|oc is generated just as for
c = ∅. �

We can now define sequences of regressions that permit the tracing of pathways of dependence
for fN when a, b, c, d denote disjoint subsets of N and only d may be empty.

Definition 2. Traceable regressions.
Sequences of regressions are traceable if their joint density fN is generated over an edge-

minimal regression graph and properties (v), (vi), and (viii) of Section 2.4 hold.

Thus, a density fN that results with the generating process of Definition 1 satisfies in
addition to the general properties (i) to (iv) also composition (v), intersection (vi), and singleton
transitivity (viii); for sufficient conditions of each of (v), (vi) and (viii) see Section 4 below.
Here, we summarize the characterizing properties.

COROLLARY 1. Characterizing properties of traceable regressions.
Traceable regression generated over an edge-minimal G N

reg have for disjoint subsets a, b, c, d
of N

- three equivalent decompositions of the joint independence b ⊥⊥ ac|d:

(b ⊥⊥ a|cd and b ⊥⊥ c|d), (b ⊥⊥ a|d and b ⊥⊥ c|d), (b ⊥⊥ a|cd and b ⊥⊥ c|ad), and

- edge-inducing Vs of the graph are dependence-inducing for fN .

The three decompositions of Corollary 1 combine the previously discussed properties (ii)
to (vi) and property (i), symmetry of independences, holds trivially as in all probability
distributions. Undirected edges correspond to symmetric dependence statements. For each arrow
i≺ k in G N

reg , symmetry of dependence holds in the following weak sense. From Definition 1
for i in g j , there is some c ⊆ g> j \ k with fi |kc �= fi |c used in the generating process. Then, for
Yk regressed instead on Yi , Yc, also fk|ic �= fk|c.
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Figure 2. Regression graph, well compatible with the data and resulting from statistical analyses. Binary variables are
indicated by dots, variables treated as continuous by circles.

Notice that traceable regression behave like regular Gaussian families generated over an
edge-minimal G N

reg . Therefore, for traceable regressions, a violation of set transitivity can occur
only when there are at least two paths connecting the same node pair; see the family of regular
Gaussian distributions given above that violates set transitivity and for further examples Wermuth
& Cox (1998). We call these special types of parametric constellations path cancellations as
they result for a pair i, k after combining dependences induced by active ik-paths in such a way
that the joint contributions of all paths cancel.

3 Applications and Illustrations of Traceable Regressions

3.1 Tracing Paths

Whenever a pathway of dependence is traced in terms of an edge-minimal graph, one uses
implicitly that every edge present represents a dependence that is strong enough to be of interest
in the given substantive context and that every edge-inducing V along a path is dependence-
inducing for its endpoints.

Figure 2 shows a well-fitting regression graph for nine features observed for patients. The
regression graph represents a research hypothesis on the sets of regressors needed for each
response to generate the joint distribution. In this example, we use data of Kappesser (1997) on
201 chronic pain patients, where variable descriptions and detailed statistical analyses are given
in Wermuth & Sadeghi (2012), not in this paper.

The graph does not contain any information on the types of the dependence, but supplemented
by estimates for the dependences, one can use the graph to interpret pathways of dependences.
For instance the path Y , Za, A, B becomes active by marginalizing over its two inner transmitting
nodes. This leads, together with the parameters estimated with linear and logistic models, to the
following interpretations.

Patients with a higher level of formal schooling are more likely to have head or neck pain
than back pain. For patients with head or neck pain, the intensity of pain is better reduced
after treatment than for the back pain patients. For lower pain intensity scores after treatment,
treatment is the more successful the lower the pain intensity. For higher pain intensity scores
after treatment, there are no systematic changes in success of treatment.

The graphs in Figure 3 are consequences of the generating graph in Figure 2. Here, we want
to discuss mainly the implications for success of treatment, Y , when some of the variables
are not observed. The graphs are best derived using Proposition 2 in Section 5 below with,
for Figure 3(a), a general marginalizing set mo = {Za, Xa, Zb, Xb} and for Figure 3(b) the set
mo = {Za, Xa, Zb, Xb, A}.
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Figure 3. The graph of Figure 2 transformed, preserving the original ordering for the remaining variables by (a) marginalizing
over symptoms before and after treatment, Xa, Za, Zb, Xb; (b) marginalizing over symptoms before and after treatment and,
in addition, over site of pain, A.

Alternatively, the new graphs may be derived by just applying Lemma 2 and Proposition 1 to
an ordering given in terms of the arrows present in Figure 2 for the remaining responses. Thus
for instance in Figure 3(b) for node i = Y and another node k ∈ {U , B, V }, the conditioning set
c contains, for each k, the remaining two nodes in this set and m = mo. For node i = U and one
of its remaining potential regressors k ∈ {B, V }, the conditioning set c is, for each k, the single
remaining node and m = mo ∪ Y .

An arrow, i≺ k is inserted in Figure 3(b) whenever there is an active path in Figure 2 for a
given node pair (i, k) and the new conditioning set c for i . Thus for instance, the path Y , Za, A, U
is active by marginalizing over Za, A and conditioning on B, V . One may proceed in a similar
way to construct the graph in Figure 3(a).

Figure 3(a) implies that site of pain, A, would show a direct effect on Y if the two symptoms
of chronic pain before and after treatment were either not measured or just omitted from the list
of potentially important regressors. Similarly, chronicity of pain, U , would show a direct effect
on Y if, in addition, site of pain, A, is omitted in 3b).

To derive and interpret transformed graphs larger than those in Figure 3, involving both
marginalizing and conditioning, one is better off to use the general properties of transforming
regression graphs given below in Section 5. For the analysis of data, one also has to realize
that even a dependence induced by a two-edge path need not be strong. For instance, for two
correlations of 0.4 associated with a transmitting V in the graph, the induced correlation given
the inner node will only be of size 0.16 and hence would seem small if looked at alone, even
though such a pathway of dependence may be important in many subject-matter contexts.

3.2 Planning Future Follow-up Studies

To show how tracing of active paths may lead to an improved planning of follow-up studies,
we use the generating process, represented by the graph in Figure 4, adapted from Robins &
Wasserman (1997), and assume that a strong dependence corresponds to each edge present in
the graph.

Suppose that in the planned study, it will be possible to observe all variables of Figure 4 except
for U , because the tools needed to diagnose the health status before treatment, U , will not be

Figure 4. Generating process in five variables, missing edge for (Tp, U ) due to full randomized allocation of individuals to
treatments, and missing edges for (Tr, U ) and (Tr, Tp) due to randomization conditionally on A; U expected to be unobserved
in a follow-up study.
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available. Marginalizing over U is indicated in Figure 4 by a crossed out node, � �◦. With U
excluded from any conditioning set for Y , the main response of interest, all remaining possible
conditioning sets are explored. In general, whenever no active path is generated, one may proceed
safely with estimating an effect, a dependence of main interest, directly in the follow-up study.
Hence for Figure 4, the object is to find marginalizing sets for which there is no active path for
(Y , Tr ) or (Y , Tp).

With U unobserved, the dependence of Y on the past treatment Tp will always be modified,
since by excluding also the intermediate outcome, A, and recent treatment, Tr from the list of
regressors, one generates the active path Y , Tr , A, Tp, while by including either Tr or A or both
as regressors for Y , one generates the active path Y , U , A, Tp; see Lemma 2. The former is an
example of an overall effect deviating from a conditional effect and the latter is an example of
indirect confounding.

If on the other hand, the dependences of Y on the recent treatment, Tr , is of main interest,
then Tp is a common ancestor and the path Y , Tp, A, Tr becomes active by marginalizing over
the inner nodes; an example of direct confounding. But no active path is generated between Y
and Tr when A and Tp are regressors in addition to Tr , so that the conditional dependence of Y
on Tr given A, Tp can be directly estimated.

Even though it may in principle be possible to recover the generating dependence given some
distributional assumptions; see, e.g. Wermuth & Cox (2008), one needs to obtain very precise
estimates to make any correction worthwhile since poorly estimated parameters may also lead
to bad corrections.

Both types of confounding can also be detected using graphical criteria on transformed graphs
in reduced node sets, named summary graphs; see Wermuth (2011). For constructing summary
graphs by removing repeatedly single nodes, one needs to take into account that any given node
can be a collision node on one path and a transmitting node on another path. This contrasts with
the graph transformations given below in Section 5, where different types of active paths are
closed in sequence.

3.3 Examples of Small Gaussian Regression Graph Models

We illustrate next the intersection and the composition property by describing two different
types of complete regression graphs in three nodes and the associated saturated models in the
special case of regular families of Gaussian distributions for variables standardized to have zero
mean and unit variance. Parameters are attached to the edges of the graphs. Example I shows in
particular that the intersection property is implicitly used with backward selections of important
regressors in multiple regressions and Example II how the composition property is relevant for
selecting important regressors in multivariate regressions.

3.3.1 Example I: a complete single response graph with two context variables

The following complete graph in nodes 1, 2, 3

defines implicitly for standardized Gaussian variables, Y1, Y2, Y3 three nonzero parameters
measuring dependence in

E(Y1|Y2, Y3) = αY2 + δY3 E(Y2Y3) = ρ23 σ 23.1 = −ρ23/
(
1 − ρ2

23

)
,
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where ρ23 denotes the marginal correlation of Y2, Y3 and σ 23.1 the concentration in their bivariate
distribution obtained by marginalizing over Y1. For this complete graph, α �= 0 means 1 � 2|3,
δ �= 0 means 1 � 3|2, and σ 23.1 �= 0 means 2 � 3. With α = δ = 0, one requires 1 ⊥⊥ 2|3 and
1 ⊥⊥ 3|2 and removes the 12-edge and the 13-edge from the complete graph so that node 1 remains
isolated from 2 3. For the resulting graph, the seemingly obvious interpretation 1 ⊥⊥ (2, 3)
requires the intersection property, where in the statement of property (vi), we now have a = 1,
b = 2, c = 3 and d = ∅.

3.3.2 Example II: a complete joint response graph with a single regressor

The following complete graph

defines for standardized Gaussian variables three non-vanishing parameters, β, γ, σ12|3, in

E(Y1|Y3) = βY3 E(Y2|Y3) = γ Y3 cov(Y1Y2|Y3) = σ12|3 .

Here, σ12|3 �= 0 means 1 � 2|3, β �= 0 means 1 � 3, and γ �= 0 means 2 � 3. With β = γ = 0,
one requires 1 ⊥⊥ 3 and 2 ⊥⊥ 3 and removes the 13-edge and the 23-edge from the complete graph
so that node 3 remains isolated from 1 2. For the resulting graph, the interpretation (1, 2) ⊥⊥ 3
requires the composition property, where in the statement of property (v), we now have a = 3,
b = 1, c = 2, and d = ∅.

3.4 Standard Properties for Combining Independences

Properties (ii) to (iv) that are common to all probability distributions with a given density, are
illustrated next by using the directed acyclic graphs in the three ordered nodes (1, 2, 3) shown
in Figure 5, again for standardized Gaussian distributions.

3.4.1 Example III: a complete directed acyclic graph

The complete graph in nodes 1, 2, 3 of Figure 5(a) gives for standardized Gaussian variables
three nonzero parameters, α, δ, γ , measuring dependence in

E(Y1|Y2, Y3) = αY2 + δY3, E(Y2|Y3) = γ Y3, E(Y3) = 0 ,

where α �= 0 means 1 � 2|3, δ �= 0 means 1 � 3|2, and γ �= 0 means 2 � 3.
The interpretation of δ changes with α = 0; it then means 1 � 3 in Figure 5(b) where 1 ⊥⊥ 2|3

is implied by the graph. This reflects that a different family of distributions is generated when

Figure 5. Directed acyclic graphs in three nodes with parameters in standardized Gaussian distributions attached to the
edges; (a) the complete graph, (b) the graph implying 1 ⊥⊥ 2 | 3, (c) the graph implying 2 ⊥⊥ (1, 3).
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the 12-edge is removed. The graphs define implicitly the factorizations of fN in equation (1),
respectively, as

f123 = f1|23 f2|3 f3, ( f123 = f1|3 f2|3 f3) ⇒ 1 ⊥⊥ 2|3, ( f123 = f1|3 f2 f3) ⇒ 2 ⊥⊥ (1, 3) .

The factorization of a joint density as specified with a complete directed acyclic graph is
formally always possible. Independence constraints imposed in sequence on two consecutive
factors of f123 generated as in Figure 5(a), such as 1 ⊥⊥ 2|3 constraining f1|23 = f1|3, changes
the triangle in the graph of Figure 5(a) to a V in Figure 5(b) and 2 ⊥⊥ 3, constraining f2|3 = f2,
creates next an isolated node 2 and 1≺ 3, in Figure 5(c).

The removal of the two arrows gives one direction of the contraction property, starting from
the factorization to Figure 5(c) gives the other direction. Given the factorization of any density
to Figure 5(c), marginalizing over Y3 leaves f12 = f1 f2 and marginalizing over Y1 gives directly
f23 = f2 f3 that is decomposition, while conditioning on Y2, Y3 leaves directly f1|23 = f1|3 and
conditioning on Y1, Y2 gives f3|12 = f3|1 that is weak union. Also in more complex situations,
these three properties, (ii), (iii), (iv), common to all probability distributions, can be derived by
transforming factorized densities.

4 Violating Properties of Traceable Regressions

Some small discrete families of distribution are given that are not traceable regressions. These
may be extended and many similar families may be constructed.

4.1 Violation of Singleton Transitivity

As mentioned before, singleton transitivity is satisfied in all regular Gaussian distributions and
in all binary distributions. But the discrete family of distributions for a 2 × 2 × 3 contingency
table in Table 1, violates singleton transitivity. It is adapted from Birch (1963), equation (5.4).
We write πi jk for the joint probabilities of variables A, B, C at levels i, j, k and for instance
π+ jk = ∑

iπi jk . The conditional probabilities for A given B, C are πi | jk = πi jk/π+ jk .
Here, the conditional odds ratios being 1 imply that A ⊥⊥ B|C and the marginal probabilities

of A, C and of B, C show that A � C and B � C . Nevertheless, also A ⊥⊥ B since∑
k πi+k π+ jk/π++k = πi++π+ j+,

a very special constellation discussed first by Darroch (1962) and generalized by Wermuth &
Cox (2004), Section 7, to general types of distributions that are also not dependence-inducing.
Though one can construct families of distributions with such peculiar parametric constraints, it
is difficult to imagine that they could capture a structure of interest in any substantive context
when studying sequences of regressions.

Table 1
A family of distributions that violates singleton transitivity.

4πi jk (1 + α + α2), α > 1

C : k = 1 k = 2 k = 3

A/B : j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

i = 1 α2 α α 1 1 α2

i = 2 α 1 α2 α 1 α2

Odds-ratio 1 1 1
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Table 2
A family of distributions that violates the intersection property.

3πi jk , 0 < α �= β < 1,2α + β < 1

C : k = 1 k = 2 k = 3

A/B : j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

i = 1 α 0 α 0 0 β

i = 2 1 − α 0 1 − α 0 0 1 − β

In a generating process of fN , singleton transitivity can be achieved when the individual
regressions are permitted to vary independently of the other response components and of their
common past. This is reached, in particular, when the family corresponding to a completed
graph has a rich enough parametrization and only the independence constraints of Definition 1
are imposed on G N

reg .

4.2 Violation of the Intersection Property

The intersection property is satisfied in positive distributions and in all regular Gaussian
distributions; the known necessary and sufficient conditions are less restrictive; see San Martin
et al. (2005).

The discrete family of distributions in Table 2 for a 2 × 2 × 3 contingency table violates the
intersection property. This violation occurs whenever a pair of variables shares some common
information. For three binary variables, violation of the intersection property coincides with the
degenerate case of two variables being identical.

In the family shown in Table 2, A ⊥⊥ B|C and A ⊥⊥ C |B, since

πi | jk = πi |k and πi | jk = πi | j

but A � BC . More precisely, A � B since πi | j �= πi and A � C since πi |k �= πi . The marginal
joint distribution of B, C shows the type of common information shared by variables B and C .
Variable B taking on level 1 coincides with C taking on value 1 or 2 and B being at level 2
coincides with C being at level 3.

Thus, when the joint distribution of B, C had been generated by first knowing the distribution
of variable C and then generating the conditional distribution of B given C , the levels of variable
B are not permitted to vary freely and thereby lead to the violation of the intersection property.

4.3 Violation of the Composition Property

The composition property is always satisfied in regular Gaussian distributions and in
multivariate symmetric binary distributions generated over directed acyclic graphs; see Wermuth
et al. (2009). On the other hand, it is always violated when pairwise independences do not imply
mutual independence.

The binary family of distributions in Table 3 for a 2 × 2 × 2 contingency table also violates
the composition property. In this family, there is a log-linear three-factor interaction since the
conditional odd-ratios for A, B differ at the two levels of C .

More precisely, at level 2 of C , the variables A, B are independent while the dependence of
this pair is strong at level 1 of C whenever α is large. At the same time, the marginal AC and
BC tables reveal that A ⊥⊥ C and B ⊥⊥ C .

Thus, when regressing the two components of a joint response AB separately on C , one sees
no separate effects, but the conditional dependence of A on B changes with the levels of C .
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Table 3
A family of distributions that violates the composition property.

8πi jk , 0 < 2α < 1

C : k = 1 k = 2

A/B : j = 1 j = 2 j = 1 j = 2

i = 1 1 + 2α 1 − 2α 1 1
i = 2 1 − 2α 1 + 2α 1 1
odds-ratio {(1 + 2α)/(1 − 2α)}2 1

This type of structure could in particular not be generated by a single unobserved common
explanatory variable or if all sets of variables with higher-order effects also have main effects in
the regressions, or equivalently, have two-factor interactions in the joint distribution of the set
of responses and its regressors, when the higher-order interactions are ignored.

With a pragmatic strategy for model selection in which one checks for higher-order interactions
only when there are also main effects, one may overlook such structures that could be of
substantive interest. For sequences of discrete joint responses, the violation will be detected
when using the parametrization suggested by Marchetti and Lupparelli (2011). In general, the
graphical checks for nonlinearities and interactions, as proposed by Cox and Wermuth (1994),
provide some protection, but only for effects that are detectable also in marginal trivariate
distributions.

5 Transforming Regression Graphs

The transformations of regression graphs to be introduced, are based on binary matrix
representations of G N

reg . Our notation for these edge matrices mimics the one for parameter
matrices in Gaussian sequences of regressions generated over the graph. There are one-to-one
correspondences between a zero in an edge matrix, a vanishing parameter in the regular Gaussian
family of distributions and a conditional independence statement.

5.1 Linear Sequences of Regressions

For a mean-centered vector variable YN with a regular Gaussian distribution generated over
G N

reg with a split N = (u, v), the matrix of equation parameters, denoted by HNN , is upper
block-triangular and

HNN YN = ηN with WNN = cov(ηN ) block-diagonal in the sizes of g j ,

where the submatrix of Huu in rows g j and columns g> j is −g j |g> j , the negative of the
population least-squares coefficient matrix obtained when regressing Yg j on Y>g j . The square
diagonal submatrices in the sizes of g j are identity matrices. The submatrix Hvv is the marginal
concentration matrix of Yv , denoted by �vv.u . This implies Wvv = �vv.u . The square submatrices
of Wuu are �g j g j |g> j , the conditional covariance matrices of Yg j given Y>g j . For just two connected
response components a, b the parameter matrices are

HNN =
⎛
⎝ Iaa −a|b.v −a|v.b

0ba Ibb −b|v
0va 0vb �vv.ab

⎞
⎠WNN =

⎛
⎝�aa|bv 0ab 0av

0ba �bb|v 0bv

0va 0vb �vv.ab

⎞
⎠ ,

where we use a Yule-Cochran notation. The regression coefficient matrix when Ya is regressed
on Yb, Yv is denoted by a|bv, and the coefficient matrix of Yb in this regression by a|b.v . For
instance 0ba denotes a matrix of zeros, and Ibb an identity matrix.
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For a new split N = (a, b), to obtain fa|b fb we let c = a ∩ u, d = b ∩ u, and get

KNN =
(

H−1
aa −H−1

aa Hab

Hba H−1
aa Hbb − Hba H−1

aa Hab

)
Quu =

(
Wcc − Wcd W −1

dd Wdc W −1
dd Wdc

−W −1
dd Wdc W −1

dd

)
,

by partial inversion of HNN with respect to a and by partial inversion of Wuu with respect to d;
see for instance Marchetti & Wermuth (2009), Appendix 1.

LEMMA 5. Orthogonalized linear equations
(Wermuth & Cox, 2004, Theorem 1, and Wermuth, 2011, equation 2.11). The Gaussian

density fN = fu|v fv generated over G N
reg is for any split N = (a, b) transformed into fN =

fa|b fbwith E(Ya|Yb) = a|b, cov(Ya|Yb) = �aa|b, con(Yb) = �bb.a with

a|b = Kab + Kaa Qab Kbb, (3)

�aa|b = Kaa Qaa K T
aa, �

bb.a = H T
bb Qbb Hbb. (4)

5.2 The Edge Matrices of Regression Graphs

Edge matrices are binary matrix representations of graphs. They are symmetric for undirected
graphs, upper block-triangular for arrows in a generating G N

reg and upper-triangular for directed
acyclic graphs. The essential change compared to the more traditionally used adjacency matrices
is that ones are added along the diagonal of each square matrix. This has the effect that sums of
matrix products are well defined and can represent the closing of special types of path in graphs;
such as in equations (8) and (9) below.

Recall that regression graphs have three types of edge sets, E≺ , E , and E . The edge
matrix components of G N

reg are a dN × dN upper block-triangular matrix HNN = (Hik) such that

Hik =
{

1 if and only if i≺ k or i k in G N
reg or i = k,

0 otherwise,
(5)

and a du × du symmetric matrix Wuu = (Wik) such that

Wik =
{

1 if and only if i k in G N
reg or i = k,

0 otherwise,
(6)

where, E corresponds to Wuu , E to Hvv , and E≺ to HuN .
Every regression graph G N

reg can be represented by its edge matrices given in equations (5)
and (6). Every dependence base G N

reg defines in particular a corresponding family of Gaussian
regressions in which each edge present can be identified by a single non-vanishing parameter,
an off-diagonal element of HNN or Wuu .

5.3 Partial Closure of Paths

Partial closure, introduced by Wermuth et al. (2006), is a matrix operator, denoted by zera(·)
which acts on row and columns a of a binary matrix. It is applied to edge matrix representations
of a starting graph in node set N to give the edge matrix representations of a new graph in which
there is an additional ik-edge for a pair i, k that is in the starting graph uncoupled but connected
by a specific type of edge-inducing a-line path.

With partial closure, the set of nodes, node labels, and edges present in the starting graph, are
preserved in the transformed graph so that the mappings are graph homomorphisms; for this
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1 1 1

2 2 2

3 3 3

a) b) c)

Figure 6. Dependence base, 3-node graphs: a V in a (a) directed acyclic, (b) concentration, (c) covariance graph; an active
path (1,2,3) induces in (a) and (b) 1 � 3 and in (c) 1 � 3|2.

notion see Hell & Nešetřil (2004), for corresponding reparametrizations of exponential families
see Wiedenbeck & Wermuth (2010).

LEMMA 6. Basic properties of partial closure.
(Wermuth et al., 2006). Partial closure is (i) commutative, (ii) cannot be undone and (iii) is

exchangeable with selecting a submatrix.

By property (i), it is enough, for some purposes, to show how the operator acts on a single
node. By property (ii), independences can be removed but never reintroduced. This property
is essential to understand that these transformations use implicitly set transitivity. Property
(iii) justifies node and edge reductions since closing edge-inducing a-line paths in a large
graph and then selecting a square submatrix for a subset containing a, gives the same result as
selecting the square submatrix first and then closing the a-line paths. This property is needed for
Proposition 2.

Because of property (i), one can always permute the matrix F into F̃ and start partial closure
with node i corresponding to position (1,1) of F̃ . With a set of nodes, say a, to be operated on to
give zera F̃ as a final output, the matrix zeri F̃ is – at least conceptually – permuted first back
to the original order and next so that another element of a is chosen as index i , to be placed in
row 1 and column 1 of the new matrix F̃ , and so on.

For b = N \ {i}, one gets as the transformed edge matrix at each step

zeri F̃ = In[

(
1 Fib

Fbi Fbb + FbiFib

)
]. (7)

This says that particular Vs in the graph are closed which have node i as inner node. In the three
small examples of Figure 6, an edge for node pair 1, 3 is induced with i = 2.

Applying zeri to the edge matrix of a directed acyclic graph, covariance graph or concentration
graph mimics, respectively, the recursion relation for regression coefficients, covariances, and
concentrations; discussed for instance in Wermuth & Cox (1998).

By letting the edge induced by the three Vs in Figure 6, “remember the type of edge at the
path endpoints,” the induced edges become, respectively,

a) 1≺ 3, b) 1 3, c) 1 3.

The transformation zeraF means that all Vs along a-line paths represented by the edge matrix
F are closed by an edge. The basic property (i) implies that the nodes in a may be chosen
for this in any order. This requires in particular that the inner nodes of the paths of F are
of the same type, either all are collision nodes to form collision paths, or all are transmitting
nodes.

For two graph transformations, we take the edge matrices of G N
reg , HNN of (5) and Wuu of (6),

and again, as for Lemma 5, a new split N = (a, b) and c = a ∩ u, d = b ∩ u.
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LEMMA 7. Partial closure applied to GN
reg.

The transformation KNN = zeraHNN closes each a-line anterior path and Quu = zerdWuu

each dashed, d-line collision path.

Proof . Each anterior path in G N
reg and no other type of path is represented by HNN and each

dashed-line path in G N
reg and no other type of path is represented by Wuu . Applying partial

closure of 7 to HNN on all nodes of a and to Wuu on all nodes of d, leads to the closing of the
stated a-line and d-line paths, as required by Proposition 1. Remembering the type of edge at the
endpoints of each V on an a-line path of HNN leads to the same induced edge for the endpoints
of the path, irrespective of the order in choosing single nodes of a. �

5.4 Closing Active Paths in Regression Graphs

For directed acyclic graphs, it is known that the path criterion on the starting graph for
separation of α from β given c can be reduced to an edge criterion after transforming first the
generating graph in terms of partial closure and closing next the remaining paths that are relevant
for deciding whether α ⊥⊥ β|c is implied; see Marchetti & Wermuth (2009). This approach is
now extended to regression graphs and to dependences in traceable regressions. For this, we
take the partitioning N = {α, β, c, m} of the node set of G N

reg , a = α ∪ m, b = β ∪ c, and

KNN = zeraHNN ,Quu = zerbWuu,Quv = 0,Qvv = Kvv.

PROPOSITION 2. Induced edge matrices for fa|bfb.
Sequences of regressions with graph G N

reg in node set N = (u, v) and generating edge matrices

HNN and Wuu imply for fa|b fb, as induced edge matrices of the regression graph G N−a|b
reg :

Pa|b = In[Kab + KaaQabKbb], (8)

Saa|b = In[KaaQaaKT
aa],Sbb.a = In[HT

bbQbbHbb]. (9)

Proof . Partial closure mimics transformations of partial inversion such that all elements of the
induced matrices are non-negative. The zero entries in equations (3) and (4) coincide with those
in (8) and (9), non-zero entries in the former correspond to ones in the latter; see Lemma 3 of
Marchetti & Wermuth (2009) for more detail. �

Of the active paths, defined for Lemma 2 and needed to decide for uncoupled pairs i, k of
G N

reg whether they are coupled in G N−a|b
reg , some remain uncoupled after applying zeraHNN and

zerdWuu in Lemma 7, but get closed with the non-negative sums of edge matrix products in
(8) and (9). As with partial closure, no edges get ever removed with the latter types of graph
transformations so that set transitivity is used implicitly.

For N = (a, b) as for Proposition 2, let oa denote nodes in a and ob nodes in b.

COROLLARY 2. For i, k the endpoints of paths that are edge-inducing for G N−a|b
reg , three types

of ik-path, still uncoupled in the graph having edge matrices KNN and Quu ,

i≺ oa ob≺ k, i≺ oa oa �k, i �ob ob≺ k,

are closed with the induced edge matrices Pa|b, Saa|b, Sbb, respectively, in (8) and (9).
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After remembering the types of edge at the path endpoints, we have with Pa|b an induced
bipartite graph of arrows pointing from b to a, with Saa|b an induced conditional covariance
graph, and with Sbb.a an induced concentration graph.

LEMMA 8. Edge matrices induced by GN
reg for fαβ|c.

The subgraph induced by nodes α ∪ β in G N−a|b
reg captures the independence implications of

G N
reg for fα|βc fβ|c.

Proof . By the interpretation of the edge matrix components Pa|b,Saa|b,Sbb.a , no edges are
induced by taking

Pα|β.c = [Pa|b]α,β,Sαα|b = [Saa|b]α,α,Sββ.a = [Sbb.a]ββ.

Jointly, these edge submatrices define the subgraph induced by α ∪ β in G N−a|b
reg . �

The induced graphs in node set α ∪ β and G N−a|b
reg in node set N , are examples of

independence-predicting graphs in contrast to independence-preserving graphs such as the
ribbonless graphs of Sadeghi & Lauritzen (2012) and their different types of Markov-equivalent
graphs, such as summary graphs. With independence-preserving graphs, one can derive effects of
additional marginalizing and conditioning in the starting graph while independence-predicting
graphs can, in general, only be used to decide on edges present or missing in the induced
graph.

PROPOSITION 3. Edge criteria for implied independences and dependences
A dependence base G N

reg implies α ⊥⊥ β|c if Pα|β.c = 0 and it implies α � β|c if Pα|β.c �= 0.

Proof . The statement results with Lemma 7, equation (8) and Lemma 8. �

Proposition 3 states when a derived edge matrix implies a dependence or an independence.
These are statements for induced families of distributions when one is starting from a family
of traceable regressions. Recall that paths in an edge-minimal G N

reg are traceable whenever the
necessary and sufficient conditions of Corollary 1 hold or the set of sufficient conditions for
properties (v), (vi), (viii) of Section 2.4 given in Section 4.

For many recently obtained theoretical results, it has been assumed that the studied
distributions are faithful to a graph so that they satisfy precisely the independences implied
by a graph and no others. By Propositions 1, 2, and 3, this means for G N

reg that generated
sequences of regressions have to be traceable and satisfy in addition set transitivity. Faithful
distributions can now be equivalently characterized with the following Corollary 3. However,
testable criteria for faithfulness are still unknown.

5.5 Distributions Satisfying All and Only the Independences Captured by G N
reg

A given distribution is said to be faithful to a graph if every of its independence constraints is
captured by a given independence graph; see Spirtes et al. (1993). For a distribution to be faithful
to G N

reg , it has to satisfy the properties needed for the graph transformations of Proposition 3,
that is properties (i) to (vii) of Section 2.4.
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COROLLARY 3. Distributions that are faithful to GN
reg

For a distribution with density fN generated over a dependence base G N
reg , the following

statements are equivalent

(i) the distribution is faithful to G N
reg ,

(ii) every independence and every dependence statement implied by G N
reg holds for fN ,

(iii) fN satisfies as additional properties: composition, intersection and set transitivity,
(iv) fN can be generated as a traceable regression without any path cancellations.

In general, faithfulness imposes an additional strong constraint on traceable sequences of
regressions. Exceptions are directed acyclic graphs in which each response has only one
parent. But the most common situation in observational and in interventional studies is to
have two or more regressors influencing a response. Therefore, for using regression graphs
to interpret such structures or to plan future studies with a subset of the variables in a
subpopulation, it is not sensible to assume that a given distribution is faithful to this graph. For a
faithful distribution to G N

reg , traceable regressions are generated such that no path cancellations
occur. Thus, faithfulness is a sufficient but not a necessary condition for tracing pathways of
dependence.

6 Discussion

Sequences of regressions in joint responses permit to model changes in several response
components occurring at the same time when there is an intervention. This contrasts with
interventions in sequences of regressions in only single responses and in other types of chain
graph models.

We have identified properties of sequences of regressions in essentially arbitrary joint and
single response variables and named them traceable regressions. A corresponding regression
graph, G N

reg is a dependence base of the joint distribution in addition to capturing the
independences in the regressions. One knows now that the independence structure of such
traceable regressions can differ from the implications derived in terms of its generating regression
graph only when there are path cancellations.

The consequences derivable with a graph give changes in structure that result in families of
distributions generated over the graph while one may not be able to generalize to this family from
the structure that one can see for a distribution with one given set of parameters, for instance as
estimated in a sample.

Sequences of traceable regressions and a given G N
reg have implications for a regression of Ya

on Yb and dependences of Yb alone when these are based on a reordered node set N = (a, b) that
can be expressed with transformed edge matrix components of G N

reg . By modifying G N
reg with

a marginalizing set a = α ∪ m and a conditioning set b = β ∪ c, the specific implications of
G N

reg for the conditional densities fα|βc and fβ|c can now be derived with a subgraph induced
by α ∪ β in this transformed graph. An edge matrix criterion gives the global Markov property
of G N

reg and it detects, in addition, when all Vs on selected paths induce dependences in the
generated families of traceable regressions.

Many new questions have opened up. These include different types of sufficient conditions on
a given distribution under which it represents a traceable regression, conditions on independence-
predicting graphs which assure that they are also independence-preserving, applications such
as the special details needed to improve existing methods for meta-analyses, or computational
aspects, such as conditions under which one type of several equivalent graph transformations
becomes computationally much less intensive than others.
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Résumé

Dans cet article, nous définitions et étudions le concept de traçabilité des régressions et l’appliquer á quelques exemples.
Régressions traçables sont des séquences de distributions conditionnelles dans les réponses individuelles ou conjointes
pour lesquelles un graphe correspondant capte non seulement une structure indépendance, mais représente, en outre,
dépendances conditionnelles qui permettent le traçage des voies de la dépendance. Nous donnons les propriétés
nécessaires pour transformer ces graphes et des critères graphiques de décider si un chemin dans le graphe induit une
dépendance. Les contraintes beaucoup plus fortes sur les distributions qui sont fidèles á un graphe sont comparés á
ceux nécessaires pour les régressions traçables.
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