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Abstract: Tetrad correlations were obtained historically for Gaussian dis-
tributions when tasks are designed to measure an ability or attitude so that
a single unobserved variable may generate the observed, linearly increas-
ing dependences among the tasks. We connect such generating processes
to a particular type of directed graph, the star graph, and to the notion
of traceable regressions. Tetrad correlation conditions for the existence of
a single latent variable are derived. These are needed for positive depen-
dences not only in joint Gaussian but also in joint binary distributions.
Three applications with binary items are given.
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1. Introduction

Since the seminal work by Bartlett (1935) and Birch (1963), viewed in a larger
perspective by Cox (1972), correlation coefficients were barely used as measures
of dependence for categorical data. Instead, functions of the odds-ratio emerged
as the relevant parameters in log-linear probability models for joint distributions
and in logistic models, that is for regressions with a binary response. Compared
with other possible measures of dependence, the outstanding advantage of func-
tions of the odds-ratio is their variation independence of the marginal counts:
odds-ratios are unchanged under different types of sampling schemes that result
by fixing either the total number, n, of observed individuals or the counts at
the levels of one of the variables; see Edwards (1963).

As one consequence of the importance of odds-ratios for discrete random
variables, it is no longer widely known that Pearson’s simple, observed correla-
tion coefficient, r12 say, coincides in 2× 2 contingency tables with the so-called
Phi-coefficient, so that

√
nr12 is, asymptotically and under independence of the

two binary variables, a realization of a standard Gaussian distribution. As we
shall see, some properties of correlation coefficients for binary variables, make
them important for data generating processes that incorporate many conditional
independences.

In particular, we look here at directed star graphs such as the one shown
in Figure 1(a). Such graphs have one inner node, L, from which Q arrows start
and point to the uncoupled, outer nodes 1, . . . , Q. To simplify notation, the
inner node L denotes also the corresponding random variable and both, the
node and the variable, are called root. The random variables Xi corresponding
to the outer nodes, also called the leaves of the graph, are identified just by
their index i taken from {1, . . . , Q}.

The independence structure of the directed star graph is mutual inde-
pendence of the leaves given the root. In the condensed node notation, this is
written as

(1 ⊥⊥ 2 ⊥⊥ · · · ⊥⊥ Q)|L. (1)

1 1

2 23 3

4 4

5 5

L L

1(a) 1(b)

Fig 1. A directed star graph (a) and the Markov equivalent undirected star graph (b).
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In general, the types of variables can be of any kind. Densities, fN , that are said
to be generated over a directed star graph with node set N = {1, . . . , Q, L}, may
also be of any kind, provided that they have the above independence structure.

Each generated density, fN , is defined by Q conditional densities, fi|L, that
are called regressions, and a marginal density, fL, of the root. In the condensed
node notation, a joint density with the independence structure of a directed star
graph, factorizes as

fN = f1|L · · · fQ|LfL. (2)

Directed star graphs belong to the class of regression graphs and to their
subclass of directed acyclic graphs. Distributions generated over regression
graphs have been named and studied as sequences of regressions and one
knows when two regression graphs capture the same independence structure,
that is when they are Markov equivalent, even though defined differently; see
Theorem 1 in Wermuth and Sadeghi (2012). In particular, each directed star
graph is Markov equivalent to an undirected star graph with the same node
and edge set, such as in Figure 1(b), since it does not contain a collision V:
◦ ≻◦ ≺ ◦, that is two uncoupled arrows meeting head-on.

Sequences of regressions are traceable if one can use the graph alone to
trace pathways of dependence, that is to decide when a non-vanishing depen-
dence is induced for an uncoupled node pair. For this, each edge present in the
regression graph corresponds to a non-vanishing, conditional dependence that is
considered to be strong in a given substantive context. In evolutionary biology,
the required changes in dependences that are strong enough to lead to muta-
tions, were called ‘drastic’ by Neyman (1971). In general, special properties of
the generated distributions are required in addition; see Wermuth (2012).

In the last century, regression graphs were not yet defined and properties of
traceable regression unknown. Then, distributions generated over directed star
graphs, in which the root L corresponds to a variable that is never directly ob-
served, have been studied separately under different distributional assumptions
and with changing main objectives. Many of them were named item response

models. In these contexts, the unobserved root L is also called latent or hid-

den, the items are the observed variables.

For instance, Spearman (1904) suggested to measure general intelligence with
Q similar quantitative tasks, a method now called factor analysis with a

single latent variable. For confirmatory factor analyses, typically, a Gaussian
distribution is assumed, after the observed variables are standardized to have
mean zero and unit variance. Heywood (1931) and Anderson and Rubin (1956)
derived necessary and sufficient conditions for the existence of one or more latent
variables, without the constraint of non-vanishing, positive dependences of each
item on the latent variables. The latter assumption arises however naturally
when the items are to measure a specific latent ability or attitude or when they
are the symptoms of a given disease.

For instance, when psychologists try to measure for children in a given age
range, what is called the working memory capacity, then each item is the suc-
cessful repetition – in reverse order – of a sequence of numbers. Typical tasks of
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the same difficulty are the sequences (3, 5, 7) and (2, 4, 6). The item difficulty in-
creases, for instance, by presenting more numbers or numbers of two digits. For
children with a higher capacity of the working memory, one expects more suc-
cesses for tasks of the same difficulty as well as for tasks of increasing difficulty.

When instead, the leaves and the root of the star graph are both categorical,
the resulting model is a latent class model, as proposed by Lazarsfeld (1950),
again with an extensive follow-up literature. An important warning was given
by Holland and Rosenbaum (1986): such a model can never be falsified when the
number of levels of the latent variable is large compared to the number of cells
in the observed contingency table. Expressed in other words, merely requiring
conditional independence of categorical items given the latent variable imposes
then no constraints on the observed distributions.

A general, testable constraint suggested by Holland and Rosenbaum (1986),
that is now widely adopted in nonparametric item response theory, is to have
a monotonically non-decreasing association of each item on L; see Van der Ark
(2012) or Mair and Hatzinger (2007). However, the underlying notion of ‘condi-
tional association’, that had been proposed in probability theory, includes con-
ditionally independent variables as being ‘conditionally associated’; see Esary,
Proschan and Walkup (1967). By contrast, when one uses traceable regressions,
each edge present in a graph excludes explicitly a corresponding conditional
independence statement.

In this paper, we study similarities of joint Gaussian and of binary distri-
butions generated over directed star graphs where all dependences of leaves,
1, . . . , Q, on the root, L, are positive and the root is unobserved but does not
coincide with any leaf or with any combination of the leaves. In Section 2, we
summarize results for star graphs and for their traceable regressions. In Sec-
tion 3, we describe joint Gaussian distributions, so generated, and in Section 4,
we study joint binary distributions, especially correlation constraints on the
distribution of the leaves. Section 5, gives applications to binary distributions,
Section 6 a general discussion. The Appendix contains a technical proof.

2. Marginalizing over the root in star graphs

A regression graph is said to be edge-minimal when each of its edges, that is
present in the graph, indicates a non-vanishing dependence.

Definition 1. Traceable regressions are generated over an edge-minmal,
directed star graph, if (a) the density factorizes as in equation (2) and (b) is
dependence-inducing by marginalizing over the root L, that is yields for each
pair of leaves i, j a bivariate dependence, denoted by i ⋔ j.

Thus, for traceable regressions with exclusively strong dependences, i ⋔ L, in
the generating star graph, each ij-edge in the induced complete covariance

graph of the leaves, drawn as in Figure 2(a), indicates a non-vanishing depen-
dence, i ⋔ j. Probability distributions that do not induce such a dependence
violate singleton-transitivity; see Table 1 in Wermuth (2012) for an example
of such a family of distributions.
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1 1

2 23 3

4 4

5 5

2(a) 2(b)

Fig 2. Induced, complete graphs for the marginal distribution of the items, with the covariance
graph in 2(a) resulting from 1(a) and the concentration graph in 2(b) from 1(b).

More consequences can be deduced, using strong dependences i ⋔ L and the
Markov equivalence of the directed to the undirected star graph with the same
node and edge set, as in Figures 1(a) and 1(b). For a traceable distribution
with an undirected star graph, such as in Figure 1(b), each edge in the induced
complete concentration graph, obtained by marginalising over the root L
and drawn as in Figure 2(b), indicates a non-vanishing conditional dependence of
each pair of leaves given the remaining leaves, denoted by i ⋔ j|{1, . . . , Q}\{i, j}.

In exponential family distributions, a covariance graph corresponds to bivari-
ate central moments, a concentration graph to joint canonical parameters and
a directed star graph to regression parameters. If Markov equivalent models are
also parameter equivalent, then their parameter sets are in a one-to-one rela-
tion. This property does not hold in general, but for instance in joint Gaussian
distribution, and in joint binary distributions that are quadratic exponential.
More generally, Markov equivalence and parameter equivalence coincide when
only a single parameter determines for each variable pair whether the pair is
conditionally dependent or independent.

For traceability of a given sequence of regressions, the generated family of
distributions needs to have three properties of joint Gaussian distributions, that
are not common to all probability distributions. In addition to the dependence-
inducing property (singleton-transitivity) stated in Definition 1, these are the
intersection (downward combination) and the composition property (upward
combination of independences); see Lněnička and Matúš (2007) equations (9)
to (10) and Wermuth (2012), section 2.4.

Pairwise independences combine downwards and upwards if

(i ⊥⊥ j|kc and i ⊥⊥ k|jc) ⇐⇒ i ⊥⊥ jk|c and (i ⊥⊥ j|c and i ⊥⊥ k|c) ⇐⇒ i ⊥⊥ jk|c,

respectively, for c any subset of the remaining nodes, of {1, . . .Q}\{i, j, k}. Both
of these properties are already needed if one is using graphs of mixed edges just
to decide on implied independences; see Sadeghi and Lauritzen (2014).

In the context of directed star graphs, these two properties are a consequence
of the special type of generating process. After removing any two arrows for
Q ≥ 5, a directed star graph in Q − 2 arrows remains. Thus, by introducing
two additional pairwise independences in a directed star graph, these indepen-
dence statements combine downwards. The Markov equivalence of the directed
to the undirected star graph implies that for any two nodes i, j, the statement
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i ⊥⊥ j|L can be modified to i ⊥⊥ j|Lc with c ⊆ {1, . . .Q} \ {i, j} so that pairwise
independences combine also upwards.

3. Gaussian distributions generated over directed star graphs

In Gaussian distributions, each dependence is by definition linear and propor-
tional to some (partial) correlation coefficient. Furthermore, there are no higher
than two-factor interactions. In a traceable Gaussian distribution generated over
a directed star graph, each directed edge indicates a simple, strong correlation,
ρiL, called the loading of item i on L. Then for each item pair i, j a simple
correlation, ρij , is induced via

i ⊥⊥ j|L ⇐⇒ (ρij|L = 0) ⇐⇒ (ρij = ρiLρjL), (3)

where ρij|L denotes the partial correlation coefficient

ρij|L = (ρij − ρiLρjL)/
√

(1− ρ2iL)(1 − ρ2jL).

In factor analysis, the latent root L is assumed, without loss of generality,
to have mean zero and unit variance. Typically, when the observed variances of
the items are nearly equal, the items are transformed to have mean zero and
unit variance, so that their correlation matrix is analyzed.

In general, the model parameters are known to be identifiable for Q > 2;
see for instance Stanghellini (1997). For Q = 3 items, the positive loadings
ρ1L, ρ2L, ρ3L can be completely recovered using equations (3) for the positive,
partial correlations ρij|k of each leaf pair. The maximum-likelihood equations
(Lawley, 1967) reduce to the same type of three equations so that a unique,
closed form solution can be obtained, provided it exists, and be written as
λ̂T = (ρ̂1L ρ̂2L ρ̂3L) with

ρ̂1L =
√

r12r13/r23, ρ̂2L =
√

r12r23/r13, ρ̂3L =
√

r13r23/r12. (4)

Clearly, these equations require for permissible estimates: 0 < ρ̂iL < 1. In that
case, there can be no zero and no negative marginal or partial item correlation
that cannot be removed by recoding some items. We give in Table 1 three
examples of 3× 3 invertible correlation matrices, showing marginal correlations
in the lower half and partial correlations in the upper half. The first two examples
have no permissible solution for λ̂ and illustrate so-called Heywood cases.

Table 1

Some invertible correlation matrices, on the left and in the middle: two Heywood cases that
is no permissible solution to the maximum-likelihood equations; on the right: a perfect fit

1 0.35 0.47
0.40 1 0
0.50 0.20 1

1 0.64 0.55
0.60 1 −0.29
0.50 0.10 1

1 0.57 0.39
0.72 1 0.20
0.63 0.56 1

.
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In the example on the left, ρ23|1 = 0. By equation (4), the estimated load-
ing of item 1 is then equal to one, i.e. ρ̂1L = 1, so that item 1 cannot be
distinguished from the latent variable itself. For the example in the middle,
ρ̂1L =

√

0.6 · 0.5/0.1 =
√
3 is larger than one, hence leads to an infeasible

solution for a correlation coefficient. Thus even for a positive, invertible item
correlation matrix, there may not exist a generating process via positive load-
ings on a single latent variable. The example on the right has a perfect fit for
the vector of estimated positive loadings in equation (4) as λ̂T = [0.9 0.8 0.7].

For Q > 3 items, proper positive loadings in equation (3), that is 0 <
ρiL < 1 for all items i, lead directly to exclusively positive, simple correlations
of the items ρij = ρiLρjL for i 6= j in {1, . . . , Q}, that is to a matrix denoted
here by P > 0 and to a tetrad structure. Vanishing tetrads had been defined by
Spearman and coauthors and, nowadays, a popular search algorithm for models
with possibly several latent variables is named Tetrad. This algorithm is based
on and extends work by Spirtes, Glymour and Scheines (1993).

Definition 2. A positive tetrad correlation matrix S has dimension Q > 3
and elements sij such that 0 < sij < 1 for all item pairs i, j and

sih/sjh = sik/sjk for all distinct i, j, h, k taken from {1, . . . , Q}. (5)

Thus for any pair i, j, the ratio of its correlations to variables in row h of
S is the same as to variables in row k, or, equivalently, there are vanishing

tetrads: sihsjk − sjhsik = 0. Let λT denote a row vector of proper positive
loadings, ∆ a diagonal matrix of elements 1 − ρ2iL, and δT a row vector of
elements −ρiL/{

√
s(1− ρ2iL)}, where s = 1+

∑

i ρ
2
iL/(1− ρ2iL), then, as proven

in the Appendix, the correlation matrix of the leaves P and its inverse, the
concentration matrix P−1, are

P = ∆+ λλT, P−1 = ∆−1 − δδT. (6)

Some important direct consequences of (6) are given next. Lemma 1 uses
the notion of M(inkowski)-matrices that were named and studied by Ostrowski
(1937, 1956), and discussed in connection to totally positive Gaussian distri-
butions much later using the name MTP2 distributions; see e.g. Karlin and
Rinott (1983). General MTP2 distributions are characterized by having no
variable pair negatively associated given all remaining variables. We will use a
more strict form of MTP2 that also excludes any variable pair being condition-
ally independent given all remaining variables.

Definition 3. A square, invertible matrix is a complete M-matrix if all its
diagonal elements are positive and all its off-diagonal elements are negative.

Lemma 1. A positive tetrad correlation matrix, P , generated over a

star graph with proper positive loadings, 0 < ρiL < 1, is invertible and P−1 is

a symmetric, complete M-matrix with vanishing tetrads.

When we denote the elements of P−1 by ρij , then by Lemma 1 and Defini-
tion 3, all the precisions, ρii, are positive and all concentrations are negative,
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that is ρij < 0, for all i 6= j, if P−1 is a complete M-matrix. The follow-
ing important properties of complete M-matrices result from Ostrowski (1956),
Section 1.

Lemma 2. A symmetric matrix m, which has an inverse complete M-matrix,

(i) has exclusively positive elements, that is m > 0, and
(ii) the inverse of every principal submatrix of m is a complete M-matrix.

Thus, if the concentration matrix P−1 of observed Gaussian items has exclu-
sively negative off-diagonal elements, then all concentrations in every marginal
distribution of the items are negative as well and P > 0.

Lemma 3. Partial correlations, ρij|c of a positive tetrad correlation

matrix, P , generated over a star graph with proper positive loadings, are posi-

tive for every c ⊆ {1, . . . , Q} \ {i, j} and form a positive tetrad matrix.

Proof. The result follows with the following general relation of elements of a
concentration matrix to partial correlations, together with Lemmata 1 and 2.

ρij|c = −ρij/
√

ρiiρjj for c = {1, . . . , Q} \ {i, j}, (7)

see for instance Wermuth, Cox and Marchetti (2006), Section 2.3.

Thus, for a complete concentration matrix of Gaussian items, negative con-
centrations mean positive dependence and every item pair is positively depen-
dent, no matter which conditioning set is chosen. Now, the known rank-one
condition for the existence of a Gaussian item correlation matrix P ∗ of a single
factor simplifies as follows.

Proposition 1. Equivalent necessary and sufficient conditions for a

Gaussian distribution. For Q > 3, the following statements are equivalent:

(i) there exists a P ∗ > 0 that is generated over a star graph and with proper

positive loadings, ρ∗iL,
(ii) there exists a P ∗ > 0 minus a diagonal matrix, of elements 0 < δ∗ii < 1,

which has rank one,

(iii) a tetrad P ∗ > 0 of the items can be formed by proper positive loadings, ρ∗iL,
(iv) there exists a concentration M-matrix (P ∗)−1 of the items which has van-

ishing tetrads,

(v) there exist item partial correlations, given the Q − 2 other items, which

form a positive tetrad correlation matrix.

Proof. In their terminology, Anderson and Rubin (1956) proved (i) ⇐⇒ (ii)
in their Theorem 4.1 without requiring proper positive loadings. They show
also that the rank-one condition is equivalent to vanishing tetrads provided
0 ≤ ρikρjk ≤ ρij , that is for P

∗ > 0 to 0 < ρij|k < 1, for all distinct items i, j, k.
For P ∗ > 0, this implies (iii). By Lemma 3 and Lemma 1 above, (iii) ⇐⇒ (iv),
by equation (7), (iv) ⇐⇒ (v) and equation (6) gives (iii) =⇒ (ii).



Star graphs induce tetrad correlations 261

Conditions (i) to (iii) in Proposition 1 involve dependences of the items
on the latent variable L, that is the unobserved loadings. In some applications,
prior knowledge may be so strong that a positive loading can be safely predicted
for each selected item, but otherwise, these characterizations involve unknown
parameters.

By contrast, conditions (iv) and (v) in Proposition 1 concern directly the
distribution of only the observed items. Equivalence to the former conditions for
existence become possible by the added special properties of the concentration
matrix (P ∗)−1 being a complete M-matrix with vanishing tetrads.

The following example shows that a positive, tetrad correlation matrix alone,
does not assure that its inverse is a M-matrix. The example is another Heywood
case, conditions (iv) and (v) of Proposition 1 are violated:

P =









1.00 0.84 0.84 0.84
. 1.00 0.64 0.64
. . 1.00 0.64
. . . 1.00









, P
−1 =









16.20 −6.00 −6.00 −6.00
. 4.22 1.44 1.44
. . 4.22 1.44
. . . 4.22









, (8)

where the dot-notation indicates symmetric entries.
This correlation matrix cannot have been generated over a directed star graph

with proper positive loadings. If these correlations were observed, one would get
with equation (4) that ρ̂1L > 1, that is not a permissible solution. By contrast,
every P−1 that is a complete M-matrix with vanishing tetrads implies a positive
tetrad correlation matrix.

4. Binary distributions generated over directed star graphs

When Q binary items are mutually independent given a binary variable L and
the factorization of the joint probability in equation (2) cannot be further sim-
plified, since each item has a strong dependence on L, then it is a traceable
regression generated over a directed star graph. The reason is that binary dis-
tributions are, just like Gaussian distributions via equation (3), dependence-
inducing, that is

(i ⋔ L and j ⋔ L) =⇒ at most i ⊥⊥ j|L or i ⊥⊥ j but never both.

The property assures for star graphs with the independences of equation (1),
i ⊥⊥ j|L, that i ⋔ j is implied for each item pair. In applications, strong depen-
dences of each item i on L are needed to obtain relevant dependences for each
leaf pair i, j.

The joint binary distribution generated over a directed star graph is quadratic
exponential since the Q largest cliques in this type of a decomposable graph
contain just two nodes, an item and L. Expressed equivalently, in the log-linear
model of an undirected star graph, as in Figure 1(b), the largest, non-vanishing
log-linear interactions are positive 2-factor terms, αiL. These are canonical pa-
rameters in the generated binary quadratic exponential family. Marginalizing
over L in such distributions with αiL > 0 gives a tetrad form for the canonical
parameters in the observed item distribution; see Cox and Wermuth (1994),
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Section 3:

αih/αjh = αik/αjk for all distinct i, j, h, k taken from {1, . . . , Q}. (9)

With αiL > 0 for all i, the joint binary distributions of the items have exclusively
positive dependences. In general, the parameters αiL are identifiable for Q ≥ 3,
see Stanghellini and Vantaggi (2013). But equation (9) does not lead to a an
explicit form of the induced bivariate dependences for the item pairs.

For this, we write e.g. for any two items A, B, and L, each with levels 0 or 1,

πijl = Pr(A = i, B = j, L = l), π+j+ =
∑

ilπijl = Pr(B = j),

πij+ =
∑

lπijl = Pr(A = i, B = j)

as well as for instance

πAL =

(

π0+0 π0+1

π1+0 π1+1

)

, πLB =

(

π+00 π+10

π+01 π+11

)

, πL =

(

π++0 0
0 π++1

)

.

There are three equivalent expressions of Pearson’s correlation coefficient for
the binary items 1 and 2. To present these, we use κ12 =

√
π0++π1++π+0+π+1+

and abbreviate the operation of taking a determinant by det(.):

ρ12 = (π00+π11+ − π10+π01+)/κ12, (10)

= (π11+ − π1++π+1+)/κ12 , (11)

= det(π
−1/2
A πAB π

−1/2
B ) . (12)

Equation (10) shows that the correlation is given by the cross-product differ-
ence, that it is zero if and only if the odds-ratio, defined as the cross-product
ratio, equals one and that a positive correlation is equivalent to a positive log-
odds ratio. Equation (11) gives as numerator the covariance and as denominator
the product of two standard deviations. This is the usual definition of Pearson’s
correlation coefficient, here for binary variables, and it implies that ρ12 together
with the one-dimensional frequencies of items 1 and 2 give the counts in their
2× 2 table. Equation (12) leads best to our main new result.

From equations (2) and (12), we have for each source V of the star graph,
that is for each configuration A≺ L ≻B, a trivariate binary distribution with
A ⊥⊥ B|L and

πAB = πAL(πL)
−1πLB, (13)

so that the existence of a special type of correlation matrix P ∗ > 0 becomes
relevant also for binary variables.

Proposition 2. Equivalent necessary conditions for joint binary dis-

tributions. For Q > 3 items to be generated over a directed star graph with a

binary root L:

(i) there exists a tetrad correlation matrix P ∗ > 0 which is formed by proper

positive loadings, ρ∗iL,
(ii) there exist item partial correlations, given the Q − 2 other items, which

form a positive tetrad correlation matrix.
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Proof. Premultiplying equation (13) by π
−1/2
A and post-multiplying it by π

−1/2
B

gives, for 0 < ρiL < 1 for all i, with equation (12), that is after taking determi-
nants, ρ12 = ρ1Lρ2L > 0. Since this holds for all item pairs,

ρij = ρiLρjL > 0 for all i, j ∈ {1, . . . , Q}, (14)

and the positive tetrad correlation matrix is a consequence of the generating
process. The same arguments as in Proposition 1 give the equivalence of the
two statements.

This result corrects a claim in Cox and Wermuth (2002) that a tetrad con-
dition does not show in correlations of binary items but only in their canonical
parameters in the induced distribution for the Q items: just as in Gaussian
distributions, a positive, invertible tetrad correlation matrix, P , is induced for
binary items if the dependence of each item on the latent binary L is positive,
that is if ρiL > 0 for all i.

Nevertheless, the directly relevant dependences for the induced, complete
concentration graph model are the canonical parameters, the log-linear inter-
action terms that are functions of the odds-ratios. For instance, for a binary
distribution generated over a star graph to have a general MTP2 distribution,
the condition is αiL ≥ 0, while for a strictly positive subclass, the condition is
αiL > 0 for all items i.

Necessary and sufficient conditions that equation (2) has generated the ob-
served distribution of Q = 3 items, have been derived as nine inequality con-
straints on the probabilities of the item by Allman et al. (2014) without noting
their relation to MTP2 distributions. For πijk > 0, the first three reduce to

π111+/π011+ ≥ π100+/π000+,

π111+/π101+ ≥ π010+/π000+,

π111+/π110+ ≥ π001+/π000+,

so that for each leaf, the odds for level 1 to 0 when the levels of the other two
leaves match at level 0 do not exceed those with matches at level 1. Their last six
constraints require nonnegative odds-ratios for each leaf pair, that is a binary
MTP2 distribution.

It can be shown that the above three inequalities are satisfied, whenever each
leaf pair i, j has a positive conditional dependence given the Q − 2 remaining
leaves, that is if the leaves have a strictly positive distribution. Therefore, this
strict form of a MTP2 binary distribution of the leaves is also sufficient for just
Q = 3 leaves to have been generated over a star graph with positive dependences
of the leaves on the root. This implies but is not equivalent to P−1 having
exclusively negative off-diagonal elements.

More complex characterizing inequality constraints on probabilities of the
leaves for Q > 3 categorical variables, when leaves and root have the same num-
ber of levels, are due to Zwiernik and Smith (2011). It remains to be seen how
they simplify for binary MTP2 distributions of the leaves or with a complete,
tetrad P−1.
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5. Applications with binary items

We use here three sets of binary items. The first is a medical data set, the
last two are psychometric data sets where the questions were chosen to expect
strong positive dependences of each item on a latent variable. As discussed
above, to check conditions for the existence of a single latent variable, that
might have generated the observed item dependences, we use here mainly the
observed item correlation matrices and the observed marginal tables of all item
triples. In the first two cases, no violations are detected. In the third case,
item correlation matrices alone provide already enough evidence against the
hypothesized generating process. Algorithms to compute maximum-likelihood
estimates for latent class models, are widely available; see for instance Linzer
and Lewis (2011).

5.1. Binary items indicating gestosis arising during pregnancy

Worldwide, EPH-gestosis is still the main cause for a woman’s death during
childbirth and a major risk for death of the child during birth or within a
week after birth. It is until today not a well-understood illness, rather it is
characterized by the occurrence of two or more symptoms, of edema (E:=high
body water retention), proteinuria (P:=high amounts of urinary proteins) and
hypertension (H:=elevated blood pressure).

Little research into causes of EPH-gestosis appears to have been undertaken
during the last 50 years, possibly because in higher developed countries its worst
negative consequences are avoided by intervening when two of the symptoms are
observed. Our data are from the prospective study ‘Pregnancy and Child Devel-
opment’ in Germany, see the research report of the German Research Founda-
tion, DFG-Forschungsbericht (1976). The symptoms were recorded before birth
for 4649 pregnant women.

As a convention, we order in this paper counts reported in vectors such that
the levels change from 0 to 1 and the levels of the first variable changes fastest,
those of the second change next and so on. The observed counts for the gestosis
data are then

nT = (3299 78 107 11 1012 65 58 19) .

There are exclusively positive conditional dependences for the symptom pairs
since all odds-ratios are larger than 1; with values of 4.4 and 5.1 for E,P, of 2.7
and 3.2 for E,H and of 1.8 and 2.1 for P,H, where the given level of the third
symptom changes from 0 (absence) to 1. Except for P,H at level 1 of E, the
corresponding confidence intervals exclude negative dependences. The observed
relative frequencies satisfy directly the necessary and sufficient conditions in
Section 4, due to Zwiernik and Smith (2011). Thus, the observed counts support
the hypothesis of a generating directed star graph with a latent binary root.

Some additional features of the data are given next. The first symptom (E)
is present for 3.7%, the second (P) for 4.2% and the third (H) for 24.8% of the
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Table 2

Lower triangle: marginal item correlations and loadings, upper triangle: partial correlations

1 0 0 0.42
0.13 1 0 0.26
0.11 0.07 1 0.21
0.44 0.29 0.24 1

Table 3

Studentized interaction parameters. For each item triple, A := first, B := second C := third

Item triple AB AC BC ABC

1, 2, 3 10.7 7.6 10.3 3.4
1, 2, 4 11.9 9.0 9.0 0.6
1, 3, 4 8.7 6.8 11.8 4.1
2, 3, 4 9.2 8.4 11.2 1.3

women. Of the symptom pairs, E,P are seen for 65, E,H for 181 and P,H for
166 of 1000 women and all three symptoms for 41 of 1000 women. The bivariate
dependences are strong and positive; with values for the odds-ratios of 5.5 for
E,P, 3.0 for E,H and 2.0 for P,H.

The corresponding correlations look smaller than expected for quantitative
features because E and P are rare symptoms. They have values 0.13 for E,P,
0.11 for E,H, and 0.07 for P,H and the inverse of the observed correlation matrix
is a complete M-matrix.

By equating the standardized central moments to the observed correlations,
the estimates ρ̃iL are added in the last row to the observed correlations in
Table 2; used is the order E,P,H,L. The identity matrix within the matrix of
partial correlations given the remaining two variables indicates the perfect fit of
the correlations to the hypothesized generating process via a star graph.

5.2. Binary items in a small depression scale

From an evaluation study of a short depression scale developed by Hardt (2008),
we use four binary items. The answers (no:=0, yes:=1) are to the questions:
feeling hopeless (item 1, with 35.1% yes), dispirited (item 2, with 27.6% yes),
empty inside (item 3, with 24.2% yes), loss of happiness (item 4, with 33.0%
yes). The observed row vector of counts is ordered as described in section 5.1,

nT = (533 52 22 27 8 15 4 14 46 32 4 48 19 25 18 141).

All conditional odds-ratios for items 1 and 2 are positive, with values 12.6, 1.9,
17.3, 6.0, respectively for levels (00, 10, 01,11) of items 3 and 4. Even though
there are 1008 respondents, some subtables contain only small numbers. Espe-
cially for many items, tests in such tables have little power and may therefore
not be very informative. We therefore concentrate on trivariate subtables.

For each triple of the items, we show in Table 3 studentized log-linear in-
teraction parameters for the 2-factor terms and the 3-factor term. Each is a
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Table 4

(a) Marginal item correlations in the lower triangle, partial correlations given two
remaining items in the upper triangle; (b) lower triangle: as in Table 4(a) with a row vector

of loadings added, upper triangle: partial correlations given the remaing three variables

1 0.37 0.16 0.26
0.62 1 0.26 0.20
0.53 0.57 1 0.36
0.57 0.56 0.60 1

1 0.08 −0.07 0.00 0.45
0.62 1 0.00 −0.06 0.48
0.53 0.57 1 0.08 0.44
0.57 0.56 0.60 1 0.46
0.76 0.77 0.74 0.76 1

(a) (b)

log-linear term estimated under the hypothesis that it is zero and divided by
an estimate of its standard deviation; see for instance Andersen and Skovgaard
(2010). To simplify the display, we list the involved item numbers, but use
the same notation for interaction terms, for instance AB is for the first two
listed items, for items 1,2 in the triple 1,2,3 but for items 2,3 in the triple
2,3,4.

The 3-factor interactions for items 1,2,3 and for 1,3,4 are not negligible but
all interaction terms are positive and the 3-factor term is always smaller than
any of the 2-factor terms.

The similarity of the positive dependences at each level of the third variable
shows here best in the two conditional relative risks for the first pair in each
item triple:

(5.9, 1.5; 5.6, 1.9; 5.7, 1.3; 5.7, 2.0).

The marginal observed correlations, are shown next with Table 4(a), in the
lower triangle, and the partial correlations computed with equation (7) in the
upper triangle. The same type of display is used in Table 4(b) with an estimated
vector λ̃T of loadings, ρ̃iL, added in the last row, computed as if the correlation
matrix were a sample from a Gaussian distribution. All marginal correlations
are positive and strong in the context of binary answers to questions concerning
feelings. All partial correlation given the remaining two items are also positive.
Thus, these two necessary conditions for the existence of a single latent variable
are satisfied by the given counts. With ρ̃iL added in Table 4(b), the partial
correlations for each item pair, given the remaining two items and the latent
variable, are quite close to zero, as they should be under the model.

5.3. Binary items in a failed attempt to construct a scale

In the same study of the previous section, the participants were asked whether
their parents fought often. For 538 respondents who answered yes, answers to
reasons of the fighting were (no:=0, yes:=1) to: hot temper (item 1, with 50.0%
yes), money (item 2, with 46.5% yes), alcohol (item 3, with 36.1% yes), jealousy
(item 4, with 24.3% yes). The observed vector of counts is, again ordered as
described in section 5.1,

nT = (46 113 63 55 59 14 42 15 10 23 17 17 13 10 19 22).
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Table 5

(a) Marginal (lower half) and partial item correlations (upper half) given the two remaining
items; (b) For items 2,3,4, marginal (lower half) and partial correlations (upper half)

1 −0.12 −0.29 0.12
−0.12 1 0.01 0.13
−0.28 0.06 1 0.17
0.06 0.12 0.15 1

1 0.04 0.11
0.06 1 0.15
0.12 0.15 1

(a) (b)

Tables 5(a) and 5(b) contain marginal correlations in the lower half of a
matrix; Table 5(a) for all four items and Table 5(b) for items 1 to 3. In the
upper half are the partial correlations, computed with equation (7) from the
corresponding overall concentration matrices.

In Table 5(a), item 1 has negative dependences on items 2 and 3, the one
on item 3 is strong (

√
538(−0.28) = −6.5). This correlation cannot result even

when ρ3L = 0, let alone when ρ3L > 0. For the three remaining items, the corre-
lations in Table 5(b) are all positive, but too small to support the hypothesized
generating process with a useful indicator variable L.

6. Discussion

6.1. Factor analysis applied to data with concentration M-matrices

After Spearman had introduced factor analysis in 1904, he and others claimed
that the vanishing of the tetrads is necessary and sufficient for the existence of
a single latent factor. It was Heywood (1931) who proved that the condition
was only necessary when negative correlations (marginal or partial) are also
permitted. His results implied that 0 ≤ ρij|k ≤ 1 for all distinct item triples is
needed, in addition to vanishing tetrads, for a necessary and sufficient condition,
in general. The same result was proven by Anderson and Rubin (1956), using a
rank condition.

Heywood mentions that under some sort of strict positivity, a vanishing of
tetrads may indeed give a necessary and sufficient condition, but the relevant
properties of a M-matrix were unknown at the time. These relevant features,
used here in Proposition 1 (iv), were derived by Ostrowski (1956) without having
any applications in statistics in mind. The connection of M-matrices to Gaussian
concentration matrices was only recognized much later by Bolviken (1982). It
may also be checked that applications in Spearman (1904) lead to complete
concentration M-matrices.

For Gaussian distributions, complete concentration M-matrices define a sub-
class that is even more constrained than the one that is MTP2, where off-
diagonal zeros may arise and indicate conditional independence; see e.g. Karlin
and Rinott (1983).

Proposition 1 concerns a generating process via a directed star graph for
a Gaussian correlation matrix. Important are the two equivalent constraints,
(iv) and (v), on only the observable distribution: the concentration matrix of the
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leaves is a complete M-matrix with vanishing tetrads and partial correlations of
leaf-pairs i, j, given the remaining Q−2 leaves form a positive tetrad correlation
matrix. The second of these two is easier to recognize due to the scaling of
correlations.

6.2. Applications of binary star graphs

Joint binary distributions generated over general directed star graphs are ex-
tremely constrained; see Figure 1 in Allman et al. (2014) and even more for
strictly positive conditional dependences of the leaves on the root, as these de-
fine a special subclass of the general binary MTP2 family, studied by Bartolucci
and Forcina (2000).

Nevertheless, the structure in the medical and in one psychometric data set
of Section 5.3 can be explained by such a generating process. There, strong
prior knowledge about ρiL, based on observing many patients, permits to select
suitable sets of symptoms or items: these are three symptoms for EPH-gestosis
and four suitable binary items that may indicate depression.

Inequality constraints on probabilities of the joint distribution of the leaves
have been given by Zwiernik and Smith (2011) in their Proposition 2.5, re-
stated in simplified form for P > 0 and Q = 3 by Allman et al. (2014). The
latter are discussed here at the end of Section 4. Compared to Gaussian dis-
tributions, Proposition 2 contains the same conditions on the correlations of
the leaves and on the partial correlations of the leaves. The latter are easy to
check but, for general types of binary variables, they are only necessary condi-
tions.

Applications of phylogenetic star graphs and trees, as started by Lake (1994),
were based on incomplete characterizations that have been completed only re-
cently by Zwiernik and Smith (2011). It is still unclear whether the history of
factor analysis may repeat itself in this context: the current applications are
plagued by infeasible solutions, but possibly there are unknown characterizing
features for some situations, under which these problems are always avoided.

Though Lake’s ‘paralinear distance measure’ reduces to − log(|rij |) for Gaus-
sian and for binary variables, little is known about the distribution of the
corresponding random variables. Even for a Gaussian parent distribution, the
variance in the asymptotic Gaussian distribution of ρ̂ involves the unknown ρ
unless ρ = 0. To construct confidence intervals for ρ 6= 0, one uses Fisher’s
z-tranformation, which lacks this undesirable feature. However, for other than
Gaussian parent distributions, even the z-transformed, correlation coefficient
estimator depends in general on the unknown ρ; see Hawkins (1989).

Sometimes, as for the data in Section 5.3 above, the absolute value of an ob-
served negative simple or partial correlation is so large that it clearly contradicts
the existence of a generating star graph with only proper positive dependences
on the root. But, correlations alone or constraints on the population proba-
bilities alone cannot help to decide whether an observed negative dependence,
rij ≤ 0, may arise from a population in which ρij > 0.
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6.3. Machine learning procedures for star graphs with a latent root

In the machine learning literature, it is considered to be one of the simpler tasks
to decide whether a joint binary distribution has been generated over a directed
star graph.

However, when a learning strategy is based on only the bivariate binary distri-
butions, no joint distribution may exist for a set of given bivariate distributions.
In the spirit of the example in Zentgraf (1975), we take 2×2 tables of counts for
variable pairs (A,B); (A,C); (B,C); again with the levels of the first variable
changing fastest:

nT
AB=(77, 41, 101, 221), nT

AC=(105, 41, 73, 221), nT
BC =(45, 101, 73, 221) (15)

where the odds-ratios are 4.1, 7.8, and 1.4, respectively. These are marginal
tables of the following 2× 2× 2 table of counts

nT = (19 26 86 15 58 15 15 206) .

The conditional odds-ratio of A,B given C, at level 0 of 0.13 and given C
at level 1 of 53.1, show qualitatively strongly different dependences of A,B
given C. When inference is based only on the bivariate tables, one implicitly
sets the third-order central moment to zero and keeps all others unchanged.
Transforming this vector back to probabilities gives negative entries and hence
shows that no joint binary distribution exists when the log-linear, three-factor
interaction is falsely taken to be zero.

Appendix: The inverse of a positive tetrad correlation matrix

It was known already to Bartlett (1951), that an invertible tetrad correlation
matrix implies a tetrad concentration matrix. His proof is in terms of the general
form of the inverse of sums of matrices. It is more direct to give the overall
concentration matrix in explicit form.

For this, we use the partial inversion operator of Wermuth, Wiedenbeck
and Cox (2006), described in the context of Gaussian parameter matrices in
Marchetti and Wermuth (2009). It can be viewed as a Gaussian elimination
technique (for some history see Grcar, 2011) and as a minor extension of the
sweep operator for symmetric matrices discussed by Dempster (1972). This ex-
tension is to invertible, square matrices so that an operation is undone by just
reapplying the operator to the same set.

Let M be a square matrix of dimension d for which all principal submatrices
are invertible. To describe partial inversions on d, we partition M into a matrix
m of dimension d− 1, column vector v, row vector wT and scalar s

M =

(

m v

wT s

)

, invd M =

(

m− vwT/s v/s
−wT/s 1/s

)

. (16)

The transformation of m is also known as the vector form of a Schur comple-
ment; see Schur (1917). For M a covariance matrix, v/s contains d− 1 linear,
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least-squares regression coefficients and m − vwT/s is a residual covariance
matrix.

For partial inversion on a set a ⊆ {1, . . . , d}, one may conceptually apply
equation (16) repeatedly for each index k of a: one first reorders the matrix M

so that k is the last row and column, applies equation (16) and returns to the
original ordering. Several useful and nice properties of this operator have been
derived, such as commutativity and symmetric difference.

For Q = 3 leaves and the correlation matrices of a star graph models, more
detail is

Ψ =











1 ρ1Lρ2L ρ1Lρ3L ρ1L

. 1 ρ2Lρ3L ρ2L

. . 1 ρ3L

. . . 1











,

invLΨ =











1− ρ21L 0 0 ρ1L

. 1− ρ22L 0 ρ2L

. . 1− ρ23L ρ3L

∼ ∼ ∼ 1











,

Ψ−1 =











1/(1− ρ21L) 0 0 −ρ1L/(1− ρ21L)

. 1/(1− ρ22L) 0 −ρ2L/(1− ρ22L)

. . 1/(1− ρ23L) −ρ3L/(1− ρ23L)

. . . 1 +
∑

i ρ
2
iL/(1− ρ2iL)











,

where the . -notation indicates an entry that is symmetric, the ∼ -notation an
entry that is symmetric up to the sign.

For Q items, a single root L and Ψ denoting their joint correlation matrix,
we have for instance

invLΨ = inv1,...,Q Ψ−1, Ψ−1 = inv1,...,Q (invLΨ).

For Q > 3, the structure of these matrices is preserved in the sense that there
is a diagonal matrix ∆ containing 1 − ρ2iL as elements, a row vector λT with
loadings ρiL, the precision of L as s = 1 +

∑

i ρ
2
iL/(1 − ρ2iL), and a row vector

δT with elements −ρiL/{
√
s(1− ρ2iL)}.

For P the correlation matrix of the Q items that are uncorrelated given L,
one gets P as the submatrix of rows and columns {1, . . . , Q} of

invL(invLΨ)

and P−1 as the submatrix of rows and columns {1, . . . , Q} of invLΨ−1 so that

P = ∆+ λλT, P−1 = ∆−1 − δδT.

Thus, for P−1 a complete M-matrix with vanishing tetrads, P > 0 has tetrad
form.
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Ostrowski, A. (1937). Über die Determinanten mit überwiegender Hauptdi-
agonale. Commentarii Mathematici Helvetici 10, 69–96. MR1509568

Ostrowski, A. (1956). Determinanten mit überwiegender Hauptdiagonale
und die absolute Konvergenz von linearen Iterationsprozessen. Commentarii

Mathematici Helvetici 29, 175–210. MR0076433
Rubin, D.B. and Thayer, D.T. (1982). EM algorithms for ML factor analysis.
Psychometrika 47, 69–76. MR0668505

Sadeghi, K. and Lauritzen, S.L. (2014). Markov properties for mixed
graphs. Bernoulli 20, 395–1028. MR3178514
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