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a b s t r a c t

We introduce families of jointly symmetric, binary distributions that are generated over
directed star graphs whose nodes represent variables and whose edges indicate positive
dependences. The families are parametrized in terms of a single parameter. It is an out-
standing feature of these distributions that joint probabilities relate to evenly spaced con-
centric rings. Kronecker product characterizations make them computationally attractive
for a large number of variables.We study the behavior of differentmeasures of dependence
and derivemaximum likelihood estimateswhen all nodes are observed andwhen the inner
node is hidden.
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1. Introduction

We define and study a family of distribution for p = 1, 2, . . . binary random variables, denoted by A1, . . . , AQ , L. Each
variable has equally probable levels, so that the variables are symmetric. There are Q response variables A1, . . . , AQ , to a
single common explanatory variable L, named the signal and having the levels strong or weak. The possible responses are to
succeed or to miss. We use as a convention that success for Aq is coded 1 and that a strong signal of L is also coded 1. For the
low level, we use either−1 or 0. Of special interest are situations inwhich the signal cannot be directly observed, it is instead
hidden or latent, but the aim is to understand and estimate the joint structure including L. In that case,wehave t = 1, . . . , 2Q

level combinations.
We let Kt = a1+· · ·+aQ denote the number of ones in any given sequence of response-level combinations, (a1, . . . , aQ ),

and define a normalizing constant, cQ = 2(1 + α)Q for 1 ≤ α < ∞, to write with {0, 1} coding, also known as baseline
coding, for the joint p-dimensional distribution

π(a1, . . . , aQ , l) cQ =


αKt for l = 1,
α(Q−Kt ) for l = 0.

(1)
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Fig. 1. Star graph with equal dependences of five leaves on one common root (left) and a graph of evenly-spaced concentric rings (right).

For the {−1, 1} coding of the levels, known also as effect coding, the symmetry of each of the binary variables implies
zero mean and unit variance. For L, we write

pr(L = 1) = pr(L = −1) =
1
2
, E(L) = 0, E(L2) = 1.

For any such binary variable pair (A, L), the correlation coefficient ρ, which is
ρ = cov(A, L) = E(AL),

ranges in 0 ≤ ρ < 1 and
α = (1 + ρ)/(1 − ρ), ρ = (α − 1)/(α + 1). (2)

The correlation ρ is also the regression coefficient in a projection of A on L. Furthermore, independence of A from L, denoted
by AyL, relates to α and ρ via

AyL ⇐⇒ (α = 1) ⇐⇒ (ρ = 0).
This last case would give a degenerate model in Eq. (1), hence it is excluded for some purposes. Table 1 shows how two

types of sequences of ratios forρ generate all possible even and odd positive integers forα and hence proper counts in Eq. (1).

Table 1
An integer valued α for symmetric binary variables in concentric-ring models.

α 1 3 5 7 9 11 13 15 . . .
ρ 0 1/2 2/3 3/4 4/5 5/6 6/7 7/8 . . .

α 2 4 6 8 10 12 14 16 . . .
ρ 1/3 3/5 5/7 7/9 9/11 11/13 13/15 15/17 . . .

Aswill be shown, amodel with density given by Eq. (1) has several attractive features that were not previously identified
even though it is a special case of a number of models that have been intensively studied. For instance, it is a distribu-
tion generated over a labeled tree [4], hence a lattice-conditional-independence model [15] and a directed-acyclic-graph
model [20,14] or a Markov field for binary variables [6], an Ising model of ferromagnetism, a binary quadratic exponential
distribution [2,5] and a triangular system of symmetric binary variables [22].

With L in Eq. (1) unobserved, the resultingmodel may be regarded as a simplest case for constructing phylogenetic trees;
see [24,1] and the previous extensive literature in this area. Or, it can be viewed as a special latent-class model [12,13], the
one with the closest analogy to a Gaussian factor analysis model having a single factor.

A star graph is a directed-acyclic graph with one inner node, L, from which Q arrows start and point to the uncoupled,
outer nodes, 1, . . . ,Q . For p = 6, the left of Fig. 1 shows such a star graph, having equal regression coefficients ρ when
regressing each Aq on L, for q = 1, . . . ,Q .

For Gaussian and for binary distributions generated over star graphs as those in Fig. 1, the correlation matrices of the p
variables are of identical form; see [21]. For p = 5, such correlation matrices are in Table 2, with ‘·’ indicating a symmetric
entry.

Table 2
Correlation matrix for p = 5; left: to Eq. (1), right: to a binary latent class model.

1 ρ2 ρ2 ρ2 ρ

. 1 ρ2 ρ2 ρ

. . 1 ρ2 ρ

. . . 1 ρ

. . . . 1



1 ρ1ρ2 ρ1ρ3 ρ1ρ4 ρ1
. 1 ρ2ρ3 ρ2ρ4 ρ2
. . 1 ρ3ρ4 ρ3
. . . 1 ρ4
. . . . 1

.

Another feature of the joint probabilities in (1) is that the conditional odds-ratios for each pair Aq, L given the remaining
Q − 1 variables are equal to α2. When one interprets these as equal distances, concentric rings such as those on the right of
Fig. 1 may result. The number of rings increases with an increase of Q as illustrated with Table 6 in Section 3. This explains
the chosen name of this family of distributions. First, we generate the distributions over star graphs.
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2. Generating a concentric-ring model over a star graph

To shorten descriptions and notation, we call both, the outer nodes of the star graph and the corresponding binary vari-
ables A1, . . . , AQ , leaves and identify them sometimes by their indices 1, . . . ,Q . Similarly we call both the inner node of
the star graph, and variable L, the root. Often the root is unobserved, that is latent or hidden, and one main task is then to
estimate the joint p-dimensional distribution from observations on only the Q leaves.

The first main feature of a joint distribution of concentric rings is mutual conditional independence of the leaves given
the root, written as

(1y2y . . .yQ ) |L. (3)

Any density generated over a star graph, irrespective of the types of variables, is defined by Q conditional densities, fq|L,
and a marginal density, fL, of the root. In the condensed node notation, with node set N = {1, . . . ,Q , L} of size p, the joint
density fN factorizes as

fN = f1|L . . . fQ |LfL. (4)

For binary variables, fN denotes the joint probability distribution, so that Eq. (4) becomes π(a1, . . . , aQ , l) = π(a1|l) · · ·

π(aQ |l)π(l) where π(aq|l) = π(aq, l)/π(l) are obtained from the bivariate probabilities of each leave, Aq, and the root, L. In
Table 3, we show probabilities for any binary pair (A, L) and for each variable of the pair being symmetric.

Table 3
A 2 × 2 table of a general binary pair (A, L) and in the special case of symmetric binary variables.

L L
A Weak Strong Sum A Weak Strong Sum

Miss πmw πms πm Miss 1
4 (1+ρ) 1

4 (1−ρ) 1
2

Succeed πsw πss 1−πm Succeed 1
4 (1−ρ) 1

4 (1+ρ) 1
2

Sum πw πs 1 Sum 1
2

1
2 1

Several standard measures of dependence, that are in common use, are defined in Table 4 by using Table 3 and Eq. (2),
both for a general binary pair (A, L) and for it being symmetric.

Table 4
Measures in a general 2 × 2 table and in the special case of symmetric binary variables.

Definition Interpretation in general and for two symmetric binary variables

πss/πms Odds of succeeding versus missing given a strong signal: α

πsw/πmw Odds of succeeding versus missing given a weak signal: 1/α
(πssπmw)/(πmsπsw) Odds-ratio for success or cross-product ratio: α2

πs|s = πss/πs Chance to succeed given a strong signal of L: (1 + ρ)/2
πs|w = πsw/πw Chance to succeed given a weak signal of L: (1 − ρ)/2
πs|s − πs|w Chance difference in succeeding: ρ

πs|s/πs|w Relative chance for success: α

For both A, L symmetric, the parameter ρ > 0 relates also directly to the probabilities via

ρ = (πss + πmw) − (πsw + πms), (5)

and the odds of succeeding versus missing given a strong signal of L coincides with the relative chance for success. Indepen-
dence of any binary pair (A, L) requires in general, that the odds-ratio equals one, the relative chance equals one and the
chance difference equals zero.

For the relation of α to conditional independence given L, we only look at pair (A1, A2) at both levels of L in Table 5, since
the mutual independence in Eq. (3) implies independence of each pair of leaves from the remaining Q − 2 leaves given L, in
particular (1, 2)y(3, . . . ,Q )|L.

The conditional independence 1y2|L is directly reflected in the equal-one odds-ratios within the subtables for each level
of L. The same holds for the relative chances, while the chance difference and the correlation coefficient in each subtable
for (A1, A2) are zero for 1y2|L. Table 5 shows in addition the joint symmetry of the distribution since the probability for any
given level combination of the variables remains unchanged after switching all the levels.

Joint symmetry also holds in general, as can be derived directly from (1). It follows that the marginal distribution of each
(Aq, L) is symmetric and does not depend on q. For {−1, 1} coding, we have then from this symmetry and Eq. (4), for the
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Table 5
Probabilities with 1y2|L multiplied by c2 = 2(1 + α)2 for pair (A1, A2) given L.

Weak L Strong L
A1 A2 miss A2 succeed A2 miss A2 succeed Sum

Miss α2 α 1 α (1 + α)2

Succeed α 1 α α2 (1 + α)2

Sum α(1 + α) (1 + α) (1 + α) α(1 + α) 2(1 + α)2

Odds-ratio 1 1

generated joint distribution in (1) and with q = 1, . . . ,Q

π(a1, . . . , aQ , l) = 2−p

q

(1 + ρ aql). (6)

3. Kronecker product representations of joint probabilities

We now introduce for p ≥ 3 a vector representation. For this, we write for instance π111 = pr(A1 = 1, A2 = 1, L = 1).
Then, by using again N = {1, . . . ,Q , L} and the {0, 1} coding and letting the levels of the first variable change fastest, the
column vector of probabilities, π3,N , is in transposed form

πT
3,N = (π000, π100, π010, π110, π001, π101, π011, π111)

= (α2, α, α, 1, 1, α, α, α2)/c2,

where c2 = 2(1 + α)2 and we take in this notation always the last variable to coincide with L.
For an integer-valued α, we illustrate next how the concentric rings are generated and increase with the number of vari-

ables. One way to generate the probabilities after an increase from p to p + 1 nodes, is to start with the probabilities at the
strong signal of L for the given p, multiplied by cQ = 2(1 + α)Q , to obtain first a vector of powers of α such as in Table 6.

Table 6
Integer parametrization of the upper half of the probability vector for p = 1 up to p = 5 variables; with the
sum of the integers equal to 2(1 + α)Q , the number of leaves equal to Q = p − 1.

p Moving from p to p + 1 using powers of α

1 α0

2 α0 α1

3 α0 α1 α1 α2

4 α0 α1 α1 α2 α1 α2 α2 α3

5 α0 α1 α1 α2 α1 α2 α2 α3 α1 α2 α2 α3 α2 α3 α3 α4

This vector is appended next by the same vector modified just by increasing the power of each α by one. The joint prob-
abilities for a strong signal of L for p + 1 nodes result after dividing by the new normalizing constant c(Q+1) = 2(1 + α)Q

and repeating the probabilities in reverse order for the lower half of the table.
For large p, the row vector πT

p,N has a computationally attractive representation in terms of Kronecker products. Let v =

(1, α), w = (α, 1) and cQ = 2(1 + α)Q , then πT
p,N may be obtained from

(w ⊗ · · · ⊗ w  
p−1

, v ⊗ · · · ⊗ v  
p−1

)/cQ . (7)

From the given form of the joint distribution, it can be checked directly that for any p > 2 and any selected pair (Aq, L),
the conditional cross-product ratios equalα2, the conditional relative chances for success equalα and the conditional chance
differences in succeeding equal ρ, that is in all subtables formed by the level combinations of the remaining leaves.

Collapsibility results for the three measures show that these three measures remain unchanged after marginalizing over
some or all of the remaining leaves if these are conditionally independent of Aq given L; see [19,23]. The common strength
of dependence of each Aq on L gives an increase of the number of concentric rings as p increases.

To compute moments and other features of the distribution in a fast way, we show in the next section that Kronecker
products based on special 2 × 2 matrices are particularly helpful, since for instance the inverses of such products are the
Kronecker products of the inverses.
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4. Moments, interactions and sums of level combinations of the leaves

The {0, 1} coding of binary variables is well suited to understand the change from raw and from central moments, in
general, to those of the concentric-ring model. With

Bp = B ⊗ · · · ⊗ B  
p

, B =


1 1
0 1


,

the column vector of raw moments is, in general binary-star-graph models,

mp,N = Bp πp,N . (8)

For the concentric-ring distribution and p = 3, the raw moments in {0, 1} coding reduce barely, with e.g. π11+ = pr(A1 =

1, A2 = 1) =


l π11l and π1++ = π11+ + π10+, as follows,

mT
3,N = (1, π1++, π+1+, π11+, π++1, π1+1, π+11, π111)

=


1,

1
2
,
1
2
, β,

1
2
, γ , γ , δ


,

where β = (1 + α2)/c2, γ = α(1 + α)/c2, δ = α2/c2, c2 = 2(1 + α)2.
Another Kronecker product leads to central moments of {0, 1}-coded binary variables; see [18]. For instance with q =

1, . . . ,Q and T p,N = T 1 ⊗ · · · ⊗ T Q ⊗ T L, where

T q =


1 1

−pr(Aq = 0) pr(Aq = 1)


T L =


1 1

−pr(L = 0) pr(L = 1)


,

the vector of central moments is

µp,N = T p,N πp,N . (9)

For concentric-ring distribution and p = 3, the central moments reduce with γ = ρ/4 to

µT
3,N = (1, 0, 0, µ12, 0, µ13, µ23, µ123)

= (1, 0, 0, 4γ 2, 0, γ , γ , 0).

By the mixed-product property of Kronecker products, simple relations result, such as for instance

µp,N = T 1B
−1

⊗ · · · ⊗ T QB−1
⊗ T LB

−1 mp,N .

By contrast, the {−1, 1} coding of binary variables iswell suited to express the change fromgeneral log-linear interactions
to those that are much simpler in the concentric-ring model. With

Ep = E ⊗ · · · ⊗ E  
p

, E =


1 1
1 −1


,

the vector of log-linear interactions for the probabilities, at the combinations of levels one, is

λp,N = E−1
⊗ · · · ⊗ E−1  

p

log(πp,N). (10)

For the concentric-ring distribution and p = 4, the log-linear interactions reduce as follows:

λT
4,N = (λ−, λ1, λ2, λ12, λ3, λ13, λ23, λ123, λ4, λ14, λ24, λ124, λ34, λ134, λ234, λ1234)

= (β, 0, 0, 0, 0, 0, 0, 0, 0, γ , γ , 0, γ , 0, 0, 0),

with γ =
1
2 log(α), β = 3γ − log(c3).

In general, only the 2-factor terms that include L and the overall normalizing constant λ− are nonzero. In the log-linear
parametrization, conditional independence of any pair implies that all higher-order interaction terms involving this pair are
vanishing as well; see e.g. [9]. Thus, the independences of Eq. (3) lead to all other log-linear interaction terms being zero.

For binary variables, the linear interactions may in general be defined with the same Kronecker product matrix as used
for the log-linear interactions in Eq. (10)

ξp,N = Ep πp,N . (11)

These linear interactions reduce for the concentric-ring distribution and p = 4 as follows:

ξT4,N = (1, ξ1, ξ2, ξ12, ξ3, ξ13, ξ23, ξ123, ξ4, ξ14, ξ24, ξ124, ξ34, ξ134, ξ234, ξ1234)

= (1, 0, 0, ρ2, 0, ρ2, ρ2, 0, 0, ρ, ρ, 0, ρ, 0, 0, ρ3).
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From Eqs. (9), and (11) and from ET −1
q being of diagonal form, the linear-interaction terms in ξp,N are just rescaled

versions of the central moments µp,N . They are the standardized central moments, that result after transforming the {0, 1}
coded binary variables Aq, say, with mean 1

2 and variance 1
4 , into their standardized form with {−1, 1}-coding, that is into

A∗
q = 2Aq − 1.
This central moment representation is more complex than the log-linear formulation because of the non-vanishing

4-factor interaction term ρ3. For Q > 3, each odd-order interaction is zero, an even-order k-factor interaction involving
the root as the last variable, is ρk−1 and it is ρk, otherwise. As we shall see, this advantage of the log-linear interactions
disappears in the marginal distribution of the leaves which has no independences.

For later use, we introduce the sum S, and the average S̄, of the Q standardized variables A∗
q . Under the concentric ring

model, each pair has the same correlation ρ2, see Table 2, so that

var(S) = Q + 2

Q
2


ρ2, Q var(S̄) = 1 + (Q − 1) ρ2. (12)

Also directly from the right of Table 3, one sees that E(A∗
q |L = 0) = −ρ and E(A∗

q |L = 1) = ρ so that

E(S̄|L = 1) − E(S̄|L = 0) = 2ρ. (13)

5. Marginal distributions of the leaves

By the joint symmetry, marginalizing over the common root returns a symmetric distribution by construction. This is
illustrated in Table 7 for Q = 3 leaves.

Table 7
Marginalizing over L for Q = 3 by adding α’s for corresponding level combinations of the leaves; in the table
each probability is multiplied by c3 = 2(1 + α)3 .

23 levels: 000 100 010 110 001 101 011 111

At level l = 0: α0 α1 α1 α2 α1 α2 α2 α3

At level l = 1: α3 α2 α2 α1 α2 α1 α1 α0

Margin over L : 1 + α3 α + α2 α + α2 α + α2 α + α2 α + α2 α + α2 1+α3

In general, after marginalizing over L, the distribution of the remaining Q leaves is given, with Kt denoting again the
number of ones in any sequence of levels, (a1, . . . , aQ ), by

π(a1, . . . , aQ ) =
1
cQ


αKt + α(Q−Kt )


. (14)

One also obtains the linear interaction vector for the joint distribution of the leaves, ξp,N\L as the lower half of ξp,N , where
in this notation, we do not distinguish between an element L and the singleton {L}.

Equivalently, with ξ0 = 1 and I ⊆ {1, . . . ,Q } such that q ∈ I if and only if aq = 1 is in (a1, . . . , aQ ), as used before in
the example to Eq. (11), the other elements of ξp,N\L may be written as

ξI =


ρKt for even Kt ,
0 otherwise. (15)

Also λp,N\L = E−1
Q log{(EQ )−1ξp,N\L} has zero values in the same positions as ξp,N\L. Thus, all odd-order log-linear interac-

tions vanish and all odd-order (standardized) central moments vanish. The even-factor terms are functions of ρ2 which is
the induced marginal correlation for any pair of leaves and, at the same time, the induced difference in chances for success.

6. The conditional distribution of the root given the leaves

From Eqs. (1) and (14), the conditional distribution, π(l|a1, . . . , aQ ), of the root, L, given the leaves, A1, . . . , AQ , satisfies
in terms of α, the number of ones, Kt , in the leaf-level sequence (a1, . . . , aQ )

cQ π(a1, . . . , aQ ) π(l|a1, . . . , aQ ) =


αKt for l = 1,
α(Q−Kt ) for l = 0.

(16)

Functions of the odds-ratio are known to be the only measures of dependence in 2× 2 tables that are variation indepen-
dent of the margins; see [8]. By using the concentric-ring model, we illustrate now how the relative chance and the chance
difference may give strongly distorted impressions of equal conditional dependences.
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When the roles of explanatory variable L and responses in the given generating process are exchanged, the odds-ratios
stay constant, equal chance differences appear to be of sharply reduced strengths and equal relative risks appear to be
strongly unequal.

To see this, we compare the dependences of A2 on L given A1 using the odds-ratio, odr(A2, L|A1), the chance differences
to succeed, chd(A2, L|A1), and the relative chances to succeed, rch(A2, L|A1), with the corresponding dependences of L on A2
given A1. After exchanging the ordering in Table 5 to (A2, L, A1) and taking as an example α = 9:

odr(A2, L |A1 = a1) = α2
= 81, chd(A2, L|A1 = a1) = ρ = 0.80, rch(A2, L|A1 = a1) = 9,

while from Table 8 with L as the first variable and A2 as the second, one obtains

Table 8
Probabilities multiplied by 2(1 + a)2 for (A1, A2, L) in Table 5 reordered as (L, A2, A1).

A1 miss A1 succeed
Level l of L A2 miss A2 succeed A2 miss A2 succeed

0 := weak α2 α α 1
1 := strong 1 α α α2

Sum (1 + α2) 2α 2α (1 + α2)

Odds-ratio for l = 1, a2 = 1; odr(L, A2|A1) α2 α2

Relative chance for l = 1; rch(L, A2|A1) (1 + α2)/2 2α2/(1 + α2)

Chance difference for l = 1; chd(L, A2|A1)
1
2 − 1/(1 + α2) α2/(1 + α2) −

1
2

odr(L, A2 |A1 = 1) = 81, chd(L, A2 |A1 = 1) = 0.49, rch(L, A2 |A1 = 1) = 41,
odr(L, A2 |A1 = 0) = 81, chd(L, A2 |A1 = 0) = 0.49, rch(L, A2 |A1 = 0) = 1.98.

We notice next that in a logit regression of L on the leaves, Aq, the regression parameters are functions of the conditional
odds-ratios for (L, Aq) since they may be obtained from twice the log-linear parameters λp,N in Eq. (10) that do not involve
L. This follows from the definition of the joint probabilities in (1) and the logit representation

logit {π(l|a1, . . . , aQ )} = logπ(a1, . . . , aQ , 1) − logπ(a1, . . . , aQ , 0).
Thus, the odds-ratio and this logistic regression coefficient are unaffected by switching the roles of A2 and L, while the

strength of dependence measured with the chance difference is reduced in the example from 0.80 by almost 40% to 0.49
and the dependences measured with equal relative chances of 9 for A2 on L, are modified into 41 and about 2, thus clearly
into strongly different strengths of dependence at the two levels of A1. As Q increases, the relative chance for a strong signal,
comparing succeeding to missing in A1, increases even to (1 + αQ )/2 at Q − 1 misses of the remaining variables.

Such changes illustrate potential problems formachine learning and causal conclusions, for interpretations of some case-
control studies and for some uses of the propensity score.

7. Maximum-likelihood estimates

One of the most attractive properties of the maximum-likelihood estimate of a set of parameters in a given model is that
the maximum-likelihood estimate of any other set of parameters, related to the original ones by a one-to-one (1–1) trans-
formation, is given by the same 1–1 transformation for the estimates; see [10]. Thus here, given the maximum-likelihood
estimate ρ̂ of ρ, all other measures of dependence are defined by the relevant 1–1 transformations. Given α̂, the maximum-
likelihood estimates of the log-linear interactions are also given. Furthermore, other estimated interactions of interest, as
well as the joint probabilities, result via the 1–1 transformations of Section 4.

Given the observed frequencies, for a pair (A, L) of symmetric binary variables that sum to n in vector nT
2,N = (n00, n10,

n01, n11), one obtains with Eqs. (6) and (5)

ρ̂ = {(n00 + n11) − (n01 + n10)}/n := csdAL, (17)
where ‘csd’ abbreviates ‘cross-sum difference’, a term introduced by G.M. Marchetti in a recent unpublished work. For sym-
metric variables A1, A2, L observed and satisfying 1y2 | L and E(A1 L) = E(A2 l) = ρ, given the vector of counts nT

3,N , we get
the average of the two cross-sum differences as the unique maximum-likelihood estimate

ρ̂ =
1
2
(csd1L + csd2L)

of the common correlation. Similarly, for observations n(a1, . . . , aQ , l) on A1, . . . , AQ , L of a concentric-ring model, the
closed-form maximum-likelihood estimate of ρ equals the average of the q = 1, . . . ,Q cross-sum differences in counts
for each leaf-root pair (Aq, L):

ρ̂ =
1
Q


q

csdqL. (18)
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When L is hidden, it can be shown for Q = 2, that the maximum-likelihood estimate of ρ2 equals the observed cross-
sum difference, and for Q = 3, that it equals the average of the three observed cross-sum differences. For Q > 3, there is
in general no closed-form solution of the likelihood equation to estimate ρ2, but a method-of-moment estimator ρ̃2 of ρ2

is obtained from Eq. (12) as

ρ̃2
= (Q v̂ − 1)/(Q − 1) (19)

where v̂ is any sample estimate of var(S̄), and v and S̄ are as defined for Eq. (12).
An EM algorithm [7] for ρ in the concentric ringmodel can be definedwith closed-form solutions both for the E (expecta-

tion) and for theM (maximization) steps. In an E-step, the 2p joint estimated counts ñ(a1, . . . , aQ , l) are from the observed
2Q marginal counts of the leaves, n(a1, . . . , aQ ), and the conditional distribution of the root given the leaves:

ñ(a1, . . . , aQ , l) = n(a1, . . . , aQ )π̃(l|a1, . . . , aQ )

using a current estimate of α and Eq. (16). In an M-step, the estimated correlation coefficient results with the new 2p joint
counts ñ(a1, . . . , aQ , l) via Eq. (13).

Also, the two steps can be combined into a single updating equation for the correlation coefficient. For this, we denote
by ρ(m) the value of the correlation coefficient at iteration step m and start with an initial estimate from Eq. (19), ρ(0) =

(ρ̃2)1/2. Let nt = n(a1, . . . , aQ ) and st = a∗

1 + · · · + a∗

Q be the marginal counts and the associated sum in {−1, 1} coding,
respectively. Then, the updated estimate ρ(m + 1) is, with t = 1, . . . , 2Q , such that

ρ(m + 1) =
1
nQ


t

Tt(m) nt , (20)

where we use the relation between α and ρ in Eq. (2) to lead to

Tt(m) = st{α(m)st − 1}/{α(m)st + 1}. (21)

Notice that, from a table of counts for all p variables and Eq. (13), an estimate of ρ is

1
nQ


t

st {n(a1, . . . , aQ , 1) − n(a1, . . . , aQ , 0)}.

Then, from Eqs. (14) and (16), at a given iteration of the EM algorithm, we can write

ñ(a1, . . . , aQ , 1) − ñ(a1, . . . , aQ , 0) =
αKt − α(Q−Kt )

αKt + α(Q−Kt )
nt =

αst − 1
αst + 1

nt ,

so that Eqs. (20) and (21) follow.
To see that Tt(m) in Eq. (20) is for ρ(0) > 0 always nonnegative, note that if st ≥ 0 in Eq. (21) then also (α(m)st − 1)/

(α(m)st + 1) ≥ 0 because α(m) ≥ 1. Similarly, if st < 0 then (α(m)st − 1)/(α(m)st + 1) ≤ 0.
The algorithm converges to a stationary point of the likelihood and the standard error of the estimate can be found using

one of themethods discussed in [17, Section. 4.4, p. 74]. In extensive simulations under themodelwithQ = 4, the number of
iterations required for convergence, for ρ in the range of most interest, in 0.5 < ρ < 0.8, was with a tolerance of ϵ = 10−4

at most 4 and with a tolerance of ϵ = 10−7 at most 20. The absolute difference between ρ̂ and ρ was less than 0.1 and less
than 0.05, in samples of size 300 and 1000 respectively.

8. Discussion

A family of jointly symmetric distributions in equally probable binary variables has been defined, where for each given
number of variables, a distribution is characterized by a single parameter. The family is shown to have several attractive
features that were not previously identified even though it is a special case of a number ofmodels that have been intensively
studied, such as Ising models of ferromagnetism, latent class structures and models for constructing phylogenetic trees.

In particular, such a distribution is a graphical Markov model, generated over a star graph with p − 1 leaves and one
common root. A positive dependence of each leaf on the root equals a positive Pearson’s correlation coefficient, ρ. When p
increases with ρ kept fixed, the model leads to an increasing number of evenly-spaced concentric rings.

An integer parametrization shows which sample size is needed so that the smallest count is expected to equal one. This
information helps to plan for observed positive distributions, that is for a sufficient condition that the intersection property
(see e.g. [14]) holds for a given set of observations on symmetric binary variables.

A closed-form maximum-likelihood estimate ρ̂ of ρ is obtained when the root is observed in addition to the leaves.
Otherwise, a closed form method-of-moment estimate ρ̃ of ρ is derived. This estimate is a good starting value for the EM
algorithm which reduces to a single updating equation to obtain ρ̂. Simulations suggest that ρ̃ and ρ̂ agree often up to the
second decimal place, that the likelihood function for ρ has a unique maximum and that it is quite flat only for ρ ≤ 1/3
that is for the rather small dependences among each leave pair of only ρ2

≤ 1/9. With ρ̂ estimated just from observations
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on the leaves, the joint probabilities or interactions including the root are available in terms of Kronecker products of small
matrices even for many variables.

Themodels are also used to illustrate how conditional relative chances and chance differences can change strongly, when
the roles of a regressor variable and the response are exchanged, while odds-ratios and logit regression coefficients capture
the unchanged equal dependences given the remaining leaves. This problem occurs more generally but is convincingly
demonstrated using this special binary family of distributions.

For two binary variables, in general, Pearson’s correlation coefficient, ρ, is a multiple of the cross-product difference of
the probabilities; see for instance Eq. 10 in [21]. Only for symmetric binary variables, ρ > 0 reduces to the cross-sum dif-
ference in Eq. (5) and becomes a 1–1 function of the odds-ratio. The cross-sum difference of counts in Eq. (17), arises also as
the nonparametric measure of dependence, studied by Blomqvist [3] for continuous random variables: in the special case
of symmetry in the observed 2× 2 table that may result after median-dichotomizing the bivariate observations. Extensions
of this measure and relations to copulas have been investigated by Schmid and Schmidt [16] and Genest, Carabarin-Aguirre
and Harvey [11].

The one-parametermodel considered heremay be generalized in several ways. One possibility is to abandon the assump-
tion of symmetry. For binary variables, this leads to the model studied for example in [1]. However even for this minimally
extendedmodel, it ismuchmore complex to provide detailed insight intomaximum-likelihood inference. In futurework,we
intend to study symmetric variables with more than two levels, concentric rings of binary variables with unequal spacings
and maximization of the empirical likelihood functions.
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