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Abstract: Changes between different sets of parameters are often needed in mul-

tivariate statistical modeling, such as transformations within linear regression or

in exponential models. There may, for instance, be specific inference questions

based on subject matter interpretations, alternative well-fitting constrained mod-

els, compatibility judgements of seemingly distinct constrained models, or different

reference priors under alternative parameterizations.

We introduce and discuss a partial mapping, called partial replication, and re-

late it to a more complex mapping, called partial inversion. Both operations are

used to decompose matrix operations, to explain recursion relations among sets of

linear parameters, to change between different types of linear models, to approxi-

mate maximum-likelihood estimates in exponential family models under indepen-

dence constraints, and to switch partially between sets of canonical and moment

parameters in exponential family distributions or between sets of corresponding

maximum-likelihood estimates.

Key words and phrases: Exponential family, independence constraints, matrix op-

erators, partial inversion, partial replication, reduced model estimates, REML-

estimates, sandwich estimates.

1. Definitions and Properties of Two Operators

1.1. Partial inversion

We start with a linear function connecting two real-valued column vectors y
and x via a square matrix M of dimension d for which all principal submatrices
are invertible,

My = x. (1.1)

The index sets of rows and columns of M coincide and are ordered as V =
(1, . . . , d). For an arbitrary subset a of V , we consider first a split of V ordered
as (a, b) with b = V \ a. Such a split will correspond later to a change in
conditioning sets of variables.

A linear operator applied to (1.1), called partial inversion, may be used to
invert M in a sequence of steps and forms a starting point for proving many
properties of graphical Markov models, see Wermuth and Cox (2004, 2008),
Marchetti and Wermuth (2009), and Wermuth (2009). Partial inversion is a
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minimally modified version of Gram-Schmidt orthogonalisation and of the sweep
operator (Dempster (1969)). The changes are such that an operator with attrac-
tive features results, for proofs of its properties given below in this subsection,
see Wermuth, Wiedenbeck and Cox (2006).

After partial inversion applied to rows and columns a of M , denoted by
invaM , the argument and image at (1.1), relating to a, are exchanged

invaM

(
xa

yb

)
=

(
ya

xb

)
, invaM =

(
M−1

aa −M−1
aa Mab

MbaM
−1
aa Mbb.a

)
. (1.2)

The matrix Mbb.a = Mbb −MbaM
−1
aa Mab is often called the Schur complement of

Mbb, after Issai Schur (1875-1941), and M−1
aa denotes the inverse of the submatrix

Maa of M .
Partial inversion with respect to b applied to invaM is denoted in several

equivalent ways depending on the context

invb(invaM) = invb ◦ invaM = invV M = invabM,

where invV M yields the inverse of M . Some basic properties of partial inversion
are

(i) inva ◦ invaM = M,

(ii) (invaM)−1 = invbM, (1.3)
(iii) invaM = invb(M−1).

The operator is commutative and can be undone. More precisely, for three
disjoint subsets α, β, γ of V , with a = α ∪ β

(i) invα ◦ invβM = invβ ◦ invα M,
(1.4)

(ii) invαβ ◦ inv βγM = invαγM.

With c = β ∪ γ, (1.4) gives also inva ◦ invcM = inva4cM , where a 4 c =
α ∪ γ denotes the symmetric difference of a and c, that is the union without the
intersection.

1.2. Partial replication

We now introduce another operator to be applied to (1.1), called partial
replication, which represents a partial mapping and provides a decomposition of
partial inversion, see (1.8) below.

After partial replication applied to rows and columns a of M , denoted by
repaM , the argument relating to a and denoted by ya, is replicated while the
relation for the argument of b = V \ a is preserved as at (1.1)

repaM

(
ya

yb

)
=

(
ya

xb

)
, repaM =

(
Iaa 0ab

Mba Mbb

)
. (1.5)
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Partial replication is denoted in a way analogous to partial inversion

repb(repaM) = repb ◦ repaM = repV M = repabM,

where repV M yields the identity matrix I.
By direct computation, a basic property of partial replication is

repa ◦ repaM = repaM,

and the following matrix forms relate to the components of invbM

(i) (repaM)−1 =
(

Iaa 0ab

− M−1
bb Mba M−1

bb

)
= repa(invbM),

(1.6)

(ii) M(repaM)−1 =
(

Maa.b MabM
−1
bb

0ba Ibb

)
= repb(invbM).

The last matrix product has been used in the numerical technique of block Gaus-
sian elimination as one special form in which the Schur complement Maa.b of Maa

occurs.
Two derived properties of partial replication are to be listed next in the same

order as the corresponding properties of partial inversion in (1.4). As before, we
take three disjoint subsets α, β, γ of V and a = α ∪ β, then

(i) repα ◦ repβM = repβ ◦ repα M,
(1.7)

(ii) repαβ ◦ repβγ M = repαβγ M.

Thus, partial replication shares with partial inversion the property of commuta-
tivity (i), but in contrast to partial inversion, it cannot be undone, but has the
expansion property (1.7)(ii). Nevertheless, partial inversion can be expressed in
terms of partial replication. By direct computation

invaM = (repaM)(repbM)−1. (1.8)

1.3. Partial inversion combined with partial replication

By direct computation, basic properties of the two operators combined are

(i) inva ◦ repaM = repaM,

(ii) invb ◦ repaM = (repaM)−1 = repa ◦ invbM, (1.9)
(iii) repb ◦ invbM = M(repaM)−1.

Thus, the components of invbM in (1.6) are expressed here with (1.9)(ii) and
(iii).



826 MICHAEL WIEDENBECK AND NANNY WERMUTH

For a partition of V into α, β, γ, some of the derived properties are

(i) invα ◦ repβM = repβ ◦ invαM,
(1.10)

(ii) invαβ ◦ repβγM = invα ◦ repβγM.

Thus, a contraction property is obtained with (1.10) (ii) instead of the expansion
property (1.7) (ii) of partial replication or the symmetric difference in (1.4) (ii)
of partial inversion.

Partial replication on c = β ∪ γ applied to a matrix partial inverted on
a = α∪β gives, just like (1.8), a matrix product involving two partially replicated
matrices, one with respect to a 4 c = α ∪ γ, the other with respect to b = γ ∪ δ
as

repc ◦ invaM = (repa4cM)(repbM)−1. (1.11)

For the proof of (1.11), we recall from the definitions of partial replication
(1.5) and partial inversion (1.2) that

repbMy =
(

xa

yb

)
, invaM

(
xa

yb

)
=

(
ya

xb

)
.

Partial replication of invaM with respect to c = β ∪ γ and direct computation
give

(repc ◦ invaM)(repbM)y = (repαγM)y,

thus completing the proof. A matrix proof is given in the Appendix.
In the following sections, the two matrix operators are applied to quite dif-

ferent statistical themes. In Section 2, they simplify proofs of a number of results
known for linear models. In Sections 3 and 4, linear relations are obtained for sets
of parameters and for sets of estimates in nonlinear models within the exponential
family of distribution.

2. Decompositions of Partial Inversion

2.1. Partially inverted covariance matrices

Partial replication provides with (1.8) a decomposition of partial inversion.
Let Σ denote the joint covariance matrix of mean-centered random vector vari-
ables Ya, Yb, then

(repbΣ) (repaΣ)−1 =
(

Σaa Σab

0ba Ibb

)(
Iaa 0ab

− Σ−1
bb Σba Σ−1

bb

)
=

(
Σaa|b Πa|b

− ΠT
a|b Σ−1

bb

)
= invbΣ,

where Σ−1
bb = Σbb.a is the marginal concentration matrix of Yb and

Σaa|b = Σaa − ΣabΣ−1
bb Σba, Πa|b = ΣabΣ−1

bb ,
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are the parameter matrices in linear least-squares regression of Ya on Yb, i.e., in
the linear multivariate regression model defined by

Ya =Πa|bYb + εa, E (εa)=0, Cov (εa, Yb)=E (εaY
T
b )=0, Cov (εa)=Σaa|b. (2.1)

The interpretation of Πa|b as a matrix of regression coefficients results by
post multiplication with Y T

b and taking expectations, that is with E (YaY
T
b )−

Πa|bE (YbY
T
b ) = 0.

By (1.3)(iii), we know that invbΣ = invaΣ−1, therefore the three types of
parameter matrices can equivalently be expressed in terms of the components
Σaa, Σab, Σba, Σbb of the concentration matrix Σ−1 as

Σaa|b =(Σaa)−1, Πa|b =−(Σaa)−1Σab, Σ−1
bb =Σbb.a =Σbb−Σba(Σaa)−1Σab. (2.2)

Zero constraints on Πa|b have been studied especially in econometrics. The
possible existence of multiple solutions of estimating equations, derived by maxi-
mizing the Gaussian likelihood function, in a Zellner model, also called seemingly
unrelated regressions (Zellner (1962)), has more recently been demonstrated by
Drton and Richardson (2004).

Zero constraints on concentrations, such as in Σ−1
bb , had been introduced

as a tool for parsimonious estimation of covariances, called covariance selection
(Dempster (1972)). The Gaussian likelihood function has a unique maximum
for all possible sets of zero concentrations though for some models, iterative
algorithms are needed to find the solution.

Zero constraints on covariances, such as in Πa|b, have been studied by An-
derson (1969, 1973), see also Wermuth, Cox and Marchetti (2006).

With ρij.k denoting a partial correlation, the hypotheses for a single zero for
pair (i, j) in Πa|b, Σaa|b, Σ−1

bb differ and are equivalent, respectively, to

ρij.b\j = 0, ρij.b = 0, ρij.b\{i,j} = 0.

In the context of chain graph models, see Wermuth and Cox (2004), Drton
(2009), the notion of multivariate regression and covariance selection is extended
to general types of distributions, in which the correlation coefficient is of no or
of little relevance. Then, the corresponding hypotheses are those of conditional
independence, say of Ya and Yb given Yc, written compactly as a ⊥⊥ b|c. The
above three hypotheses turn then, respectively, into

i ⊥⊥ j|b \ j, i ⊥⊥ j|b, i ⊥⊥ j|b \ {i, j}

and are captured by graphs, each having a different type of edge. Then, transfor-
mation of matrix representation of graphs mimic the transformations for linear



828 MICHAEL WIEDENBECK AND NANNY WERMUTH

parameter matrices discussed here; see Marchetti and Wermuth (2009) and Wer-
muth (2009) for partial inversion and partial closure of paths in graphs.

2.2. Three recursion relations among linear parameter matrices

Let variables be partitioned according to V = (a, γ, δ), again with b = γ ∪ δ,
but a = α, then which systematic changes are to be expected among the two sets
of parameters obtained with invbΣ = invγδΣ and invδΣ? Written explicitly, the
two matrices are

invbΣ =

 Σaa|b Πa|γ.δ Πa|δ.γ

∼ Σγγ.a Σγδ.a

∼ · Σδδ.a

 , invδΣ =

 Σaa|δ Σaγ|δ Πa|δ
· Σγγ|δ Πγ|δ

∼ ∼ Σδδ.aγ

 ,

where · indicates an entry in a symmetric matrix and ∼ an entry in a matrix that
is symmetric except for the sign.

The matrices Σaa|b, Πa|b are as defined before, but the latter is split into
two components corresponding to the two explanatory variables Yγ , Yδ, as Πa|b =
(Πa|γ.δ Πa|δ.γ) Similarly, e.g. Σγδ.a is the component of Σbb.a corresponding to
Yγ , Yδ.

By (1.4) (ii), we know invδΣ = invγ(invbΣ), so that (1.8) applied to this
form of invδΣ, and (1.9) applied to the resulting inverse matrix, gives

invδΣ = (repγ ◦ invbΣ)(repaδ ◦ invδΣ)

or, written explicitly,

invδΣ =

 Σaa|b Πa|γ.δ Πa|δ.γ
0γa Iγγ 0γδ

−ΠT
a|δ.γ Σδγ.a Σδδ.a


 Iaa 0aγ 0aδ

Σγa|δ Σγγ|δ Πγ|δ
0δa 0δγ Iδδ

 . (2.3)

The second matrix term in (2.3) results with equations (1.9) (ii) as (repaδ ◦
invbΣ)−1 = repaδ ◦ invδΣ. This leads to the following equalities that extend those
of (2.2):

Σγγ|δ =(Σγγ.a)−1, Πγ|δ =−(Σγγ.a)−1Σγδ.a Πa|γ.δ =Σaγ|δΣ
−1
γγ|δ =−(Σaa)−1Σaγ .

Several known recursion relations are obtained directly with the matrix prod-
uct (2.3), one for covariances (Anderson (1958, Sec. 2.5)) in position (a, a) as

Σaa|δ = Σaa|γδ + Πa|γ.δΣγa|δ,

one for concentrations (Dempster (1969, Chap. 4)) in position (δ, δ) as

Σδδ.aγ = Σδδ.a + Σγδ.aΠγ|δ,
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and one for linear least-squares regression coefficients (Cochran (1938)) in posi-
tion (a, δ) as

Πa|δ = Πa|δ.γ + Πa|γ.δΠγ|δ. (2.4)

Each of the above three equations relates a marginal to a conditional parameter
matrix and quantifies the modifications that occur by changing the conditioning
set. For extensions of (2.4) to nonlinear relations, in particular to conditions
under which no change or at least no change in the direction of dependence may
occur, see Cox and Wermuth (2003), Ma, Xie and Geng (2006), and Cox (2007).

2.3. Changing to different splits of three types of linear parameter
matrices

Let V = (α, β, γ, δ), again with a = α ∪ β, b = γ ∪ δ and another split of V
be c = β ∪ γ and d = α ∪ δ. Then a change in parameters is defined implicitly
by invbΣ and invdΣ. These are, with partitions according to (α, β, γ, δ),

invbΣ =


Σαα|b Σαβ|b Πα|γ.δ Πα|δ.γ

· Σββ|b Πβ|γ.δ Πβ|δ.γ

∼ ∼ Σγγ.a Σγδ.a

∼ ∼ · Σδδ.a

 , invdΣ =


Σαα.c ΠT

β|α.δ ΠT
γ|α.δ Σαδ.c

∼ Σββ|d Σβγ|d Πβ|δ.α
∼ · Σγγ.d Πγ|δ.α

· ∼ ∼ Σδδ.c

 .

If we let E (Y ) = 0 and
Z = Σ−1Y, (2.5)

then
Cov (Z) = E (ZZT) = Σ−1, Cov (Y,Z) = E (Y ZT) = I,

so that the covariance matrix of Z is the concentration matrix of Y and com-
ponents Yi of Y and Zj of Z are uncorrelated, whenever i 6= j. Equation (2.5)
specifies covariance selection as a linear model if the assumption of a Gaussian
distribution of Z is added.

The implicit change defined by invbΣ and invdΣ applied to (2.5) is then, by
(1.2) between

invaΣ−1


Zα

Zβ

Yγ

Yδ

 =


Yα

Yβ

Zγ

Zδ.

 , invcΣ−1


Yα

Zβ

Zγ

Yδ

 =


Zα

Yβ

Yγ

Zδ

 . (2.6)

The first set of linear models in (2.6) can be written compactly by using the
notation of Section 2.1 as

Ya = Πa|bYb + Σaa|bZa, Σbb.aYb = Zb + ΠT
a|bZa,



830 MICHAEL WIEDENBECK AND NANNY WERMUTH

and there are the same type of expressions for the second set. Thus, equations
(2.6), typically with added sets of zero constraints, specify linear multivariate
regression models (2.1) for Ya regressed on Yb and for Yc regressed on Yd, and
marginal concentration matrix models for Yb and for Yd. The two sets of param-
eter matrices are therefore

(Σaa|b, Πa|b, Σbb.a), (Σcc|d, Πc|d, Σdd.c).

The change in the two sets is obtained by the following reversible trans-
formation, since for a = α ∪ β and c = β ∪ γ and starting from invaΣ−1, one
needs to remove α and add γ, i.e., to partially invert on the symmetric difference
a 4 c = α ∪ γ, see (1.4) (i), (ii), to get

invcΣ−1 = inva4c ◦ invaΣ−1 = (repa4c ◦ invaΣ−1)(repa4d ◦ invaΣ−1)−1. (2.7)

The second equality results from (1.8) after noting that the complement of a4 c
is a 4 d.

If instead the main interest is in the change of basis from (ZT
a , Y T

b )T to
(Y T

α , ZT
c , Y T

δ )T, then this is achieved by (1.5) and (1.11) to give

(repbΣ
−1) Y =

(
Za

Yb

)
, (repc ◦ invaΣ−1)(repbΣ

−1) Y =(repa4cΣ
−1) Y =

Yα

Zc

Yδ

 .

3. Estimation in Reduced Exponential Families

For a full exponential family, we take the log likelihood, after disregarding
terms that do not depend on the unknown parameter, in the form

sT φ − K(φ),

where φ is the canonical parameter and s the sufficient statistic, a realization of
the random variable S. The cumulant generating function of S under the full
exponential family, see for example Cox (2006, Chap. 6),

K(φ + t) − K(φ),

gives the mean or moment parameter, η = ∇K(φ), as the gradient of K(φ) with
respect to φ, i.e., as a vector of first derivatives. The maximum-likelihood esti-
mate of η is η̂ = s. The gradient of η with respect to φ gives the covariance matrix
of S but also the concentration matrix of the maximum-likelihood estimate φ̂ of
the canonical parameter, that is

Cov (S) = ∇∇TK(φ) = con(φ̂),
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where φ̂ denotes for simplicity both a maximum-likelihood estimate of φ and the
corresponding random variable. R. A. Fisher had interpreted −∇∇TK(φ) as
the information about the canonical parameter contained in a single observation.
Our notation I = ∇∇TK(φ) reminds of this.

Given η̂ and −Ī, the observed information matrix, i.e., minus I evaluated at s,
studentized statistics for testing that an individual component ηi of η is zero are
obtained for a large sample size n as η̂i/ Īii. Similarly, since the random variable
I−1(η̂ − η) has mean zero and covariance matrix I−1 and hence the same mean
and variance as (φ̂ − φ), a studentized statistic for testing that an individual
component φi of φ is zero, may for large n be computed as φ̂i/ (̄I−1)ii.

At a maximum of the likelihood function under a full exponential model,
also called often the saturated or the largest covering model, it holds that

Ī
−1

η̂ = z, z = Ī
−1

s, (3.1)

which is in the form of (2.5) so that the results of the previous section apply to
it, especially as used below for (3.4).

We now consider special reduced exponential models, those given by con-
straints ηc = 0 for some subset of elements of η, writing η = (ηu, ηc). By differ-
entiating the Lagrangian

sT φ − K(φ) − λT ηc

with respect to φ, the maximum likelihood estimating equations are obtained as

η̂u = su − ÎuĉI
−1

cc sc, η̂c = 0, (3.2)

where Î is the maximum likelihood estimate of I in the reduced model.
Since the solution of maximum-likelihood equations requires in general iter-

ative algorithms and may not be unique, an efficient closed form approximation
is useful, see Cox and Wermuth (1990), Wermuth, Cox and Marchetti (2006),
that has been called the reduced model estimate of ηu. Equation (3.2) is thereby
modified into

η̃u = su − Ĩuc̃I
−1
cc sc, η̃c = 0, (3.3)

where the (u, c) and (c, c) components of Î in (3.2) have been replaced by the
corresponding components of the asymptotic covariance matrix Ĩ of S and do not
involve unknown parameters.

Equations (3.2) and (3.3) result also, by using (2.1), and invuI−1 = invcI in
(3.1) when the (u, c) and (c, c) components of the matrix I are replaced by Î and
by Ĩ, respectively, and the (u, u) component is evaluated at ηc = 0. Since the
use of reduced model estimates is recommended only in situations in which the
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constraints agree well with the observed data, choosing the full observed matrix,
Ī of φ̂, under the saturated model and then partially inverting it on c, should
not give estimates which differ much from those in (3.2) and (3.3). By (2.1) and
(3.1), we then have

η̄u = su − Īuc̄I
−1
cc sc, Ī

cc.u
η̄c = sc − (̄Iuc̄I

−1
cc )T su, (3.4)

with η̄u = η̃u, Cov (η̄u) = Īuu|c and Cov (η̄c) = Īcc. In the case of a poor fit to the
hypothesis ηc = 0, i.e., with some components of η̄c deviating much from zero,
(2.7) permits a direct change to the fit under an alternative hypothesis.

Since Īuc̄I
−1
cc can be viewed as the observed coefficient of Sc in linear least-

squares regression of Su on Sc, standard results apply for testing that 0 = IucI
−1
cc

given an estimate of the appropriate covariance matrix. Expansions into relevant
interaction parameters lead to studentized statistics of interaction terms and
provide insight into where a possibly poor fit is located. See Cox and Wermuth
(1990) for examples, and Lauritzen and Wermuth (1989) for a discussion of
interaction parameters in the case of Conditional-Gaussian (CG) distributions
and of CG-regressions. The latter contain for instance logistic regression as a
special case for which, in general, iterative fitting algorithms are needed to give
η̂ even under the saturated model, see Edwards and Lauritzen (2001).

The closed form estimates of ηu in (3.4) provide a new justification for the
reduced model estimates: they result by partially inverting (3.1) with respect to
the subset given by the set of unconstrained parameters. These estimates can also
be viewed as the generalized least squares estimates of Aitken (1935), which turn
for instance for the multinomial distribution to the estimates of Grizzle, Starmer,
and Koch (1969), see Cox and Snell (1981, Appendix 1) Cox and Wermuth (1990,
Sec. 7).

Under some general regularity conditions, relations as in (3.1) and hence the
estimates of ηu in (3.4) arise in more general settings than for the exponential
family from asymptotic theory, see for example Cox (2006, Chap. 6). They are
then called sandwich estimates, introduced in a special context by Huber (1964),
or in the context of generalized linear models they are called approximate residual
maximum-likelihood (REML) estimates, derived by Patterson and Thompson
(1971).

By similar arguments as above, the maximum-likelihood equations with zero
constraints on canonical parameters are obtained in a form comparable to (3.2).
From a theoretical viewpoint, these may be more attractive than zero constraints
on moment parameters. First, if the constrained canonical parameters exist, then
the maximum-likelihood equations have a unique solution. Second, the sets of
minimal sufficient statistics are of reduced size. Third, estimates are available in
closed form for Gaussian and for multinomial distributions provided the model
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is decomposable, that is, the associated independence graph can be arranged
in a sequence of possibly overlapping but complete prime graphs, see Cox and
Wermuth (1999). For non-decomposable models, it is in addition often simple to
find a not much larger, decomposable covering model.

4. Switching Partially between Canonical and Moment Parameters

So far, we have considered only linear mappings even though these were
relevant both for nonlinear model formulations and for correlated data. We now
illustrate how changes between moment and canonical parameters in exponential
families may be obtained in terms of partial replication.

A general formulation has been given by Cox (2006, Sec 6.4), including a
short proof for orthogonality, i.e., uncorrelatedness of canonical and moment
parameters and of the asymptotic independence of the corresponding maximum-
likelihood estimates, see also Barndorff-Nielsen (1978, Sec. 9.8). These general
results have often been proven for specific members of exponential families, in-
volving the then necessary lengthy, detailed arguments.

In the notation of the present paper, for the moment parameter η = ∇K(φ)
and the canonical parameter φ with a maximum-likelihood estimate denoted by
φ̂, let s = (sa, sb) represent a split of the sufficient statistic into two column
vectors and let φb be replaced by ηb, the corresponding component of η, to give
the mixed parameter vector ψ = (φa, ηb). Then with

I =
∂ηT

∂φ
, repaI =

∂ψT

∂φ
=

(
Iaa 0ab

Iba Ibb

)
,

one obtains, given φ̂, a maximum-likelihood estimate of ψ under the saturated
model as

ψ̂ = repāI φ̂, ˆCov (ψ̂) = (repāI) Ī
−1(repāI)

T =

(
Ī
−1
aa|b 0ab

0ba Ībb

)
. (4.1)

The two random variables corresponding to φ̂a and η̂b are uncorrelated and,
given their asymptotic joint Gaussian distribution, they are also asymptotically
independent.

One simple example is a joint Gaussian distribution with η̂b the observed
mean of Yb and φ̂a the observed overall concentration matrix of Ya. Another is
for two dichotomous variables with η̂b the difference in observed frequencies for
Yb and φ̂a the observed log-odds ratios of Ya.

Two complementary mappings may, respectively, be represented by(
φa

ηb

)
= (repaI) φ,

(
ηa

φb

)
= (repbI) φ,
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so that for such mappings, we have with the specific choice M = I, as in (1.2)
and (1.8), (

ηa

φb

)
= (invaI)

(
φa

ηb

)
, invaI = (repaI)(repbI)

−1. (4.2)

One important consequence of (4.2) is that, given (4.1), the change from a
split (a, b) to another split (c, d) with canonical parameters for c and moment
parameters for d is possible by using (2.7) after just replacing Σ−1 by I. Another
application, not treated here, is to constrained chain graph models of different
types when the conditional distributions are members of the exponential family.

For the computation of the observed information matrix in the case of both
discrete and continuous variables, see Dempster (1973) and Cox and Wermuth
(1990). Whenever the population matrix I is replaced by its observed counterpart
Ī, the linear relations between sets of parameters in possibly nonlinear models turn
into a linear relation between the corresponding maximum-likelihood estimates.
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Appendix

For a direct matrix proof of (1.11), let N = invaM . Further, denote the
matrix obtained by partial replication with respect to a4c by Q and with respect
to b by R,

repa4cM =


Iαα 0αβ 0αγ 0αδ

Mβα Mββ Mβγ Mβδ

0γα 0γβ Iγγ 0γδ

Mδα Mδβ Mδγ Mδδ

, repbM =


Mαα Mαβ Mαγ Mαδ

Mβα Mββ Mβγ Mβδ

0γα 0γβ Iγγ 0γδ

0δα 0δβ 0δγ Iδδ

.

For (1.11) to hold, one needs to show that QR−1 = repcN , where

R−1 =
(

M−1
aa −M−1

aa Mab

0ba Ibb

)
=

(
Naa Nab

0ba Ibb

)
.

The rows of components α and γ in QR−1 coincide directly with those of
repcN . The rows of component β in repcN result since for Q and R, the rows of β

coincide so that the product QβV R−1 gives zeros whenever the row index within
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β for QβV differs from the column index in R−1, and is one otherwise. Finally,
for the rows of components δ we have for QδV R−1, by the defining equation for
partial inversion (1.2),

(MδaM
−1
aa Mδγ − MδaM

−1
aa Maγ Mδδ − MδaM

−1
aa Maδ) = (Nδa Nδb),

which completes the proof.
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