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Abstract: Changes between different sets of parameters are often needed in multi-

variate statistical modeling such as transformations within linear regression or in

exponential models. There may, for instance, be specific inference questions based

on subject matter interpretations, alternative well-fitting constrained models, com-

patibility judgements of seemingly distinct constrained models, or different reference

priors under alternative parameterizations.

We introduce and discuss a partial mapping, called partial replication and re-

late it to a more complex mapping, called partial inversion. Both operations are

used to decompose matrix operations, to explain recursion relations among sets of

linear parameters, to change between different types of linear models, to approxi-

mate maximum-likelihood estimates in exponential family models under indepen-

dence constraints, and to switch partially between sets of canonical and moment

parameters in exponential family distributions or between sets of corresponding

maximum-likelihood estimates.

Key words and phrases: Exponential family, independence constraints, matrix

operators, partial replication, partial inversion, reduced model estimates, REML-

estimates, sandwich estimates.

1. Definitions and properties of two operators

1.1. Partial inversion

We start with a linear function connecting two real valued column vectors y and x via

a square matrix M of dimension d for which all principal submatrices are invertible,

My = x. (1.1)

The index sets of rows and columns of M coincide and are ordered as V = (1, . . . , d). For

an arbitrary subset a of V , we consider first a split of V ordered as (a, b) with b = V \ a.

Such a split will correspond later to a change in conditioning sets of variables.
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A linear operator for equation (1.1), called partial inversion, may be used to invert M

in a sequence of steps and forms a starting point for proving many properties of graphical

Markov models, see Wermuth and Cox (2004), (2008), Marchetti and Wermuth (2008).

and Wermuth (2008). Partial inversion is a minimally modified version of Gram-Schmidt

orthogonalisation and of the sweep operator (Dempster (1969). The changes are such

that an operator with attractive features results, for proofs of its properties given below

in this subsection, see Wermuth, Wiedenbeck and Cox (2006).

After partial inversion applied to rows and columns a of M , denoted by invaM , the

argument and image in equation (1.1), relating to a, are exchanged

invaM

(

xa

yb

)

=

(

ya

xb

)

, invaM =

(

M−1
aa −M−1

aa Mab

MbaM
−1
aa Mbb.a

)

. (1.2)

The matrix Mbb.a = Mbb −MbaM
−1
aa Mab is often called the Schur complement of Mbb,

after Issai Schur (1875-1941), and M−1
aa denotes the inverse of the submatrix Maa of M .

Partial inversion with respect to b applied to invaM is denoted in several equivalent

ways depending on the context

invb(invaM) = invb ◦ invaM = invV M = invabM,

where invV M yields the inverse of M . Some basic properties of partial inversion are

(i) inva ◦ invaM = M,

(ii) (invaM)−1 = invbM, (1.3)

(iii) invaM = invb(M
−1.

The operator is commutative and can be undone. More precisely, for three disjoint

subsets α, β, γ of V , with a = α ∪ β

(i) invα ◦ invβ M = invβ ◦ invα M,

(ii) invαβ ◦ inv βγ M = invαγ M. (1.4)

With c = β ∪ γ, property (1.4) is also inva ◦ invcM = inva△cM , where a△ c = α ∪ γ

denotes the symmetric difference of a and c, that is the union without the intersection.
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1.2. Partial replication

We now introduce another operator for equation (1.1), called partial replication, which

represents a partial mapping and provides a decomposition of partial inversion, see (1.8)

below.

After partial replication applied to rows and columns a of M , denoted by repaM , the

argument relating to a and denoted by ya, is replicated while the relation for the argument

of b = V \ a is preserved as in equation (1.1)

repaM

(

ya

yb

)

=

(

ya

xb

)

, repaM =

(

Iaa 0ab

Mba Mbb

)

. (1.5)

Partial replication is denoted in a way analogous to partial inversion

repb(repaM) = repb ◦ repaM = repV M = repabM,

where repV M yields the identity matrix I.

By direct computation, a basic property of partial replication is

repa ◦ repaM = repaM,

and the following matrix forms relate to the components of invbM

(i) (repaM)−1 =

(

Iaa 0ab

−M−1

bb Mba M−1

bb

)

= repa(invbM),

(ii) M(repaM)−1 =

(

Maa.b MabM
−1

bb

0ba Ibb

)

= repb(invbM). (1.6)

The last matrix product has been used in the numerical technique of block Gaussian

elimination as one special form in which the Schur complement Maa.b of Maa occurs.

Two derived properties of partial replication are to be listed next in the same order as

the corresponding properties of partial inversion in (1.4). As before, we take three disjoint

subsets α, β, γ of V and a = α ∪ β, then

(i) repα ◦ repβ M = repβ ◦ repαM,

(ii) repαβ ◦ rep βγM = repαβγM, (1.7)
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Thus, partial replication shares with partial inversion the property of commutativity (i),

but in contrast to partial inversion, it cannot be undone, but has the expansion property

(1.7)(ii). Nevertheless, partial inversion can be expressed in terms of partial replication.

By direct computation

invaM = (repaM)(repbM)−1. (1.8)

1.3. Partial inversion combined with partial replication

By direct computation, basic properties of the two operators combined are

(i) inva ◦ repaM = repaM,

(ii) invb ◦ repaM = (repaM)−1 = repa ◦ invbM (1.9)

(iii) repb ◦ invbM = M(repaM)−1

Thus, the components of invbM in (1.6) are expressed here with (1.9) (ii) and (iii).

For a partition of V into α, β, γ, δ and s = V \ δ, some of the derived properties are

(i) invα ◦ repβ M = repβ ◦ invαM,

(ii) invαβ ◦ repβγ M = invα ◦ repβγ M, (1.10)

Thus, a contraction property is obtained with (1.10) (ii) instead of the expansion property

(1.7) (ii) of partial replication or the symmetric difference in (1.4) (ii) of partial inversion.

Partial replication on c = β ∪ γ applied to a matrix partial inverted on a = α ∪ β

gives, just like (1.8), a matrix product involving two partially replicated matrices, one

with respect to a△ c = α ∪ γ, the other with respect to b = γ ∪ δ

repc ◦ invaM = (repa△cM)(repbM)−1. (1.11)

For the proof of equation (1.11), we recall from the definitions of partial replication

(1.5) and partial inversion (1.2) that

repbMy =

(

xa

yb

)

, invaM

(

xa

yb

)

=

(

ya

xb

)

.

Partial replication of invaM with respect to c = β ∪ γ and direct computation give

(repc ◦ invaM)(repbM)y = (repαγ M)y,
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thus completing the proof. A matrix proof is given in the Appendix.

In the following sections, the two matrix operators are applied to quite different sta-

tistical themes. In section 2, they simplify proofs of a number of results known for linear

models. In sections 3 and 4, linear relations are obtained for sets of parameters and for

sets of estimates in nonlinear models within the exponential family of distribution.

2. Decompositions of partial inversion

2.1. Partially inverted covariance matrices

Partial replication provides with (1.8) a decomposition of partial inversion. Let Σ

denote the joint covariance matrix of mean-centred random vector variables Ya, Yb, then

(repb Σ) (repa Σ)−1 =

(

Σaa Σab

0ba Ibb

)(

Iaa 0ab

−Σ−1

bb Σba Σ−1

bb

)

=

(

Σaa|b Πa|b

−ΠT

a|b Σ−1

bb

)

= invb Σ,

where Σ−1

bb = Σbb.a is the marginal concentration matrix of Yb and

Σaa|b = Σaa − ΣabΣ
−1

bb Σba, Πa|b = ΣabΣ
−1

bb ,

are the parameter matrices in linear least-squares regression of Ya on Yb, i.e. in the linear

multivariate regression model defined by

Ya = Πa|bYb + ǫa, E(ǫa) = 0, cov(ǫa, Yb) = E(ǫaY
T

b ) = 0, cov(ǫa) = Σaa|b. (2.1)

The interpretation of Πa|b as a matrix of regression coefficients results by post multipli-

cation with Y T

b and taking expectations that is with E(YaY
T

b ) − Πa|bE(YbY
T

b ) = 0.

By (1.3) (iii), we know that invb Σ = inva Σ−1, therefore the three types of parameter

matrices can equivalently be expressed in terms of the components Σaa,Σab,Σba,Σbb of

the concentration matrix Σ−1 as

Σaa|b = (Σaa)−1, Πa|b = −(Σaa)−1Σab, Σ−1

bb = Σbb.a = Σbb − Σba(Σaa)−1Σab. (2.2)

Zero constraints on Πa|b have been studied especially in econometrics. The possible

existence of multiple solutions of estimating equations, derived by maximizing the Gaus-

sian likelihood function, in a Zellner model, also called seemingly unrelated regressions

(Zellner, 1962), has more recently been demonstrated by Drton and Richardson (2004).

Zero constraints on concentrations, such as in Σ−1

bb , had been introduced as a tool
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for parsimonious estimation of covariances, called covariance selection (Dempster, 1972).

The Gaussian likelihood function has a unique maximum for all possible sets of zero con-

centrations though for some models, iterative algorithms are needed to find the solution.

Zero constraints on covariances, such as in Πa|b, have been studied by Anderson (1969,

1973), see also Wermuth, Cox and Marchetti (2006).

With ρij.k denoting a partial correlation, the hypotheses for a single zero for pair (i, j)

in Πa|b, Σaa|b, Σ−1

bb differ and are equivalent, respectively, to

ρij.b\j = 0, ρij.b = 0, ρij.b\{i,j} = 0.

In the context of chain graph models, see Wermuth and Cox (2004), Drton (2008), the

notion of multivariate regression and covariance selection is extended to general types of

distributions, in which the correlation coefficient is of no or of little relevance. Then, the

corresponding hypotheses are those of conditional independence, say of Ya and Yb given

Yc, written compactly as a⊥⊥ b|c. The above three hypotheses turn then, respectively, into

i⊥⊥ j|b \ j, i⊥⊥ j|b, i⊥⊥ j|b \ {i, j}

and are captured by graphs, each having a different type of edge. Then, transformation

of matrix representation of graphs mimic the transformations for linear parameter matri-

ces discussed here; see Marchetti and Wermuth (2008) and Wermuth (2008) for partial

inversion and partial closure of paths in graphs.

2.2. Three recursion relations among linear parameter matrices

Let variables be partitioned according to V = (a, γ, δ), again with b = γ∪δ, but a = α,

then which systematic changes are to be expected among the two sets of parameters

obtained with invb Σ = invγδ Σ and invδ Σ? Written explicitly, the two matrices are

invb Σ =









Σaa|b Πa|γ.δ Πa|δ.γ

∼ Σγγ.a Σγδ.a

∼ · Σδδ.a









, invδ Σ =









Σaa|δ Σaγ|δ Πa|δ

· Σγγ|δ Πγ|δ

∼ ∼ Σδδ.aγ









,

where · indicates an entry in a symmetric matrix and ∼ an entry in a matrix that is

symmetric except for the sign.

The matrices Σaa|b, Πa|b are as defined before, but the latter is split into two com-

ponents corresponding to the two explanatory variables Yγ , Yδ, as Πa|b = (Πa|γ.δ Πa|δ.γ)
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Similarly, e.g. Σγδ.a is the component of Σbb.a corresponding to Yγ , Yδ.

By (1.4) (ii), we know invδ Σ = invγ(invb Σ), so that (1.8) applied to this form of

invδ Σ and (1.9) applied to the resulting inverse matrix gives

invδ Σ = (repγ ◦ invb Σ)(repaδ ◦ invδ Σ)

or, written explicitly,

invδ Σ =







Σaa|b Πa|γ.δ Πa|δ.γ

0γa Iγγ 0γδ

−ΠT

a|δ.γ Σδγ.a Σδδ.a













Iaa 0aγ 0aδ

Σγa|δ Σγγ|δ Πγ|δ

0δa 0δγ Iδδ






. (2.3)

The second matrix term in (2.3) results with equations (1.9) (ii) as (repaδ ◦ invb Σ)−1

= repaδ ◦ invδ Σ. This leads to the following equalities that extend those of (2.2)

Σγγ|δ = (Σγγ.a)−1, Πγ|δ = −(Σγγ.a)−1Σγδ.a Πa|γ.δ = Σaγ|δΣ
−1

γγ|δ = −(Σaa)−1Σaγ .

Several known recursion relations are obtained directly with the matrix product (2.3),

one for covariances (Anderson, 1958, section 2.5) in position (a, a)

Σaa|δ = Σaa|γδ + Πa|γ.δΣγa|δ,

one for concentrations (Dempster, 1969, chapter 4) in position (δ, δ)

Σδδ.aγ = Σδδ.a + Σγδ.aΠγ|δ,

and one for linear least-squares regression coefficients (Cochran, 1938) in position (a, δ)

Πa|δ = Πa|δ.γ + Πa|γ.δΠγ|δ. (2.4)

Each of the above three equations relates a marginal to a conditional parameter matrix and

quantifies the modifications that occur by changing the conditioning set. For extensions

of (2.4) to nonlinear relations, in particular to conditions under which no change or at

least no change in the direction of dependence may occur see Cox and Wermuth (2003),

Ma, Xie and Geng (2006), and Cox (2007).
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2.3. Changing to different splits of three types of linear parameter matrices

Let V = (α, β, γ, δ), again with a = α∪β, b = γ∪δ and another split of V be c = β∪γ

and d = α ∪ δ. Then a change in parameters is defined implicitly by invb Σ and invd Σ.

These are with partitions according to (α, β, γ, δ)

invb Σ =













Σαα|b Σαβ|b Πα|γ.δ Πα|δ.γ

· Σββ|b Πβ|γ.δ Πβ|δ.γ

∼ ∼ Σγγ.a Σγδ.a

∼ ∼ · Σδδ.a













, invd Σ =

















Σαα.c ΠT

β|α.δ
ΠT

γ|α.δ
Σαδ.c

∼ Σββ|d Σβγ|d Πβ|δ.α

∼ · Σγγ.d Πγ|δ.α

· ∼ ∼ Σδδ.c

















.

If we let E(Y ) = 0 and

Z = Σ−1Y, (2.5)

then

cov(Z) = E(ZZT) = Σ−1, cov(Y, Z) = E(Y ZT) = I,

so that the covariance matrix of Z is the concentration matrix of Y and components Yi

of Y and Zj of Z are uncorrelated, whenever i 6= j. Equation (2.5) specifies covariance

selection as a linear model if the assumption of a Gaussian distribution of Z is added.

The implicit change defined by invb Σ and invd Σ applied to (2.5) is then by (1.2)

between

inva Σ−1











Zα

Zβ

Yγ

Yδ











=











Yα

Yβ

Zγ

Zδ.











, invc Σ−1











Yα

Zβ

Zγ

Yδ











=











Zα

Yβ

Yγ

Zδ











. (2.6)

The first set of linear models in (2.6) can be written compactly by using the notation of

Section 2.1 as

Ya = Πa|bYb + Σaa|bZa, Σbb.aYb = Zb + ΠT

a|bZa,

and there are the same type of expressions for the second set. Thus, equations (2.6),

typically with added sets of zero constraints, specify linear multivariate regression models

(2.1) for Ya regressed on Yb and for Yc regressed on Yd and marginal concentration matrix

models for Yb and for Yd. The two sets of parameter matrices are therefore

(Σaa|b, Πa|b, Σbb.a), (Σcc|d, Πc|d, Σdd.c).
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The change in the two sets is obtained by the following reversible transformation, since

for a = α ∪ β and c = β ∪ γ and starting from inva Σ−1, one needs to remove α and add

γ, i.e. partially invert on the symmetric difference a△ c = α ∪ γ, see (1.4) (i),(ii), to get

invc Σ−1 = inva△c ◦ inva Σ−1 = (repa△c ◦ inva Σ−1)(repa△d ◦ inva Σ−1)−1. (2.7)

The second equality results with (1.8) after noting that the complement of a△ c is a△ d.

If instead the main interest is in the change of basis from (ZT
a , Y

T

b )T to (Y T
α , Z

T
c , Y

T

δ )T

then this is achieved by equations (1.5), (1.11) to give

(repb Σ−1) Y =

(

Za

Yb

)

, (repc ◦ inva Σ−1)(repb Σ−1) Y = (repa△c Σ−1) Y =







Yα

Zc

Yδ






.

3. Estimation in reduced exponential families

For a full exponential family, we take the log likelihood, after disregarding terms that

do not depend on the unknown parameter, in the form

sTφ−K(φ),

where φ is the canonical parameter and s the sufficient statistic, a realization of the

random variable S. The cumulant generating function of S under the full exponential

family, see for example Cox (2006, chapter 6),

K(φ+ t) −K(φ),

gives the mean or moment parameter, η = ∇K(φ), as the gradient of K(φ) with respect to

φ, i.e. as a vector of first derivatives. The maximum-likelihood estimate of η is η̂ = s. The

gradient of η with respect to φ gives the covariance matrix of S but also the concentration

matrix of the maximum-likelihood estimate φ̂ of the canonical parameter, that is

cov(S) = ∇∇TK(φ) = con(φ̂),

where φ̂ denotes for simplicity both a maximum-likelihood estimate of φ and the corres-

ponding random variable. R. A. Fisher had interpreted −∇∇TK(φ) as the informa-

tion about the canonical parameter contained in a single observation. Our notation
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I = ∇∇TK(φ) reminds of this.

Given η̂ and −Ī, the observed information matrix, i.e. minus I evaluated at s, stu-

dentized statistics for testing that an individual component ηi of η is zero, are obtained

for a large sample size n as η̂i/ Īii. Similarly, since the random variable I
−1(η̂ − η) has

mean zero and covariance matrix I
−1 and hence the same mean and variance as (φ̂− φ),

a studentized statistics for testing that an individual component φi of φ is zero, may for

large n be computed as φ̂i/ (̄I
−1

)ii.

At a maximum of the likelihood function under a full exponential model, also called

often the saturated or the largest covering model, it holds that

Ī
−1
η̂ = z, z = Ī

−1
s, (3.1)

which is in the form of (2.5) so that the results of the previous section apply to it,

especially as used below for (3.4).

We now consider special reduced exponential models, those given by constraints ηc = 0

for some subset of elements of η, writing η = (ηu, ηc). By differentiating the Lagrangian

sTφ−K(φ) − λT ηc.

with respect to φ, the maximum likelihood estimating equations are obtained as

η̂u = su − ÎucÎ
−1

cc sc, η̂c = 0, (3.2)

where Î is the maximum likelihood estimate of I in the reduced model.

Since the solution of maximum-likelihood equations requires in general iterative al-

gorithms and may not be unique, an efficient closed form approximation is useful, see

Cox and Wermuth (1990), Wermuth, Cox and Marchetti (2006), that has been called the

reduced model estimate of ηu. Equation (3.2) is thereby modified into

η̃u = su − ĨucĨ
−1

cc sc, η̃c = 0, (3.3)

where the (u, c) and (c, c) components of Î in (3.2) have been replaced by the corresponding

components of the asymptotic covariance matrix Ĩ of S and do not involve unknown

parameters.

Equations (3.2) and (3.3) result also, by using (2.1), and invu I
−1 = invc I in (3.1) when

the (u, c) and (c, c) components of the matrix I are replaced by Î and by Ĩ, respectively,
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and the (u, u) component is evaluated at ηc = 0. Since the use of reduced model estimates

is recommended only in situations in which the constraints agree well with the observed

data, choosing the full observed matrix, Ī of φ̂, under the saturated model and then

partially inverting it on c, should not give estimates which differ much from those in

equations (3.2) and (3.3). By equations (2.1), (3.1), we then have

η̄u = su − ĪucĪ
−1

cc sc, Ī
cc.u

η̄c = sc − (̄Iuc Ī
−1

cc )T su (3.4)

with η̄u = η̃u, cov(η̄u) = Īuu|c and cov(η̄c) = Īcc. In the case of a poor fit to the hypothesis

ηc = 0, i.e. with some components of η̄c deviating much from zero, equations (2.7) permit

a direct change to the fit under an alternative hypothesis.

Since Īuc Ī
−1

cc can be viewed as the observed coefficient of Sc in linear least-squares

regression of Su on Sc, standard results apply for testing that 0 = IucI
−1

cc given an estimate

of the appropriate covariance matrix. Expansions into relevant interaction parameters lead

to studentized statistics of interaction terms and provide insight into where a possibly poor

fit is located. See Cox and Wermuth (1990) for examples and Lauritzen and Wermuth

(1989) for a discussion of interaction parameters in the case of Conditional-Gaussian (CG)

distributions and of CG-regressions. The latter contain for instance logistic regression as

a special case for which, in general, iterative fitting algorithms are needed to give η̂ even

under the saturated model, see Edwards and Lauritzen (2001).

The closed form estimates of ηu in (3.4) provide a new justification for the reduced

model estimates: they result by partially inverting equations (3.1) with respect to the

subset given by the set of unconstrained parameters. These estimates can also be viewed

as the generalized least squares estimates of Aitken (1935), which turn for instance for

the multinomial distribution to the estimates of Grizzle, Starmer and Koch (1969), see

Cox and Snell (1981, appendix 1), Cox and Wermuth (1990, section 7).

Under some general regularity conditions, equations (3.1) and hence the estimates of

ηu in (3.4) arise in more general settings than for the exponential family from asymptotic

theory, see for example Cox (2006, chapter 6). They are then called sandwich estimates

which had been introduced in a special context by Huber (1964) or, in the context of gen-

eralized linear models, as approximate residual maximum-likelihood (REML) estimates

which had been derived by Patterson and Thompson (1971).

By similar arguments as above, the maximum-likelihood equations with zero con-

straints on canonical parameters are obtained in a form comparable to equations (3.2).

From a theoretical viewpoint, these may be more attractive than zero constraints on
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moment parameters. Firstly, if the constrained canonical parameters exist, then the

maximum-likelihood equations have a unique solution. Secondly, the sets of minimal suf-

ficient statistics are of reduced size. Thirdly, estimates are available in closed form for

Gaussian and for multinomial distributions provided the model is decomposable that is

the associated independence graph can be arranged in a sequence of possibly overlapping

but complete prime graphs, see Cox and Wermuth (1999). For non-decomposable models,

it is in addition often simple to find a not much larger, decomposable covering model.

4. Switching partially between canonical and moment parameters

So far, we have considered only linear mappings even though these were relevant

both for nonlinear model formulations and for correlated data. We shall now illustrate

how changes between moment and canonical parameters in exponential families may be

obtained in terms of partial replication.

A general formulation has been given by Cox (2006), section 6.4, including a short

proof for orthogonality, i.e. uncorrelatedness, of canonical and moment parameters and

of the asymptotic independence of the corresponding maximum-likelihood estimates, see

also Barndorff-Nielsen (1978, section 9.8). These general results have often been proven

for specific members of exponential families, involving the then necessary lengthy, detailed

arguments.

In the notation of the present paper, for the moment parameter η = ∇K(φ), and the

canonical parameter φ with a maximum-likelihood estimate denoted by φ̂, let s = (sa, sb),

represent a split of the sufficient statistic into two column vectors and let φb be replaced

by ηb, the corresponding component of η, to give the mixed parameter vector ψ = (φa, ηb).

Then with

I =
∂ηT

∂φ
, repa I =

∂ψT

∂φ
=

(

Iaa 0ab

Iba Ibb

)

,

one obtains, given φ̂, a maximum-likelihood estimate of ψ under the saturated model as

ψ̂ = repa Ī φ̂, ˆcov(ψ̂) = (repa Ī) Ī
−1

(repa Ī)T =

(

Ī
−1

aa|b 0ab

0ba Ībb

)

. (4.1)

The two random variables corresponding to φ̂a and η̂b are uncorrelated and, hence given

their asymptotic joint Gaussian distribution, they are also asymptotically independent.

One simple example is a joint Gaussian distribution with η̂b the observed mean of Yb

and φ̂a the observed overall concentration matrix of Ya. Another is for two dichotomous
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variables with η̂b the difference in observed frequencies for Yb and φ̂a the observed log-odds

ratios of Ya.

Two complementary mappings may, respectively, be represented by

(

φa

ηb

)

= (repa I)φ,

(

ηa

φb

)

= (repb I)φ

so that for such mappings, we have with the specific choice M = I, as in equations (1.2),

(1.8),
(

ηa

φb

)

= (invaI)

(

φa

ηb

)

, invaI = (repa I)(repb I)−1. (4.2)

One important consequence of (4.2) is that, given (4.1), the change from a split (a, b)

to another split (c, d) with canonical parameters for c and moment parameters for d is

possible by using (2.7) after just replacing Σ−1 by I. Another application, not treated here,

is to constrained chain graph models of different type when the conditional distributions

are members of the exponential family.

For the computation of the observed information matrix in the case of both discrete and

continuous variables, see Dempster (1973), and Cox and Wermuth (1990). Whenever the

population matrix I is replaced by its observed counterpart Ī, the linear relations between

sets of parameters in possibly nonlinear models turns into a linear relation between the

corresponding maximum-likelihood estimates.

Appendix

For a direct matrix proof of equation (1.11), let N = invaM . Further, we denote the

matrix obtained by partial replication with respect to a△c by Q and with respect to b by

R

repa△cM =











Iαα 0αβ 0αγ 0αδ

Mβα Mββ Mβγ Mβδ

0γα 0γβ Iγγ 0γδ

Mδα Mδβ Mδγ Mδδ











, repbM =











Mαα Mαβ Mαγ Mαδ

Mβα Mββ Mβγ Mβδ

0γα 0γβ Iγγ 0γδ

0δα 0δβ 0δγ Iδδ











.

For equation (1.11) to hold, one needs to show that QR−1 = repcN , where

R−1 =

(

M−1
aa −M−1

aa Mab

0ba Ibb

)

=

(

Naa Nab

0ββ Iββ

)

.
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The rows of components α and γ in QR−1 coincide directly with those of repcN . The

rows of component β in repcN result since for Q and R, the rows of β coincide so that

the product QβVR
−1 gives zeros whenever the row index within β for QβV differs from

the column index in R−1 and equals one, otherwise. Finally, for the rows of components

δ we have for QδVR
−1 by the defining equation for partial inversion (1.2)

(MδaM
−1

aa Mδγ −MδaM
−1

aa Maγ Mδδ −MδaM
−1

aa Maδ) = (Nδa Nδb),

which completes the proof.
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