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A joint density of many variables may satisfy a possibly large set
of independence statements, called its independence structure. Often
the structure of interest is representable by a graph that consists of
nodes representing variables and of edges that couple node pairs. We
consider joint densities of this type, generated by a stepwise process
in which all variables and dependences of interest are included. Oth-
erwise, there are no constraints on the type of variables or on the form
of the generating conditional densities. For the joint density that then
results after marginalising and conditioning, we derive what we name
the summary graph. It is seen to capture precisely the independence
structure implied by the generating process, it identifies dependences
which remain undistorted due to direct or indirect confounding and
it alerts to such, possibly severe distortions in other parametriza-
tions. Summary graphs preserve their form after marginalising and
conditioning and they include multivariate regression chain graphs as
special cases. We use operators for matrix representations of graphs
to derive matrix results and translate these into special types of path.

1. Introduction. Graphical Markov models are probability distribu-
tions defined for a dV × 1 random vector variable YV whose component
variables may be discrete or continuous and whose joint density fV satisfies
independence statements captured by an associated graph. One such type
of graph has been introduced as a multivariate regression chain graph by
Cox and Wermuth (1993, 1996), see also Section 3.1 below.

With such graphs, each independence constraint is specified for an ordered
sequence of single or joint response variables so that – in the case of a
joint Gaussian distribution – it implies a zero parameter in a univariate
or multivariate linear regression model. For discrete random variables all
multivariate regression graph models are smooth, see Drton (2008), i.e. they
are curved exponential families, see e.g. Cox (2007), Section 6.8.
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2 N. WERMUTH

This type of chain graph is well suited for modeling developmental pro-
cesses, such as in panel studies which provide longitudinal data on a group
of individuals, termed the ‘panel’, about whom information is collected re-
peatedly, say over years or decades, and in studies of direct and indirect
effects of possible causes on joint responses, see Cox and Wermuth (2004).

A directed acyclic graph is an important special case of a chain graph.
It arises in a stepwise generating process whenever each response variable
is univariate, see also Section 2.1 below. In this paper, we consider both
directed acyclic graphs and multivariate regression chain graphs as repre-
senting independence structures of corresponding data generating processes.
Summary graphs are introduced to detect consequences of such a data gen-
erating process after having marginalized and conditioned on some of the
variables. They include multivariate regression chain graphs in a subclass.

As we shall show, each summary graph may be derived from a directed
acyclic graph in node set V by marginalising over a subset M of V and
conditioning on a disjoint subset C of V . The new node set is N = V \
{M,C} = (u, v) where each node in v and no node in u is in the past of the
conditioning set C. A corresponding factorization of the derived density is,
written in a condensed notation of node sets,

(1.1) fN |C = fu|vCfv|C .

The summary graph corresponding to (1.1) has three types of edge, only
undirected, full edges, i k, within v, only arrows i≺ k starting in v and
pointing to u, but within u possibly undirected, dashed lines, i k and
arrows, i≺ k so that one type of double edge can arise within u: i≺ k.

Summary graphs capture each independence implied by the generating
graph for fN |C and no other independences. They preserve their form after
marginalising and conditioning. These two important properties are shared
by two other types of graph, the MC-graphs of Koster (2002) and the an-
cestral graphs of Richardson and Spirtes (2002). In fact, the independence
structures captured by an MC-graph, a summary graph and a maximal an-
cestral graph coincide whenever the same sets of marginalizing nodes M and
of conditioning nodes C are given for a generating directed acyclic graph.
This follows from their so-called global Markov properties.

In special cases, the three types of graph may be identical, but in general,
the MC-graph cannot be recovered from the summary graph nor the sum-
mary graph from the maximal ancestral graph. By contrast, algorithms are
available to obtain an independence equivalent summary graph from a MC-
graph, Sadeghi (2008), and an independence equivalent maximal ancestral
graph from a summary graph, see Section 3.2 below.
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SUMMARY GRAPHS 3

MC-graphs contain up to four types of edge coupling a given variable pair
so that even for Gaussian distributions, they may correspond frequently to
under-identified models, i.e. contain parameters that cannot be derived from
the set of sufficient statistics. By contrast, every Gaussian maximal ancestral
graph model contains three types of edge, never a double edge and deleting
an arrow is equivalent to introducing an additional independence constraint
so that parameters associated with i≺ k measure a conditional dependence
of Yi on Yk in fu|vC .

This dependence may often differ qualitatively from the generating de-
pendence of Yi on Yk in fV , i.e. it may change the sign and remain a strong
dependence. If this remains undetected, one would come to qualitatively
wrong conclusions when interpreting the parameters measuring conditional
dependence of Yi on Yk in fu|vC . A summary graph provides the tool for
detecting whether and for which of the generating dependences i≺ k, such
distortions can occur due to direct or indirect confounding, see Wermuth
and Cox (2008). We illustrate this here with two small examples where
marginalising is represented by a crossed out node, 6 6◦.

For a joint Gaussian distribution, the distortions are compactly described
in terms of regression coefficients for variables Yi standardized to have mean
zero and variance one. For Figure 1a), the generating equations be

(1.2) Y1 = αY2 + δ Y4 + ε1, Y2 = λY3 + γY4 + ε2, Y3 = ε3, Y4 = ε4,

Fig 1. a) Generating graph for Gaussion relations in standardized variables, leading for
variable Y4 unobserved to b) the summary graph and c) the maximal ancestral graph for
the observed variables; with the generating dependences as attached to re the arrows in a),
implied are as simple correlations r12 = α + γδ, r13 = αλ, r23 = λ and θ = γδ/(1 − λ2).

(a) (b) (c)
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With residuals εi assumed to have zero means and to be uncorrelated,
the equations of the summary graph model that result from (1.2) for Y4

unobserved, have one pair of correlated residuals

Y1 = αY2 + η1, Y2 = λY3 + η2, Y3 = η3,

η1 = δ Y4 + ε1, η2 = γY4 + ε2, η3 = ε3, cov(η1, η2) = γδ.

The equation parameters to the Gaussian maximal ancestral graph associ-
ated with Figure 1c) are instead defined via

E (Y1|Y2 = y2, Y3 = y3), E (Y2|Y3 = y3),
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4 N. WERMUTH

in this case, with all residuals in the recursive equations being uncorrelated.
The generating dependence α is retained in the summary graph model.

The parameter for the dependence of Y1 on Y2 in the maximal ancestral
graph model, expressed in terms of the generating parameters of Figure 1a),
is α+ γδ/(1−λ2). The summary graph is here a graphical representation of
the simplest type of an instrumental variable model, used in econometrics,
see Sargan (1958), to separate a direct confounding effect, here γδ, from the
dependence of interest, here α.

In general, the possible distortion, due to direct confounding occurring in
parameters for dependence in maximal ancestral graph models, is recognized
in the corresponding summary graph by a double edge i≺ k, see Wermuth

and Cox (2008).
In the following second example for Gaussian standardized variables, there

is no direct confounding of the generating dependence α but there is indirect
confounding of α. The coefficient attached to 2≺ 3 is the simple correla-
tion r23. To simplify the figures, r23 is not displayed in the three graphs
of Figure 2. The generating graph in Figure 2a) is directed and acyclic so
that the corresponding linear equations, defined implicitly by Figures 2a)
have uncorrelated residuals. The summary graph in Figure 2b) shows with
a dashed line an induced association for pair (1, 3), due to marginalising over
Y5.

Fig 2. a) Generating graph for linear relations in standardized variables, leading for vari-
able Y5 unobserved to b) the summary graph and c) the maximal ancestral graph for the
observed variables; with the generating dependences as attached to the arrows in the a),
implied are θ = γδ/(1 − τ 2), generating dependence λ undistorted in both models to the
graphs b), c); generating dependence α preserved with b), distorted with c).
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The equations of the summary graph model, resulting for Y5 unobserved,
have precisely one pair of correlated residuals, cov(η1, η3) = γδ and

Y1 = λY2 + αY4 + η1, Y2 = r23Y3 + η2, Y3 = τY4 + η3, Y4 = η4.

The summary graph model preserves both λ and α as equation parameters.
In the corresponding maximal ancestral graph model, represented by the

graph in Figure 2c), the equation parameters associated with arrows present
in the graph are unconstrained linear least squares regression coefficients, see
(2.19). These coefficients, expressed in terms of the generating parameters of
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SUMMARY GRAPHS 5

Figure 2a), are shown next to the arrows in Figure 2c). Thus, the generating
coefficient λ is preserved, while α is changed into α−τθ, with θ = γδ/(1−τ2).

For generating graphs that are directed and acyclic, one can in general
decide whether a distortion of a generating dependence, due to indirect
confounding, may or may not occur in the parameters measuring the de-
pendence in a maximal ancestral graph model by using graphical criteria for
the corresponding summary graph, see Wermuth and Cox (2008). This paper
extends such results to generating graphs that are multivariate regression
chain graphs, see Section 5 below.

With some preliminary results in Section 2, we define in Section 3 a sum-
mary graph and some summary graph models. In Section 4, we obtain a
summary graph from a summary graph in a larger node set. Our approach is
based on matrix representations of graphs and on properties of matrix oper-
ators, see Wermuth, Wiedenbeck and Cox (2006), Wiedenbeck and Wermuth
(2009). This method has been used by Marchetti and Wermuth (2009) to
prove equivalence of different separation criteria for directed acyclic graphs.
It is used here in Section 5 to interpret the matrix results in terms of paths.

2. Notation and preliminary results.

2.1. Triangular systems of densities and the edge matrix of a parent graph.
For the stepwise process of generating the joint density fV of a vector random
variable of dimension dV × 1 in terms of univariate conditional densities
fi|i+1,...,dV

, we start with the marginal density fdV
of YdV

, proceed with the
conditional density of YdV −1 given YdV

, up to Y1 given Y2, . . . , YdV
.

A node k is named a parent node if an arrow starts at k and points to
the offspring node i; the sets of such nodes are pari ⊂ {i + 1, . . . , dV }. We
let fi|pari

= fi whenever pari is empty, assume that each of the univariate
densities is non-degenerate and that

(i) fi|i+1,...,dV
= fi|pari

for each i < d ,

(ii) fi|pari
6= fi|pari\l

for each l ∈ pari ,(2.1)

(iii) specification of fi|i+1,...,dV
not dependent on fi+1,...,dV

.

Definition 1. Any density fV , obtained by this stepwise process and
satisfying (2.1) (i) to (iii), is said to be generated over a parent graph.

Densities fi|i+1,...,dV
obtained in this way show direct, non-vanishing de-

pendences of variable Yi precisely on the variables corresponding to parent
nodes and on no others. Furthermore, the type and form of the conditional
density of a variable generated in the future does not depend on the type and
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6 N. WERMUTH

form of joint densities generated in the past. We now discuss consequences
of each of the conditions in (2.1) in more detail since some subtle issues are
involved.

Using node sets and the notation due to Dawid (1979), we write a⊥⊥ b|c
for Ya independent of Yb given Yc, where a, b, c are disjoint subsets of N .
Condition (2.1) (i) is, for the above generating process of fV , equivalently
expressed in terms of conditional independence constraints

(2.2) fi|i+1,...,dV
= fi|pari

⇐⇒ i⊥⊥ {i+ 1, . . . , dV } \ k|pari for k /∈ pari .

With the sets of independence statements in (2.2), a graph in the fully
ordered node set V = (1, 2, . . . , dV ) is defined to have an ik-arrow, i.e. an
edge that starts at node k > i and points to node i, if and only if k is a parent
node of i. We name it the parent graph, GVpar. It is acyclic by construction.

The independence structure captured by GVpar contains the statements
(2.2) defining the graph and all those that can be derived from them, see
e.g. Lemma 3 below. For Gaussian distributions generated over a given par-
ent graph, there exist subfamilies which entail the independence structure
captured by GVpar but do not satisfy any additional constraints, see Geiger
and Pearl (1993). We call them the relevant family of Gaussian distributions.

It is a consequence of condition (2.1)(i), that the joint density fV factor-
izes as

(2.3) fV =
∏dV

i=1fi|pari
.

Many authors start with a given set of local independence statements (2.2),
which define a directed acyclic graph. They then consider joint distributions
generated over directed acyclic graphs that are densities fV that factorize
as in (2.3). The class of distributions considered here is smaller, because
the generating process permits only non-degenerate densities and because
of conditions (2.1) (ii), (iii).

Equation (ii) is a minimality condition. It excludes densities with any set
of parent nodes smaller than pari so that consequences of a specific model or
of a specific family of models can be studied. Densities generated to satisfy
(2.1) (i) and (ii) have been discussed as research hypotheses formulated in a
given substantive context; see Wermuth and Lauritzen (1990). This notion is
especially helpful whenever only dependences are to be considered that are
strong enough to be of substantive interest while weak dependences are to
be translated into conditional independence statements within the set (2.2).

Conditions (2.1) (ii) and (iii) together assure that a particular type of
parametric cancellation does not occur since there is a unique independence
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SUMMARY GRAPHS 7

statement associated with a missing edge for pair {i, j} and edges present for
both {i, k} and {j, k}, either including or excluding the common neighbor
node k. The contrary arises for an arbitrary conditioning set b, see Wermuth
and Cox (2004), Section 7, if and only if

(2.4)

∫

fik|bfjk|b/fk|b dyk = fi|bfj|b,

a constraint connected to incomplete families of densities, i.e. those permit-
ting zero expectation of a function that is not itself zero.

For any specific density generated over a parent graph, some types of
parametric cancellations other than (2.4) may be still present. For instance,
in a saturated, i.e. unconstrained, Gaussian distribution of three variables
generated over a parent graph, it may hold that 1 ⊥⊥ 2 even though Y1 is
dependent on Y2 given Y3. Often, such additional independences are judged
to be of no substantive interest and avoidable in the corresponding family
of distributions under study. This justifies the approach taken here, i.e. to
study consequences of the independence structure captured by GVpar, which
in turn is defined via the above stepwise generating process.

Each graph that captures an independence structure has at least one
binary matrix representations and a separate binary matrix for each type
of edge. The edge matrix A of a parent graph is a dV × dV unit upper-
triangular matrix, i.e. a matrix with ones along the diagonal and with zeros
in the lower triangular part, such that for i < k, element Aik satisfies

(2.5) Aik = 1 if and only if i≺ k in GVpar.

Because of the triangular form of the edge matrix A of GVpar, a density fV
generated over a given parent graph, has also been called a triangular system
of densities.

2.2. Some more terminology for graphs. A graph is defined by its node
set and its edge sets, or equivalently, by its edge matrix components, one for
each type of edge. If an edge is present in the graph for nodes i and k, then
node pair {i, k} is said to be coupled; otherwise it is said to be uncoupled.

An ik-path connects the path endpoint nodes i and k by a sequence of
edges coupling distinct nodes. Nodes other than the endpoint nodes are the
inner nodes of the path. If all inner nodes in a path are in set a, then the
path is called an a-line path. An edge is regarded as a path without inner
nodes. For a graph in node set N and a ⊂ N , the subgraph induced by a is
obtained by removing all nodes and edges outside a.

Both a graph and a path are called directed if all its edges are arrows.
If in a directed path an arrow starts at node k and all arrows of the path
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8 N. WERMUTH

point in the direction of node i, then node k is an ancestor of i, node i a
descendant of k, and the ik-path is called a descendant-ancestor path.

2.3. Linear triangular systems. For a parent graph with edge matrix
(2.5), a linear triangular system is given by a set of recursive linear equations
for a mean-centred random vector variable Y of dimension dV × 1 having
cov(Y ) = Σ, i.e. by

(2.6) AY = ε,

where A is a real-valued dV × dV unit upper-triangular matrix, given by

Aik = 0 ⇐⇒ Aik = 0, Elin(Yi|Yi+1 = yi+1, . . . , Yd = yd) = −Ai,pari
ypari

,

and Elin(·) denotes a linear predictor, see e.g. (2.19). The random vector ε of
residuals has zero mean and cov(ε) = ∆, a diagonal matrix with ∆ii > 0. A
Gaussian triangular system is generated if the distribution of each residual
εi is Gaussian.

The covariance and concentration matrix of Y are, respectively,

(2.7) Σ = A−1∆(A−1)T, Σ−1 = AT∆−1A.

Thus, the linear independences that constrain the equations (2.6) are defined
by zeros in the triangular decomposition, (A,∆−1), of the concentration
matrix. The edge matrix A of GVpar coincides for linear triangular systems

generated over GVpar with the indicator matrix of zeros in A, i.e. A = In[A],
where In[·] changes every nonzero entry of a matrix into a one. For the
relevant family of Gaussian distribution, the list of pairs with only non-
vanishing dependences are given by the set of ij-ones in A for i < j.

It is a property only of joint Gaussian distributions of Y that probabilistic
and linear independence statements coincide, but for every density generated
over GVpar, probabilistic independence statements combine just like linear
independences, see Lemma 1 of Marchetti and Wermuth (2009). Therefore,
transformations of the edge matrix A, that mimic linear transformations of
A, are useful for studying consequences of parent graphs in general.

Edge matrices expressed in terms of components of set of given generating
edge matrices are called induced. Examples of edge matrices induced by A
are the overall covariance and the overall concentration graph, see Wermuth
and Cox (2004). These edge matrices are, respectively,

SV V = In[A−(A−)T], SV V = In[ATA],

where A− = A but A− having an additional one compared to A in position
(i, k) if and only if k is an ancestor but not a parent of i in GVpar.
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SUMMARY GRAPHS 9

Both matrices are symmetric and mimic the expressions for the covariance
and the concentration matrix implied by a linear triangular system, given
in (2.7). For triangular systems of densities, a zero in position (i, k) of SV V
and of SV V means, respectively, that

i⊥⊥ k, i⊥⊥ k|V \ {i, k}

is implied for every density generated over a given parent graph that has edge
matrix A. More complex induced edge matrices are derived in the following.

2.4. Partial inversion and partial closure. Let F be a square matrix of
dimension dV with principal submatrices that are all invertible and F be an
associated binary edge matrix in node set V = {1, . . . , dV }.

The operator called partial closure, applied to edge set V , transforms F
into zerV F = F−, the edge matrix of a graph in which all paths of special
type are closed, see here Section 5. The operator called partial inversion,
applied to the index set V transforms F into its inverse, invV F = F−1.
When applying the operators to an arbitrary subset a of V , the just described
overall operations are modified into closing only a-line paths and to inverting
matrices only partially; see Wermuth, Wiedenbeck and Cox (2006), Section
2, for proofs and discussions of the results in equations (2.11) to (2.14) below.

Let F and F be partitioned in the order (a, b). The effect of applying
partial closure (2.9) to rows and columns a of the edge matrix A of a parent
graph, i.e. to rows and columns of A, is to keep all arrows present and to add
arrows by turning every a-line ancestor into a parent. By applying partial
inversion to a of F , the linear equations FY = η, say, are modified into

(2.8) invaF

(

ηa
Yb

)

=

(

Ya
ηb

)

.

Definition 2. Matrix formulations of invaF , zeraF . In explicit form

(2.9) invaF =

(

F−1
aa −F−1

aa Fab

FbaF
−1
aa Fbb.a

)

, zeraF = In[

(

F−
aa F−

aaFab

FbaF
−
aa Fbb.a

)

],

Fbb.a = Fbb − FbaF
−1
aa Fab, Fbb.a = In[Fbb + FbaF

−
aaFab],

and

(2.10) F−
aa = In[(n Iaa −Faa)

−1],

where n−1 = da denotes the dimension of Faa and Iaa is an identity matrix
of dimension da.
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10 N. WERMUTH

The inverse in (2.10) has a zero entry if and only if there is a structural
zero in F−1

aa , i.e. a zero that is preserved for all permissible values in Faa.
For instance with Faa = A of (2.6), the permissible values are those that
lead to a positive definite concentration matrix AT∆−1A.

Note that we have zeraF = In[invaF ] if and only if there is no zero in
invaF caused by parametric cancellation. Otherwise, there may be additional
zeros in In[invaF ] compared to the edge matrix zeraF .

It follows directly from (2.8) that F partially inverted on a coincides with
F−1 partially inverted on V \ a

(2.11) invaF = invV \aF
−1 .

Some further properties of the operators are needed here later. Both opera-
tors are commutative so that, for V = {a, b, c, d},

(2.12) inva invbF = invb invaF, zera zerbF = zerb zeraF ,

and both operations can be exchanged with selecting a submatrix so that,
for J = {a, b},

(2.13) [invaF ]J,J = invaFJJ , [zeraF ]J,J = zeraFJJ ,

but partial inversion can be undone while partial closure cannot

(2.14) invab invbcF = invacF, zerab zer bcF = zerabcF .

Example 1. Partial inversion applied to Σ and to Σ−1. The symmetric
covariance matrix Σ and the concentration matrix Σ−1 of Y are written,
partitioned according to (a, b), as

Σ =

(

Σaa Σab

. Σbb

)

, Σ−1 =

(

Σaa Σab

. Σbb

)

,

where the . notation indicates the symmetric entry. Partial inversion of Σ−1

on a gives Πa|b, the population coefficient matrix of Yb in linear least squares
regression of Ya on Yb, defined by

E lin(Ya|Yb = yb) = Πa|byb,

the covariance matrix Σaa|b of Ya|b = Ya − Πa|bYb and the marginal concen-

tration matrix Σbb.a of Yb

(2.15) invaΣ
−1 =

(

Σaa|b Πa|b

∼ Σbb.a

)

,
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SUMMARY GRAPHS 11

where the ∼ notation denotes entries in a matrix which is symmetric except
for the sign. Property (2.11), invaΣ

−1 = invbΣ, leads at once to several well
known dual expressions for the three submatrices in (2.15), by writing the
two partial inversions explicitly

(

(Σaa)−1 −(Σaa)−1Σab

∼ Σbb − Σba(Σaa)−1Σab

)

=

(

Σaa − ΣabΣ
−1
bb Σba ΣabΣ

−1
bb

∼ Σ−1
bb

)

.

Variants of (Σaa)−1 = Σaa|b and of Σ−1
bb = Σbb.a will be used repeatedly.

2.5. The operators applied to block-triangular systems. For a system of
linear equations, in a mean-centred vector variable Y having covariance ma-
trix Σ, that is block-triangular in two ordered blocks (a, b) with

(2.16) HY = η, with Hba = 0, cov(η) = W positive definite,

the concentration matrix HTW−1H can be partially inverted by combining
partially inverted components of H and W−1.

For this result, obtained by direct computation or by use of Theorem 1
in Wermuth and Cox (2004), we let

K = invaH, Q = invbW.

Lemma 1. Partially inverted matrix product HTW−1H for H block-
triangular in (a, b).

(2.17)

inva(H
TW−1H)=

(

KaaQaaK
T
aa Kab +KaaQabKbb

∼ HT
bbQbbHbb

)

=

(

Σaa|b Πa|b

∼ Σ−1
bb

)

.

To obtain the edge matrix of the three components of invaΣ
−1 induced by

a parent graph, an additional argument is needed. We assume that the edge
matrices for H, W , are given by H, W and let K = zeraH and Q = zerbW.

Lemma 2. The edge matrix components induced for invaΣ
−1 by the

edge matrices H,W of the block-triangular system (2.16). Structural zeros
of invaΣ

−1 are given by zeros in

(2.18)

(

Saa|b Pa|b

. Sbb.a

)

= In[

(

KaaQaaK
T
aa Kab + KaaQabKbb

. HT
bbQbbHbb

)

],

where the induced edge matrix components are, respectively,

Saa|b, Pa|b, Sbb.a for Σaa|b, Πa|b, Σbb.a = Σ−1
bb .
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12 N. WERMUTH

Proof. The submatrices of H,K and Q in invaΣ
−1 = HTW−1H of

Lemma 1 are expressed without any self-canceling matrix operations such as
a matrix multiplied by its inverse. When these are replaced by submatrices of
the non-negative matrices H,K and Q, which have the appropriate structural
zeros, then just the structural zeros in invaΣ

−1 are preserved by multiplying,
summing and applying the indicator function.

The graphs with edge matrices Saa|b and Sbb.a have been named the condi-
tional covariance graph of Ya given Yb and the marginal concentration graph
of Yb (Wermuth and Cox, 1998) in which a missing ik-edge represents, re-
spectively,

i⊥⊥ k|b and i⊥⊥ k|b \ {i, k}.

The rectangular edge matrix Pa|b represents conditional dependence of Yi,
i ∈ a, on Yj, j ∈ b, given Yb\j so that a missing ik-edge means i⊥⊥ k|b \ k.

2.6. Generating constrained linear multivariate regressions. Next, we de-
scribe two special ways of generating equations in Ya|b and Yb and associated
edge matrix results that will be used below for interpreting graphs.

2.6.1. Some notation for multivariate regressions and some known results.
The equations for a linear multivariate regression model in mean-centred
variables with covariance matrix Σ and regressing Ya on Yb, may be written
as

(2.19) Ya = Πa|bYb + ǫa, with E(ǫa) = 0, cov(ǫa, Yb) = 0.

For residuals ǫa uncorrelated with the regressor variables Yb, taking expec-
tations in the equation given by YaY

T
b defines Πa|b via Σab = Πa|bΣbb and

Σaa|b = cov(Ya − Πa|bYb) = cov(ǫa).
We write the population matrix of the least-squares regression coefficients

Πa|b partitioned according to (β, γ) with β ⊂ b and γ = b \ β as

Πa|b =
(

Πa|β.γ Πa|γ.β

)

,

and note that, for example, Πa|β.γ is both the coefficient matrix of Yβ in
model (2.19) and the coefficient matrix of Yβ|γ in linear least-squares re-
gression of Ya|γ on Yβ|γ that is after both Ya and Yβ are adjusted for linear
dependence on Yγ , i.e. in

(2.20) Ya|γ = Πa|β.γYβ|γ + ǫa, with E(ǫa) = 0, cov(ǫa, Yβ|γ) = 0,

with residuals ǫa unchanged compared to model (2.19).
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This may be proven using Example 1. By moving from invγΣ to invbΣ =
invβ(invγΣ), first the parameter matrices for both of the equations Ya|γ =
Ya − Πa|γYγ and Yβ|γ = Yβ − Πβ|γYγ are obtained, then we get for Ya|b in

the second step Πa|β.γ = Σaβ|γΣ
−1
ββ|γ and

(2.21) Πa|γ.β = Πa|γ − Πa|β.γΠβ|γ .

Equation (2.21) is known as the matrix form of Cochran’s recursive rela-
tion among regression coefficients. It leads, for instance, to conditions under
which a marginal and a partial regression coefficient matrix coincide. Given
edge matrices Pa|b and Pa|γ induced by a parent graph, equation (2.21)
implies, for all distributions generated over a parent graph

(2.22) Pa|γ.β = Pa|γ if Pa|β.γ = 0.

2.6.2. Two ways of generating Ya|b and constraints on Πa|b. Suppose a
linear system of equations is block-triangular in N = (a, b), then it is also
orthogonal in (a, b) if to the equations (2.16), the condition cov(ηa, ηb) = 0
is added so that 0 = Wab = WT

ba.
After partial inversion on a, the linear multivariate regression model (2.19)

with

(2.23) Πa|b = −H−1
aa (Haβ Haγ),

results, see equations (2.17). In econometrics, such models have been named
reduced form equations. An analogue of Cochran’s equation (2.21) is then

(2.24) −HaaΠa|γ = Haγ +HaβΠβ|γ .

For b split as before and α ⊂ a and δ = a \ α, the matrix identity

Πα|β.γ = [Πa|b]α,β = −H−1
αα.δHαβ.δ

gives the coefficient of Yβ|γ in linear least-squares regression of Yα|γ on Yβ|γ .
Thus for such order-compatible splits, in which α ⊂ a and β ⊂ b, all densities
generated over parent graphs and having induced edge matrices H and W
such that Hba = Wba = 0 and Wab = 0, satisfy

(2.25) α⊥⊥ β|γ ⇐⇒ Pα|β.γ = 0 ⇐⇒ Hαβ.δ = 0.

When we start instead with a mean-centred random vector Y and with
zero constraints on equation parameters in the following concentration equa-
tions,

(2.26) Σ−1Y = ζ with cov(Y ) = Σ,
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14 N. WERMUTH

then the equation parameters coincide with the residual covariance matrix,
cov(ζ) = Σ−1.

The relations after partial inversion on a are

invaΣ
−1

(

ζa
Yb

)

=

(

Ya
ζb

)

.

These give constrained orthogonal equations in Ya|b and in Yb, with Πa|b =

−(Σaa)−1Σab, and

(2.27) Ya = Πa|bYb + Σaa|bζa, Σbb.aYb = ζb|a, ζb|a = ζb + ΠT
a|bζa,

where cov(ζa) = Σaa, cov(ζb|a) = Σbb.a = Σ−1
bb and cov(ζa, ζb|a) = 0.

Thus, for densities in which the independence structure is captured by
the concentration graph of YV , it holds for V = {α, β, γ, δ} that

(2.28) α⊥⊥ β|γ ⇐⇒ Sαβ.δ = 0.

3. Summary graphs and associated models. As we shall see, sum-
mary graphs have local and global Markov properties and Gaussian sum-
mary graph models are special block-triangular equations (2.16).

3.1 Definitions and properties of Gaussian summary graph models. As
is to be described in more detail in Sections 3.3 and 3.4, starting from a
Gaussian triangular system (2.6) for YV with V = {N,C,M}, conditioning
on YC and marginalising over YM defines remaining variables Yv in the past
of YC , remaining variables Yu not in the past of YC and equations in YN |C

for N = (u, v) of the following form.

Definition 3. Gaussian summary graph model. A Gaussian summary
graph model is given by a system of equations HYN |C = η, that is block-
triangular and orthogonal in (u, v) with

(3.1)

(

Huu Huv

0 Σ−1
vv|C

)(

Yu|C

Yv|C

)

=

(

ηu

ζv

)

, cov

(

ηu

ζv

)

=

(

Wuu 0

. Σ−1
vv|C

)

,

where Huu is unit upper-triangular, Wuu and Σvv|C are symmetric, and each
of ηu and ζv have non-degenerate Gaussian distributions. Zero constraints
on Wuu, Σ−1

vv|C and additional zero constraints on H are captured by the

graph GNsum, defined below.
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Equation (3.1) implies for Yu|C given Yv|C a constrained multivariate,
Gaussian regression model (2.19) and for Yv|C a Gaussian concentration
graph model. The latter had been introduced under the name of covariance
selection by Dempster (1972). The residuals of Yu|C and Yv|C are uncorre-
lated so that by (2.23), Πu|v.C = −H−1

uuHuv and by (2.20), the equations in
Yu|C of (3.1) can also be written as

(3.2) HuuYu|vC = ηu with Wuu = HuuΣuu|vCH
T
uu.

These specify what in econometrics has been called a recursive system of
regressions in endogenous variables Yu|vC . The equation parameter matrix
Huu is, as in the linear triangular system (2.6), of unit upper-triangular
form, but by contrast to a triangular system, the residuals ηu are in general
correlated.

Identification is an issue for the equation parameters Huu in (3.2), but it
is assured under the general condition that for any pair (i, k) within u either
Hik = 0 orWik = 0, see e.g. Brito and Pearl (2002). This shows in a summary
by the absence of any double edge. The fit of any under-identified model
(3.1) to data may be judged with the help of the independence equivalent,
maximal ancestral graph model obtained in equation (3.6) below.

Gaussian multivariate regression chains arise as an important special case
of (3.2). A partitioning of the node set (1, 2, . . . , du) into chain components,
gj , defines with the ordered sequence N \ v = (g1, . . . , gj , . . . , gJ ) and sets
rj = {gj+1, ..., gJ} a block-recursive factorization of the joint conditional
density fu|vC as

(3.3) fu|vC =
∏J
j=1fgj|rj ,

and Gaussian multivariate regressions (2.19) of Ygj
on Yrj . A zero ik-element

in the residual covariance matrix and in the regression coefficient matrix,
means respectively,

(3.4) i⊥⊥ k|rj for i, k ∈ gj , i⊥⊥ k|rj \ {k} for i ∈ gj and k ∈ rj .

3.2 Summary graphs and their local Markov properties. We now present
graphs denoted by GNsum. We name them summary graphs since they will
be shown to summarize precisely those independences implied by a parent
graph GVpar for YN conditioned on YC , where N = V \ {C,M}.

Definition 4. Summary graph. A summary graph, GNsum, has node set
N and the following edge matrix components, where each component is a
binary matrix and each square matrix has ones along the diagonal,

Huu, upper-triangular, and Huv, rectangular, both for arrows pointing to u,
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16 N. WERMUTH

(3.5) Wuu, symmetric, for dashed lines within u,

Svv.uM , symmetric, for full lines within v.

For i < k, there is an ik-zero in one of the edge matrix components if and

only if the corresponding edge is missing in GNsum. For a Gaussian block-
triangular system (3.1), the edge matrix components Huu,Huv,Wuu, and
Svv.uM of a summary graph are for the parameter matrices Huu,Huv,Wuu,
and Σvv.uM = Σ−1

vv|C .

To derive local Markov properties of GNsum, we note first that the i′th
equation in (3.2) is modified by an orthogonalising step into a linear least-
squares regression equation of Yi|vC on Yd|vC , when d is the set of ancestor
nodes of i in u. This gives via least-squares regression of residual ηi on ηd

(3.6) −Πi|d.Cv = Hid −WidW
−1
dd Hdd and Pi|d.Cv = In[Hid + WidW

−
ddHdd].

Thus, for an uncoupled node pair (i, k) with k ∈ d, no independence state-
ment is implied for Yi, Yk if WidW

−
ddHdk 6= 0. Also, WidW

−1
dd Hdd quantifies

the distortion introduced in the least-squares regression coefficient vector
Πi|d.Cv for the vector of equation parameters Hid. The former are the equa-
tion parameters in Gaussian maximal ancestral graph models.

Proposition 1. Local Markov properties of summary graphs. Let β
denote subsets of N uncoupled to node i in GNsum of (3.5) which has edge
matrix components HuN , Wuu and Svv.uM . Let further d contain all ancestor
nodes of i in u, then the local Markov properties of GNsum are
(i) for i ∈ u and β ⊂ d: i⊥⊥ β|Cvd \ β ⇐⇒ Hiβ = 0 and WidW

−
ddHdβ = 0,

(ii) for i ∈ u and β ⊂ v: i⊥⊥ β|Cv \ β ⇐⇒ Hiβ.d = 0,
(iii) for i ∈ v and β ⊂ v: i⊥⊥ β|Cv \ {i, β} ⇐⇒ [Svv.uM ]i,β = 0.

Proof. The edge matrix condition (i) results with equations (3.6), (ii)
with (2.25) and (iii) with (2.28).

The following figure shows special cases of summary graphs, noting that
C and one of u, v may be empty sets.

It also shows that summary graphs cover all six possible combinations of
independence constraints on two non-overlapping pairs of the four variables
X,Z,U, Y . Substantive research examples with well-fitting data to linear
models of Figure 3 have been given by Cox and Wermuth (1993) to the
concentration graph in a), the parent graph in b), the graph of seemingly
unrelated regressions in d) and the covariance graph in f).
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SUMMARY GRAPHS 17

Fig 3. Important special cases. Two non-overlapping pairs are constrained: X, Y and Z, U ;
with X ⊥⊥ Y |ZU in a),b),c), with X ⊥⊥ Y |U in d),e), and with X ⊥⊥ Y in e); with Z ⊥⊥ U in
c),e), f), with Z ⊥⊥ U |Y in b),d) and with Z ⊥⊥ U |XY in a).

i

a) b) c) f)e)d)

X

YZ

U

3.3 Generating GNsum from GVpar. Starting from a Gauusian triangular

system in (2.6) with parent graph GVpar, the choice of any conditioning set C
leads to an ordered split V = (O,R), where we think of R = {C,F} as the
nodes to the right of C, see equation (3.7). Every node in F is an ancestor
of a node in C, so that we call F the set of foster nodes of C. No node in
O has a descendant in R so that O is said to contain the outsiders of R.
Equations, orthogonal and block-triangular in (O,R), are

(3.7)

(

AOO AOR
0 ARR

)(

YO
YR

)

=

(

εO

εR

)

.

After conditioning on YC and marginalising over YM , the resulting system
preserves block-triangularity and orthogonality with u ⊂ O, v ⊂ F .

Proposition 2. Equations and graph obtained after conditioning on
YC , then marginalising over YM . Given a Gaussian triangular system (2.6)
generated over GVpar, conditioning set C, marginalising set M = (p, q) with

p = O \ u, q = F \ v,

and parameter and edge matrices, arranged in the appropriate order,

D = invp Ã, D = zerpÃ,

ΣFF.O = [AT
RR∆−1

RRARR]F,F , SFF.O = In[AT
RRARR]F,F ,

invqΣ
FF.O =

(

Σqq|vC Πq|v.C

∼ Σ−1
vv.C

)

, zerq S
FF.O =

(

Sqq|vC Pq|v.C

. Svv.qO

)

.

After first conditioning on YC and removing YC , then marginalising over
YM and removing YM , the induced linear equations (3.1) in YN |C have

(3.8) Huu = Duu, Huv = Duv +DuqΠq|v.C ,

(3.9) Wuu = (∆uu +Dup∆ppD
T
up) + (DuqΣqq|vCD

T
uq);
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18 N. WERMUTH

the induced edge matrix components of the summary graph GNsum are

(3.10) Huu = Duu, Huv = In[Duv + DuqPq|v.C ],

(3.11) Wuu = In[(Iuu + DupD
T
up) + (DuqSqq|vCD

T
uq)].

Proof. From the equations (3.7) in Y, the equations in YO|C and YF |C

AOOYO|C +AOFYF |C = εO, Σ−1
FF |CYF |C = ζF , ζR = AT

RR∆−1
RRεR ,

are obtained by using (2.20), (2.26) and (2.27). Then, equations (3.1) in Yu|C ,
Yv|C result, with parameters given in (3.8), (3.9), after partial inversion on
M = (p, q) and deleting the equations in YM |C . Thereby is p ⊂ O, q ⊂ F
and

invM

(

ÃOO ÃOF

0 Σ̃−1
FF |C

)











εp
Yu|C
ζ ′q
Yv|C











=











Yp|C
εu
Yq|C
ζ ′v











.

The uncorrelated residuals are

ηu = (εu −Dupεp) −DuqΣqq|vCζq, ζv = ζ ′v + ΠT
q|v.Cζ

′
q.

After replacing the defining matrix components in (3.8), (3.9) by their corre-
sponding edge matrix components and applying the indicator function, the
induced edge matrix components (3.10), (3.11) of GNsum are obtained.

It is instructive to also check the relations of the parameter matrices in
(3.8), (3.9) to multivariate regression coefficients and to conditional covari-
ance matrices. With Πu|R = −D−1

uu (Duv , Duq, DuC), equation (2.24) gives

−DuuΠu|v.C = Duv +DuqΠq|v.C , Duu(Yu|C − Πu|v.CYv|C) = DuuYu|vC ,

and for Wuu defined in (3.2) and specialized in (3.9)

D−1
uuWuuD

−T
uu = Σuu|vqC + Πu|q.vCΣqq|vCΠT

u|q.vC = Σuu|vC ,

so that the required relations are obtained for Yu|vC and Yv|C .

3.5 Models associated with summary graphs. As noted before, the den-
sity fN |C of YN given YC is well-defined since it is obtained from a density
of YV generated over a parent graph by marginalising over YM and condi-
tioning on YC . As we have seen, this leads to the factorization of fN |C into
fu|vC and fv|C . The independence structure of Yv given YC is captured by a
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concentration graph. Corresponding models have for instance been studied
by Lauritzen and Wermuth (1989), extending the Gaussian covariance se-
lection models and the graphical, log-linear interaction models for discrete
variables.

The summary graph captures the independence structure induced by the
parent graph for fN |C and contains the added information which of the

generating dependencies, indicated by i≺ k in GVpar may be directly or
indirectly confounded in the measures of dependence associated with i≺ k
in the maximal ancestral graph model for fu|vC . For a joint Gaussian density
fV , the induced density fu|vC is again Gaussian, but in general, the form and
any parametrization of the density fu|vC induced by fV may be complex.

Nevertheless, we conjecture that the parameters associated with dashed
lines and arrows in GNsum may often be obtained via a notional stepwise
generating process by introducing some additional latent variables that are
mutually independent and independent of Yv, YC .

For this, every dashed-line edge i k in the summary graph is replaced
by i≺ 6 6◦ ≻k, each node 6 6◦ represents a latent variable and all nodes
in {6 6◦} are uncoupled. This generates the summary graph for fu|vC after

marginalizing over {6 6◦}.
If in a corresponding notional stepwise generating process, the additional

latent variables are taken to be discrete and to have a large number of levels,
then it should be possible to generate any association corresponding i k,
or at least approximate it closely. We expect that this follows by using
Proposition 5.8 of Studený (2005), or for discrete variables by Theorem 1 of
Holland and Rosenberg (1989), but a proof is pending.

4. Generating a summary graph from a larger summary graph.

Let a summary graph be given, where the corresponding model, actually or
only notionally, arises from a parent graph model by conditioning on Yc and
by marginalising over variables Ym, m = (h, k), with foster nodes k of c, and
outsider nodes h of c.

Then, for a Gaussian triangular system (2.6) in a mean-centered Y with

AY = ε, cov(ε) = ∆ diagonal, A unit upper-triangular,

one obtains with Proposition 2 for V \{c,m} = (µ, ν) the following equations
in Yµ|c, Yν|c, in the form of equations (3.1),

(4.1)

(

Bµµ Bµν

0 Σ−1
νν|c

)(

Yµ|c

Yν|c

)

=

(

η′µ

ζν

)

, cov

(

η′µ

ζν

)

=

(

W ′
µµ 0

. Σ−1
νν|c

)

.
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The edge matrix components of G
V \{c,m}
sum are denoted accordingly, by Bµµ,

Bµν for arrows pointing to µ, by W ′
uu for dashed lines within µ, and by

Sνν.µm for full lines within ν.
With added conditioning on a set cν ⊂ ν, no additional ancestors of cν are

defined, since every node in ν is already an ancestor of c. But, with added
conditioning on cµ ⊂ µ, the set µ \ cµ is split into foster nodes f of cµ and
into outsiders o of r = {cµ, f}.

It follows that in the Gaussian model to G
V \{c,m}
sum , equations in Yo, Yr

given Yv, Yc are block-triangular in (o, r). But, by contrast to the split of
V \ C into (O,R) in equation (3.7), the system is block-triangular but not
orthogonal in (o, r) so that conditioning on cµ in a summary graph is more
complex than conditioning in a parent graph.

Proposition 3. Generating GV \{C,M} from G
V \{c,m}
sum and the Gaussian

model to GV \{C,M} from equations (4.1). Given equations (4.1) to G
V \{c,m}
sum

with m = (h, k) and new conditioning set C = {c, cµ, cν}, and new marginal-
ising set M = {p, q} with p = {g, h}, g ⊂ o, and q = {k, l}, l ⊂ {f, ν \ cν},
transformed linear parameter matrices and edge matrices are for

r = µ \ o, ψ = (r, ν)

Q = invrW
′
µµ, Q = zerrW

′
µµ, Coψ = Boψ−QorBrψ, Coψ = In[Boψ+QorBrψ].

For the marginalising set (g, l), further transformed linear parameter ma-
trices and edge matrices, arranged in the order (g, u, l, v), be for

u = o \ g, φ = ψ \ {cµ, cν}, v = φ \ l,

K = invgl

(

B̃oo C̃oφ

0 Σ̃−1
φφ|C

)

, K = zergl

(

B̃oo C̃oφ

0 S̃φφ.mo

)

.

Then, the Gaussian summary graph model to GNsum, which is given by

(4.2)

(

Kuu Kuv

0 Σ−1
vv|C

)(

Yu|C

Yv|C

)

=

(

ηu

ζv|q

)

, ηu = (ξu −Kugξg) − Cul.gΣll|vCζl,

coincides with the Gaussian model obtained from the triangular system (2.6)
by directly conditioning on YC and marginalising over YM .

The edge matrix components of GNsum, which are Kuu,Kuv,S
vv.Mu and

(4.3) Wuu = In[(Quu +KugQgu +QugK
T
ug +KugQggK

T
ug) + Cul.gSll|vCC

T
ul.g],

coincide with the summary graph obtained from GVpar by directly conditioning
on C and marginalising over M .
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Proof. The conditioning set cµ splits the set of nodes µ into (o, r), where
o is without any descendant in r = {cµ, f} and where every node in f has a
descendant in c. This implies a block-triangular form of Bµµ in (o, r) in the
equations of Yo|νc and Yr|νc, where the residuals η′o and η′r are correlated.

For ψ = (r, ν), block-orthogonality with respect to (o, ψ) in the equations
in Yo|c and Yψ|c is achieved by subtracting from η′o the value predicted by
linear least-squares regression of η′o on η′r and ζν . This reduces, because of
the orthogonality of the equations in (µ, ν), to subtracting from Yψ|c

Qorη
′
r = QorBrψYψ|c.

In the resulting equations in Yo|c, Yψ|c, the matrix of equation parameters
is chosen to be the concentration matrix of Yψ|c defined by

Σψψ.mo = Σ−1
ψψ|c =

(

BT
rrQrrBrr BT

rrQrrBrν

. Σ−1
νν|c +BT

rνQrrBrν

)

.

so that conditioning on a subset of ψ, where φ = ψ \ {cµ, cν}, permits the
following transformation without changing independence constraints.

By use of (2.20), the equations in Yo|c are replaced by equations in Yo|C ,
and by use of (2.27), the equations in Yφ|c by those in Yφ|C . The matrix

of equation parameters of Yφ|C is then Σ−1
φφ|C , the submatrix of Σ−1

ψψ|c. The
resulting equations give the Gaussian model to the summary graph in node
set V \ {C,m} = (o, φ). The graph GV \{C,m} is defined by the analogously
transformed edge matrix components of GV \{c,m}.

In the Gaussian model to GV \{C,m}, marginalizing over Yg|C , where g ⊂ o,
and over Yl|C , where l ⊂ φ, is achieved with partial inversion on g, l. To keep
equations in Yu|C and Yv|C no reordering between components of o and φ
is involved so that block-triangularity is preserved for u ⊂ o and v ⊂ φ.

Analogously, G
V \{C,M}
sum is obtained with partial closure on g, l in G

V \{C,m}
sum .

In the resulting equations (4.2), we know by the commutativity (2.12)
and exchangeability (2.13) of partial inversion that

Kuu = [invginvhA]u,u = [invpA]u,u,

so that Kuu = Duu, where D is defined for Proposition 2. Furthermore,

−KuuΠu|v.C = Kuv = Duv +DuqΠq|v.C ,

so that the equations in Yu|C and Yv|C coincide as given by (4.2) with those
given by Proposition 2. The proof is completed by the commutativity and
exchangeability property of partial closure, after using the analogous edge
matrix expressions and applying the indicator function.
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5. Path interpretations of edge matrix results. The edge matrix
results, derived in the previous sections, are now translated into conditions
involving specific types of path in summary graphs.

5.1. Some more terminology and results for graphs. The inner node in
each of the following two-edge paths in summary graphs is called collision
node

(5.1) i ≻◦≺ k, i ◦≺ k, i ≻◦ k, i ◦ k.

A path is collisionless if it has no inner collision node, it is a pure-collision
path if each inner node is a collision node.

Subgraphs induced by three nodes are named V-configurations if they
have two edges. The above list contains all possible collision-oriented V-
configurations of a summary graph. They share that the inner node is ex-
cluded from the conditioning set of any independence constraint on Yi, Yk.

In figures of graphs to be modified, we denote conditioning on a node by
a boxed in node, 2◦ , and marginalising, as before, by 6 6◦.

Corollary 1. The following modifications of the three types of V-confi-
gurations in a parent graph generate the three types edge in summary graphs
(i) i k arises with i ≻2◦ ≺ k,
(ii) i≺ k arises with i≺ 6 6◦≺ k,
(iii) i k arises with i≺ 6 6◦ ≻k.

Proof. An induced full ik-line is defined in Proposition 2 with AT
RiARk,

an induced arrow with zeriÃ, and an induced dashed line in AiqA
T
kq in the

case that every ancestor in GVpar is also a parent.

In the relevant family of Gaussian distributions, these induced edges cor-
respond to some nonzero change to a (partial) correlation, see e.g. Wermuth
and Cox (2008). Thus, the paths are association-inducing for the family.
However, when several paths connect the same variable pair, then for a spe-
cial member of the given family, the effects of several paths may cancel.
Therefore, we speak of edge-inducing instead of association-inducing paths.

For uncoupled nodes i < k, the following ik-paths in GVpar could have
generated the dashed lines in three of the V-configurations of (5.1); in these
ik-paths in GVpar, two arrowheads had met head-on at a collision node, ◦,:

i≺ 6 6◦ ≻◦≺ k, i ≻◦≺ 6 6◦ ≻k, i≺ 6 6◦ ≻◦≺ 6 6◦ ≻k.

For all types of V-configurations occurring in a summary graph, the effects
are summarized in the following subsections 5.2 and 5.3.
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If node k is coupled to node i, then k is named a neighbor of i. A path
is said to be chordless if each inner node forms a V-configuration with its
two neighbors. Subgraphs induced by n nodes are named LI-configurations if
they form a chordless path in n− 1 edges. For four nodes, the following list
contains all possible collision-oriented LI-configurations of a summary graph

i ≻◦ ◦≺ k, i ◦ ◦≺ k, i ≻◦ ◦ k, i ◦ ◦ k.

Proposition 4. Orienting a summary graph without foster nodes and
double edges. The independence structure of a summary graph with two types
of edge, dashed lines and arrows, and at most one edge for each node pair,
cannot be captured by any directed acyclic graph in the same node and edge
set if the graph contains a chordless pure-collision path in four nodes.

Proof. By orienting all undirected edges in such a pure collision path, i.e.
by replacing every undirected edge by an arrow, at least one V-configuration
results that is no longer collision-oriented. Thereby, a qualitatively different
constraint would be introduced for this uncoupled pair.

Proposition 4 complements a known result for concentration graphs, where
a collisionless n-cycle for n > 3, i.e. a chordless collisionless path in n nodes
having coupled endpoints, cannot be oriented without generating a collision-
oriented V-configuration, ◦ ≻◦≺ ◦, or a directed cycle. The two results
together explain why three types of edge may be needed to capture indepen-
dence structures that result after marginalising and conditioning in GVpar.

5.2. Edge-inducing paths derived from summary graphs. The following
translation of the edge matrix results of Section 4 shows how additional

edges in the summary graph G
V \{C,M}
sum may be derived from G

V \{c,m}
sum by

checking repeatedly V- and 4-node LI-configurations.

ForG
V \{c,m}
sum with ordered node setN ′ = V \{c,m} = (µ, ν) of Proposition

3, conditioning on outsider nodes, cµ ⊂ µ, increases the set of foster nodes
by splitting µ \ cµ into the ordered set (o, f) of remaining outsiders o and
additional fosters f and r = µ \ o = {cµ, f}.

Corollary 2. Generating G
V \{C,m}
sum from G

V \{c,m}
sum . We let again C =

{c, cµ, cν}, ψ = (r, ν), the edge matrix components BµN ′ , W ′
µµ, S

νν.µm, and
Qµµ = zerrW

′
µµ. One inserts for uncoupled i, k

1. i k for every i 2◦ k with 2◦ ∈ r; i, k ∈ µ (Qµµ);
2. i≺ k for every i 2◦ ≺ k with 2◦ ∈ r; i ∈ o; k ∈ ψ (QorBrψ);
3. i k for every i ≻2◦ 2◦ ≺ k with 2◦ ∈ r; i, k ∈ ψ (Sψψ.mo).
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Then, one replaces all i k present between o and r by i≺ k ∈ r, all edges
within ψ by full lines and keeps the subgraph induced by nodes N ′ \ {cµ, cν}.
The graph GV \{C,m} has node set N ′′ = (o, φ), with φ = ψ \ {cµ, cν}.

Corollary 3. Generating G
V \{C,M}
sum from G

V \{C,m}
sum .We let again M =

{m, g, l} with g ⊂ o, l ⊂ φ, denote the edge matrix that is block-triangular
in (o, φ) by H′′, K = zerMH′′, and insert for uncoupled nodes i, k

1. i k for every i 6 6◦ k with 6 6◦ ∈ l; i, k ⊂ φ (zerlS
φφ.mo);

2. i≺ k for every i≺ 6 6◦≺ k with 6 6◦ ∈ g ; i, k ∈ o; (zergH
′′);

then for every i≺ 6 6◦ k with 6 6◦ ∈ l; i ∈ o; k ∈ N ′′ (zerglH
′′).

Next, one adds for any i, k ∈ u for Wuu defined in (4.3)

3. i k for every i≺ 6 6◦ k and i 6 6◦ ≻k with 6 6◦ ∈ g;
and for every i≺ 6 6◦ 6 6◦ ≻k with 6 6◦ ∈ g;
and for every i≺ 6 6◦ 6 6◦ ≻k with 6 6◦ ∈ l.

and keeps the subgraph induced by nodes N ′′ \ {g, l}.

The following example illustrates stepwise constructions.

Example 2. Path constructions of GVsum for M = q and p = ∅. The node
set of the parent graph is V = (1, . . . , 8). The conditioning set C = {2, 4},
the marginalising set is M = {6, 7}. The ancestors of C outside C, i.e. the
foster nodes of C are in F = {3, 5, 6, 7, 8} and u = O = {1}, v = {3, 5, 8}.

Fig 4. a) The generating graph GV
par

, b) G
V \{C,∅}
sum , c) G

V \{∅,M}
sum , d) GN
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In this example, the summary graph model defined implicitly with figure
4d) is Markov equivalent to a triangular system of densities inN = (1, 3, 5, 8)

even though G
V \{∅,M}
sum in Figure 4c) is not since it contains the chordless

pure-collision path 3 ≻2 5≺ 8. It is helpful for the planning of small
replication studies to know which marginalizing or conditioning leads to
standard indpendence strauctures, such as in Figure 4b) and 4d).
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5.3. Some properties of summary graphs. For any partitioning of the
node set N = V \{C,M} = {α, β, γ, δ} of the summary graph, GNsum, where
only γ and δ may be empty sets, the definitions and properties of induced
edge matrices imply

GNsum =⇒ α⊥⊥ β|Cγ ⇐⇒ Sαβ.Mδ = 0 ⇐⇒ Pα|β.Cγ = 0 ⇐⇒ Sαβ|Cγ = 0.

There are many equivalent path criteria, the one closest to the first criterion
for parent graphs, given by Geiger, Verma and Pearl (1990), is the following.

Lemma 3. Path criterion of global Markov property; Richardson (2003).
A summary graph, GNsum implies α⊥⊥ β|Cγ if and only if it contains no path
from node i ∈ α to node k ∈ β such that of its inner nodes every collision
node is in γ or is an ancestor of γ and every other node is outside γ.

In a summary graph generated by a parent graph, there are two types of
path that point to distortions due to indirect confounding in a corresponding
maximal ancestral graph model, see Wermuth and Cox (2008). These types
of path remain unchanged in a summary graph generated by a multivariate
regression chain graph.

With a node named a forefather if it is an ancestor but not a parent and
with three dots indicating that there may be more edges of the same type
coupling distinct nodes, the following two types of path for for pair (i, k)
coupled by an arrow, i≺ k, point to indirect confounding

i 2◦ . . . 2◦ 2◦ k, i 2◦ . . . 2◦ 2◦ ≺ k,

where each node 2◦ along the path is a forefather of offspring node i. In
Fig. 2b, the confounding path for 1≺ 4 is 1 3≺ 4.

These warning signals of a summary graph for the induced density fN |C

seems to be essential for understanding consequences for fN |C of research
hypotheses captured by a parent graph or by a multivariate regression graph.

Acknowledgement. I thank D.R. Cox, G.M. Marchetti and the refer-
ees of an earlier version of the paper for their helpful, insightful suggestions.
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