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MATRIX REPRESENTATIONS AND INDEPENDENCIES IN
DIRECTED ACYCLIC GRAPHS

BY GIOVANNI M. MARCHETTI1 AND NANNY WERMUTH2

University of Florence and Chalmers/Göteborgs Universitet

For a directed acyclic graph, there are two known criteria to decide
whether any specific conditional independence statement is implied for all
distributions factorized according to the given graph. Both criteria are based
on special types of path in graphs. They are called separation criteria be-
cause independence holds whenever the conditioning set is a separating set in
a graph theoretical sense. We introduce and discuss an alternative approach
using binary matrix representations of graphs in which zeros indicate inde-
pendence statements. A matrix condition is shown to give a new path criterion
for separation and to be equivalent to each of the previous two path criteria.

1. Introduction. We consider stepwise processes for generating joint distri-
butions of random variables Yi for i = 1, . . . , d , starting with the marginal den-
sity of Yd , proceeding with the conditional density of Yd−1 given Yd , up to Y1
given Y2, . . . , Yd . The conditional densities are of arbitrary form but have the inde-
pendence structure defined by an associated directed acyclic graph in d nodes, in
which node i represents variable Yi . Furthermore, an arrow starting at node j > i

and pointing to i, the offspring of j , indicates a nonvanishing conditional depen-
dence of Yi on Yj . Node j is then called a parent node of i, the set of parent nodes
is denoted by pari ⊆ {i + 1, . . . , d}, and the graph together with the complete or-
dering of the nodes as V = (1, . . . , d) is the parent graph GV

par .
The joint density fV (y) of the d × 1 random variable Y factorizes as

fV (y) =
d∏

i=1

fi|pari (yi |ypari ),(1.1)

where fi|pari (yi |ypari ) = fi(yi) whenever pari is empty.
For each node j > i, not a parent of i, the factorization (1.1) implies that the ij -

arrow is missing in the graph and that Yi is conditionally independent of Yj , given
Ypari . The defining list of independencies for GV

par , written in terms of nodes, is

i ⊥⊥ j |pari for j > i not a parent of i and i = 1, . . . , d − 1.(1.2)
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In general, for any disjoint subsets α, β and C of V we denote Yα conditionally
independent of Yβ given YC by α ⊥⊥ β|C. The parent graph is a special type of
independence graph, that is, a graph for which each missing edge corresponds to an
independence statement. The independence structure captured by a graph consists
of the list of independences defining the graph and of all other independences that
derive from this list.

For instance, the graph GV
par typically captures more independence statements

than those given directly by the defining list (1.2). We take as an example the
following graph representing a Markov chain in four nodes:

1 ≺— 2 ≺— 3 ≺— 4.

The defining independence for node 1 is 1 ⊥⊥ {3,4}|2, but for instance the addi-
tional independence statement 1 ⊥⊥ 4|3 also holds. We say that a distribution is
generated over GV

par if its density fV (y) is obtained by the stepwise process de-
scribed above so that it factorizes as in (1.1) and its set of independence constraints
is fully captured by GV

par . Thus, fV (y) satisfies precisely the independences that
derive from (1.2) and no others.

Methods have been developed to decide for any nonempty sets α and β whether
a given parent graph implies that α ⊥⊥ β|C holds for all distributions generated
over it. Such methods have been called separation criteria because they check if
the conditioning set C is a separating set, in the sense of graph theory. Two quite
different but equivalent criteria have been derived. Both are based on special types
of paths in independence graphs. The first, by Geiger, Verma and Pearl [5] has
been called d-separation, because it is applied to a directed acyclic graph. The
second, by Lauritzen et al. [6], uses the basic graph theoretic notion of separation
in an undirected graph. Such a graph, derived from GV

par, has been named a moral
graph.

In this paper we use a different approach by associating first a joint Gaussian
distribution of Y with GV

par . For this distribution, the list of independencies (1.2)
is equivalent to a set of zero population least-squares regression coefficients, that
is, to a set of linear independencies

i ⊥⊥ j |pari ⇐⇒ βi|j.pari = 0,

where βi|j.pari is an adaption of the Yule–Cochran notation for the regression coef-
ficient of Yj , here in linear least-squares regression of Yi on Ypari and Yj for j > i

not a parent of i.
There are then two key results: (a) in distributions of arbitrary form generated

over GV
par, probabilistic independence statements combine in the same way as lin-

ear independence statements; and (b) special types of path in GV
par lead to de-

pendence of Yα on Yβ , given YC in the relevant family of Gaussian distributions
generated over a given parent graph, that is, in Gaussian distributions with pa-
rameters constrained only by the defining list of independencies (1.2) and having
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nonvanishing dependence of Yi on Yj , given Ypar\j for every i ≺—j arrow present
in the parent graph.

In any Gaussian distribution of Y , α ⊥⊥ β|C holds if and only if the popula-
tion coefficient matrix of Yβ in linear least-squares regression of Yα on both Yβ

and YC is zero. This matrix is related to linear equations associated with GV
par us-

ing a generalization of the sweep operator for symmetric matrices [4] called partial
inversion.

With another operator for binary matrices, named partial closure, so-called
structural zeros in this matrix are expressed in terms of a special binary matrix
representation derived from the parent graph. A particular zero submatrix will be
shown to imply that α ⊥⊥ β|C holds in all distributions generated over GV

par.
This matrix criterion leads to a further path-based criterion for separation in

directed acyclic graphs. Finally, equivalence of the new criterion to each of the two
known separation criteria is established after having given first equivalent matrix
formulations to each of these latter two path-based criteria.

2. Edge matrices and induced independence statements. Every indepen-
dence graph has a matrix representation called its edge matrix (see [10, 12]). In
this paper we are concerned with edge matrices derived from that of the parent
graph called induced edge matrices.

2.1. Edge matrix of the parent graph and linear recursive regressions. The
edge matrix of a parent graph is a d × d upper triangular binary matrix A = (Aij )

such that

Aij =
{

1, if and only of i ≺—j in GV
par or i = j ,

0, otherwise.
(2.1)

This matrix is the transpose of the usual adjacency matrix representation of GV
par,

with additional ones along the diagonal. Because of the triangular form of the edge
matrix A, densities (1.1) generated over GV

par are called triangular systems.
If the mean-centred random vector Y generated over the parent graph has a joint

Gaussian distribution, then each factor fi|pari (yi |ypari ) of equation (1.1) is a linear
least-squares regression

Yi = ∑
j∈pari

βi|j.pari \jYj + εi,

where the residuals εi are mutually independent with zero mean and variance
σii|pari . Then, the joint model can be written in the form

AY = ε,(2.2)

where A is a real-valued d × d upper triangular matrix with ones along the diag-
onal. The d × 1 vector ε has zero mean and cov(ε) = �, a diagonal matrix with
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elements �ii = σii|pari > 0. The covariance and concentration matrix of Y are
then, respectively, � = A−1�A−T and �−1 = AT�−1A. An upper off-diagonal
element of the generating matrix A is Aij = −βi|j.pari \j �= 0 if the ij -arrow is
present in the parent graph and Aij = 0 if the ij -arrow is missing in GV

par.
In this Gaussian model, there is a one-to-one correspondence between miss-

ing ij -edges in the parent graph and zero parameters Aij = 0. As a consequence,
any such zero coincides in this case with a structural zero, that is a zero that holds
for the relevant family of Gaussian distributions generated over GV

par. Therefore,
the edge matrix A of the parent graph can be interpreted as the indicator matrix of
zeros in A, that is A = In[A], where the In[·] operator transforms every nonzero
entry of a matrix to be equal to one.

The edge matrix A of GV
par is the starting point to find induced conditional

independencies satisfied by all distributions generated over the parent graph. As we
shall see, for any given Gaussian distribution generated over GV

par, independence
statements are reflected by zeros in a matrix derived from A. Some of these zeros
may be due to specific parametric constellations, others are consequences of the
defining list of independencies (1.2). These latter zeros, that is the structural zeros
in this matrix, show as zeros in edge matrices derived from A, which in turn are
matrix representations of induced independence graphs.

2.2. Independence and structural zeros. For any partitioning of the vertex
set V into node sets M , α, β , C, where only M and C may be empty, a joint
density that factorizes according to (1.1) is now considered in the form

fV = fM|αβCfα|βCfβ|CfC.

Marginalizing over M , as well as conditioning on C and removing the correspond-
ing variables, gives fαβ|C = fα|βCfβ|C , so that α ⊥⊥ β|C holds if and only if
fα|βC = fα|C.

For a Gaussian distribution, the independence α ⊥⊥ β|C is equivalently captured
by

�α|β.C = 0 ⇐⇒ �αβ|C = 0,

where �α|β.C denotes the coefficient matrix of Yβ in linear least-squares regression
of Yα on Yβ and YC , and �αβ|C the joint conditional covariance matrix of Yα

and Yβ given YC (see Appendix A.2). The essential point is then that independence
of Yα and Yβ , given YC , is implied for all distributions generated over GV

par, if and
only if for Gaussian models (2.2) the induced coefficient matrix �α|β.C is implied
to vanish for all permissible values of the parameters.

With α = a \ M and β = b \ C, we have (�a|b)α,β = �α|β.C. Therefore, the
specific form of �α|β.C implied by A in equation (2.2) can be derived by linear
least-squares regression of Ya on Yb and the independence structure implied for
it by A in equation (2.1) in a related way. Before turning to these tasks, we sum-
marize how linear independence statements relate to probabilistic independencies
specified with a parent graph.
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2.3. Combining independencies in triangular systems of densities. It has been
noted by Smith ([8], Example 2.8) that probabilistic and linear independencies
combine in the same way. We prove a similar property, using assertions that have
been discussed recently by Studený [9], where we take V to be partitioned into a,
b, c, d .

LEMMA 1. In densities of arbitrary form generated over GV
par, conditional

independence statements combine as in a nondegenerate Gaussian distribution.
This means that they satisfy the following statements, where we write, for instance,
bc for the union of b and c:

(i) symmetry: a ⊥⊥ b|c implies b ⊥⊥ a|c;
(ii) decomposition: a ⊥⊥ bc|d implies a ⊥⊥ b|d;

(iii) weak union: a ⊥⊥ bc|d implies a ⊥⊥ b|cd;
(iv) contraction: a ⊥⊥ b|c and a ⊥⊥ d|bc imply a ⊥⊥ bd|c;
(v) intersection: a ⊥⊥ b|cd and a ⊥⊥ c|bd imply a ⊥⊥ bc|d;

(vi) composition: a ⊥⊥ c|d and b ⊥⊥ c|d imply ab ⊥⊥ c|d .

PROOF. The first four statements are basic properties of probabilities (see,
e.g. [2]). Densities (1.1) generated over a parent graph also satisfy properties (v)
and (vi), due to the full ordering of the node set the ij -dependence if and only if
there is an ij -arrow in GV

par and the lack of any other constraint on the density.
For (v), the generating process implies for two nodes i < j that of a ⊥⊥ i|jd and

a ⊥⊥ j |id , the statement a ⊥⊥ j |id is not in the defining list (1.2) unless there are
additional independencies. If a ⊥⊥ j |id is to be satisfied, then at least a ⊥⊥ j |d has
to be in the defining list as well. And, in this case, fija|d = fi|jdfj |d = fij |d , so
that a ⊥⊥ ij |d is implied.

For (vi) and again i < j , both of i ⊥⊥ c|d and j ⊥⊥ c|d can only be in the defin-
ing list of independencies if the statement i ⊥⊥ c|jd is also satisfied. And, in this
case, fijc|d = fi|jdfj |d = fij |d , so that ij ⊥⊥ c|d is implied. Equivalence of each
of the assertions to statements involving least-squares coefficient matrices, proved
in Lemma A.1, Appendix A.2, completes the proof. �

2.4. Partially inverted concentration matrices. The induced parameter matrix
�α|β.C is to be expressed in terms of the original parametrization (A,�). This is
achieved in terms of the matrix operator partial inversion (see Appendix A.1 for a
detailed summary of some of its properties).

Partial inversion with respect to any rows and columns a of the concentration
matrix, partitioned as (a, b), transforms �−1 into inva �−1

�−1 =
(

�aa �ab

· �bb

)
, inva �−1 =

(
�aa|b �a|b

∼ �bb.a

)
,(2.3)

where the · notation indicates entries in a symmetric matrix, and the ∼ notation
denotes entries in a matrix that is symmetric except for the sign. The submatrix
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�a|b is as defined before; submatrix �aa|b = (�aa)−1 is the covariance matrix
of Ya − �a|bYb and submatrix �bb.a = �−1

bb is the marginal concentration matrix
of Yb. We denote by Ã the accordingly partitioned matrix A in which the original
order is preserved both within a and within b, but which is typically asymmetric
and not triangular.

An important property of partial inversion is that

Ã

(
Ya

Yb

)
=

(
εa

εb

)
implies inva Ã

(
εa

Yb

)
=

(
Ya

εb

)
,

so that, with B = inva Ã, one obtains directly the equations in Yb from which Ya

has been removed as

BbbYb = ηb, ηb = εb − Bbaεa.(2.4)

In addition, direct covariance computations give

τ = cov
(

εa

ηb

)
=

(
�aa −�aaB

T
ba· �bb + Bba�aaB

T
ba

)
.

Therefore, equations in Ya corrected for linear dependence on Yb and having resid-
uals uncorelated with ηb are, with H = invb τ ,

Ya − �a|bYb = Baaηa, ηa = εa − Hab ηb.(2.5)

Lemma 2 below is now a direct consequence of the definition of H and equations
(2.4) and (2.5). It leads, after expansion of the matrix H , to an explicit expression
of the matrix of least-squares regression coefficients �a|b as a function of � and
B , used later for Proposition 2. Similarly, the explicit expression of �aa|b will be
used for Proposition 3 and of �bb.a for Proposition 4.

LEMMA 2 (Wermuth and Cox [10]). For a linear triangular system (2.2), with
� = cov(Y ), a any subset of V , b = V \ a and H as defined for equations (2.4),
(2.5),

inva �−1 =
(

BaaHaaB
T
aa Bab + BaaHabBbb

∼ BT
bbHbbBbb

)
.(2.6)

2.5. Induced edge matrices. To obtain induced edge matrices, we display first
explicitly B = inva Ã, and B = zera Ã, obtained by what is called the operator
of partial closure (see Appendix A.1 for some of its properties). It finds both the
structural zeros in B and the edge matrix induced by A for what we define below
as the partial ancestor graph, with respect to subset a of node set V .

B =
(

A−1
aa −A−1

aa Ãab

ÃbaA
−1
aa Abb − ÃbaA

−1
aa Ãab

)
,

(2.7)

B = In
[(

A−
aa A−

aaÃab

ÃbaA
−
aa Abb + ÃbaA

−
aaÃab

)]
,
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with

A−
aa = In[(kIaa − Aaa)

−1],
where Iaa denotes an identity matrix of dimension da and k = da + 1. The ma-
trix A−

aa provides the structural zeros in A−1
aa and the edge matrix of the transitive

closure of the graph with edge matrix Aaa , for which fast algorithms are also
available (see [3]).

The transition from a matrix of parameters in a linear system, such as B in
equation (2.7), to a corresponding induced edge matrix, B, is generalized with
Lemma 3 below.

LEMMA 3 (Wermuth and Cox [11]). Let induced parameter matrices be de-
fined by parameter components of a linear system of the type FY = ζ with pos-
sibly correlated residuals ζ , so that the defining matrix products hide no self-
cancellation of an operation such as a matrix multiplied by its inverse. Further
let the structural zeros of F be given by F . Then, the induced edge matrix compo-
nents are obtained by replacing, in a given sum of products:

(i) every inverse matrix, say F−1
aa by the binary matrix of its structural ze-

ros F −
aa ;

(ii) every diagonal matrix by an identity matrix of the same dimension;
(iii) every other submatrix, say −Fab or Fab, by the corresponding binary sub-

matrix of structural zeros, Fab;

and then applying the indicator function.

By using Lemma 3, each submatrix of a linear parameter matrix is substituted
by a nonnegative matrix having the appropriate structural zeros. By multiplying,
summing and applying the indicator function, all structural zeros are preserved and
no additional zeros are generated, while some structural zeros present in F may
be changed to ones.

After applying Lemma 3 to equation (2.6), the edge matrix components induced
by A for inva �−1 result. These components are Pa|b of �a|b, Saa|b of �aa|b and
Sbb.a of �bb.a .

LEMMA 4 (Wermuth, Wiedenbeck and Cox [12]). The edge matrix compo-
nents induced by a parent graph for inva �−1 in (2.3) are(

Saa|b Pa|b
· Sbb.a

)
= In

[(
BaaHaaB

T
aa Bab + BaaHabBbb

· BT
bbHbbBbb

)]
,(2.8)

where

H = zerb

(
Iaa BT

ba· Ibb + BbaB
T
ba

)
.
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Lemma 4 leads to the following matrix criteria for independencies implied by a
parent graph, where V is partitioned as before into M , α, β , C.

PROPOSITION 1. The parent graph GV
par implies, for every density generated

over it that:

(i) α ⊥⊥ β|C holds if and only if (Pa|b)α,β = Pα|β.C = 0;
(ii) α ⊥⊥ M|b holds if and only if SαM|b = 0;

(iii) β ⊥⊥ C holds if and only if SβC.a = 0.

PROOF. For (i), if there is a one for i, j in Pα|β.C , then βi|j.Cβ\j �= 0 holds in
the relevant family of Gaussian densities generated over GV

par (see, e.g. [11]). If,
instead, the ij -edge is missing, then i ⊥⊥ j |Cβ is implied for every member of the
family of Gaussian distributions. For Pα|β.C = 0, the statement α ⊥⊥ β|C results
with Lemma 1 for every distribution generated over GV

par. For (ii) and (iii), the
arguments are analogous. �

3. A path-based interpretation of the matrix criterion. To give a path inter-
pretation of the matrix criterion Pα|β.C = 0, we first summarize some definitions
related to paths and graphs.

Two nodes i and j in an independence graph have at most one edge. If the
ij -edge is present in the graph, then the node pair i, j is coupled; if the ij -edge
is missing, the node pair is uncoupled. An ij -path connects the path endpoints i

and j by a sequence of edges visiting distinct nodes. All nodes of a path except
for the endpoint nodes are called the inner nodes of the path. An edge is regarded
as a path without inner nodes. For a graph in node set V and a ⊂ V , the subgraph
induced by a is obtained by removing all nodes and edges outside a.

Both a graph and a path are called directed if all its edges are arrows. Directed
graphs can have the following V-configurations, that is subgraphs induced by three
nodes and having two edges,

i ≺— t ≺— j, i ≺— s—� j, i—� c ≺—j,

where the inner node is called a transition (t), a source (s) and a collision node (c),
respectively. A directed path is direction-preserving if all its inner nodes are tran-
sition nodes. If in a direction-preserving path an arrow starts at node j and points
to i, then node j is an ancestor of i, node i a descendant of j , and the ij -path is
called a descendant–ancestor path.

Node j is an a-line ancestor of node i if all inner nodes in the descendant–
ancestor ij -path are in set a. A directed path is an alternating path if it has at least
one inner node and the direction of the arrows changes at each inner node. This
implies that no inner node is a transition node and that the inner nodes alternate
between source and collision nodes. A parent graph is said to be transitive if it
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FIG. 1. (a) A parent graph GV
par in six nodes. (b) Its partial ancestor graph GV.a

anc with a = {1,2,3}.
(c) The induced graph with edge matrix Pa|b for the conditional dependence of Ya on Yb , where
a = {1,2,3} and b = {4,5,6}.

contains no transition-oriented V-configuration or, equivalently, if for each node i

the set pari of its parents coincides with its set of ancestors.
The partial ancestor graph, with respect to nodes a, denoted by GV.a

anc , is an
induced graph defined, for a reordered node set, by the edge matrix B = zera Ã of
equation (2.7). The elements of B are equivalently given by

Bij =
{

1, if and only if j is an a-line ancestor of i in GV
par or i = j ,

0, otherwise,
(3.1)

with nodes ordered as for equation (2.7). Since B in (3.1) implies that every a-line
descendant–ancestor path in GV

par is in GV
anc closed by an arrow that points to the

descendant, the corresponding operator has been named partial closure. Induced
edge matrices and induced linear parameter matrices may be calculated within the
statistical environment R (see [7]).

Figure 1(a) shows a parent graph in six nodes, Figure 1(b) its partial ances-
tor graph with respect to a = {1,2,3}, and Figure 1(c) the induced graph for the
conditional dependence of Ya given Yb. In this example, (a, b) is an order com-
patible partition of the node set V , that is a mere split of V = (1, . . . , d) into
two components without any reordering. For such a split, Aba = Bba = 0 implies
Pa|b = Bab. With a transitive parent graph, in addition, Pa|b = Aab for all order
compatible partitionings of V .

If, instead, a is an arbitrary subset of V , then the graph with edge matrix Pa|b
may contain additional edges compared to the graph with edge matrix Bab [see
equation (2.8)]. Such edges are due to the following type of path.

DEFINITION 3.1. An ij -alternating path in the partial ancestor graph GV.a
anc is

called active if of its inner nodes every collision node is in b and every source node
is in a.

Thus, every off-diagonal one in the edge matrix (2.8) induced by a parent graph
for inva �−1 can be identified in the partial ancestor graph by what we call its
active paths. In diagrams of paths, we indicate nodes within a as crossed out, � �◦,
and nodes within b as boxed in, ©1, such as in Figure 2.
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FIG. 2. An alternating path in GV.a
anc from b to a; active since, of its inner nodes, each source node

is in a and each collision node in b = V \ a; nodes in a are indicated by � �◦, those in b by ©1.

DEFINITION 3.2. An ij -path in the partial ancestor graph GV.a
anc is active if it

is an ij -edge or it is an active alternating path.

PROPOSITION 2. For node set V , partitioned into a and b and having node
i in a and node j in b, the induced graph with edge matrix Pa|b has an ij -arrow
if and only if there is an active ij -path in the partial ancestor graph, with respect
to a.

The essence of the proof is the expansion of the sum of products defining Pa|b
in equation (2.8) into submatrices of B = zera Ã and the interpretation of each
matrix operation in terms of arrows present in GV.a

anc .

PROOF OF PROPOSITION 2. From equation (2.8) defining Pa|b, there is an
ij -one in Pa|b if and only if

Bij = 1 or BiaB
T
ba(Ibb + BbaB

T
ba)

−Bbj ≥ 1.

The first condition Bij = 1 holds if there is an arrow pointing from j in b to i

in a. The second condition holds if either an arrow points from a to b, or if i and
j are uncoupled but connected by an active alternating path. This interpretation of
the second condition as an active alternating path is illustrated with the following
scheme, in which the inner nodes are shown by their location in either a or b:

Edge matrix Bia BT
ba (Ibb + BbaB

T
ba)

− Bbj

Path i←a a→b b ↖ a ↗b . . . b ↖ a ↗b b←j
.

Such an ij -path induces a dependence of Yi on Yj given Yb\j in the relevant family
of Gaussian distributions generated over GV

par. �

The scheme shows that for the second condition, there has to be at least one
arrow in GV.a

anc pointing from a to b. Therefore, for any order compatible split of V

into (a, b) there is no active alternating path in GV.a
anc .

Proposition 2 leads to the following path criterion.

CRITERION 1. If there is no active path between α and β in the partial an-
cestor graph GV.a

anc , then α ⊥⊥ β|C in every joint density generated over the given
parent graph.
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FIG. 3. Illustration of Criterion 1. (a) Parent graph. (b)–(d) Is α ⊥⊥ β|C implied for α = {5},
β = {7} and different choices of C; {©1} = β ∪ C and { � �◦} = α ∪ M . (b) 5 ⊥⊥ 7|{3,4} not implied,
since the alternating path (5,3,6,4,7) in GV.a

anc is active with its inner source node, 6, in { � �◦} and
its inner collision nodes, 3,4 in {©1}; (c) 5 ⊥⊥ 7|{3,4,6} implied, since inner source node 6 in {©1};
(d) 5 ⊥⊥ 7|{2,3} not implied, since the alternating path (5,3,6,2,7) in GV.a

anc is active.

Figure 3(a) shows a parent graph and illustrates the use of this criterion.

4. Equivalence to known separation criteria. For a discussion of the criteria
available in the literature to verify whether α ⊥⊥ β|C is implied by a given parent
graph GV

par, we take throughout the node set V to be partitioned into M,α,β,C,
where only M and C may be empty, and every node pair between α and β to be
uncoupled in GV

par.
One known criterion uses definitions of a d-connecting path and of d-separation,

where the letter d is to remind us that the definitions pertain to a directed acyclic
graph. In GV

par, a path is said to be d-connecting relative to C if along it every
inner collision node is in C or has a descendant in C and every other inner node is
outside C. And, two disjoint sets of nodes α and β are said to be d-separated by C

if and only if, relative to C, there is no d-connecting path between α and β that is
between a node in α and a node in β .

CRITERION 2 (Geiger, Verma and Pearl [5]). If α and β are d-separated by C

in the parent graph, then α ⊥⊥ β|C in every joint density generated over the given
parent graph.

Proposition 3 below gives a matrix criterion that we will show to be equivalent
to d-separation. For this, we denote by g = V \ C the union of α,β and M , and
by F = zerg Ã the edge matrix of G

V.g
anc , the ancestor graph with respect to g. By

equating a to g and b to C, equation (2.8) gives

Sgg|C = In[Fgg(Igg + F T
CgFCg)

−F T
gg]

as the edge matrix induced by A for �gg|C . Edges in the corresponding undirected
graph, named the induced covariance graph of Yg given YC [10], are drawn later
in Figure 5 as dashed lines.
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PROPOSITION 3. In the parent graph GV
par , sets α and β are d-separated by

C if and only if Sαβ|C = 0, where Sαβ|C is the edge matrix induced by A for �αβ|C .

The following scheme shows that Sαβ|C = 0 means the absence of any active

path in G
V.g
anc from α to β , both subsets of g:

Edge matrix Fαg (Igg + F T
CgFCg)

− F T
βg

Path α←g g ↘C↙g . . . g ↘C↙g g→β
.

PROOF OF PROPOSITION 3. By the definition of partial inversion and
of Sgg|C , a d-connecting ij -path in GV

par relative to C and without inner colli-

sion nodes, forms in G
V.g
anc an ij -edge or a sequence of three nodes (i, s, j), with s

a source in g. Both types are active paths in G
V.g
anc .

If there is a d-connecting ij -path in GV
par , relative to C and having an inner col-

lision node, then zerg Ã generates an active alternating ij -path in G
V.g
anc as follows.

Every inner source node and every inner collision node within C is preserved.
Every inner collision h outside C is replaced by its first g-line descendant hC

within C. Every transition node t in an inner node sequence (i, t, j) is removed
via the ij -edge present in G

V.g
anc .

Conversely, if there is an active alternating ij -path in G
V.g
anc , then, by these con-

structions, there is a d-connecting path relative to C in GV
par . �

Figure 4 shows a d-connecting path relative to conditioning set C = {©1} and

the corresponding active alternating path in G
V.g
anc with g = {� �◦}.

The other criterion in the literature uses an undirected graph called the moral
graph of α,β , and C. This moral graph is constructed in three steps. One obtains
the subgraph induced by the union of the nodes α,β , and C and their ancestors.
One joins by a line every uncoupled pair of parents having a common offspring.
One replaces every arrow in the resulting graph by a line. Then, the separation
criterion for undirected graphs is used to give Criterion 3. In the moral graph, C

separates α from β if every path from a node in α to one in β has a node in C.

FIG. 4. (a) Example of a d-connecting ij -path in GV
par relative to C with inner nodes

5,4,9,8,7,3,6 and (b) the corresponding active alternating ij -path in G
V.g
anc with inner nodes

5,4,9,2,6.
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CRITERION 3 (Lauritzen, Dawid, Larsen and Leimer [6]). If α and β are sep-
arated by C in the moral graph of α,β,C, then α ⊥⊥ β|C in every joint density
generated over the given parent graph.

By the definition of the moral graph and by equating b to Q, the union of α,β

and C and their ancestors, and a to O = V \ Q, equation (2.8) gives the edge
matrix of the moral graph of α, β,C as SQQ.O the edge matrix induced by A
for �QQ.O . Since there is no path leading from O to Q, this edge matrix has the
special form

SQQ.O = In[AT
QQAQQ] due to AOQ = 0.(4.1)

Thus, the induced graph contains an ij -edge if and only if in the parent graph
either there is an ij -edge, or AhiAhj = 1 for some node h < i < j in Q, that is for
nodes i and j having a common offspring in Q.

Proposition 4 below gives a matrix criterion that we will show to be equivalent
to separation in the moral graph of α,β and C. For this, we let q = V \ M , so that
the set q denotes the union of α,β and C. Furthermore, we denote by Z = zerM Ã
the edge matrix of the induced partial ancestor graph with respect to M . Then, by
equating b to q and a to M , equation (2.8) gives, as edge matrix induced by A for
�qq.M ,

Sqq.M = In[ZT
qq(Iqq + ZqrZ

T
qr )

−Zqq],(4.2)

where r denotes the set of ancestors of q within M . Again, the special form
of Sqq.M is due to AOQ = 0. It leads to ZQQ = (zerr Ã)Q,Q since M = r ∪O . As
a consequence, also Sqq.M = Sqq.r . Edges in this type of undirected graph, named
the induced concentration graph of Yq , are drawn in Figure 5 as full lines.

PROPOSITION 4. In the moral graph of α,β and C, set α is separated from
β by C if and only if Sαβ.M = 0, where Sαβ.M is the edge matrix induced by A
for �αβ.M .

FIG. 5. Graphs induced by the parent graph in Figure 1(a), each of which shows that α ⊥⊥ β|C
holds for α = {2}, β = {3,4} and C = {6} by all edges between α and β being missing. The graph
induced by A (a) with edge matrix Pa|b for a = V \ b and b the union of β and C; (b) with edge

matrix Sgg|C for g = V \ C; (c) with edge matrix Sqq.M for q = V \ M .
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The following scheme shows that Sαβ.M = 0 means the absence of any active
path in G

V.q
anc from α to β , which are both subsets of q:

Edge matrix ZT
qα (Iqq + ZqrZ

T
qr )

− Zqβ

Path α→q q ↖ r ↗q . . . q ↖ r ↗q q←β
.

PROOF OF PROPOSITION 4. We show that the edge matrix Sqq.M can equiv-
alently be obtained via edges and alternating paths in GV.M

anc and by closing all
r-line paths in the moral graph for α,β,C, which has the edge matrix SQQ.O in
equation (4.1).

For this, we note first that Q = q ∪ r and we recall that, for SQQ.O , all collision-
oriented V-configurations in the parent graph are closed, that have a common col-
lision node in Q. Then, in the resulting concentration graph, all r-line paths are
closed by partial inversion of SQQ.O , with respect to r . This gives, for the sub-
graph induced by nodes q , the edge matrix (zerr S̃QQ.O)q,q .

For the edge matrix Sqq.M in (4.2), all r-line ancestor–descendant paths are
closed first with Z = zerr Ã, whereby every collision node within r , each of which
has a q-line descendant in q , is replaced by the first descendant in q (see Figure 4
for an illustration). Then, the active alternating path in GV.M

anc has every source node
in r and every collision node in q .

Thus, (zerr S̃QQ.O)q,q = Sqq.M , since for both edge matrices exactly the fol-
lowing types of V-configurations are closed in the subgraph induced by q in GV

par:

i ≺— r ≺—j, i ≺— r —� j and i ≺— Q —� j. �

Our final result establishes the equivalence of the three path-based separation
criteria for V partitioned as before into M , α,β,C and explains why proofs of
equivalence become complex when they are based exclusively on paths that induce
edges in different types of graph.

PROPOSITION 5. The following assertions are equivalent. Between α and β

there is:

(i) an active path in the partial ancestor graph with respect to M and α;
(ii) a d-connecting path relative to C in the parent graph;

(iii) a M-line path in the moral graph of α,β and C.

PROOF. By using Propositions 2 to 4, the results follows after noting that

Pα|β.C = 0 ⇐⇒ Sαβ|C = 0 ⇐⇒ Sαβ.M = 0. �

Figure 5 illustrates the result of Proposition 5 for the parent graph of Figure 1(a),
with α = {2}, β = {3,4}, C = {6} and M = {1,5}. The independence statement
2 ⊥⊥ {3,4}|6 is implied by the parent graph, since the subgraph induced by nodes
α and β has no edge between α and β in the induced graph with edge matrix Pa|b
in Figure 5(a), with edge matrix Sgg|C for g = V \C in Figure 5(b), and with edge
matrix Sqq.M for q = V \ M in Figure 5(c).
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APPENDIX: OPERATORS AND LINEAR INDEPENDENCIES

A.1. Partial inversion and partial closure. Two matrix operators, intro-
duced and studied by Wermuth, Wiedenbeck and Cox [12], permit stepwise trans-
formations of parameters in linear systems and edge matrices of independence
graphs, respectively. Note that M now denotes a matrix.

Let M be a square matrix of dimension d , for which all principal submatrices
are invertible. For a given integer 1 ≤ k ≤ d , partial inversion of M with respect
to k, transforms M into a matrix N = invk M of the same dimensions, where, for
all i, j �= k,

Nkk = 1/Mkk,

Nik = Mik/Mkk,
(A.1)

Nkj = −Mkj/Mkk,

Nij = Mij − MikMkj/Mkk.

Then the matrix N of structural zeros in N = invk M that remain after partial
inversion of M on k is defined by N = zerk M:

Nkk = 1,

Nik = Mik,
(A.2)

Nkj = Mkj ,

Nij =
{

1, if Mij = 1 or MikMkj = 1,
0, otherwise.

Partial inversion of M , with respect to a sequence of indices a, applies the op-
erator (A.1) in sequence to all elements of a and is denoted by inva M . Similarly,
partial closure (A.2) of M, with respect to a,is denoted by zera M and closes all
a-line paths in the graph with edge matrix M [see (3.1)].

Partial inversion of M , with respect to all indices V = {1, . . . , d}, gives the
inverse of M and partial closure of M, with respect to V , gives the edge matrix M−
of the transitive closure of the graph with edge matrix M

invV M = M−1, zerV M = M−

[see also equation (2.7)].
Both operators are commutative; that is, for three disjoint subsets a, b and c

of V

inva invbM = invb invaM, zera zerbM = zerb zeraM,

but partial inversion can be undone while partial closure cannot

invab invbcM = invacM, zerab zerbcM = zerabcM.
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For V = {a, b}, M partially inverted on a coincides with M−1 partially inverted
on b,

inva M = invb M−1.(A.3)

A.2. Zero partial regression coefficients and independence. A Gaussian
random vector Y has a nondegenerate distribution if its covariance matrix � is
positive definite. From � partitioned as (a, b, c, d), the conditional covariance ma-
trix �ab|c, of Ya and Yb given Yc, is obtained by partially inverting �, with respect
to c,

�ab|c = �ab − �ac�
−1
cc �cb.

The least-squares linear predictor of Ya given Yb is �a|bYb with �a|b =
�ab�

−1
bb . For prediction of Ya with Yb and Yc, the matrix of the least-squares re-

gression coefficients �a|bc is partitioned as

�a|bc = (�a|b.c �a|c.b ) = (�ab|c�−1
bb|c �ac|b�−1

cc|b ) ,(A.4)

where, for example, �a|b.cYb predicts Ya with Yb when both Ya and Yb are adjusted
for linear dependence on Yc. Equation (A.4) is generalized by

�a|bc.d = (�a|b.cd �a|c.bd ) = (�ab|cd�−1
bb|cd �ac|bd�−1

cc|bd ) .(A.5)

By property (A.3) of partial inversion

(�a|b.cd �a|c.bd ) = −(�aa)−1 (�ab �ac ) ,

where �aa , �ab and �ac are submatrices of the concentration matrix �−1.
From �−1, the concentration matrix �bc.a , of Yb and Yc after marginalizing
over Ya is obtained by partially inverting �−1, with respect to a,

�bc.a = �bc − �ba(�aa)−1�ac.

A recursive relation for matrices of least-squares regression coefficients general-
izes a result due to Cochran [1],

�a|b.cd = �a|b.c − �a|d.bc�d|b.c,(A.6)

and is obtained with partial inversion of � first, with respect to b, c and d .

LEMMA A.1. For nondegenerate Gaussian distributions, linear and proba-
bilistic independencies combine equivalently as follows:

(i) symmetry: �a|b.c = 0 implies �b|a.c = 0 ⇐⇒ a ⊥⊥ b|c implies b ⊥⊥ a|c;
(ii) decomposition: �a|bc.d = 0 implies �a|b.d = 0⇐⇒ a ⊥⊥ bc|d implies

a ⊥⊥ b|d ;
(iii) weak union: �a|bc.d = 0 implies �a|b.cd = 0⇐⇒ a ⊥⊥ bc|d implies

a ⊥⊥ b|cd ;
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(iv) contraction: �a|b.c = 0 and �a|d.bc = 0 imply �a|bd.c = 0 ⇐⇒ a ⊥⊥ b|c
and a ⊥⊥ d|bc imply a ⊥⊥ bd|c;

(v) intersection: �a|b.cd = 0 and �a|c.bd = 0 imply �a|bc.d = 0 ⇐⇒ a ⊥⊥
b|cd and a ⊥⊥ c|bd imply a ⊥⊥ bc|d;

(vi) composition: �a|c.d = 0 and �b|c.d = 0 imply �ab|c.d = 0 ⇐⇒ a ⊥⊥ c|d
and b ⊥⊥ c|d imply ab ⊥⊥ c|d .

PROOF. Definition (A.4) implies that �a|b.c vanishes if and only if �ab|c = 0,
so that (i) results by the symmetry of the conditional covariance matrix. Property
(ii) follows by noting that �a|bc.d = 0 is equivalent to the vanishing of both �ab|d
and �ac|d and thus also of �a|b.d = �ab|d�−1

bb|d . Properties (iii) and (v) are di-
rect consequences of (A.5), while (iv) follows with equation (A.6). Finally, (vi) is
another consequence of the definition (A.4) and the equality (�a|b)α,β = �α|β.C .

The proof is completed by the equivalence of linear and probabilistic indepen-
dence statements in Gaussian distributions. �
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