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SUMMARY

Undetected confounding may severely distort the effect of an explanatory variable on a response
variable, as defined by a stepwise data-generating process. The best known type of distortion,
which we call direct confounding, arises from an unobserved explanatory variable common to
a response and its main explanatory variable of interest. It is relevant mainly for observational
studies, since it is avoided by successful randomization. By contrast, indirect confounding, which
we identify in this paper, is an issue also for intervention studies. For general stepwise-generating
processes, we provide matrix and graphical criteria to decide which types of distortion may be
present, when they are absent and how they are avoided. We then turn to linear systems without
other types of distortion, but with indirect confounding. For such systems, the magnitude of
distortion in a least-squares regression coefficient is derived and shown to be estimable, so that it
becomes possible to recover the effect of the generating process from the distorted coefficient.

Some key words: Graphical Markov model; Identification; Independence graph; Linear least-squares regression;
Parameter equivalence; Recursive regression graph; Structural equation model; Triangular system.

1. INTRODUCTION

In the study of multivariate dependences as representations of a potential data-generating pro-
cess, important dependences may appear distorted if common explanatory variables are omitted
from the analysis, either inadvertently or because the variables are unobserved. This is an instance
of the rather general term confounding.

There are, however, several distinct sources of distortion when a dependence is investigated
within a reduced set of variables. The different ways in which such distortions arise need clari-
fication. We do this by first giving examples using small recursive linear systems for which the
generating process has a largely self-explanatory graphical representation. Later, these ideas are
put in a general setting.

2. SOME INTRODUCTORY EXAMPLES

2·1. Direct confounding

The most common case of confounding arises when an omitted background variable is both
explanatory to a response of primary interest and also to one of its directly explanatory variables.
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18 NANNY WERMUTH AND D. R. COX

Fig. 1. Simple example of direct confounding. (a) Y1 de-
pendent on both Y2 and U ; Y2 dependent on U and U to be
omitted. In a linear system for standardized variables, the
overall dependence of Y1 on Y2 is α + δγ , with confound-
ing effect δγ due to the unobserved path from Y1 to Y2 via
U . (b) Graph derived from Fig. 1(a) after omitting U . A
dashed line added to 1≺ 2 for the induced association.

Generating dependence α preserved, but not estimable.

In Fig. 1(a), which shows this simplest instance, the directions of the edges indicate that U is to
be regarded as explanatory to both the response Y1 and to Y2; Y2 is, in addition, explanatory to
Y1. We suppose here for simplicity that the random variables have marginally zero means and
unit variances.

The generating process is given by three linear equations,

Y1 = αY2 + δU + ε1, Y2 = γU + ε2, U = ε3, (1)

where each residual, εi , has mean zero and is uncorrelated with the explanatory variables on the
right-hand side of an equation.

If, as is indicated by the crossed out node in Fig. 1(a), U is marginalized over, the conditional
dependence of Y1 on only Y2 is obtained, which consists of the generating dependence α and
an effect of the indirect dependence of Y1 on Y2 via U . This may be seen by direct calculation,
assuming that the residuals εi have a Gaussian distribution, from

E (Y1 | Y2, U ) = αY2 + δU, E (Y2 | U ) = γU, E (U ) = 0,

leading to

E (Y1 | Y2) = αY2 + δ E (U | Y2) = {α + δγ var(U )/var(Y2)} Y2 = (α + δγ )Y2· (2)

Thus, the generating dependence α is distorted in the conditional dependence of Y1 on Y2 alone,
unless δ = 0 or γ = 0. However, this would have been represented by a simpler generating
process, in which a missing arrow for (1, U ) indicates δ = 0 and a missing arrow for (2, U )
shows γ = 0. Marginal independence of Y2 and U (γ = 0) can be achieved by study design. It is
satisfied if Y2 represents a treatment variable and randomization is used successfully to allocate
individuals to treatments. In that case, all direct dependences affecting the treatment variable Y2

are removed from the generating process, including those of unobserved variables. Effects of the
lack of an association between Y2 and U are explored for more general relationships by Cox &
Wermuth (2003) and by Ma et al. (2006). In general, the dependence of Y1 on U, given Y2, may
vary with the levels y2 of Y2.

Conditions under which a generating coefficient α remains unchanged follow also from the
recursive relation of linear least-squares regression coefficients (Cochran, 1938), namely

β1 | 2 = β1 | 2·3 + β1 | 3·2β3 | 2, (3)

where we use a slight modification of Yule’s notation for partial regression coefficients. For
example, β1 | 2·3 is the coefficient of Y2 in linear least-squares regression of Y1 on both Y2 and Y3,

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/95/1/17/219356 by U
niversitaetsbibliothek M

ainz user on 21 Septem
ber 2018



Distortion of effects 19

and we note for Fig. 1 that α = β1 | 2·3 and δ = β1 | 3·2. Cochran’s result (3) uses implicitly linear
expectations to obtain β3 | 2. As we shall explain later, these linear expectations are well defined
for recursive linear least-squares equations, such as (1), which have uncorrelated residuals, but
which do not necessarily have Gaussian distributions.

For the later general discussion, we also need a graphical representation of the structure
remaining among the observed variables, here of Y1 and Y2, as given in Fig. 1(b). The common
dependence on U induces an undirected association between the two observed variables, shown
by a dashed line. A dashed line represents an association that could have been generated by a
single common unobserved explanatory variable. From the generating equations (1), we obtain
linear equations with correlated residuals,

Y1 = αY2 + η1, Y2 = η2, (4)
where

η1 = δU + ε1, η2 = γU + ε2.

This shows directly that α cannot be estimated from the three elements of the covariance matrix
of (Y1, Y2), since the three non-vanishing elements of the residual covariance matrix and α

give four parameters for the equations (4). As a consequence, the generating dependence,
α, also cannot be recovered from the conditional dependence of Y1 on Y2 alone, given by
β1 | 2 = α + δγ .

When the dependence represented by generating coefficient α is not estimable as in the induced
equations (4), the equations are said to be under-identified. In systems larger than the one in
Fig. 1(b), it may be possible to recover the generating dependence from the observed variables,
provided there are so-called instrumental variables; for the extensive econometric literature,
which builds on early work by Sargan (1958), see Hausmann (1983) or Angrist & Krueger
(2001).

As we shall see, direct confounding of a generating dependence of variable pair Yi , Y j , say, is
absent, in general, if there is no double edge, i≺ j , induced in the derived graph.

2·2. Two avoidable types of distortion

We describe next two further types of distortion that can typically be avoided if the generating
process is known and the distortions involve observed variables. One is under-conditioning. It
arises by omitting from an analysis those variables that are intermediate between the explanatory
variable and an outcome of primary interest. The other is over-conditioning. It arises by using as
an explanatory variable to the outcome of primary interest, a variable which is, in fact, itself a
response of this outcome.

We give two simple examples in Fig. 2, again for standardized variables that are linearly related.
The boxed-in node, �◦ , indicates conditioning on given levels of a variable, and a crossed out
node, � �◦, means, as before, marginalizing.

In Fig. 2(a), with Y3 representing a treatment variable, interest could often be in what is called
the total effect of Y3 on Y1. Then, marginalizing over the intermediate variable Y2 is appropriate
and β1 | 3 = δ + αγ is estimated. Suppose, however, that the generating dependence of response
Y1 on Y3 , given Y2 is of main interest; then the direct effect δ in the data-generating process is
to be estimated, and a decomposition of the total effect β1 | 3 becomes essential, into the direct
effect, δ, and the indirect effect, αγ , via the intermediate variable Y2. In this case, omission of Y2

would be an instance of under-conditioning, leading to a mistaken interpretation; for example,
see Wermuth & Cox (1998b).
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20 NANNY WERMUTH AND D. R. COX

Fig. 2. Distortions due to under- and over-conditioning. (a)
Generating dependence β1 | 3·2 = δ distorted with β1 | 3, i.e. af-
ter removing Y2 from conditioning set of Y1 ; (b) Generating
dependence β2 | 3 = γ distorted with β2 | 3·1, i.e. after including

Y1 into the conditioning set of Y2.

For Fig. 2(b), the following form of the recursive relation of least-squares regression coefficients
β2 | 3·1 = β2 | 3 − β2 | 1·3β1 | 3 gives, together with β2 | 1·3 = β1 | 2·3σ22 | 3/σ11 | 3,

β2 | 3·1 = γ − {
(1 − γ 2)/

(
1 − ρ2

13

)}
αρ13, with ρ13 = δ + αγ .

The generating dependence could not be recovered if no information were available for Y2 in
Fig. 2(a) or for Y1 in Fig. 2(b).

More complex forms of over-conditioning result by both marginalizing and conditioning. The
simplest more general form is the presence of the following path:

i ��◦ ≺ � �◦ ��◦ ≺ j .

With any type of over-conditioning, the roles given by the generating process are interchanged for
some variables, since a response to an outcome variable becomes included in the conditioning set
of this outcome. Presence of strong distortions due to over-conditioning typically leads directly
to a mistaken interpretation.

As we have seen, consequences of under- and over-conditioning can be quite different. However,
after a set of variables is omitted from the generating process, both over- and under-conditioning
for a response are avoided by the same strategy: by considering the conditional dependence on
all and only those of the observed variables that are explanatory for response, either directly or
indirectly via intermediate variables.

In the following two examples of indirect confounding, there is no direct confounding and
there is no distortion due to over- or to under-conditioning.

2·3. Indirect confounding in an intervention study

A simple system without direct confounding, but with distortions of the generating dependence
of Y on Tp, is shown in Fig. 3.

It concerns an intervention study and is adapted from Robins & Wasserman (1997), who
showed that the generating dependence of the main outcome variable, Y , on past treatment, Tp,
given both the more recent treatment, Tr, and the unobserved health status, U , of a patient, cannot
be estimated consistently by any least-squares regression coefficient in the observed variables, in
spite of the use of randomization when administering the two treatments sequentially.

A past treatment Tp is decoupled from U due to full randomized allocation of treatments to
individuals, and there is an intermediate binary outcome, A. The recent treatment, Tr, is decoupled
from both Tp and U , but not from A, since randomized allocation of treatments to individuals is
at this stage, assumed to be conditional on the level of the intermediate outcome variable A.

For some detailed discussion of the structure represented by the graph in Fig. 3, we turn now
to a linear system of standardized variables in which observed variables (1, 2, 3, 4) correspond to
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Distortion of effects 21

Fig. 3. Generating process in five variables, missing edge for (Tp, U ) due
to full randomized allocation of individuals to treatments, and missing
edges for (Tr, U ) and (Tr, Tp) due to randomization conditionally, given
A. With U unobserved, no direct confounding results, but the generating
dependence of Y on Tp (but not of Y on Tr) becomes indirectly confounded.

(Y, Tr, A, Tp) and obtain the equations with uncorrelated residuals, defined implicitly by Fig. 4(a),
as

Y1 = λY2 + αY4 + δU + ε1, Y2 = νY3 + ε2, Y3 = θY4 + γU + ε3, Y4 = ε4, U = εU .
(5)

From Fig. 4(a), the graph for the remaining four observed variables in Fig. 4(b) is derived by
replacing the path 1≺ U �3 by a dashed line for (1,3).

Fig. 4. (a) The graph of Fig. 3 for a linear system in standardized variables and (b) the derived graph
with an induced association for (1,3), shown as a dashed line; no direct confounding of α, the generating
dependence of 1 on 4, but the confounding path, 1 3≺ 4, turns β1 | 4·23 into a distorted measure of

α = β1 | 4·3U .

The correlation matrix of the observed variables is, by direct computation or by tracing paths,
i.e. by repeated use of recursive relations for least-squares coefficients,

corr(Y1, Y2, Y3, Y4) =

⎛
⎜⎜⎝

1 λ + αθν + δγ ν λν + αθ + δγ α + λνθ

· 1 ν νθ

· · 1 θ

· · · 1

⎞
⎟⎟⎠ ,

where the dots indicate entries in a symmetric matrix, left out as redundant.
Furthermore, each of the four possible least-squares coefficients of Y1, regressed on Y4 and on

some or none of Y2 and Y3, is a distorted measure of the generating dependence α, since

β1 | 4 = α + λνθ, β1 | 4·2 = α − ν2θδγ /(1 − ν2θ2), β1 | 4·23 = β1 | 4·3 = α − θδγ /(1 − θ2)·
This verifies the result of Robins & Wasserman (1997) for a purely linear system and explains
how effect reversal can occur, depending on the signs and relative magnitudes of the two terms
in these last formulae. The distortion of α in β1 | 4·23, which is due to what we call indirect
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22 NANNY WERMUTH AND D. R. COX

confounding, results by the combination of conditioning on Y3, which is indirectly explanatory
for the response Y1, and of marginalizing over U , which is a common explanatory variable for
both Y1 and Y3.

The explicit expressions for the least-squares coefficients show, in addition, that the generating
coefficient α may, in this case, be recovered from the observed variables, for instance, with
β2 | 4 = νθ and β1 | 2·34 = λ; the same holds for least-squares estimates, so that the generating
coefficient α is identifiable for the given process, see § 6·2.

2·4. Indirect confounding in an observational study

The data-generating process in Fig. 5 is for determinants of quality of life after removal of the
bladder because of a tumour. There are five quantitative variables and one binary variable A,

which captures whether the bladder substitute leads to continent or incontinent urine diversion.
When both U and V are unobserved, there is no direct confounding, but indirect confounding for
the generating dependence of physical quality of life after surgery, Y , on the type of diversion, A.

Fig. 5. A potential generating process for physical quality of life
of male patients with a bladder tumour, after surgical removal of

the bladder; data from Hardt et al. (2004).

The confounding path in the derived graph is different from the one in the intervention study:
it is the path Y Z A with implicit conditioning on Z , since Z is indirectly explanatory for
Y via the intermediate variable X .

2·5. Objective of paper

From these examples, several questions arise for general generating processes, including those
that contain both continuous and discrete variables as responses. Is there a class of structures
in which indirect confounding of a generating dependence can occur when there is no other
distortion, Figs 3 to 5 being just examples? Can the distortions be then so severe that qualitatively
different conclusions on the direction and strength of dependencies arise? Are there general
conditions under which we can always quantify the amount of indirect confounding in linear
least-squares coefficients, so that the generating coefficients can be recovered at least in linear
systems? The main objective of the present paper is to give affirmative answers to these questions.

3. GRAPHICAL AND MATRIX REPRESENTATIONS

3·1. Parent graphs and triangular systems of densities

A graphical representation of a stepwise generating process consists of nodes, drawn as circles
for continuous and as dots for discrete variables, and of directed edges, drawn as arrows. It has
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Distortion of effects 23

an ordered node set V = (1, 2, . . . , d), such that a component variable Yi of a vector variable YV

corresponds to node i and, for i < j , the relationship between variables Yi and Y j is interpreted
with Y j being potentially explanatory to response Yi .

For each node i , there is a subset par(i) of r (i) = (i + 1, . . . , d), called the parent set of i , with
the corresponding variables said to be directly explanatory for Yi . An i j-arrow starts at node j
and points to node i, if and only if node j is a parent of node i ; the graph, denoted by GV

par, is
named the parent graph.

A joint density fV , written compactly in terms of nodes and of the form

fV =
d∏

i=1

fi | par (i), (6)

is then generated over the given parent graph by starting with the last background variable, Yd ,
continuing with Yd−1, up to Y1, the response of primary interest. In that way, the independence
structure is fully described by the parent graph: if the i j-arrow, i.e. the edge for node pair (i, j),
is missing, then Yi is independent of Y j , given Ypar (i), written in terms of nodes as i ⊥⊥ j | par (i).
If the i j-arrow is present, then Yi is dependent on Y j , given Ypar (i)\ j .

For the later results, some further definitions for graphs are useful. An i j-path is a sequence of
edges which join the path endpoint nodes i and j via distinct nodes. Nodes along a path, called its
inner nodes, exclude the path endpoints. An edge is regarded as a path without inner nodes. For
an i j-path which starts with an arrow-end at node j , meets an arrow-end at each inner node and
ends with an arrow-head at i , node j is called an ancestor of i and the set of ancestors is denoted
by anc(i). Variables attached to such inner nodes are intermediate between Yi and Y j . A node j ,
which is an ancestor but not a parent of i , indicates that Y j is only indirectly explanatory for Yi .

3·2. Linear triangular systems

Instead of a joint density, a linear triangular system of equations may be generated over a given
parent graph. Then, for mean-centred variables, the linear conditional expectation of Yi on Yr (i),
where as before r (i) = (i + 1, . . . d), is

E lin(Yi | Yr (i)) = �i | par(i)Ypar(i), (7)

if the residuals, denoted by εi , are uncorrelated with Y j for all j in r (i) (Cramér, 1946, p. 302)
and if there is a direct contribution to linear prediction of Yi only for j, a parent node of i . Thus,
E lin is to be interpreted as forming a linear least-squares regression and �i | par(i) denotes a row
vector of nonzero linear least-squares regression coefficients.

A missing i j-arrow means, in this case, that Yi is linearly independent of Y j , given Ypar(i), and
this is reflected in βi | j ·par(i) = 0. The linear equations, corresponding to (7), are in matrix form

AY = ε, (8)

where A is an upper-triangular matrix with unit diagonal elements, and ε is a vector of zero-
mean, uncorrelated random variables, called residuals. The diagonal form of the positive definite
residual covariance matrix, cov(ε) = , defines linear least-squares regression equations, such
that the nonzero off-diagonal elements Ai j of A are

− Ai j = βi | j ·r (i)\ j = βi | j ·par(i)\ j . (9)

The concentration matrix implied by (8) is �−1 = AT−1 A. The matrix pair (A,−1) is also
called a triangular decomposition of �−1. It is unique for the fixed order given by V . For a given
�−1 of dimension d, there are d! possible triangular decompositions, so that linear least-squares
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24 NANNY WERMUTH AND D. R. COX

coefficients βi | j ·C are defined for any subset C of V without nodes i and j . Thus, for the examples
set out in § 2, Gaussian distributions of the residuals are not needed; the same results are achieved
for linear triangular systems (8) which have uncorrelated residuals.

3·3. Edge matrices and structural zeros

The binary matrix representation of the parent graph of a linear triangular system isA = In[A],
where the indicator operator In replaces every nonzero element in a matrix by a one. It is called
an edge matrix, since off-diagonal ones represent edges present in the graph. The edge matrix of
GV

par of a joint density (6) is the d × d upper triangular binary matrix with elementsAi j defined by

Ai j =
{

1 if and only if i ≺ j in GV
par or i = j,

0 otherwise.
(10)

It is the transpose of the usual adjacency matrix representation of the graph with additional ones
along the diagonal to simplify transformations, such as marginalizing.

New edge matrices are induced after changing conditioning sets of dependencies, as given by
the parent graph. For each i j-one in an induced-edge matrix, at least one i j-path can be identified
in the given parent graph that leads in the family of linear systems generated over the parent graph
to a nonvanishing parameter for pair (Yi , Y j ); see, for example, § 3 of Wermuth & Cox (1998a).
Whenever no such path exists, an i j-zero is retained in the induced-edge matrix. It indicates for
the linear system that the corresponding parameter is structurally zero, i.e. that it remains zero
as a consequence of the generating process. Therefore, we denote edge matrices by calligraphic
letters that correspond to the latin letters of the associated parameter matrices in linear systems.

4. SOME PRELIMINARY RESULTS

4·1. Some early results on triangular systems

Linear triangular systems (7) have been introduced as path analyses in genetics (Wright, 1923,
1934) and as linear recursive equations with uncorrelated residuals in econometrics (Wold, 1954).
Early studies of their properties include Tukey (1954), Wermuth (1980) and Kiiveri et al. (1984).
They form a subclass of linear structural equations (Goldberger, 1991, Ch. 33, p. 362)

Linear triangular systems (7) and triangular systems of densities (6) are both well suited to
describe development without and with interventions. Both form a subclass of graphical Markov
models (Cox & Wermuth, 1993, 1996; Wermuth, 2005). For graphical models based on a special
type of distributional assumption, namely the conditional Gaussian distribution, see Edwards
(2000), Lauritzen (1996) and Lauritzen & Wermuth (1989).

4·2. Omitting variables from a triangular system

For a split of YV into any two component variables YM and YN with N = V \ M , the density
fV in (6) can be factorized in the form

fV = fM | N fN .

One may integrate over YM to obtain the structure in the joint marginal density fN of YN , implied
by the generating process.

Essential aspects of this structure are captured by the changes resulting for the parent graph. We
denote by Ṽ = (M, N ) the correspondingly ordered node set and by G N

rec, the graph of recursive
dependencies derived for the reduced node set N , where the order of nodes within N is preserved
from V . The objective is to deduce the independence structure of G N

rec from that of the parent
graph and to define different types of association introduced by marginalizing over YM .
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Distortion of effects 25

4·3. Two matrix operators

To set out changes in edge matrices, we start with a general type of edge matrix F , such as
for A, �−1 and �, denote the associated linear parameter matrix by F , and apply two matrix
operators, called partial closure and partial inversion.

Let F be a square matrix of dimension d with principal submatrices that are all invertible and
let a be any subset of V . Let, further, b = V \ a and let an associated binary edge matrix F be
partitioned according to (a, b). We also partition F and B accordingly and denote by Bab the
submatrix of B with rows pertaining to node components a and columns to components b. Then
the operator, called partial inversion, transforms F into inva F and the operator, called partial
closure, transforms F into the associated edge matrix zeraF . They are defined as follows.

DEFINITION 1 (Partial inversion and partial closure; Wermuth et al., 2006b). The operators of
partial inversion and partial closure are

inva F =
(

F−1
aa −F−1

aa Fab

Fba F−1
aa Fbb − Fba F−1

aa Fab

)
, zeraF = In

[( F−
aa F−

aaFab

FbaF−
aa Fbb + FbaF−

aaFab,

)]
,

where

F−
aa = In[(k Iaa − Faa)−1], (11)

with k − 1 denoting the dimension of Faa and I an identity matrix.

Adding a sufficiently large constant along the diagonal in (11) ensures that an invertible matrix
is obtained, that the inverted matrix has nonnegative elements and that this inverse has a zero
entry, if and only if there is a structural zero in F−1. If Faa = Aaa is upper-triangular, then an
i j-one is generated in A−

aa , if and only if j is an ancestor of i in the graph with edge matrix Aaa .
If instead Faa is symmetric, an i j-one is generated in F−

aa if and only if there is an i j-path in the
graph with edge matrix Faa .

Both operators can be applied to a sequence of distinct subsets of a in any order to give inva F
and zeraF . Closing paths repeatedly has no effect, but partial inversion is undone by applying it
repeatedly, i.e. inva(inva F) = F . Another important property of partial inversion is that

F
(

ya

yb

)
=

(
za

zb

)
implies inva F

(
za

yb

)
=

(
ya

zb

)
· (12)

Repeated application of these two operators will be used here to identify relevant properties
of triangular systems. In essence, partial inversion isolates the random variable of interest after
marginalization and partial closure specifies the implied graphical structure.

4·4. The induced recursive regression graph

For a linear triangular system, AY = ε in (7), with diagonal covariance matrix  of the residuals
ε and a parent graph with edge matrix A, let M denote any subset of V to be marginalized over, let
N = V \ M and let Ã, Ã be the matrices A,A arranged and partitioned according to Ṽ = (M, N )
and preserving within subsets the same order as in V . Then we define

B = invM Ã, B = zerMÃ, (13)

to obtain the induced equations in terms of  and B, and the graph in terms of B. After applying
property (12) to ÃỸ = ε̃, we have that

invM Ã
(

εM

YN

)
=

(
YM

εN

)
·
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26 NANNY WERMUTH AND D. R. COX

The bottom row of this equation gives the observed variables YN that remain after marginalizing
over YM as a function of components of ε and B. We summarize this in Lemma 1.

LEMMA 1 (The induced recursive regression graph. Wermuth & Cox, 2004; Corollary 1 and
Theorem 3). The recursive equations in YN obtained from a linear triangular system (7), which
are orthogonal to the equations in YM corrected for linear least-squares regression on YN , have
equation parameters defined by BN N and residual covariances defined by KN N = cov(ηN ). The
induced recursive regressions equations are

BN N YN = ηN , ηN = εN − BN MεM , KN N = N N + BN MM M BT
N M . (14)

The edge matrix components of the recursive regression graph G N
rec , induced by triangular

systems (6) or (7) after marginalizing over YM , are

KN N , KN N = In
[
IN N + BN MBT

N M

]
. (15)

The key issue here is that the edge matrix components of G N
rec derive exclusively from special

types of path in G N
par, represented by A, and, since probabilistic independence statements defined

by a parent graph combine in the same way as linear independencies specified by the same graph,
the edge matrix induced by the linear system holds for all densities generated over the same GV

par;
see Marchetti and Wermuth (2008).

In general, edge matrices indicate both edges present in a graph, by i j-ones, and structurally
zero parameters in a linear system, by i j-zeros. The types of induced edge are specified by using
the following convention.

DEFINITION 2 (Types of edge represented by a matrix). An i j-one in F , an edge matrix derived
from A for an induced linear parameter matrix F, represents

(i) an arrow, i ≺ j , if F is an equation parameter matrix,
(ii) an i j-dashed line, i j , if F is a residual covariance matrix.

Thus, for instance, i j-arrows result with BN N and i j-dashed lines with KN N . The type of
induced edge relates more generally to the defining matrix products.

DEFINITION 3 (Types of edge resulting by edge matrix products). Let an edge matrix product
define an association-inducing path for a family of linear systems. Then the generated edge
inherits the edge ends of the left-hand and of the right-hand matrix in the product.

Thus, AN MA−
M MAM N results in arrows and BN MBT

N M leads to dashed lines as a condensed
notation for generating paths which have arrow-heads at both path endpoints.

4·5. Linear parameter matrices and induced-edge matrices

For the change, for instance, from parameter matrices BN N , KN N in the linear systems (14)
to induced-edge matrix components BN N ,KN N in (15), one wants to ensure that every matrix
product and every sum of matrix products has nonnegative elements, so that no additional zero
is created and possibly, all zeros are retained. This is summarized as follows.

LEMMA 2 (Transforming parameter matrices in linear systems into edge matrices). Let
induced parameter matrices be defined by parameter components of a linear system FY = ζ ,
with correlated residuals, such that the matrix products hide no self-cancellation of an operation,
such as a matrix multiplied by its inverse. Let, further, the structural zeros of F be given by F .
Then the induced-edge matrix components are obtained by replacing, in the defining equations,

(i) every inverse matrix, F−1
aa say, by the binary matrix of its structural zeros F−

aa,
(ii) every diagonal matrix by an identity matrix of the same dimension,

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/95/1/17/219356 by U
niversitaetsbibliothek M

ainz user on 21 Septem
ber 2018



Distortion of effects 27

(iii) every other submatrix, −Fab or Fab say, by the binary submatrix of structural zeros, Fab,
(iv) and then applying the indicator function.

Thus, for instance, BN N = In[AN N + ÃN MA−
M MÃM N ] may be obtained in this way from

BN N = AN N − ÃN M A−1
M M ÃM N .

The more detailed results that follow are obtained by starting with equations (14) for the
observed vector variable YN , applying the two matrix operators, the above stated types of trans-
formation and by orthogonalizing correlated residuals. The last task is achieved for an arbitrary
subset a of V and b = V \ a, after transforming ηb into residuals corrected for marginalization
over Ya , i.e. by taking ηb−a = ηb − Cbaηa , and then by conditioning ηa on ηb−a , i.e. by obtain-
ing ηa | b−a = ηa − cov(ηa, ηb−a){cov(ηb−a)}−1ηb−a . For this, one uses the appropriate residual
covariance matrix partially inverted with respect to b.

4·6. Consequences of the induced recursive regression graph

In Lemma 1, we have specified the structure for YN , obtained after marginalizing over YM . To
study YN in more detail, let a be any subset of N and b = N \ a. Let, further, �a | b be the matrix
of regression coefficients obtained by linear least-squares regression of Ya on Yb. An element
�a | b for i of a and j of b is the least-squares regression coefficient βi | j ·b\ j . The edge matrix
corresponding to �a | b is denoted by Pa | b , with element Pi | j ·b\ j .

Suppose now that the parameter matrices of linear recursive equations (14) and corresponding
edge matrices (15) are arranged and partitioned according to Ñ = (a, b) and that, within subsets,
the order of nodes remains as in N . Then we define

CN N = inva B̃N N , CN N = zera B̃N N , (16)

and, with WN N = cov(ηa, ηb − Cbaηa) and WN N the corresponding induced-edge matrix,

QN N = invb W̃N N , QN N = zerb W̃N N , (17)

to obtain with Pa | b the independence statements induced by G N
rec for Ya , given Yb.

LEMMA 3 (The induced-edge matrix of conditional dependence of Ya on Yb; Wermuth &
Cox, 2004, Theorem 1). The linear least-squares regression coefficient matrix �a | b induced by
a system of linear recursive regression (14) in G N

rec is

�a | b = Cab + Caa QabCbb, (18)

and the edge matrix Pa | b induced by a recursive regression graph G N
rec is

Pa | b = In[Cab + CaaQabCbb]. (19)

The independence interpretation of recursive regression graphs results from Lemma 3, if a is
split further into any two nonempty subsets α and d and b into two nonempty subsets β and c. For
the dependence of Yα on Yβ , given Yc, i.e. for a conditional dependence in the marginal density
fαβC , one obtains the induced-edge matrix Pα | β·c as a submatrix of Pa | b:

Pa | b =
(Pα | β·c Pα | c·β
Pd | β·c Pd | c·β

)
.

COROLLARY 1 (Independence induced by a recursive regression graph). The following state-
ments are equivalent consequences of the induced recursive regression graph G N

rec :
(i) Pα | β·c = 0;

(ii) α ⊥⊥ β | c is implied for all triangular systems of densities generated over a parent graph;
(iii) In[Cαβ + CαaQabCbβ] = 0.
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28 NANNY WERMUTH AND D. R. COX

It follows further from (19) that the conditional dependence of Yi on Y j , given Yb\ j coincides
with the generating dependence corresponding toAi j = 1, if CiaQabCbj = 0 andAimA−

mmAmj =
0, where m = M ∪ a. The first condition means absence of an i j-path in G N

rec via induced
associations captured by Qab. The second condition means that, in GV

par, node j is not an ancestor
of i, such that all inner nodes of the path are in m. With appropriate choices of i and b, the
distortions described in the examples of § 2 are obtainable by using (18).

However, to correct for the distortions, one needs to know when the parameters induced for
G N

rec are estimable. From the discussion in § 2·2, this is not possible, in general. We therefore turn
next to systems without over- and under-conditioning concerning components of YN .

5. DISTORTION IN THE ABSENCE OF OVER- AND UNDER-CONDITIONING

For any conditional dependence of Yi on Yb, we let b coincide with the observed ancestors of
node i , i.e. we take b = anc(i) ∩ N and node i in a = N \ b. The corresponding modification of
Lemma 3 results after observing that, in this case, there is no path from d = a \ i to node i, so
that (invd BN N )S,S = BSS with S = N \ d and that, in addition, Cba = Bba = 0.

PROPOSITION 1 (The conditional dependence of Yi on Yb in the absence of over- and under-
conditioning). The graph G N

rec, obtained after marginalizing over variables YM induces the
following edge vector for the conditional dependence of Yi on Yb:

Pi | b = In[Bib + (KibK−
bb)Bbb]. (20)

In addition, the linear system to G N
rec induces the following vector of least-squares regression

coefficients:

�i | b = Bb + (Kib K −1
bb )Bbb· (21)

The conditional dependence of Yi on Y j , given Yb\ j , measures the generating dependence corre-
sponding to Ai j = 1 without distortions

(i) due to unobserved intermediate variables if Ai MA−
M MAM j = 0, and

(ii) due to direct confounding if Ki j = 0, and
(iii) due to indirect confounding if (KibK−

bb)Bbj = 0.

Distortions of type (i) are avoided if the observed node set N consists of the first dN nodes
of V = (1, . . . , d). Then no path can lead from a node in N to an omitted node in M, so that
AN M = 0 and hence BN N = AN N , BN N = AN N .

COROLLARY 1 (Paths of indirect confounding in the absence of over- and under-conditioning).
In a graph G N

rec, only the following two types of path may introduce distortions due to indirect
confounding:

(i) (KabK−
bb)i j � 0,

(ii) (KibK−
bb)Bbj � 0.

When three dots indicate that there may be more edges of the same type, coupling more distinct
nodes, then typical paths of type (i) and (ii) are, respectively,

i �◦ . . . �◦ �◦ j, i �◦ . . . �◦ �◦ ≺ j,

where each node �◦ along the path is conditioned on and represents a node which is a forefather
of node i , i.e. an ancestor but not a parent of i . In Fig. 4(b), the confounding path 1 3≺ 4 is
of type (ii). In Fig. 6(b) below, the confounding path is of type (i).
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6. INDIRECT CONFOUNDING IN LINEAR GENERATING PROCESSES

6·1. Distortions and constraints

Confounding i j-paths in G N
rec, as specified in Corollary 2 for Ai j = 1, have as inner nodes

exclusively forefather nodes of i and induce in families of linear generating processes associations
for pair Yi , Y j , in addition to the generating dependence. However, as we shall see in § 6·2, a
generating coefficient can be recovered from a least-squares regression coefficient in the observed
variables, provided there is no other source of distortion.

COROLLARY 3 (Indirect confounding in a linear least-squares regression coefficient when other
sources of distortion are absent). Suppose, first, that the recursive regression graph G N

rec is without
a double edge, ≺ , secondly, that only background variables YM with M = (dN + 1, . . . , d) are

omitted from (8), and, thirdly, that conditioning of Yi is on Yanc(i)∩N . Then, if there is a confounding
i j-path in G N

rec, a nonzero element in Pi | b contains
(i) a distortion due to indirect confounding for Ai j = 1;

(ii) a merely induced dependence for Ai j = 0;
(iii) the generating coefficient is recovered from βi | j ·b\ j with

− Ai j = βi | j ·b\ j − (
Kib K −1

bb

)
Abj · (22)

A different way of expressing case (ii) is to say that the induced conditional dependence
corresponds to a constrained least-squares regression coefficient.

6·2. Parameter equivalent equations

To show that the corrections in (22) are estimable, we turn to the slightly more general situation
in which the only absent distortion is direct confounding, i.e. G N

rec is without a double edge, and
obtain parameter equivalence between two types of linear equation, since the parameters of the
first set can be obtained in terms of those in the second set and vice versa.

Equations (14) give, for Y1 and b = anc(1) ∩ N ,

Y1 = B1bYb + η1, cov(η1, ηb) = K1b, var(η1) = K11. (23)

They imply, with

�−1 = BTK −1 B, K −1 = GT D−1G, D diagonal, G upper triangular,

that (BG, D−1) is the triangular decomposition of �−1, which gives, as least-squares equation
for Y1,

Y1 = �1 | bYb + ε1, cov(ε1, εb) = 0, var(ε1) = D11. (24)

For G N
rec without a double edge, if �bb and the parameters of equation (23) are given, then so is

(BG, D−1) and hence also the possibly constrained regression equation (24). Conversely, if �1 | b

and �bb are given, we define Lbb = K −1
bb Bbb, call c the observed parents of node 1 and partition

�1 | b either with c and d, where each element of K1d is nonzero, or with c, d and e, if there is a
vector with K1e = 0. Next, we observe that both equations

(�1 | c·d �1 | d·c) = −(H1c 0) + (0 K1d )Lbb,

(�1 | c·de �i | d·ce �1 | e·cd ) = −(H1c 0 0) + (0 K1d 0)Lbb,
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30 NANNY WERMUTH AND D. R. COX

can be solved for H1c and K1d and that K11 results from K = B�BT. This one-to-one corre-
spondence is extended by starting with the equation for YdN −1 and successively proceeding to the
equation for Y1.

PROPOSITION 2 . For a recursive regression graph G N
rec without a double edge, the i th equation

is parameter equivalent to the possibly constrained least-squares regression equation obtained
from the triangular decomposition of �−1

SS with S = (i, . . . , N ).

Thus, given independent observations on a linear system for G N
rec without a double edge,

all parameters can be estimated. One may apply general software for structural equations, or
estimation may be carried out within the statistical environment R (Marchetti, 2006), which uses
the EM algorithm as adapted by Kiiveri (1987).

The result about parameter equivalence strengthens identification criteria, since it gives the
precise relationships between two sets of parameters. Previously, different graphical criteria for
identification in linear triangular systems with some unobserved variables have been derived by
Brito & Pearl (2002) and by Stanghellini & Wermuth (2005).

Propositions 1 and 2 imply, in particular, that, in the absence of direct confounding and of over-
and of under-conditioning, a generating dependence αi j of a linear system (8) may actually be
recovered from special types of distorted least-squares regression coefficients computed from the
reduced set YN of observed variables. However, this can be done only if the presence of indirect
confounding has been detected and both Yi and Y j are observed.

7. THE INTRODUCTORY EXAMPLES CONTINUED

7·1. Indirect confounding in an intervention study

We now continue, first, the example of § 2·3 that illustrates indirect confounding in an interven-
tion study. For node 1 in G N

rec, shown in Fig. 4(b), the conditioning set b = (2, 3, 4) avoids over-
and under-conditioning. The omitted variable in G N

rec shown in Fig. 4(a) is the last background
variable, and it induces after marginalizing the confounding path 1 3≺ 4, of type (ii) in
Corollary 1, but no double edge in G N

rec.
Thus, equation (22) applies and −A14 = β1 | 4·23 − (K13/K33)A34 gives, with α = β1 | 4·23 +

δγ θ/(1 − θ2), the correction needed to recover α from β1 | 4·23. Since Fig. 4(b) does not contain
a confounding path for 1≺ 2, the coefficient β1 | 2·34 is an unconfounded measure of λ.

7·2. Indirect confounding in an observational study

For the example of indirect confounding in Fig. 5 in § 2.3, the graph in Fig. 6(a) gives the
same type of parent graph as the one in Fig. 5, but for standardized variables related linearly, and
Fig. 6(b) shows the induced graph G N

rec.
The linear equations for the parent graph in Fig. 6(a) contain four observed variables and two

uncorrelated unobserved variables U and V :

Y1 = λY2 + αY3 + ωU + ε1, Y2 = νY4 + ε2, Y3 = δV + ε3, Y4 = γU + θV + ε4.
(25)

The equation parameter α is a linear least-squares regression coefficient, α = β1 | 3·2U = β1 | 3·24U ,
since Y2, Y3 and U are the directly explanatory variables of the response Y1 and there is no direct
contribution of variable Y4. The induced equations implicitly defined by the graph of Fig. 6(b)
are obtained from the generating equations (25), if we use

η1 = ωU + ε1, η2 = ε2, η3 = δV + ε3, η4 = γU + θV + ε4,
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Fig. 6. (a) The parent graph of Fig. 5 with variables relabelled and linear generating
coefficients attached; (b) the graph G N

rec induced by (a) without direct confounding, but
with indirect confounding of the generating dependence α of 1 on 3 via the confounding

path 1 4 3.

to give, as equations in the four remaining observed variables,

Y1 = λY2 + αY3 + η1, Y2 = νY4 + η2, Y3 = η3, Y4 = η4. (26)

The two nonzero residual covariances K14 and K34 generate the following two nonzero elements
in K1b K −1

bb ; for explicit results with longer covariance chains, see Wermuth et al. (2006a). In fact,

K1b K −1
bb = [

0, −K14K34
/(

K33K44 − K 2
34

)
, K14K33

/(
K33K44 − K 2

34

)]
.

From (22), we obtain the required correction of β1 | 3·24 to recover α = −A13 as

α = β1 | 3·24 + K14K34
/(

K33K44 − K 2
34

)·
Since there is no confounding path for 1≺ 2, the coefficient β1 | 2·34 is an unconfounded measure
of λ = β1 | 2·3U V .

The following numerical example of the generating process in Fig. 6(a) shows a case of strong
effect reversal. The negative values of the linear least-squares coefficients in the generating
system are elements of A. The matrix pair (A,−1) is the triangular decomposition of �−1, so
that �−1 = AT−1 A . The nonzero off-diagonal elements of A and the diagonal elements of 

are

A12 = −0·30, A13 = −0·36, A15 = −0·90, A24 = −0·60,

A36 = −0·90, A45 = 0·65, A46 = 0·75,

diag() = (0·2685, 0·6400, 0·1900, 0·0150, 1, 1).

The observed variables correspond to rows and columns 1 to 4 of A, variable U to column 5 and
variable V to column 6.

The correlation matrix �N N of the four observed variables and the residual covariance matrix,
KN N = AN N �N N AT

N N , are

�N N =

⎛
⎜⎜⎝

1 −0·1968 0·2385 −0·6480
· 1 −0·4050 0·6000
· · 1 −0·6750
· · · 1

⎞
⎟⎟⎠ , KN N =

⎛
⎜⎜⎝

1·0785 0 0 −0·5850
· 0·6400 0 0
· · 1 −0·6750
· · · 1

⎞
⎟⎟⎠ .

Nothing peculiar can be detected in the correlation matrix of the observed variables: there is
no very high individual correlation and there is no strong multi-collinearity. The two nonzero
elements K14 and K34 correspond to the two dashed lines in Fig. 6(b).
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32 NANNY WERMUTH AND D. R. COX

The generating coefficient of dependence of Y1 on Y3, given Y2 and U , is −A13 = β1 | 3·2U =
0·36. The least-squares regression coefficient of Y3, when Y1 is regressed on only the observed
variables, is β1 | 3·24 = −0·3654. This coefficient is of similar strength to that of the generating
dependence β1 | 3·2U , but reversed in sign. This illustrates how severe the effect of indirect con-
founding can be if it remains undetected: one may come to a qualitatively wrong conclusion.
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