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Abstract.

We introduce and study a calculus for real-valued square matrices, called partial
inversion, and an associated calculus for binary square matrices. The first, applied to
systems of recursive linear equations, generates new sets of parameters for different
types of statistical joint response models. The corresponding generating graphs are
directed and acyclic. The second calculus, applied to matrix representations of inde-
pendence graphs, gives chain graphs induced by such a generating graph. Chain graphs
are more complex independence graphs associated with recursive joint response mod-
els. Missing edges in independence graphs coincide with structurally zero parameters
in linear systems. A wide range of consequences of an assumed independence structure
can be derived by partial closure, but computationally efficient algorithms still need to
be developed for applications to very large graphs.
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1 Introduction.

Methods for solving linear equations, or equivalently for matrix inversion, were
known in China more than 2000 years ago [40, 24]. In surveying such meth-
ods have been introduced under the name of Gauss—Jordan elimination [23]
in German, of Cholesky-factorization [6] in French, and of the Gauss-Doolittle
method [16] in American geodesic literature. In mathematics and statistics such
methods for symmetric matrices have been called successive orthogonal-
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ization [22, 36] and the sweep operator [5, 13]. Aspects of matrix decomposi-
tion and computational efficiency have been studied in numerical analysis and
computer science, see e.g. [18, 39, 21]. We introduce a calculus for partial inver-
sion of real-valued matrices, derive its properties and relate it to different types
of block-triangular decompositions of positive definite matrices.

Such matrix decompositions relate closely in a statistical context to linear
graphical chain models. With graphical chain models [10, 17, 27, 42] one can
formulate relations among many random variables of arbitrary distributional
form, such that simplifying structure results from conditional independencies and
is captured in graphs. In independence graphs nodes represent random variables
and missing edges indicate sets of parameters constrained to take value zero
and to capture independence. In such systems, there is typically a direction of
dependence between some but not all pairs of nodes.

These multivariate statistical models combine three essential concepts which
have been developed independently at the beginning of the 20th century. The ge-
neticist Wright [46] used directed graphs to formulate hypotheses about how lin-
ear relations in his data could have been generated. The probabilist Markov [31]
introduced the notion of conditional independence to represent seemingly com-
plex structures by a sequence of univariate dependencies, and the physicist
Gibbs [20] characterized the higher density of a substance by an undirected
graph, in which nodes have a larger number of nearest neighbors. Many proper-
ties and estimation algorithms for different subclasses of graphical models have
been established in the statistical literature in the last 30 years, but these have
so far not been connected to properties of matrix operators.

Key questions in statistical modeling are: how is the strength and direction of
dependence between two random variables changed when their set of condition-
ing variables is modified, and in which situations are both properties preserved.
These questions concern the parameters of a model which are free to vary, often
within some range of non-vanishing dependence. Answers are essential for com-
paring results of different empirical studies on the same set of core variables. In
two studies of even the same set of variables, different sequences for the variables
may be used for analysis or only a partial ordering be given, when some variables
are to be considered as joint responses. Or, it may be that some variables are
omitted, i.e. marginalized over, or a sub-population is studied for which some
levels of other variables are held fixed, i.e. are conditioned on.

Closely related are enquiries into change and preservation of independence
constraints specified by a given graph. For this, we introduce a calculus for
finding structural zeros after partial inversion, derive its properties and ap-
ply it to graphical chain models. This calculus operates on binary matrices.
Many preserved independencies typically simplify statistical analysis even when
the interpretation of the constraints and of the unconstrained parameters is
changed.

Needed for the new matrix results are a minor modification of the sweep
operator, so that it becomes applicable to real-valued square matrices instead
of only to symmetric matrices, and a minor modification of adjacency matrices,
the binary matrix representations traditional in the graph theoretic literature, so
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that matrix products of the new binary matrices, called edge matrices, become
analogous to the real-valued matrix products in partial inversion.

The plan of the paper is to introduce partial inversion in Section 2. In Section 3,
partial inversion is applied to symmetric matrices and related to the statistical
concept of linear least squares regression coefficients, to conditional covariance
matrices and to inverse marginal covariance matrices. Different properties of
these types of parameters motivate the use of independence graphs with several
types of edge. In Section 4, the discussion is extended to parameter matrices
of linear chain graph models induced after partial inversion and in Section 5 to
chain graphs induced after partial closure of the generating graph. In a short
final section we point to some open problems.

2 Partial inversion and its properties.

2.1 Definition and basic properties.

Let N = {1,...,dn} be the index set of rows and corresponding columns of
a square matrix M, whose principal submatrices are all invertible, i.e. for which
the inverse of My, = [M]a,q exists for every nonempty subset a of N, and is
denoted by M_.l. Let further N be split into two arbitrary components a and b,
so that, if necessary after permuting rows and columns, we get N = (a,b). For
two real valued vectors xz and y split accordingly, we are to introduce below in
Equation (2.2) an operation on M, to be called partial inversion and denoted by

inv,, such that for
Tp Yo

the linear relation after partial inversion is

(2.1) invaM(Z‘Z):(g;‘Z).

For this we write M and its inverse M ! in partitioned form as
_ Maa Mab -1 _ Mee Mu’b
M = < Mba Mbb > ) M - ( Mba Mbb .

Partial inversion of M on subset a of N, and a convenient notation, are then
defined by

. Mu:J,l _Mu:llMab Mu:ll _Ma\—b
(2.2) inv,M = . . = .
MbaMaa Mbb - MbaMaa Mab Mbﬁa Mbb.a

The notation M, _, reminds us that the matrix M, is multiplied from the left
by M, a_al and My, o is our notation for what is often called a Schur matrix. That
the operator defined in Equation (2.2) is of the desired form in Equation (2.1),
is verified by writing the component for a from Mz =y as

Ya = Moo + Mapzy
and substituting it on the left-hand side of Equation (2.1).
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One use of partial inversion is to decompose matrix inversion into steps of the
same kind, which lead to the inverse of M if applied in sequence to each element
of N. In the following, we study the properties of this operator, derive several
recursion relations from it and show some of its applications to linear statistical
models, and to matrix representations of graphs. Some of the results hold under
weaker assumptions, but our main applications concern positive definite matri-
ces and unit triangular matrices, i.e. triangular matrices having ones along the
diagonal, for both of which all principal submatrices are invertible.

LEMMA 2.1. Basic properties of partial inversion.
(i) Partial inversion on component a is undone by reapplying it to a:
invginv, M = M;

(#4) the matriz M partially inverted on a is the inverse of M after partial in-
version on the remaining components b:

inv,M = (inv bM)_l;

(#3t) partial inversion on component a of M followed by partial inversion on the
remaining components b gives the inverse of M:

invyinv,M = M1,
(iv) the order of partial inversion on components a and b can be interchanged:
invpinv, M = inv,inv , M;

(v) the matriz M partially inverted on a coincides with its inverse M1 partially
inverted on the remaining components b:

inv, M = inv,M 1,
(vi) inversion and partial inversion can be interchanged:

(inv bM)_1 = invyM L.

PROOF. Properties (i), (#i7) and (iv) are direct from Equation (2.1), property
(v) results with property (i) applied to partial inversion on b in (i7), and (vi) is
direct from (4¢) and (v).

For property (ii) equality results from Equation (2.1) and

o (5 )= (2 ) wmen(25) - (3

and the proof is complete.

It is, however, instructive to prove the basic properties of the operator also
directly by matrix calculations. Then, case (%) results by applying partial inver-
sion to component a of the matrix inv, M in Equation (2.2). Direct computation
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gives property (i7), with

( Mc;zl _Maﬁb ) < Maa.b Ma—,b ) ( Iaa Oab )

Mb—,a Mbb.a _Mb\—a Ml)?)I Oba Ibb

Partial inversion on component b applied to inv,M in Equation (2.2) can be
written as

Myt +M, Myt M, , —M, ,M;!
(2.3) invbinvaM:invNM:< b7 bb.a" b~ —b"bb.a

-1 -1
_Mbb.aM Mbb.a

b—a

and
(Maa Mab)inVNM: (Iaa Oab)? (_Mb;.laMbﬁa Ml;bla)M: (Oba Ibb)

proving that M~! has the form of the matrix in Equation (2.3), so that prop-
erty (i¢4) holds. The exchangeability in case (iv) follows from case (4i%), where
a, as well as b are arbitrary, disjoint and nonempty subsets of N.

2.2 Directly related results.

Partial inversion in Equation (2.2) generalizes the sweep operator for symmet-
ric matrices of Beaton [5] for which Dempster [13, 14] has shown that it has
properties (4i¢) to (v). The remaining properties of Lemma 2.1 do not hold since
sweeping is undone by resweeping, which is similar but not identical to sweeping.
The sweep operator differs from Equation (2.2) by minus signs in the upper part
and gives —M ! after sweeping on N while partial inversion on N gives M 1.
If N is partitioned into more than two components, then the definition of both
these operators still applies component by component.

Property (v), written here explicitly for partial inversion of M on b, is a stan-
dard equality for partitioned inverses:

- ( My M, ) _ ( (M) () A )
_Mb\—a MI;b1 _Mba(Maa)fl Mbb.a

Compact explicit forms for the partitioned inverse result from Equation (2.3)
and the basic properties (iv) and (v) of partial inversion, such as

(2.5) M =My, —M*=M,] » =M,

aa.b’ aa.b”"a— a

-1
ﬁbeb,a'

Equation (2.5) permits us to introduce some further notation for components
of partially inverted matrices. For instance, for N = {G, J} with G = {a,b} and
J = {c,d}, component (G, d) in Mg_q = Mg5Mg, is

(2.6) ( Ml —M, aﬁb> (Mad> _ (Mzml.bMad.b> B (Mard.b>
-Myl M, , Myt J\ My, My My, My_q.a4
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and component (d, G) is

(2.7) My o= (MyayMely My Myly ) =(Myyu Mya_y )
where, e.g., M ,, = M, — MabM,;bled. The notation M, _, . reminds us
that partial inversion has first been carried out on a, then by additional partial
inversion on b, the component (b, d) is the matrix M, ; , multiplied to the left by
Ml;).la. Similarly, M, ,_, is the matrix M, , multiplied to the right by Ml;).la.

For N = {a,K} with K = {b,¢,d}, the change of partial inversion on a
to partial inversion on {a,b} = G can now be studied in Theorem 2.2 and
Corollary 2.3 below by using the following types of compact expressions for the
resulting matrices

Mu;zl | —Map _Maﬁc Mard

(28) invaM = Mb—,a | Mbb.a Mbc.a Mbd.a ,
Mc—,a | Mcb.a Mcc.a Mcd a
Mi—a | Mg, q Me.q Myg.q

Ma:zl.b - a‘*le;).la ‘ _Ma\fc.b _Maﬁd b

(2 9) inveM = _j%bz_'laiwz_,j R _]W_b_bz _‘ ___]\{b\:c_a ___%idg
Mcb—a Mc,aﬁb ‘ Mcc.ab Mcd.ab

Map—a Myop | Mie.ap Mg ap

2.8 Main derived properties.
Now the main properties of partial inversion can be summarized.

THEOREM 2.2. Commutativity, exchangeability and symmetric difference for
partial inversion. Let arbitrary components a,b, c partition N, G = {a,b}, and
the matriz M be accordingly partitioned, then

(1)  invginvyM = invyinv, M = invg M;
(Z’L) [invaM}QG = inVaMgg;

(491) invepinveeM = inv,.M .

PROOF. The commutativity in case (¢) results with the change from Equa-
tion (2.8) to Equation (2.9) and properties (¢i¢) and (iv) in Lemma 2.1. The
exchangeability in case (i4) of a submatrix chosen after partial inversion and
partial inversion carried out on a submatrix, is a consequence of property (i) in
this Theorem and of the definition in Equation (2.2) of the operator. The sym-
metric difference property (iii) results from the cases (i), both in this Theorem
and in Lemma 2.1.
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ILLUSTRATION 2.1. For a square matrix M of dimension dy = 3 and elements
m;; partial inversion on a = {1, 2}, carried out in two steps by starting with row
and column 1, gives directly from Equation (2.2)

1/mi1 | —mag/min —mag/ma
inviM = mo1/mi1 | M22.1 m23.1
ma1/mi | maz.1 mas.1

Partially inverting this matrix on row and column 2, using Equation (2.5) and
exploiting case (i) of Theorem 2.2, gives the compact expression

1/m11.2 —mlz/(m11m22.1) | —m13.2/m11.2
invioM = —m21/(m11m22.1) 1/m22.1 | —m23.1/m22.1
m31.2/m11.2 m32.1/m22.1 | m33.12

2.4 Recursion relations.

General recursion relations result from explicit expressions of the matrices
obtained after successive steps of partial inversion.

COROLLARY 2.3. Recursion relations obtained by partial inversion. Let the
subsets a, b, c,d partition N and the matrix M be accordingly partitioned. Let
further G = {a,b} , H ={a,b,c}, J ={c,d} and K = {b,c,d}. Then, when M
is partially inverted in sequence on a,b, c, there results

(i) for elements corresponding to (c,d) in My ., and in M;; 4
Megq=Meg = MeoaMag' Mog,  Megap = Meg.a = My oMy Mya.a s
(1) for elements corresponding to (a,d) in Mqy_; and in My_,
My _gp=Mya=Mo sMy_g.00 Mo—gpe=Ma—ap— Mo ctMe_gap;
(i13) for elements corresponding to (d,a) in M;_~ and in M, .

Md.b—,a = Md—,a - Md.aﬁbeﬁa, Md.bc—,a = Md,b—,a - Md,ab—;cM

c.b—a’
(iv) for elements corresponding to (a,a) in Mgl and in My,

M = M M, oMyt My, M =M, —M

aa.b aa.be aa.b

MY M. pu.

a~—c.b*"cc.ab

PrROOF. The relations result by interpreting the modifications due to re-
peated partial inversion. The forms of M, ., M, 44, My, ., and M, are

aa.
components when changing from inv, M in Equation (2.8) to invyinv, M in Equa-
tion (2.9). Similarly, M, _,,., My .., and M_!, are components when chang-

ing from invg M in Equation (2.9) to inv.invgM.
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2.5 Directly related matriz decompositions.

Direct computations show also that rows and columns of the matrices in
a block-triangular decomposition M = LK1 can be specified in terms of partial
inversion. Here, K is a block-diagonal matrix, L is a unit lower block-triangular
matrix and 7T is a unit upper block-triangular matrix. For the following Lemma
and throughout the paper let d arbitrary subsets of N be given. When these are
ordered as (1,...,g,...,d), then we call the result an ordered partitioning of N.

LEMMA 2.4. The relation of block-triangular decompositions to partial inver-
sion. Let an ordered partitioning (1,...,g,...,d) of N be given, and M = LK™
be a corresponding block-triangular decomposition. Let r denote all indices to the
right and l all indices to the left of g, both excluding g. Furthermore, let Lng be
columns of L and Tgn be the rows of 1, both corresponding to g. Then

0,

g

(210) I—Ng = Igg 5 Kgg = Mgg.ly —igN = (Ogl Igg Mgﬁr‘l>'
Mr.l—;g

Thereby we use the convention that the submatriz of indices (I, g) is absent when

g =1 and the submatriz of (g,r) is absent when g = d.

ILLUSTRATION 2.2. For instance, for d = 3 and the three blocks denoted by
a, b, c, the decomposition is

I, 0 0 M, 0 0 Tog M,_, M,_,
M = Mbﬁa Ibb 0 0 Mbb.a 0 0 Ibb Mbﬁc‘a
Mc—ra Mc‘aﬁb Icc 0 0 Mcc.ab 0 0 Icc

The form of M with the partitioning refined so that each block contains a single
element, leads to the following result which is closely related to those given
recently under slightly weaker assumptions [21]. We denote e.g. by LT the
transpose of the inverse of matrix L.

LEMMA 2.5. Decomposition of M into a symmetric and a unit triangular
matrix. A square matriz M, whose principal submatrices are all invertible, can
be decomposed into the invertible symmetric matriz S = LKLT and the unit
upper-triangular matriz 7= L=T chosen so that M = S71. In addition, there is
the decomposition S* = TV K™ and the unit lower-triangular matriz L = L7~
chosen so that M = LS*, where L, 71 and K are given by Equation (2.10) for
d=dy.

ProOOF. For d = dy, the matrix L in the decomposition given in Equa-
tion (2.10) is unit lower triangular, K is diagonal, and 71 is unit upper-triangular.
The inverse L= of LT is unit upper-triangular and the product of two unit upper-
triangular matrices is of the same form. There is a similar argument for .

The decomposition of Equation (2.10) applied to a symmetric matrix M has
T = LT, so that M = LK in Lemma 2.5 reduces with S = S* to the usual
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triangular decomposition of a positive definite matrix. There is also the inter-
pretation of L~! as block-triangularizing M from the left and of =1 as block-
triangularizing M from the right with

(2.11) M=L"'M=KT, M =MT!=LK,

so that ‘M is upper block-triangular and M’ is lower block-triangular.

Now, the elements of the block-triangular and triangular decompositions of an
invertible symmetric matrix permit an interpretation in terms of partial inver-
sion, which is to be given in Theorem 3.1 in the following section.

3 Some direct applications to linear statistical models.

3.1 Elements of partially inverted covariance matrices.

Let ¥ be the invertible covariance matrix of a mean-centered column vector
random variable Y, and let ¥~! be the concentration matrix of Y. Let further
a split of Y be defined by two arbitrary vector components, Y, and Y;. Then,
Lemma 2.1 (v) equates two nonsymmetric matrices

yNaa)—1 _ (yaa 712ab Eaa N 271
(3.1) inva21:<( ) (=) ):( a0 ) iny,y,

bb.a 1
~ by ~ Ebb

Here, and throughout, the ~ notation indicates entries in a matrix which is
symmetric up to the sign, i.e. minus elements given in the upper off-diagonal
part of the matrix.

The off-diagonal matrices specify two different, but equivalent, ways of com-
puting Ha‘b, the matrix of regression coefficients of Y, in linear least squares
regression of Y, on Y; [11]. This coefficient matrix is defined by the linear equa-
tion Y, = HalbY}, + &4 in which cov(eg, YE)T) =0, i.e. with

(32)  Sa=BY,Y)=10,,BY, %) + BEY) = ), 5.

The interpretation of ¢ = %1 in Equation (3.1) as the concentration matrix
of Y} and of (£%*)~! = %,,), as the covariance matrix of Yy, = Y, —II,,Y; had
been derived by Dempster [13] in terms of the sweep operator for symmetric ma-
trices. In this context, we denote Schur matrices that result from marginalizing
by 2%%¢ and those obtained from conditioning by Yaalb

With subsets a, b, ¢,d partitioning N, G = {a,b} and J = {¢,d}, we denote
the different components of least squares regression coefficient matrices by

Hey=Mgje.q gae), gy = ( i ) ;

so that, for instance, Il;. 4 contains the coefficients of Y. in a least squares
regression of Y, on both Y, and Y. Matrix forms of recursion relations for least
squares regression coefficients [7], for covariances [1], and for concentrations [13],
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are then recognized to be consequences of the recursion properties of partial
inversion and are

Hb\d‘c:Hb|d - Hb\c.dnc\d )
(3.3) Shdje = Zbd — SoeZee Bed;

Ebd.a _ Zbd o Eba(g:aa)—lzad.

Equations (3.3) provide insight into when regression coefficients, covariances
and concentrations remain unchanged after marginalizing or after conditioning.
Elements in positions (i, ) of invgX~! are proportional to different types of
partial correlation, compare e.g. [1], Sections 2.3, 2.5, [10], Section 3.4, denoted
here by

(@) pijla\j for Il ; with i € G, j € J;
(34) (’LZ) piju for EGG|J with i € G, j S G;
(’LZ’L) Pij|\{ij} for »/JG with i € J, jedJ.

Equations (3.4) give the interpretation of different types of edge to represent an
independence structure in invgX ™!, arrows for IIg); and two different types of
undirected graph for ¢\, called a conditional covariance graph, and in 77,
called a marginal concentration graph, see [10, 44].

Equations (3.4) and (3.3) jointly capture also how probabilistic independence
statements combine for Gaussian distributions that are nondegenerate, i.e. for
which ¥ is positive definite. With Y, independent of Y; given Y. denoted by
bl dlc [12],

(1) bld and (blcld or clld) imply bl d|c;
(3.5) (i) bld and (blcor cl d) imply bl d|c;
(#41) bllLdlac and (blLaled or d 1l albc) imply bl d|c.

3.2 Relations to triangular decompositions of ¥ and of ¥1.

Partial inversion applied repeatedly to symmetric matrices leads in particular
to the following interpretations of the resulting matrix components.

THEOREM 3.1. Interpretation of block-triangular decompositions of invertible
Y and X7, Let an ordered partitioning (1,...,g,...,d) of N be given. Let further
r denote all indices to the right and | all indices to the left of g, excluding g in
this new ordering. The unit block-triangular decompositions is X! = TV H™T,
compare Illustration 2.2, and ¥ = LYKL. Then

(i) H=K1' and LT=7T1%
(i1) Hgg =399 Tgn = (0, I, —I);
(7’“’> Kgg = Egg|r7 LgN = (H?\‘g.r Igg 097“);
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where 299 and ¥ gglr A€ the concentration matriz and the covariance matriz of
Y,

glr-
ILLUSTRATION 3.1. For instance, for d = 4, the lower block-triangular de-
composition (H, ) of ¥~ is

(3.6)
Yaa 0 0 0 Toa —app.ca —Haje.va —Hajd.be
o . Ybba 0 0 . 0 Iy —Iyea —pja.c
. yee.ab 01’ 0 0 I, —Iyq |’
. wddabe 0 0 0 I

where, here, and throughout, the . notation indicates entries in a symmetric
matrix, i.e. elements given in the upper off-diagonal part of the matrix. For the
block-triangular decomposition (K, L") of ¥ we have

Eaa|bcd 0 0 0 Iaa 0 0 0

B - Xpbled 0 0 B HaT\b.cd Ly, 0 0

(3.7) K= 5 A R A
ccld ale.d blc.d cc

. Yad H’gld Hled H'cﬁ ¢ Lua

PRrROOF. Case (i) of Theorem (3.1) is direct by matrix inversion. Case (i)
is proven by Lemma 2.4. Furthermore, since the concentration matrix of Y;
has with X%*® the same form as ¥ !, the same type of argument applies to
it and, similarly, to 299!, In this way, the block-triangular decomposition of
Equation (2.10) is built up for $~1. To prove case (iii), we note that the form
of the block-triangular decomposition of ¥ results by matrix inversion from case
(#4) and by the recursion relations for regression coefficients in Equation (3.3).

3.8 Relations to triangularized forms of ¥ and of X1,

With a given ordered partitioning N = (1,...,g,...,d) block g is associ-
ated with the vector variable Y,. For such a sequence of vector variables we
denote the left-triangularized form of the concentration matrix by ‘Y~ and the
right-triangularized form of the covariance matrix by ¥/, and derive next their
components after partial inversion.

COROLLARY 3.2. Interpretation of partial inversion for ‘X ~1 and X'. Let the
matrices 'St = H1 and X' = KL be defined, from the block-triangular decom-
positions of Theorem 3.1, for an invertible covariance matriz . Then,

(4) (27 gn = (0g B9 2971
(i) E;N = (Egllr 2gglr 097’)?
(444) [inVlg/E_l]gyN = (Ogt Ygglr Hglr)7

where Y97t gives the concentrations of Y, and Y,, while X, gives the covari-
ances of Yy, and Y),.; all other submatrices are as defined for Theorem 3.1.
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ILLUSTRATION 3.2. For d = 4, the left block-triangularized matrix ‘X! in
(¢) and the right-triangularized matrix ¥/ in (i¢) are

Naa ab yac yad Zaa\bcd 0 0 0
bb.a bc.a bd.a
-1 0 X ) bY s Vialed Lpbled 0 0
0 0 yec.ab  yed.ab Eca|d Zcb|d Ecc|d 0
0 0 0 Edd‘abc Eda Edb Edc Edd

The matrices of case (iii) are, for this example of four blocks, the matrices K
and 7 in equations (3.6) and (3.7).

PRrROOF. From the block-triangular decomposition ! = TTH T, where T is
unit upper block-triangular, the matrix ‘X~ = H™ is upper block-triangular.
The interpretation in (z) follows from the product H 1 by using the definition of
least-squares regression coefficient matrices in terms of concentrations. A simi-
lar argument applies to the block-triangular decomposition ¥ = LTKL, where
L = 77 is unit lower block-triangular, by using the definition of least-squares
regression coefficient matrices in terms of covariances for the product KL.

The upper block-triangularity of ‘71, the definition of partial inversion in
Equation (2.2), and the exchangeability property in Theorem 2.2 case (%), imply
for [ = N\ [ that

S I
. /271 o . /271 o 99 g"l‘
[invy,... ]l,l inve['S ] 0,y 'S

and hence the form given in (#i7).

4 Relations to linear graphical chain models.

The partial inversion results in the previous section relate directly to linear
stepwise data generating processes and to different types of statistical joint
response models with independence constraints, all generated by the directed
acyclic graph associated with the generating process.

4.1 Relations to linear triangular systems.

With a partitioning of N, refined to contain only single elements, one obtains
from Theorem 3.1 (ii) a triangular decomposition of =1, where 7 is upper-
triangular and H = A~! is a diagonal matrix with all diagonal elements positive.
This gives the parameters in a stepwise generating process for a covariance ma-
trix which has been called a path analysis model by the geneticist Wright [46, 47],
a system of linear recursive equations with uncorrelated residuals by the econo-
metrician Wold [45], or, more recently, a linear triangular system [44].

For a mean-centered random column vector Y and ordering (1,...,dy), such
a process can be written in matrix notation as

(4.1) AY =¢, with cov(e) = A,
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having
Y=cov(Y)=AT1AAT and T7!'=con(Y)=4TA"1A

In our notation, A is unit upper-triangular, so that from Theorem 3.1, see also
Tand LT of Ilustration 3.1, the elements of a;; of A are

(4.2) aij = =Biljr@)\i>

where f3;;.c denotes the coefficient of Y; in linear least squares regression of Y;
on Y; and Yc. Here, C' may refer to a vector variable Yo and r(k) = {k + 1,
... ,d}. The diagonal elements of A are d;; = 0;;/,(;), the residual variances in
the corresponding linear regressions.

When (1,...,d) refers to a time order, then Y] is the most recent response
variable and Y, is the variable in the past, being most distant from it. The
joint concentration matrix is directly generated by a sequence of univariate least
squares regressions with Y; as response to Y;;i1,...,Ys. Expressed differently,
A contains the generating equation parameters and (4, A~!) gives the unique
triangular decomposition of ¥~ for one fixed order of the variables.

When there is zero contribution of a potentially explanatory variable Y; for Y;,
this is represented by a zero value in position (¢, 7) in the upper triangular part
of A. Variables with a nonzero contribution are called the parents of i, denoted
by par(i). Equation (4.2) represents then an unconstrained model containing as
a special case the reduced model [8] with

(4.3) ai; = —Bijj.par(i)\j When j € par(i), 0 = pijipar(i) = Pijir(i)\; €lse.

For the more general model with parameters (4.2) and for the constrained pa-
rameters (4.3), explicit least-squares estimates are available. In each application
this permits direct checks of the goodness of fit of the hypothesized constraints.

By In[M] we denote the indicator matrix of a matrix M. It is obtained by
replacing every nonzero element of M by a one. The edge matrix of the generating
graph is A = In[A], where node i corresponds to variable Y;. The graph is often
called the parent graph since it shows the directly explanatory variables of Y;
by arrows starting in the parent node set par(i) and pointing to node i. It
defines also the linear independence structure in a family of matrices in which
the unconstrained equation parameters a;; in Equation (4.3) are free to vary,
provided only that they lead to positive residual variances.

4.2 Relations to joint response models.

Sequences of joint responses occur in different types of graphical chain models,
used to study multivariate statistical dependence. These have been defined for
more general than linear relations, but we discuss here mainly the linear case
and introduce some more terminology first. All graphical chain models have in
common that the variables are arranged in a sequence of, say d, chain compo-
nents. Each component g contains one or more variables. Several variables in the
same chain component are considered as joint responses, so that within chain
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components there are undirected associations of interest and between chain com-
ponents there are directed associations. Each missing edge in an associated chain
graph captures a conditional independence constraint and each edge present cor-
responds to a conditional association. The precise conditioning set depends on
the type of chain graph.

For d = 1, models with zero constraints on ¥~! have been introduced as
covariance selection models by Dempster [14]. Corresponding recursive sequences
of such models for 1 < d < dy are blocked-concentration chains, defining ‘> ~!
[28, 19, 41, 38].

For d = 1, models with zero constraints on ¥ have been introduced as hypoth-
eses linear in covariances by Anderson [2, 3] and studied later as independence
models [26, 35]; we call corresponding recursive sequences of such models for
1 < d < dn [25] blocked-covariance chains defining '¥.

Models with zero constraints on H = ¥4),(,) and Il are multivariate regres-
sion chains, which include seemingly unrelated regressions [9, 10, 35]. We speak
of concentration-regression chains for models with zero constraints on elements
of either component of the block-triangular decomposition (H, ) of ¥ ~!. These
have been studied by Perlman and coauthors, [4], while the partial regression
chains with zero constraints on the block-triangular decomposition (K, LT) of ¥
appear to have not yet been studied by statisticians.

Matrix relations between parameters in linear chain graph model to those of
a generating linear triangular system [44] are not repeated here, instead, the
relations to partial inversion are spelled out.

COROLLARY 4.1. Induced joint response models related to partial inversion.
Let (1,...,g,...,d) be an ordered partitioning of N, defining block decomposi-
tions ¥ = LTKL and X~ = TV H of Theorem 3.1, and 'Y~ = H1, ¥/ = KL,
then unconstrained parameters induced in

(i) 'S71, for a blocked concentration chain;
(1) H and 7 for a concentration-regression chain;
(t3t) X', for a blocked covariance chain;
) K and LT for a partial regression chain;
)

(
(tv) K and 7, for a multivariate regression chain,

are in one-to-one correspondence to unconstrained specific parameters A, A of
a given saturated triangular system and are obtainable by partial inversion.

ProoOF. It is implied by the partial inversion results of Theorem 5.1 and
Corollary 3.2 that each of the sets of parameters is obtained by a one-to-one
transformation of the covariance matrix.

One important consequence of Corollary 4.1 for statistical analysis is, that —
except possibly in a subset of lower dimension — the unconstrained parameters,
estimated by equating observed to expected moments, are in one-to-one corre-
spondence for the different types of saturated models. Also, from Equation (3.4),
we know the corresponding conditional independence statement when a parame-
ter is constrained to be zero for a joint Gaussian distribution. And, more impor-
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tantly, this provides the interpretation of each missing edge in all of the different
types of chain graphs in general [44].

5 Induced edge matrices corresponding to partial inversion.

For the study of when and how independence constraints of a given stepwise
generating process are preserved after partial inversion, we introduce an operator
to find structural zeros for square, unit binary matrices M of dimension dy. We
denote by M_, a binary matrix which can be viewed as a generalized inverse of
the binary matrix M,,. For this, the matrix

MZa = (dN + 1)Iaa — Maa

may be chosen, where Z denotes the identity matrix. It has the same zeros as
M, and only nonnegative elements in its inverse

In[M?,] = Mg, and (M:,)"' > 0.

The reason is that (Z —cM)~! is the unique limit of the infinite geometric series
T+ceM+cAM?+ ... when c=1/(dy + 1), see essentially [32, p. 29].

Analogously to (2.2), we write for structural zeros in inv, M, where the matrix
M has structural zeros in M,

My Moy ) - In( (M) My May )

5.1) ser,M =
(5:1) wer (MH M MuaMz, My + Moo My Mo

When M = A is upper-triangular, it can be interpreted as the edge matrix of
a parent graph which is directed and acyclic and has a full ordering of the nodes.
When M = § is symmetric, it can be the edge matrix of an undirected graph.
The binary matrices A~ and S~ are then edge matrices of what is sometimes
called the transitive closure of graphs with edge matrices A and S, respectively.
By applying Equation (5.1) repeatedly to each of the distinct rows and columns
of A or S, the edge matrix of the transitive closure of the graph is obtained.
Therefore, the calculus applied to rows and columns a of such an edge matrix
can be interpreted as a method of finding the partial closure of the graph with
respect to the nodes in set a.

The structural zero operator in Equation (5.1) cannot be undone when it is
reapplied to the same rows and columns. The reason is that it is defined in
terms of sums and products of nonnegative matrices so that zeros present in M
may be preserved or removed but no new zeros can be generated. Therefore, the
operator has the following properties.

THEOREM 5.1. Commutativity, exchangeability and expansion for structural
zeros preserved after partial inversion. Let arbitrary components a,b, c,d parti-
tion N, G = {a, b}, and the matrizx M be accordingly partitioned, then

(i)  zerq zery M = zer, zer, M = zerg M;
(13) [zer,M]g,q = zergMegc;
(91) zerqp zer peM = zergpeM .
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Whenever a chain graph model is generated by a linear triangular system,
as stated in Corollary 4.1, then the variable pairs for which independence con-
straints are preserved in the induced joint response model may be obtained by
using the structural zero operator.

To see this, suppose first that «, 8, C' are disjoint subsets of IV, where only C
may be empty, and the dependence of Y, on Y given Y¢ is of interest. Then
some variables Yy, are implicitly omitted, and N = (M, a, 8,C) becomes the
relevant ordering of the node set. We let further a« = M Ua and b = C U .
Then, the relevant edge matrix components of the concentration matrix of Yy, ¢,
Yg|c, partially inverted with respect to a [44], can be written in terms of the
components of B = zer, A as

Saoz\ﬁc =1In [Baa (Iaa + Bngba) BaTa

]a,a’

(5.2) SPP-eM = In (B, (T, + BbaBg‘b)iBbb],B,ﬁ;

Pajp.c = W[Buy, + BuoByy (T, + ByaBia) By af
Next, Equations (5.2) are used to find the independence structure in induced
chain graphs with the d components in N = (1,...,g,...,d). For this, any pair
of adjacent components is treated separately, by equating for instance g with «
and g + 1 with 3. Algorithms are available in the ggm package of R [30].

If Pyjp.c = 0, then the generating process implies Il,;.c = 0. For this judge-
ment, it is not enough to just check in an application for a given set of parameters
A, A whether I, ;. c = 0, since this matrix may contain more zeros than there
are structural zeros. Such additional zeros are due to parametric cancellation,
i.e. to special relations between individual specific parameter values. More gen-
erally, the condition P,|5.c = 0 represents a matrix criterion for what has been
called separation in directed acyclic graphs [33].

6 Discussion.

The statistical importance of the induced chain graphs, obtained with Equa-
tions (5.2), is that they apply to distributions of arbitrary form, provided that
these distributions satisfy all independencies specified by the given parent graph
and that these independencies may be combined as in a non-degenerate Gaussian
distribution; see also [37].

Independence equivalence of two chain graphs means that the missing edges
in the two graphs lead to the same set of independencies, i.e. specify an identical
independence structure. For different special subclasses of chain graphs, crite-
ria and algorithms to decide on independence equivalence have been derived.
For instance, a concentration graph model can be independence equivalent to
a triangular system if and only if the concentration graph is chordal, i.e. it con-
tains no chordless cycle in 4 or more nodes. General results are still lacking
for independence equivalence of the different types of chain graphs implied by
Corollary 4.1. Criteria for chordality of graphs were given early, see e.g. [15], but
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efficient algorithms applicable to large graphs were derived only much later, see
e.g. [29, 34].

Similarly, the explicit forms of edge matrices, generated by a given parent
graph, need to be complemented by computationally efficient algorithms for ap-
plications to very large matrices and graphs. One general computational problem
is to start with the zero structure in any given triangular decomposition of 7!
and to obtain the implied structural zeros in a new block-triangular decomposi-
tion of ¥ 7! or of X, i.e. to find the zeros that are retained by corresponding sym-
bolic matrix inversion. The problem is considerably more complex than checking
for chordality of a concentration graph because of the block structure and be-
cause different components of block-triangular decompositions may require the
combination of different types of edge.
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