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We are happy to have the chance of discussing the paper by W.G. (Bill) Cochran, titled
“Observational Studies” and reprinted here. It appeared first in 1972 and, we call it the
“present paper” below. We start however by describing our personal encounters with Bill.

1. Personal Encounters with Bill Cochran

DRC: I first heard Bill Cochran lecture in 1956 and, about that time, greatly benefited from
his pre-publication comments on a draft of a book on experimental design. I recall also a
memorable meeting of the Royal Statistical Society at which the precursor (Cochran, 1965)
of the present paper was given for discussion.

NW: As a Ph.D. student, I was fortunate to get to know Bill Cochran as an excellent teacher
and researcher. His way of teaching was typically most illuminating for me. He was involved
in many different types of empirical studies and he shared his experiences openly with the
students. He would talk with joy about successes but would also report on disappointing
developments that had led to difficult, unsolved problems. I regarded him as the heart of
our department. He stressed the positive features of his colleagues and he remembered the
names of all the students as well as what he had discussed with them before. This could
concern statistical questions or personal experiences. He was kind and modest, typically
full of energy, and always ready to listen and talk. I learned a lot from him not only about
statistics.

2. Discussion of Cochran’s “Observational Studies”

The present paper is striking for its relevance even after so many years. Cochran’s concepts
and ideas are presented with clarity and simplicity. Many of them appear to be ignored in
the current inrush of “big data.” This makes many of Cochran’s points ever more topical.

The discussion of principles of design makes it clear that there are essential differences
between experiments and observational studies. In experiments, crucial aspects are under
the investigators control while in observational studies the features measured will largely
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have to be accepted as they happen to arise. Cochran stresses however that, nevertheless,
experiments and observational studies have much in common.

In particular, for the types of observational study he is discussing, the motivation is a
search for causes. Several variables may be viewed as treatments in a broad sense. For
instance, stronger positive effects may be expected for a set of new teaching methods, or
stronger negative effects after exposure to higher levels of several risk factors for a given
disease. When experiments are not feasible, the main aim is still to establish, as firmly
as possible, the link with an underlying data generating process. Cochran states this as:
“A claim of proof of cause and effect must carry with it an explanation of the mechanism
by which this effect is produced.” Thus, an underlying data generating process is to be
scientifically explainable in the given subject matter context.

Some of the terminology has changed since the paper was written, but several key aspects
remain essential for any planned study today:

• stating the main objectives of a study before the data are collected,

• planning for well-defined comparisons and for one or several control groups,

• thinking about the types of measurements needed and how to assure their compara-
bility,

• specifying target populations and being aware of nonresponse as one reason for missing
a target.

The relative importance of these aspects may differ in different fields of application. For
example, in many areas of physics there is likely to be a secure base of background knowledge
and theory, whereas in some types of social science research, this may not yet be the case.

The broad approach to design must depend also on the time-scale and costs of a single
investigation. Whenever new studies can be designed speedily and the data can be collected
quickly and analyses are easily computed and interpreted, then a flexible approach with a
sequence of simple studies may be feasible. But when the effort and time involved in any
single study is considerable, all the above four points become essential for the study to
become successful. A noteworthy example is the prospective study by Doll and Hill (1956)
establishing cigarette smoking as a cause of lung cancer.

For experiments, R.A. Fisher (1926, 1935) had suggested, as principles of design, the
need to avoid systematic distortions in treatment effects and the enhancement of the pre-
cision in estimates of effects. He stressed also the value of considering several treatments
simultaneously rather than one factor at a time. This gives the chance to see whether effects
are substantially modified for particular levels of another factor or for level combinations
of several factors, that is to understand major interactions. More importantly, it may help
to establish the stability of an effect under a range of conditions by showing the absence of
major interactions. This idea carries directly over to observational studies.

However, to avoid systematic distortions, called often also “bias,” is considerably harder
in observational studies. In experiments, in addition to creating laboratory-like condi-
tions for obtaining measurements for quantitative variables and observations for categorical
variables, the main tools are randomization, that is random allocation of participants to
treatment levels, stratification (called also subclassification or standardisation), the use of
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important covariates (in some contexts called concomitant variables) and blocking (which
turns in observational studies into matching).

Clinical trials with randomized allocation of patients to treatments ideally may be re-
garded as experiments rather than observational studies. But in reality, distorted estimates
of treatment effects can occur even in such clinical trials, for instance, when relevant inter-
mediate variables are overlooked, such as non-compliance of patients to assigned treatments,
or when there is a substantial undetected interactive effect of a treatment and a background
variable on the response, even though, by successful randomization, this background vari-
able has become independent of the treatment. Thus, Cochran’s statement (on page 85)
that “in regard to the effect of x on y, matching and standardization remove all bias” cannot
hold when one of the above mentioned sources of distortion for treatment effects is present.

When randomization is not an option, the next best approach is to design a prospective
longitudinal study. But it may take a long time to see any results and these types of
study are often expensive. They offer however the possibility of deriving and studying
data generating processes. This option was not yet available in the 1970’s except in the
special situation of only linear relations and with responses that are affected one after the
other, that is when path analysis, called recursive systems by Strotz and Wold (1960), is
applicable. The importance of such an approach was rarely appreciated at that time; the
textbook by Snedecor and Cochran (1966) was a notable exception.

The direct generalisation of path analysis, to include other than linear relations and
arbitrary types of variables, is to the directed acyclic graph (DAG) models. A more ap-
propriate class of models for data generating processes are the recursive systems in single
as well as joint responses, called traceable regressions; see Wermuth (2012), Wermuth and
Cox (2013, 2015). In these models, several responses may be affected at the same time,
such as for instance, systolic and diastolic blood pressure which are two aspects of a single
phenomenon, namely the blood pressure wave. Both will for instance be influenced at the
same time when patients receive a medication to reduce high blood pressure.

These sequences of regressions form one subclass of the so-called graphical chain models
and they include DAG-models as a subclass. They often permit the use of a corresponding
graph to trace pathways of development and they may be compatible with causal interpre-
tations. They also take care of a main criticism of DAG-models regarding causal interpre-
tations by Lindley (2002): that DAGs do not include joint responses and therefore cannot
capture many types of causal processes.

In the last section of the present paper, there is a beautiful illustration of the suggestion
“make your theories elaborate,” given by R.A. Fisher when asked how to clarify the step
from association to causation; see Cochran (1965). We fully agree that this step needs
careful planning of studies and good judgement in interpreting statistical evidence.

In the meantime, some of our colleagues have derived a “causal calculus” for the chal-
lenging process of inferring causality; see Pearl (2015). In our view, it is unlikely that a
virtual intervention on a probability distribution, as specified in this calculus, is an accurate
representation of a proper intervention in a given real world situation. Their virtual inter-
vention on a given distribution just introduces some conditional independence constraints
and leaves all other aspects unchanged. This may sometimes happen, but experience from
controlled clinical trials suggests that this is a relatively rare situation.

167



Cox and Wermuth

Even before the step to a causal interpretation, it is, as discussed below, less clear that
matching or some adjustment will always be beneficial in observational studies. For in-
stance, with pair-matched samples, no clear target population is defined, hence it remains
often unclear to which situations the results could be generalized. Blocking in experiments
and matching in observational studies clearly make the measurements in different treat-
ment groups more comparable. And, it has been demonstrated explicitly, how with more
homogeneous groups to compare, both sampling variability and sensitivity to other sources
of distortions are reduced; see Rosenbaum (2005).

But for data looked at only after pair-matching, it becomes impossible to study de-
pendences among the matching variables, in particular, to recognize an extremely strong
dependence among them in a target population that could even lead to a reversal of the
dependence of the response on this treatment. In addition, if results for the dependence
of a response are computed exclusively for explanatory variables other than the matching
variables, then an important interactive effect, of a treatment and a matching variable on
the response, may get overlooked; for some examples see McKinlay (1977).

The same holds for caliper matching, as defined in the present paper, and for a formal
extension of it, called propensity-score matching by Rosenbaum and Rubin (1983). For a
careful study and discussion of the large differences in estimated bias that can result with
different choices of variables included in the propensity score and with different types of
matching methods, see for instance Smith and Todd (2005).

Similarly, any adjustment of estimates depends typically on how well the associated
model is specified; see for instance Bushway et al (2007). For poor estimates or with
some model misspecifications, adjustments may do harm instead of being beneficial. For
approaches to move away from mere adjustments, see for instance Genbäck et al. (2014).

In all of these discussions of matching and adjustments in the literature, generating
processes are rarely mentioned. But their importance was already stressed in the present
paper even though at that time, more than 40 years ago, the corresponding sequences of
regressions, necessary for full discussions, had been studied intensively only for the very
special situation of exclusively quantitative responses and linear dependences.

Generating processes lead from background variables, such as intrinsic features of the
individuals, via treatments and intermediate variables to the outcomes of main interest. In
corresponding sequences of regressions, the dependence structure among directly and indi-
rectly important explanatory variables is estimated and different pathways for dependences
of the responses are displayed in corresponding regression graphs.

Such graphs may be derived from underlying statistical analyses for a given set of data
and they represent hypothetical processes that can be tested in future studies. In addition,
consequences of any given regression graph can be derived. Consequences that result after
marginalizing over some of the variables or after conditioning on other variables in such a
way that the conditional independences present in the generating process are preserved for
the remaining variables, can be collected into a “summary graph” by using, for instance,
subroutines in the program environment R; see Sadeghi and Marchetti (2012).

In this way, it will become evident which variables need to be conditioned on and such
knowledge may possibly lead to a single measure for conditioning. Generating processes
will point directly to situations in which seemingly replicated results in several groups, such
as strong positive dependences, change substantially after marginalising over some of the
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groups, in some cases even turning positive into negative dependences. This can happen
only when some of the grouping variables are strongly dependent. This well known phe-
nomenon has been named differently in different contexts, for instance as the presence of
multicollinearity, as highly unbalanced groupings, or as the Yule-Simpson paradox. Con-
ditions for the absence of such situations have been named and studied as conditions for
“transitivity of association signs” by Jiang et al. (2015).

With the dissemination of fully directed acyclic graph models, some more recent termi-
nology has become common. For instance, when an outcome has one important explanatory
variable and there exists, in addition, an important common explanatory variable for both,
the latter is a confounding variable and when unobserved, it is now named an “unmeasured
confounder” that may distort the true dependence substantially. Similarly, when an out-
come has one important explanatory variable and another outcome depends strongly on
both, then by conditioning on this common response, a distortion of the first dependence is
introduced and is named “selection bias.”

In the current literature on “causal models,” known to us, both these types of distortions
are discussed separately. A related phenomenon, for which a first example had been given by
Robins and Wasserman (1997), is typically overlooked: by a combination of marginalizing
over and conditioning on variables in a given generating process, a much stronger distortion,
named now “indirect confounding,” may be introduced than by an unmeasured confounder
alone or by a selection bias alone. Parametric examples for exclusively linear dependences
and graphical criteria for detecting indirect confounding, in general, are available. The
latter use summary graphs that are derived by marginalizing only; see Wermuth and Cox
(2008, 2015).

The broad issues so clearly emphasized in the present paper remain central, challenging
and relevant. That is to say, not only are firm statistical relations of particular kinds to
be established, such as the estimation of treatment effects and of possibly underlying data-
generating processes, but the statistical results need to be interpretable in terms of the
underlying science.
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