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With a sequence of regressions, one may generate joint probability distributions. One starts with a joint,

marginal distribution of context variables having possibly a concentration graph structure and continues with

an ordered sequence of conditional distributions, named regressions in joint responses. The involved random

variables may be discrete, continuous or of both types. Such a generating process specifies for each response

a conditioning set which contains just its regressor variables and it leads to at least one valid ordering of all

nodes in the corresponding regression graph which has three types of edge; one for undirected dependences

among context variables, another for undirected dependences among joint responses and one for any directed

dependence of a response on a regressor variable. For this regression graph, there are several definitions of

pairwise Markov properties, where each interprets the conditional independence associated with a missing edge

in the graph in a different way. We explain how these properties arise, prove their equivalence for compositional

graphoids and point at the equivalence of each one of them to the global Markov property.
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1. Introduction

Regression graph models are the subclass of graphical Markov models that is best suited to capture pathways of

development, no matter whether the generating process arises in observational studies or in intervention studies, see

Wermuth (2015). For prospective studies, time provides a partial ordering of a finite number of variables and leads to

an ordered sequence of joint and single response variables. In other studies, any ordering is provisional but, typically,

may be agreed upon by researchers in the given field of study.
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Regression graph models extend models proposed by Cox & Wermuth (1993), illustrated there with several small

sets of data having some joint responses and just linear relations; for linear regressions see e.g. Weisberg (2014).

Additional in regression graph models are context variables which capture baseline features of study individuals or of

study conditions. Context variables may be controlled or fixed by study design. Regression graphs represent an essential

extension of fully directed acyclic graphs whenever one wants to model that explanatory variables affect directly several

response variables at the same time and to take the baseline information of context variables explicitly into account.

Individual random variables can be continuous, discrete or of both types. For such mixed responses, the conditional

distributions may, for instance, be conditional Gaussian regressions; see Lauritzen & Wermuth (1989), be approximated

by generalized linear regressions; see McCullagh & Nelder (1989), Andersen & Skovgaard (2010), or if needed, be any

other type of nonlinear regression, which permits to represent the relevant conditional independences and dependences.

For discrete variables, ordered sequences of joint regressions without context variables have been studied as chain

graph models of type IV by Drton (2009). A parameterization and maximum-likelihood estimates were derived by

Marchetti & Lupparelli (2011).

For context variables in general, the independence structure is captured by an undirected graph in vertex set

V = {1, . . . , dV } and edge set E, known as the concentration graph. The name reminds one that for regular joint

Gaussian distributions, a missing edge for vertex pair i , j shows as an i j-zero in its concentration matrix, the inverse

covariance matrix; see Dempster (1972), Cox & Wermuth (1993). In general, at most one undirected i j-edge, i j ,

couples the vertices i , j , and each missing edge for i , j means Xi is independent of Xj given the remaining variables.

This is written compactly in terms of vertices, also called nodes, as i ⊥⊥ j |V \ {i , j}; see Dawid (1979).

For exclusively discrete context variables, the joint distributions have been studied as Markov fields and log-linear

interaction models; see Darroch, Lauritzen & Speed (1980), named later also discrete concentration graph models.

For these, one also knows when single unobserved variables can be identified; see Stanghellini & Vantaggi (2013).

For regression graphs in node set N = {1, . . . d}, where each node represents a variable, the edge set contains in

general three types of edge of different interpretation. The i j-edge among two context nodes is denoted by a full line,

i j . Edges for directed dependences are i j-arrows, i≺ j . Each i j-arrow starts at a regressor node j and points to

a response i . The i j-edge between two individual response nodes within a given joint response is denoted by a dashed

line, i j . In some literature, this is replaced by an double-headed arrow. Undirected graphs of this type are named

conditional covariance graphs to remind one that for joint Gaussian distributions, a missing i j-edge shows as an i j-zero

in the conditional covariance matrix of a joint response X := (X1, . . . Xp), given the union of their individual regressors.

Among the results available so far for regression graphs are (1) a simple graphical criterion to decide whether two

regression graphs, with the same node and edge set but different types of edge, define the same independence structure;

see Wermuth & Sadeghi (2012), (2) path criteria and zero-matrix criteria for separation; see Sadeghi & Lauritzen

(2014), Wermuth (2015), (3) induced graphs, after marginalising over some nodes and conditioning on others, which

preserve the independence structure of the generating regression graph, see Sadeghi (2013), (4) induced graphs,

which only predict dependences generated by a regression graph between Xα and Xβ given Xc , for disjoint α, β, c,m

partitioning N. This requires an edge-minimal graph, that is one in which no edge can be removed without introducing

another independence constraint; see Wermuth (2012), (5) implementations in the computing environment R; see

Sadeghi & Marchetti (2012).

Independence properties implied by the standard graph theoretic separation criterion on graphs listed here as (i) to

(v) in Section 3, were introduced by Pearl & Paz (1987) for concentration graphs and said to define a graphoid. More

importantly, they derived that for graphoids all independences implied by the given graph, may be obtained either from
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the list of independences defined by its missing edges or by separation in undirected graphs. This became known later

as the equivalence of the pairwise Markov property and the global Markov property.

Such an equivalence has been proven for more general classes of graphs, including regression graphs, for which the global

Markov property is also generalized compared to concentration graphs; see Sadeghi & Lauritzen (2014). This uses

the additional independence property of composition, listed here as property (v i) in Section 4. For such compositional

graphoids, several pairwise Markov properties may be defined, which give alternative independence interpretations to a

missing edge. One question to be solved was whether each of them is suitable to derive the regression-graph structure

that is all independences implied by the graph.

Here, we define four pairwise Markov properties and show with Theorem 1 that they are equivalent with respect to

regression graphs. Thus, any one of the four pairwise properties characterizes the regression-graph structure. By using

the equivalence of one of them to the global Markov property, proven in Sadeghi & Lauritzen (2014), it follows that

each one is also equivalent to the global Markov property.

The smallest conditioning set for the independence of two response components will be shown to be the set of important

regressors for just one of the responses. This result for independences is of special importance since it contrasts with a

well-known result for estimating the dependences of responses on their regressors: when strong residual dependences

remain among the responses, after one has been regressing each response component separately on different sets of

regressors, distorted parameter estimates may be obtained, see Haavelmo (1943), Zellner (1962), Drton & Richardson

(2004). For an exposition of these ideas in terms of Gaussian variables, standardized to have zero means and unit

variances, see Cox & Wermuth (1993), beginning of Section 4.

We introduce in Section 2 more definitions and concepts for regression graphs. In Section 3, we provide independence

properties, give four pairwise Markov properties for regression graphs, and prove their equivalence for compositional

graphoids. We end with a discussion in Section 4.

2. Some more definitions and concepts for regression graphs

A simple graph with a finite node set N = {1, . . . , d} has in its edge set E at most one i j-edge for nodes i , j in N.

When i , j are the endpoints of an edge, the node pair is said to be coupled or to be adjacent and denoted by i ∼ j . A

simple graph is complete when all pairs are coupled by an edge.

A parent of node i is the starting node j of an arrow pointing to i and indicates a regressor variable Xj of response Xi .

The set of parents of a node i is denoted by par(i). An i j-path is a sequence of edges passing through distinct inner

nodes, connecting the endpoints i and j of the path. By convention, an i j-edge is the shortest type of path.

A subgraph induced by a subset a of N consists of the node set a and of the edges present in the graph among the

nodes of a. A subgraph is connected if there is a path between any distinct node pair. A maximally connected subgraph

is called a connected component.

A direction-preserving i j-path to i from j consists of arrows, all pointing from j towards i . In such a direction-preserving

path, node j is named an ancestor of i . An anterior i j-path consists of a direction-preserving path followed by an

undirected path, such as:

i ≺

ancestors of i
︷ ︸︸ ︷

◦≺ ◦, . . . , ◦≺ ◦ ◦ ◦, . . . , ◦ j
︸ ︷︷ ︸

anteriors of i

.

Thus, anterior nodes extend the notion of ancestors. The set of anterior nodes of node i is denoted by ant(i).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The regression graph, GNreg, is a simple graph with a finite node set N and an edge set of three different types of edge.

Here we use arrows, dashed and full lines. The properties of GNreg are (1) no arrow points to a full line and no dashed

line is adjacent to a full line, (2) there is a valid ordering of its unique set of connected components, (g1, . . . , gQ).

These components result by removing all arrows from GNreg. The connected components of dashed lines can be ordered

such that gq < gl if there is an arrow pointing to a node in gq from a node in gl . Connected components of full lines

have a higher order than those of dashed lines and can be ordered in any way.

The induced subgraph of GNreg of only arrows and dashed lines is called the response set, u, the complimentary one

of only full lines is the context set, v so that N = (u, v). Accordingly, connected components of u are the response

components, those of v are the context components. For a node i in response set gq, its past is denoted by pst(i) and

it consists of all nodes in components having a higher order than gq.

Although for the regression-graph structure, only a valid ordering of its connected components is essential, one can

indeed extend a valid ordering of these components into a complete valid ordering of all nodes, (1, . . . , N), where i < j

if q < l for i ∈ gq and j ∈ gl . This implies that i < j if there is an arrow pointing to i from j . The past of a node i in

response component gq contains never any node j of gq even if j is larger in a complete valid ordering of the nodes.

Conditional independences are captured by missing edges in GNreg. A missing edge for i , j in GNreg is denoted by i ≁ j .

For i ≁ j , there is some subset c of N \ {i , j} such that in the graph Xi is conditionally independent of Xj given Xc ,

written as i ⊥⊥ j |c. Four different ways of defining c are studied in the next Section 3.

3. Pairwise Markov properties for regression graphs

The following properties have been defined for conditional independences of probability distributions. Let a, b, d, c be

disjoint subsets of N, where c may be the empty set.

(i) symmetry: a ⊥⊥ b|c =⇒ b ⊥⊥ a|c ;

(i i) decomposition: a ⊥⊥ bd |c =⇒ (a ⊥⊥ b|c and a ⊥⊥ d |c) ;

(i i i) weak union: a ⊥⊥ bd |c =⇒ (a ⊥⊥ b|dc and a ⊥⊥ d |bc) ;

(iv) contraction: (a ⊥⊥ b|dc and a ⊥⊥ d |c) ⇐⇒ a ⊥⊥ bd |c ;

(v) intersection: ( a ⊥⊥ d |bc and a ⊥⊥ b|dc) =⇒ a ⊥⊥ bd |c ;

(v i) composition: (a ⊥⊥ d |c and a ⊥⊥ b|c) =⇒ a ⊥⊥ bd |c .

Note that composition defines the reverse direction of decomposition. Intersection gives the reverse direction of weak

union and properties (i) to (iv) are the independence properties of all probability distributions; see Dawid (1979),

Studený (1989).

The first five independence properties, listed above, give the graphoids of Pearl & Paz (1987), see also Studený (1989,

2005). If, in addition, the composition property holds, one speaks of a compositional graphoid. For compositional

graphoids, pairwise independences can be combined to obtain global independence statements of the type a ⊥⊥ b|c

for general classes of graphs, which include regression graphs; see Sadeghi & Lauritzen (2014). Thus, the above six

properties are also satisfied by GNreg. They are the properties used here in the proof of Theorem 1.

Let GNreg be a regression graph with a valid ordering of the node set N = (1, . . . , d), which necessarily conforms with

a valid ordering of its connected components. Based on this ordering, we always assume in this section that i < j for

the node pair i , j . To define pairwise Markov properties for GNreg, we use the following notation for parents, anteriors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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and the past of node pair i , j :

par(i , j) = par(i) ∪ par(j) \ {i , j},

ant(i , j) = ant(i) ∪ ant(j) \ {i , j},

pst(i , j) = pst(i) ∪ pst(j) \ {i , j}.

The distribution P of (Xn)n∈N satisfies a pairwise Markov property (Pm), for m = 1, 2, 3, 4, with respect to GNreg if for

i and j in the context set, v ,

i 6∼ j =⇒ i ⊥⊥ j |v \ {i , j} ,

and for i in the response set, u,

(P1) : i 6∼ j =⇒ i ⊥⊥ j |pst(i , j) ,

(P2) : i 6∼ j =⇒ i ⊥⊥ j |ant(i , j) ,

(P3) : i 6∼ j =⇒ i ⊥⊥ j |par(i , j) ,

(P4) : i 6∼ j =⇒ i ⊥⊥ j |par(i).

Notice that in (P4), par(i) may be replaced by par(j) whenever the two nodes are in the same connected component.

Consider, for example, the graph of Figure 1 with N = (1, . . . , 9).

1

2

3

4

5

6

7

8

9

Figure 1. A regression graph.

For the uncoupled pair of nodes 2, 4, the nodes in its past are pst(2, 4) = {5, 6, 7, 8, 9}, the anteriors are ant(2, 4) =

{5, 6, 8, 9}, the parents are par(2, 4) = {5, 6} while the parent of node 2 alone is node 5, so that by the four pairwise

Markov properties, listed here including their conditioning sets,

(P1), past =⇒ 2 ⊥⊥ 4|{5, 6, 7, 8, 9};

(P2), anteriors =⇒ 2 ⊥⊥ 4|{5, 6, 8, 9};

(P3), joint parents =⇒ 2 ⊥⊥ 4|{5, 6};

(P4), parents of the smaller node =⇒ 2 ⊥⊥ 4|5.

Theorem 1

Let a distribution P of (Xn)n∈N be a compositional graphoid. Then, for every valid ordering of the nodes of GNreg, P

satisfies (P1) ⇐⇒ (P2) ⇐⇒ (P3) ⇐⇒ (P4) with respect to GNreg.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Before presenting the proof, we provide the following example related to the graph of Figure 1, in which we follow the

same method as in the proof of this theorem that is using compositional graphoid properties to obtain the equivalence

of the independence statements implied by the different pairwise Markov properties:

(P1)⇒ (P2) : By definition, we have 2 ⊥⊥ 4|{5, 6, 7, 8, 9} and 4 ⊥⊥ 7|{5, 6, 8, 9}. Contraction implies

4 ⊥⊥ {2, 7}|{5, 6, 8, 9}. Then, decomposition gives that 2 ⊥⊥ 4|{5, 6, 8, 9}.

(P2)⇒ (P3) : Nodes 6, 8 and 9 are in the set ant(2, 4) \ par(2), and it holds that 2 ⊥⊥ 8|{5, 6, 9}, 2 ⊥⊥ 9|{5, 6, 8}, and

2 ⊥⊥ 6|{5, 8, 9}. Intersection, used repeatedly, implies 2 ⊥⊥ {6, 8, 9}|5. This together with 2 ⊥⊥ 4|{5, 6, 8, 9} implies by

contraction 2 ⊥⊥ {4, 6, 8, 9}|5. By decomposition, 2 ⊥⊥ {4, 6}|5 so that by weak union, 2 ⊥⊥ 4|{5, 6}.

(P3)⇒ (P4) : By contraction, 2 ⊥⊥ 9|5 and 2 ⊥⊥ 6|{9, 5}, imply 2 ⊥⊥ {6, 9}|5, which by decomposition implies 2 ⊥⊥ 6|5.

By contraction, this and 2 ⊥⊥ 4|{5, 6} imply 2 ⊥⊥ {4, 6}|5 so that by decomposition 2 ⊥⊥ 4|5.

(P4)⇒ (P1) : Composition used repeatedly for statements 2 ⊥⊥ 4|5, 2 ⊥⊥ 6|5, 2 ⊥⊥ 7|5, 2 ⊥⊥ 8|5, 2 ⊥⊥ 9|5 gives

2 ⊥⊥ {4, 6, 7, 8, 9}|5. Weak union implies 2 ⊥⊥ 4|{5, 6, 7, 8, 9}.

Proof of Theorem 1

(P1)⇒ (P2) : By definition, pst(i , j) = pst(i) \ {j}. Let k ∈ {j} ∪ pst(i) \ ant(i , j), then k ≁ i and i ⊥⊥ k|pst(i) \ {k}.

For another possible node l ∈ pst(i) \ ant(i , j) holds also that i ⊥⊥ l |pst(i) \ {l}. By the intersection property, we obtain

i ⊥⊥ {k, l}|pst(i) \ {k, l}. By the same method and an inductive argument, for all members of pst(i) \ ant(i , j), we obtain

i ⊥⊥ pst(i) \ ant(i , j)|ant(i , j). Now if i and j are in different connected components then by the same method, we use the

intersection property to obtain i ⊥⊥ {j} ∪ pst(i) \ ant(i , j)|ant(i , j), and if i and j are in the same connected component,

we use the contraction property with i ⊥⊥ j |pst(i) to obtain the same independence statement. The decomposition

property yields i ⊥⊥ j |ant(i , j).

(P2)⇒ (P3) : Suppose that i is in the lower or equal index component gr than that of j . Let also k ∈ ant(i , j) \ par(i).

Notice that k ≁ i since k 6∈ par(i) and if, k ∈ ant(j) \ ant(i) and adjacent to i then i is of a higher order than j , which

is not possible. We prove that i ⊥⊥ k|ant(i) \ {k}:

If k ∈ ant(i) then ant(k) ⊂ ant(i) and subsequently ant(i , k) = ant(i). The result is then obvious from the assumption.

Thus assume that k ∈ ant(j) \ ant(i). We then use reverse induction on the order of the connected components in

which k lies to prove the claim. For the base, we have that k is in gv , and let gv,k be the connected component

containing k in gv . It holds that ant(k) = gv,k . For every member l of gv,k , it holds that i ⊥⊥ l |ant(i) ∪ gv,k . By

intersection, for all such statements, we obtain i ⊥⊥ gv,k |ant(i). Decomposition implies the result.

Now suppose that k ∈ gq and, for every l ∈ ant(k) \ ant(i), by the induction hypothesis, it holds that i ⊥⊥ l |ant(i).

By the composition property for all such i ⊥⊥ l |ant(i), we obtain that i ⊥⊥ ant(k) \ ant(i)|ant(i). This together

with i ⊥⊥ k|ant(i , k), by using the contraction property, implies that i ⊥⊥ {k} ∪ ant(k) \ ant(i)|ant(i) \ {k}. The

decomposition property gives i ⊥⊥ k|ant(i) \ {k}.

Now by the intersection property for all such i ⊥⊥ k|ant(i) \ {k}, we obtain i ⊥⊥ ant(i , j) \ par(i)|par(i). This together with

i ⊥⊥ j |ant(i , j), using the contraction property, implies i ⊥⊥ {j} ∪ ant(i , j) \ par(i)|par(i). By the decomposition property,

this gives i ⊥⊥ {j} ∪ par(j) \ par(i)|par(i). The weak union property now implies i ⊥⊥ j |par(i , j).

(P3)⇒ (P4) :We prove the result by reverse induction on the order of the connected component that contains j . If j is

in gv then the result trivially holds. Thus suppose that j lies in gq. By induction hypothesis for each k ∈ par(j) \ par(i)

we have i ⊥⊥ k|par(i). By the composition property, it is implied that i ⊥⊥ par(j) \ par(i)|par(i). This together with

i ⊥⊥ j |par(i , j), by the contraction property, implies i ⊥⊥ {j} ∪ par(j) \ par(i)|par(i). The decomposition property now

gives i ⊥⊥ j |par(i).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(P4)⇒ (P1) : Suppose that k ∈ {j} ∪ pst(i , j) \ par(i). We have that k ≁ i . Therefore, i ⊥⊥ k|par(i). Using the

composition property for all such statements for members of {j} ∪ pst(i , j) \ par(i), we obtain i ⊥⊥ {j} ∪ pst(i , j) \

par(i)|par(i). The weak union property implies i ⊥⊥ j |pst(i .j).

Based on the equivalence of the global Markov property and the pairwise Markov property (P2), proven in

Sadeghi & Lauritzen (2014), we have the following corollary:

Corollary 1

Let a distribution P of (Xn)n∈N be a compositional graphoid. Then, for every valid ordering of the nodes of GNreg , P

satisfies the global Markov property with respect to GNreg if and only if it satisfies any one of (P1), (P2), (P3), or (P4).

It is a consequence of the above results that in case one of the four pairwise independence properties is satisfied, all

other three hold as well so that, depending on the purpose of an enquiry, each one of them may be used. The results

have been applied implicitly in model-fitting strategies which also include checks of necessary conditions for properties

(v) to (v i i); see e.g. Wermuth & Sadeghi (2012), Appendix; Wermuth & Cox (2013), Appendix.

There is an additional independence property, needed for studying dependences induced by a given edge-minimal graph,

(v i i) singleton transitivity: (j ⊥⊥ k|c and j ⊥⊥ k|ic) =⇒ (i ⊥⊥ j |c or i ⊥⊥ k|c),

where i , j, k are distinct nodes of node set N and c ⊆ N \ {i , j, k}. Probability distributions satisfying this property of

singleton transitivity in addition to (i) to (v i) are for instance regular joint Gaussian distributions; see Lněnička & Matúš

(2007), and totally positive distributions with positive support everywhere; see ?.

The above seven properties of a density generated over GNreg ensure that the graph may be used to trace pathways of

dependences, see Wermuth (2012, 2015). Such a sequence of regressions has therefore been said to be traceable.

4. Discussion

For regression graphs and for distributions that are compositional graphoids, the equivalence of four different pairwise

independence properties has been proven, two of which, (P1) and (P4), require a valid ordering of all variables. Together

with the known equivalence of one of them, (P2), to the global Markov property, this gives essential insights into

regression-graph structures and, at the same time, into the structural independence constraints of such distributions

that is into independences which hold irrespective of specific parameter values for a given regression graph model.

For the same set of context variables, different special parametrizations for the directed dependences of main interest

may arise, for instance, just with differing baseline conditions that is with different realisations for the context variables.

Hence, especially for comparing results from several studies with the same variables, it is essential to be able to

distinguish between structural independences and those which result only with specific constellations of parameters.

The former are captured by a generating regression graph and the latter by parameter estimates given a set of data.

The conditioning set is largest for the past of any two non-adjacent nodes, (P1), and smallest for the subset of this

past containing just the parents of one of the two nodes, (P4). The two other properties have conditioning sets of

intermediate size, they may be larger than those for (P4) but they are never larger than those for (P1). This implies for

a regression graph what follows for the generated distribution by its factorization in terms of connected components:

variables outside the past of a missing edge need not be considered for its independence interpretation.

For any given joint response, property (P4) justifies the elimination of unimportant regressors for each response

component separately, but only with property (P3), that is by conditioning on the joint parents of two response nodes,
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possible estimation problems are avoided, such as in seemingly unrelated regressions. By using (P3), a reduced model

is replaced by a covering model which is simpler concerning estimation properties; see Cox & Wermuth (1990). In

the Gaussian case for a reduced model of seemingly unrelated regressions, the covering model is the so-called general

linear model which has identical sets of regressors for each response pair; see Anderson (1958).

For tracing pathways of dependence, the pairwise property given the anterior set of a node, (P2) is the essential

one. Intervening early at an inner node of an anterior path in an edge-minimal graph will interrupt a pathway of

development. For instance with exclusively strong risk factors along such a path, an early intervention may stop an

otherwise disastrous accumulation of risks.

The main importance of the pairwise property given the past of a node pair, (P1), is that independence constraints and

pairwise dependences are defined without any change in this largest conditioning set. This permits to extend a given

connected graph into a complete graph by keeping its given valid node ordering: all missing full lines in the context set

are added, in each response component dashed lines are added until its subgraph is complete, then for each remaining

node pair with i < j , an arrow pointing to i from j is added. This helps to understand which constraints have been

imposed on this completed graph to obtain the given missing edges.

The completed graph leads also to the factorization of a generated distribution in terms of connected components but

without any conditional independence constraints. Such a covering model is sometimes called a saturated regression

graph model. This saturated model is the appropriate basis for discussions with researchers in the field on which

alternative orderings may possibly be more in line with the available knowledge about the variables under study. A

disadvantage of P1 is for efficient testing: it may include many variables as mere noise; see Altham (1984).

For general types of distributions generated over a regression graph, efficient algorithms still need to be developed

to decide whether they satisfy the independence properties (v) to (v i i). These are not common to all probability

distributions but hold, for instance, in joint Gaussian distributions and in totally positive distributions with positive

support everywhere. Joint Bernoulli distributions satisfying other types of conditions will in a future paper be shown

to also satisfy the three additional properties. In another future paper, additional conditions will be given under which

these distributions contain precisely those independences provided as structural by an edge-minimal regression graph.
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