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Classical multivariate statistical methods concern models, distributions and
inference based on the Gaussian distribution. These are the topics in the first text-
book for mathematical statisticians by T.W. Anderson that was published in 1958
and that appeared as a slightly expanded 3rd edition in 2003. Matrix theory and
notation is used there extensively to efficiently derive properties of the multivariate
Gaussian or the Wishart distribution, of principal components, of canonical cor-
relation and discriminant analysis and of the general multivariate linear model in
which a Gaussian response vector variable Ya has linear least-squares regression on
all components of an explanatory vector variable Yb.

In contrast, many methods for analysing sets of observed variables have been
developed first within special substantive fields and some or all of the models in
a given class were justified in terms of probabilistic and statistical theory much
later. Among them are factor analysis, path analysis, structural equation models,
and models for which partial-least squares estimation have been proposed. Other
multivariate techniques such as cluster analysis and multidimensional scaling have
been often used, but the result of such an analysis cannot be formulated as a
hypothesis to be tested in a new study and satisfactory theoretical justifications
are still lacking.

Factor analysis was proposed by psychologist C. Spearman (1904), (1926)
and, at the time, thought of as a tool for measuring human intelligence. Such a
model has one or several latent variables. These are hidden or unobserved and
are to explain the observed correlations among a set of observed variables, called
items in that context. The difficult task is to decide how many and which of a
possibly large set of items to include into a model. But, given a set of latent
variables, a classical factor analysis model specifies for a joint Gaussian distribution
mutual independence of the observed variables given the latent variables. This can
be recognized to be one special type of a graphical Markov model; see Cox and
Wermuth (1996), Edwards (2000), Lauritzen (1996), Whittaker (1990).
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Path analysis was developed by geneticist S. Wright (1923), (1934) for systems
of linear dependence of variables with zero mean and unit variance. He used what
we now call directed acyclic graphs to represent hypotheses of how the variables
he was studying could have been generated. He compared correlations implied for
missing edges in the graph with corresponding observed correlations to test the
goodness of fit of such a hypothesis.

By now it is known, under which condition for these models in standard-
ized Gaussian variables, maximum-likelihood estimates of correlations coincide with
Wright’s estimates via path coefficients. The condition on the graph is simple: there
should be no three-node-two-edge subgraph of the following kind ◦ " ◦ ≺ ◦.
Then, the directed acyclic graph is said to be decomposable and captures the same
independences as the concentration graph obtained by replacing each arrow by an
undirected edge. In such Gaussian concentration graph models, estimated vari-
ances are matched to the observed variances so that estimation of correlations is
equivalent to estimation of covariances.

Wright’s method of computing implied path coefficients by ‘tracing paths’
has been generalized via a so-called separation criterion. This criterion, given
by Geiger, Verma and Pearl (1990), permits to read off a directed acyclic graph
all independence statements that are implied by the graph. The criterion takes
into account that not only ignoring (marginalizing over) variables might destroy an
independence, but also conditioning on common responses may render two formerly
independent variables to be dependent. In addition, the separation criterion holds
for any distribution generated over the graph.

The separation criterion for directed acyclic graphs has been translated into
conditions for the presence of edge-inducing paths in the graph; see Marchetti
and Wermuth (2009). Such an edge-inducing path is also association-inducing in
the corresponding model, given some mild conditions on the graph and on the
distributions generated over it; see Wermuth (2010). In the special case of only
marginalising over linearly related variables, these induced dependences coincide
with the path-tracing results given by Wright provided the directed acyclic graph
model is decomposable and the variables are standardised to have zero means and
unit variances. This applies not only to Gaussian distributions but also to spe-
cial distributions of symmetric binary variables; see Wermuth, Marchetti and Cox
(2009).

Typically however, directed acyclic graph models are defined for unstandard-
ized random variables of any type. Then, most dependences are no longer appro-
priately represented by linear regression coefficients or correlations, but maximum-
likelihood estimates of all measures of dependence can still be obtained by sepa-
rately maximizing each univariate conditional distribution, provided only that its
parameters are variation-independent from parameters of distributions in the past.

Structural equation models, developed in econometrics, can be viewed as
another extension of Wright’s path analyses. The result obtained by T. Haavelmo
(1943) gave an important impetus. For his insight that separate linear least-squares
estimation may be inappropriate for equations having strongly correlated residuals,
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Haavelmo received a Nobel prize in 1989. It led to a class of models defined by lin-
ear equations with correlated residuals and to responses called endogenous. Other
variables conditioned on and considered to be predetermined were named exoge-
nous. Vigorous discussions of estimation methods for structural equations occurred
during the first few Berkeley symposia on mathematical statistics and probability
from 1945 to 1965.

Path analysis and structural equation models were introduced to sociological
research via the work by O.D. Duncan (1966), (1975). Applications of structural
equation models in psychological and psychometric research resulted from coop-
erations between A. Goldberger and K. Jöreskog; see Goldberger (1971), (1972)
and Jöreskog (1973) (1981). The methods became widely used once a correspond-
ing computer program for estimation and tests was made available; see also Kline
(2010).

In 1962, A. Zellner published his results on seemingly unrelated regressions.
He points out that two simple regression equations are not separate if the two re-
sponses are correlated and that two dependent endogenous variables need to be
considered jointly and require simultaneous estimation methods. These models are
now recognized as special cases of both linear structural equations and of multivari-
ate regression chains, a subclass of graphical Markov models; see Cox and Wermuth
(1993), Drton (2009), Marchetti and Lupparelli (2010).

But it was not until 40 years later, that a maximum-likelihood solution for the
Gaussian distribution in four variables, split into a response vector Ya and vector
variable Yb, was given and an example of a poorly fitting data set with very few
observations for which the likelihood equations have two real roots; see Drton and
Richardson (2004). For well-fitting data and reasonably large sample sizes, this is
unlikely to happen; see Sundberg (2010). For such situations, a close approximation
to the maximum-likelihood estimate has been given in closed form for the seemingly
unrelated regression model, exploiting that it is a reduced model to the covering
model that has closed-formmaximum-likelihood estimates, the general linear model
of Ya given Yb; see Wermuth, Cox and Marchetti (2006), Cox and Wermuth (1990).

For several discrete random variables of equal standing, i.e. without splits into
response and explanatory variables, maximum-likelihood estimation was developed
under different conditional independence constraints in a path-breaking paper by
M. Birch (1963). This led to the formulation of general log-linear models, which
were studied intensively among others by Haberman (1974), Bishop, Fienberg and
Holland (1975), Sundberg (1975) and by L. Goodman, as summarized in a book of
his main papers on this topic, published in 1978. His work was motivated mainly
by research questions from the social and medical sciences.

For several Gaussian variables of equal standing, two different approaches to
reducing the number of parameters in a model, were proposed at about the same
time. T.W. Anderson put structure on the covariances, the moment parameters of
a joint Gaussian distribution and called the resulting models, hypotheses linear in
covariances; see Anderson (1973), while A.P. Dempster put structure on the canon-
ical parameters with zero constraints on concentrations, the off-diagonal elements
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of the inverse of a covariance matrix, and called the resulting models covariance
selection models; see Dempster (1972).

Nowadays, log-linear models and covariance selection models are viewed as
special cases of concentration graph models and zero constraints on the covari-
ance matrix of a Gaussian distribution as special cases of covariance graph models.
Covariance and concentration graph models are graphical Markov models with
undirected graphs capturing independences. A missing edge means marginal inde-
pendence in the former and conditional independence given all remaining variables
in the latter; see also Wermuth and Lauritzen (1990), Wermuth and Cox (1998),
(2004), Wermuth (2010).

The largest known class of Gaussian models that is in common to structural
equation models and to graphical Markov models are the recursive linear equations
with correlated residuals. These include linear summary graph models of Wermuth
(2010), linear maximal ancestral graph of Richardson and Spirtes (2002), linear mul-
tivariate regression chains, and linear directed acyclic graph models. Deficiencies
of some formulations start to be discovered by using algebraic methods. Identifica-
tion is still an issue to be considered for recursive linear equations with correlated
residuals, since so far only necessary or sufficient conditions are known but not
both. Similarly, maximum-likelihood estimation still needs further exploration; see
Drton, Eichler and Richardson (2009).

For several economic time series, it became possible to judge whether such
fluctuating series develop nevertheless in parallel, that is whether they represent
cointegrating variables because they have a common stochastic trend. Maximum-
likelihood analysis for cointegrating variables, formulated by Johansen (1988, 2009),
has led to many important applications and insights; see also Hendry and Nielsen
(2007).

Algorithms and corresponding programs are essential for any widespread use
of multivariate statistical methods and for successful analyses. In particular, iter-
ative proportional fitting, formulated by Bishop (1964) for log-linear models, and
studied further by Darroch and Ratcliff (1972), was adapted to concentration graph
models for CG(conditional Gaussian)-distributions (Lauritzen and Wermuth, 1989)
of mixed discrete and continuous variables by Frydenberg and Edwards (1989).

The EM(expectation-maximization)-algorithm of Dempster, Laird and Rubin
(1977) was adapted to Gaussian directed acyclic graph models with latent variables
by Kiiveri (1987) and to discrete concentration graph models with missing obser-
vation by Lauritzen (1995).

With the TM-algorithm of Edwards and Lauritzen (2001), studied further
by Sundberg (2002), maximum-likelihood estimation became feasible for all chain
graph models called blocked concentration chains in the case these are made up of
CG(conditional Gaussian)-regressions (Lauritzen and Wermuth, 1989).

For multivariate regression chains of discrete random variables, maximum-
likelihood estimation has now been related to the multivariate logistic link function
by Marchetti and Lupparelli (2010), where these link functions provide a com-
mon framework and corresponding algorithm for generalized linear models, which
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include among others linear, logistic and probit regressions as special cases; see
McCullagh and Nelder (1989), Glonek and McCullagh (1995).

Even in linear models, estimation may become difficult when some of the
explanatory variables are almost linear functions of others, that is if there is a
problem of multicollinearity. This appears to be often the case in applications in
chemistry and in the environmental sciences. Thus, in connection with consulting
work for chemists, Hoerl and Kennard (1970) proposed the use of ridge-regression
instead of linear least-squares regression. This means for regressions of vector
variable Y on X , to add to XTX some positive constant k along the diagonal
before matrix inversion to give as estimator β̃ = (kI +XTX)−1XTY.

Both ridge-regression and partial-least-squares, proposed as an estimation
method in the presence of latent variables by Wold (1980), have been recognized
by Björkström and Sundberg (1999) to be shrinkage estimators and as such special
cases of Tykhonov (1963) regularization.

More recently, a number of methods have been suggested which combine
adaptive skrinkage methods with variable selection. A unifying approach which in-
cludes the least-squares estimator, shrinkage estimators and various combinations
of variable selection and shrinkage has recently been given via a least squares ap-
proximation by Wang and Leng (2007). Estimation results depend necessarily on
the chosen formulations and the criteria for shrinking dependences and for selecting
variables.

Many more specialised algorithms and programs have been made available
within the open access programming environment R, also those aiming to analyse
large numbers of variables for only few observed individuals. It remains to be seen,
whether important scientific insights will be gained by their use.
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[ 34 ] Jöreskog, K.G. (1981). Analysis of covariance structures. Scan. J. Statist.8, 65–92.

[ 35 ] Kiiveri, H.T. (1987). An incomplete data approach to the analysis of covariance
structures. Psychometrika 52, 539–554.

[ 36 ] Kline, R.B. (2010). Principles and practice of structural equation modeling, (3rd
edition) New York: Guilford Press.

[ 37 ] Lauritzen, S. L. (1995). The EM-algorithm for graphical association models with
missing data. Comp. Statist. Data Anal. 1, 191–201.

[ 38 ] Lauritzen, S. L. (1996). Graphical models. Oxford: Oxford Univ. Press.

[ 39 ] Lauritzen, S. L. and Wermuth, N. (1989). Graphical models for association be-
tween variables, some of which are qualitative and some quantitative. Ann. Statist.
17, 31–57.

[ 40 ] Marchetti, G.M. and Lupparelli, M. (2010). Chain graph models of multivariate
regression type for categorical data. Submitted and available on ArXiv,
http://arxiv.org/abs/0906.2098v2.

[ 41 ] Marchetti, G.M. and Wermuth, N. (2009). Matrix representations and indepen-
dencies in directed acyclic graphs. Ann. Statist. 47, 961–978.

[ 42 ] McCullagh, P. and Nelder, J.A. (1989). Generalized linear models, 2nd edition,
Boca Raton: Chapman & Hall/CRC.

[ 43 ] Richardson, T.S. and Spirtes, P. (2002). Ancestral Markov graphical models. Ann.
Statist. 30, 962–1030.

[ 44 ] Spearman, C. (1904). General intelligence, objectively determined and measured.
Amer. J. Psych. 15, 201–293.

[ 45 ] Spearman, C. (1926). The Abilities of Man. New York: Macmillan.

[ 46 ] Sundberg, R. (1975). Some results about decomposable (or Markov-type) models
for multidimensional contingency tables: distribution of marginals and partitioning of
tests. Scand. J. Statist. 2, 71–79.

[ 47 ] Sundberg, R. (2002). The convergence rate of the TM algorithm of Edwards and
Lauritzen. Biometrika 89, 478–483.

[ 48 ] Sundberg, R. (2010). Flat and multimodal likelihoods and model lack of fit in curved
exponential families. Scand. J. Statistics, to appear.

[ 49 ] Tikhonov, A.N. (1963). Solution of ill-posed problems and the regularization method.
(Russian) Dokl. Akad. Nauk SSSR 153, 49–52.



8

[ 50 ] Wang, H. and Leng, C. (2007). Unified lasso estimation via least square approxima-
tion. J. Amer. Statist. Assoc. 102, 1039–1048.

[ 51 ] Wermuth, N. (2010). Probability distributions with summary graph structure. Sub-
mitted and available on ArXiv, http://arxiv.org/abs/1003.3259.

[ 52 ] Wermuth, N. and Cox, D.R. (1998). On association models defined over indepen-
dence graphs. Bernoulli 4, 477–495.

[ 53 ] Wermuth, N. and Cox, D.R. (2004). Joint response graphs and separation induced
by triangular systems. J. Roy. Statist. Soc. Ser. B 66, 687–717.

[ 54 ] Wermuth, N. and Lauritzen, S.L. (1990). On substantive research hypotheses,
conditional independence graphs and graphical chain models (with discusssion). J.Roy.
Statist. Soc. B 52, 21–75.

[ 55 ] Wermuth, N., Marchetti, G.M. and Cox, D.R. (2009). Triangular systems for
symmetric binary variables. Electr. J. Statist. 3, 932–955.

Whittaker, J. (1990). Graphical models in applied multivariate statistics. Chich-
ester: Wiley.

[ 56 ] Wold, H.O.A. (1954). Causality and econometrics. Econometrica 22, 162–177.

[ 57 ] Wold, H.O.A. (1980). Model construction and evaluation when theoretical knowledge
is scarce: theory and application of partial least squares. In: Kmenta, J. and Ramsey,
J. (eds.) Evaluation of econometric models. New York: Academic Press, 47–74.

[ 58 ] Wright, S. (1923). The theory of path coefficients: a reply to Niles’ criticism. Genetics
8, 239–255.

[ 59 ] Wright, S. (1934). The method of pathcoefficients. Ann. Math. Statist. 5, 161–215.

[ 60 ] Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions
and tests for aggregation bias. J. Amer. Statist. Assoc. 57, 348–368.


