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Concepts and a case study for a flexible class of graphical
Markov models

Nanny Wermuth! and D. R. Cox?

Abstract With graphical Markov models, one can investigate complex dependences, sum-
marize some results of statistical analyses with graphs and use these graphs to understand
implications of well-fitting models. The models have a rich history and form an area that has
been intensively studied and developed in recent years. We give a brief review of the main
concepts and describe in more detail a flexible subclass of models, called traceable regres-
sions. These are sequences of joint response regressions for which regression graphs permit
one to trace and thereby understand pathways of dependence. We use these methods to re-
analyze and interpret data from a prospective study of child development, now known as the
‘Mannheim Study of Children at Risk’. The two related primary features concern cognitive
and motor development, at the age of 4.5 and 8 years of a child. Deficits in these features
form a sequence of joint responses. Several possible risks are assessed at birth of the child
and when the child reached age 3 months and 2 years.

1 Introduction

To observe and understand relations among several features of individuals or objects is one of
the central tasks in many substantive fields of research, including the medical, social, environ-
mental and technological sciences. Statistical models can help considerably with such tasks
provided they are both flexible enough to apply to a wide variety of different types of situa-
tion and precise enough to guide us in thinking about possible alternative relationships. This
requires in particular joint responses, which contain continuous random variables, discrete
random variables or both types, in addition to only single responses.

Causal inquiries, the search for causes and their likely consequences, motivate much em-
pirical research. They rely on appropriate representations of relevant pathways of dependence
as they develop over time, often called data generating processes. Causes which start pathways
with adverse consequences may be called risk factors or risks. Knowing relevant pathways
offers in principle the opportunity to intervene, aiming to stop the accumulation of some of
the risks, and thereby to prevent or at least alleviate their negative consequences.

Properties of persons or objects and features, such as attitudes or behavior of individuals,
which can vary for the units or individuals under study, form the variables that are represented
in statistical models. A relationship is called a strong positive dependence if knowing one
feature makes it much more likely that the other feature is present as well. If, however,
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prediction of a feature cannot be improved by knowing the other, then the relation of the two
is called an independence. Whenever such relations only hold under certain conditions, then
they are qualified to be conditional dependences or independences.

Graphs, with nodes representing variables and edges indicating dependences, serve sev-
eral purposes. These include to incorporate available knowledge at the planning stage of an
empirical study, to summarize aspects important for interpretation after detailed statistical
analyses and to predict, when possible, effects of interventions, of alternative analyses of a
given set of data or of changes compared to results from other studies with an identical core
set of variables.

Corresponding statistical models are called graphical Markov models. Their graphs are
simple when they have at most one edge for any variable pair even though there may be
different types of edge. The graphs can represent different aspects of pathways, such as the
conditional independence structure, the set of all independence statements implied by a graph,
or they indicate which variables are needed to generate joint distributions. In the latter case,
the graph represents a research hypothesis on variables that make an important contribution.
Theoretical and computational work has progressed strongly during the last few years.

In the following, we give first some preliminary considerations. Then we describe some of
the history of graphical Markov models and the main features of their most flexible subclass,
called traceable regressions. We illustrate some of the insights to be gained with sequences
of joint regressions, that turn out to be traceable in a prospective study of child development,
now known as the Mannheim Study of Children at Risk.

2 Several preliminary considerations

Graphical Markov models are of interest in different contexts. In the present paper, we stress
data analysis and interpretation. From this perspective, a number of considerations arise. In a
given study, we have objects or individuals, here children, and their appropriate selection into
the study is important. Each individual has properties or features, represented as variables in
statistical models.

A first important consideration is that for any two variables, either one is a possible out-
come to the other, regarded as possibly explanatory, or the two variables are to be treated as
of equal standing. Usually, an outcome or response refers to a later time period than a possi-
bly explanatory feature. In contrast, an equal standing of two or more features is appropriate
when they refer to the same time period or all of them are likely to be simultaneously affected
by an intervention.

On the basis of this, we typically organize the variables for planned statistical analyses
into a series of blocks, often corresponding to a time ordering. All relations between variables
within a same block are undirected, whereas those between variables in different blocks are
directed in the way described.

An edge between two nodes in the graph, representing a statistical dependence between
two variables, may thus be of at least two types. To represent a statistical dependence of
an outcome on an explanatory feature, we use a directed edge with an arrow pointing to the
outcome from the explanatory feature. For relations between features of equal standing, we
use undirected edges.

In fact, it turns out to be useful to have two types of undirected edge. A dashed line is used
to represent the dependence between two outcomes or responses given variables in their past.

2



By contrast, a full line in the block of variables describing the background or context of the
study and early features of the individuals under study, represents a conditional dependence
given all remaining background variables.

From one viewpoint, the role of the graphical representation is to specify statistical inde-
pendences that can be used to simplify understanding. From a complementary perspective,
often the more immediately valuable, the purpose is to show those strong dependences that
will be the base for interpreting pathways of dependence.

3 Some history of graphical Markov models

The development of graphical Markov models started with undirected, full line graphs; see
Wermuth (1976), Darroch, Lauritzen and Speed (1980). The results built, for discrete ran-
dom variables, on the log-linear models studied by Birch (1963), Goodman (1970), Bishop,
Fienberg and Holland (1975), and for Gaussian variables, on the covariance selection mod-
els by Dempster (1972). Shortly later, the models were extended to acyclic directed graph
models for Gaussian and for discrete random variables; see Wermuth (1980), Wermuth and
Lauritzen (1983). With the new model classes, results from the beginning of the 20th century
by geneticist Sewall Wright and by probabilist Andrej Markov were combined and extended.

These generalizations differ from those achieved with structural equations that were stud-
ied intensively in the 1950’s within econometrics; see for instance Bollen (1989). Structural
equation models extend sequences of linear, multiple regression equations by permitting ex-
plicitly endogenous responses. These have residuals that are correlated with some or all of
the regressors. For such endogenous responses, equation parameters need not measure con-
ditional dependences, missing edges in graphs of structural equations need not correspond to
any independence statement and no simple local modelling may be feasible. This contrasts
with traceable regressions; see Section 4.1.

Wright had used directed acyclic graphs, that is graphs with only directed edges and no
variables of equal standing, to represent linear generating processes. He developed ‘path
analysis’ to judge whether such processes were well compatible with his data. Path analyses
were recognized by Tukey (1954) to be fully ordered, also called ‘recursive’, sequences of
linear multiple regressions in standardized variables.

With his approach, Wright was far ahead of his time, since, for example, formal statistical
tests of goodness of fit were developed much later; see Wilks (1938). Conditions under which
directed acyclic graphs represent independence structures for almost arbitrary types of random
variables were studied later still; see Pearl (1988), Studeny (2005).

One main objective of traceable regressions is to uncover graphical representations that
lead to an understanding of data generating processes. These are not restricted to linear rela-
tions although they may include linear processes as special cases. A probabilistic data gener-
ating process is a recursive sequence of conditional distributions in which response variables
can be vector variables that may contain discrete or continuous components or both types.
Each of the conditional distributions specifies both the dependences of a joint response, Y,
say, on components in an explanatory variable vector, Y, and the undirected dependences
among individual response component pairs of Y.

Graphical Markov models generalize sequences of single responses and single explanatory
variables that have been extensively studied as Markov chains. Markov had recognized at the



beginning of the 20th century that seemingly complex joint probability distributions may be
radically simplified by using the notion of conditional independence.

In a Markov chain of random variables Yi,...,Y;, the joint distribution is built up by
starting with the marginal density f; of ¥; and generating then the conditional density f; 14
At the next step, conditional independence of Y;_, from Y, given Y,;_; is taken into account,
with fy 2jq—14 = fa—2ja—1- One continues such that with fj; 11 4 = fii11, response ¥; is
conditionally independent of Y;.,,...,Y; given Y;, |, written compactly in terms of nodes as
ill{i+2,...,d}|{i+ 1}, and ends, finally, with fi, 4 = fip, where ¥ has just 13 as an
important, directly explanatory variable.

The fully directed graph, that captures such a Markov chain, is a single directed path of
arrows. For five nodes, d = 5, and node set N = {1,2,3,4,5}, the graph is

I <—2<—3<—4<—5.

This graph corresponds to a factorization of the joint density fy given by

IN = fipfaaf3a a5 /5

The three defining local independence statements given directly by the above factorization
or by the graph are: 11 .{3,4,5}|2, 211 {4,5}|3 and 31L5|4. One also says that in such a
generating process, each response Y; ‘remembers of its past just the nearest neighbour’, the
nearest past variable Y, ;.

Directed acyclic graphs are the most direct generalization of Markov chains. They have a
fully ordered sequence of single nodes, representing individual response variables for which
conditional densities given their past generate fy. No pairs of variables are on an equal stand-
ing. In contrast to a simple Markov chain, in this more general setting, each response may
‘remember any subset or all of the variables in its past’.

Directed acyclic graphs are also used for Bayesian networks where the node set may not
only consist of random variables, that correspond to features of observable units, but can
represent decisions or parameters. As a framework for understanding possible causes and risk
factors, directed acyclic are too limited since they exclude the possibility of an intervention
affecting several responses simultaneously.

One early objective of graphical Markov models was to capture independence structures
by appropriate graphs. As mentioned before, an independence structure is the set of all in-
dependence statements implied by the given graph. Such a structure is to be satisfied by any
family of densities, fy, said to be generated over a given graph.

In principle, all independence statements that arise from a given set of defining statements
of a graph, may be derived from basic laws of probability by using the standard properties
satisfied by any probability distribution and possibly some additional ones, as described for
regression graphs in Section 4.1; see also Frydenberg (1990) for a discussion of properties
needed to combine independence statements captured by directed acyclic graphs.

The above Markov chain implies for instance also

11L4|3, {1,2}1L{4,5}|3, and 2.114|{1,3,5}.

For many variables, methods defined for graphs simplify considerably the task of deciding
for a given independence statement whether it is implied by a graphs. Such methods have
been called separation criteria; see Geiger, Verma and Pearl (1990), Lauritzen et al. (1990)
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and Marchetti and Wermuth (2009) for different but equivalent separation criteria for directed
acyclic graphs.

For ordered sequences of vector variables, permitting joint instead of only single re-
sponses, the graphs are directed acyclic in blocks of vector variables. These blocks are some-
times called the ‘chain elements’ of the corresponding ‘chain graphs’. Four different types
of such graphs for discrete variables have been classified and studied by Drton (2009). He
proves that two types of chain graph have the desirable property of defining always curved
exponential families for discrete distributions; see for instance Cox (2006) for the latter con-
cept.

This property holds for the ‘LWF-chain graphs’ of Lauritzen and Wermuth (1989) and Fry-
denberg (1990), and for the graphs of Cox and Wermuth (1993, 1996) that have more recently
been slightly extended and studied as ‘regression graphs’; see Wermuth and Sadeghi (2012),
Sadeghi and Marchetti (2012). With the added feature that each edge in the graph corresponds
to dependence that is substantial in a given context, they become ‘traceable regressions’; see
Wermuth (2012).

Most books by statisticians on graphical Markov models focus on undirected graphs and
on LWF-chain graphs; see Hgjsgaard, Edwards and Lauritzen (2012), Edwards (2000), Lau-
ritzen (1996), Whittaker (1990). In this class of graphical Markov models, each dependence
between a response and a variable in its past is considered to be conditional also on all other
components within the same joint response.

Main distinguishing features between different types of chain graph are the conditioning
sets for the independences, associated with the missing edges, and for the edges present in
the graph. For regression graphs, conditioning sets are always excluding other components
of a given response vector, and criteria, to read off the graph all implied independences, do
not change when the last chain element contains an undirected, full-line graph. It is in this
general form, in which we introduce this class of models here. The separation criteria for
these models are generalized versions of the criteria that apply to directed acyclic graphs.

Figure 1 shows two sets of joint responses and a set of background variables, ordered by
time. The two related joint responses concern aspects of cognitive and motor development at
age 8 years (abbreviated by Yg, Xg, respectively) and at age 4.5 years (Y4, X4). There are two
risks, measured up to 2 years, Y,, X,, where Y, is regarded as a main risk for cognitive devel-
opment and X, as a main risk for motor development. Two more potential risks are available
already at age 3 months of the child. Detailed definitions of the variables, a description of the
study design and of further statistical results are given in Laucht, Esser and Schmidt (1997)
and summarized in Wermuth and Laucht (2012).

8 years 41/2 years up to 2 years

Unprotective environment at 3 months, E

Cognitive Cognitive
deficits, Y8 deficits, Y4 Psycho-social risk, Yr
Motoric Motoric

Biological-motoric risk, Xr
deficits, X8 deficits, X4

Hospitalization up to 3 months, H

Figure 1: Ordering of the variables given by time; joint responses of primary interest are Yg, Xg,
those of secondary interest are Y4, X4, the context variables are risks known up to age 2.



4 Sequences of regressions and their regression graphs

The well-fitting regression graph in Figure 2 is for the variables of Figure 1 and for data of
347 families participating in the Mannheim study from birth of their first child until the child
reached the age of 8 years. The graph results from the statistical analyses reported in Section
4.2. These are further discussed in Section 4.3.

Y8, Cognitive Y4 Yr E, Unprotective
Og o) 0 anvi
deficits, 8yrs T environment
I I
I ]
I 1
X8, Motoric 1 1

(e} O
deficits, 8yrs WXr H, Hospitalized

Figure 2: A well-fitting regression graph for data of the child development study; arrows
pointing from regressors in the past to a response in the future; dashed lines for dependent
responses given their past; full lines for dependent early risk factors given the remaining
background variables.

The goodness-of-fit of the graph to the given data is assessed by local modeling which
include here linear and nonlinear dependences. The following Table 1 gives a summary in
terms of Wilkinson’s model notation that is in common use for generalized linear models and
two coefficients of determination, R>. There is a good fit for quantitative responses when the
changes from R%ull to R2., are small, that is from the regression of an individual response on

sel
all variables in its past to a regression on only a reduced set of selected regressors.

4.1 Explanations and definitions

In each regression graph, arrows point from the past to the future. An arrow is present, be-
tween a response and a variable in its past, when there is a substantively important depen-
dence, that is also statistically significant, given all its remaining regressors. Regressors are
recognized in the graph by arrows pointing to a given response node.

The undirected dependence between two individual components of a response vector is
indicated here by a dashed line; some authors draw instead a bi-directed edge. Such an edge

Table 1: Fitted equations in Wilkinson’s notation

Response  Selected model R%un Rge]
Yy : Ya+X;+E+H  0.67 0.67
Xs : X7 +X, 0.36 0.36
Yy Y, + X2 0.25 0.25
Xy : Y, +X? 0.37 0.36
Y, E? 0.57 0.56
X, : E+H 0.35 0.35

Note that any square term implies that also
a main effect is included



is present if there is a substantial dependence between two response components given the
past of the considered joint response. An undirected edge between two context variables is a
full line. Such an edge is present when there is a substantial dependence given the remaining
context variables. An edge is missing, when for this variable pair no dependence can be
detected, of the type just decribed.

The important elements of this representation are node pairs i, k, possibly connected by
an edge, and a full set ordering g1 < g2 < --- < gy for the connected components g; of a
regression graph. The connected components of the graph are uniquely obtained by deleting
all arrows from the graph and keeping all nodes and all undirected edges. In general, several
orderings may be compatible with a given graph since different generating processes may lead
to a same independence structure.

There is further an ordered partitioning of the node set into two parts, that is a split of N as
N = (u,v), such that response node sets g1, ... are in # and background node sets ..., g; are in
v. In Figure 2, there are two sets in u: g1 = {¥3,Xs} and go = {¥4,X4}. The subgraph of the
background variables is for v = g3 = {¥,, X,, E, H} and there is only one compatible ordering
of the three sets g;.

Within v, the undirected graph is commonly called a concentration graph, reminding us
of the parameterization for a Gaussian distribution, where a concentration, an element in the
inverse covariance matrix, is a multiple of the partial correlation given all remaining variables;
see Cox and Wermuth (1996), Section 3.4, or Wermuth (1976).

Within u, the undirected graph induced by the set g; is instead a conditional covariance
graph given the past of g, the nodes in g~ j = {g+1,...,87}; see Wermuth, Cox and Marchetti
(2009), Wiedenbeck and Wermuth (2010) for related estimation tasks. Arrows may point from
any node in g; for j > 1 toits future in g ; = {g1,...,g,—1} but never to its past. Thus within
each g;, there are only undirected edges and all arrows point from nodes in g; to nodes in g,
where g1 = 0.

With g~ ; = 0, the basic factorization of a family of densities fy, generated over a regres-
sion graph, G,

reg’
fN fu\va Wlthfu|v HgJCung|g>] and fv Hg]Cvfg, (1
and the family satisfies all independence constraints implied by the graph.
For i,k a node pair, and ¢ C N\ {i,k}, we write iLk|c for ¥;,Y; conditionally indepen-
dent given Y.. In terms of a joint conditional density fj., this is equivalent to the following
constraints on conditional densities:

iJ.Lk|C — (fi|kc = fz|c) — fik|c = (ft\cf/dc)

For every variable pair Y;, Y, making an important contribution to the generating process of
fn, we say it is conditionally dependent given Y, for some ¢ C N\ {i,k} specified in Definition
1 below and write i M k|c. A regression graph is said to be edge-minimal if every missing edge
in the graph corresponds to a conditional independence statement and every edge present is
taken to represent a dependence; see the following definition.

Definition 1 Deﬁnmg pairwise dependences of G reg An edge-minimal regression graph
specifies with g1 < --- < gj a generating process for fn where the following dependences

i---k: ihk|gs; for i,k response nodes in g; of u,
i<—k: iMk|lg=j\{k}  forresponse nodeiin g;jof uandnodek in g ;, (2)
i—k: ithk[v\{i,k} for i,k context nodes in v,
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define the edges present in Gﬁig. The meaning of each corresponding edge missing in Gﬁ\ég

with the dependence sign M replaced by the independence sign L.

results

By equation (2), a unique independence statement is assigned to the missing edge of each
uncoupled node pair i, k. To combine independence statements implied by a regression graph,
two properties are needed, called composition and intersection; see Sadeghi and Lauritzen
(2012). The properties are stated below in Definition 3(1) as a same joint independence im-
plied by the two independence statements under bullet points 2 and 3 on the right-hand side.
In their simplest form, the two properties can be illustrated with two simple 3-node graphs.

For all trivariate probability distributions, one knows il ik = (ilLh and i 1L k) as well
as illhk = (ilLhlk and i L k|h). The reverse implications are the composition and the
intersection property, respectively. Thus, whenever node i is isolated from the coupled nodes
h,k in a 3-node regression graph, it is to be interpreted as il hk and this type of subgraph in
three nodes i, &, k results, under composition, by removing the ih-arrow and the ik-arrow in the
following graph on the left and under intersection in the following graph on the right. These
small examples show already that the two properties are used implicitly in the selection of
regressors; the composition property for multivariate regressions and the intersection property
for directed acyclic graph models.

h

h
0 o
Pid \
7
- kg >oi

k()/< Qi

For the tracing of dependences, we need both of these properties but also the following,
called singleton transitivity. It is best explained in terms of the Vs of a regression graph, the
subgraphs in 3 nodes having 2 edges. In a regression graph, there can be at most 8 different
V-configurations. Such a V in three nodes, (i,0,k) say, has uncoupled endpoints i,k and inner
node o.

The V configurations in Gﬁ\ég are of two different types. In Gﬁ\ég, the collision Vs are:

i---0<—%k, i—>O0=<—%k, i---0---k,

and the transmitting Vs are:

i<—O0<—k, i<—oO k, i o k, i<—O0---k, i<—O0—k.

These generalize the 3 different possible Vs in a directed-acyclic graph. For such an edge-
minimal graph, the two uncoupled nodes i,k of a transmitting V have either an important
common-source node (as above on the right) or an important intermediate node (as above on
the left), while the two uncoupled nodes i,k of a collision V with two arrows pointing to its
inner node, have an important, common response.a

Singleton transitivity means that a unique independence statements is assigned to the end-
points i,k of each V of an edge-minimal graph, either the inner node o is included or excluded
in every independence statement implied by the graph for i, k. For the strange parametrisation
under which singleton transitivity is violated in a trivariate discrete family of distributions;
see Wermuth (2012).

Expressed equivalently, let node pair i,k be uncoupled in an edge-minimal G]r\ég and con-
sider a further node o and a set ¢ C N\ {i,0,k}. Under singleton transitivity, for both the
independences il k|c and il k|oc to hold, one of the constraints o_lLi|c or o_lLk|c has to be



satisfied as well. Without singleton transitivity, the path of a V in nodes (i, o k) can never
induce a dependence for the endpoints i, k.

Definition 2 Dependence-base regression graph. An edge-minimal Gfég, is said to form a
dependence base when its defining independences and dependences are combined by using
standard properties of all probability distributions and the three additional properties: inter-
section, composition and singleton transitivity.

A dependence base regression graph, G?ég, is edge-inducing by marginalizing over the

inner node of a transmitting V and by conditioning on the inner node of a collision V. This
can be expressed more precisely.

Theorem 1 Implications of Vs in a dependence-base regression graph (Wermuth, 2012). For
each V in three nodes, (i,0,k) of a dependence-base G?ég, there exists some ¢ C N\ {i,0,k},
such that the graph implies (i LLk|oc and i th k|c) when it is a transmitting \l, while it implies

(ilLk|c and i (h k|loc) when it is a collision V.

The requirement appears to be elementary, but some densities or families of densities fy,
even when generated over a dependence base Gﬁ\ég , may have such peculiar parameterizations
that both statements i1l k|oc and illk|c can hold even though both node pairs i,0 and ok
are coupled by an edge. Thus, singleton-transitivity needs to be explicitly carried over to a
generated density.

We sum up as follows. For a successful tracing of pathways of dependence in an edge-
minimal regression graph, all three properties are needed: composition, intersection and sin-
gleton transitivity. Intersection holds in all positive distributions and the composition property
holds whenever nonlinear and interactive effects also have non-vanishing linear dependences
or main effects.

Singleton transitivity is satisfied in binary distributions; see Simpson (1951). More gen-
erally, it holds when families of densities are generated over G]r\ég that have a rich enough
parametrization, such as the conditional Gaussian distributions of Lauritzen and Wermuth
(1989) that contain discrete and continuous responses.

Definition 3 Characterizing properties of traceable regressions. Traceable regression are

densities fy generated over a dependence base Gzr\ég, that have for disjoint subsets a,b,c,d of

N
(1) three equivalent decompositions of the same joint independence

e bllacld <= (blla|cd and b1l c|d)
e bllacld < (bllald andbllc|d),
e bllac|ld < (bllalcd and bl clad), and

(2) edge-inducing \’s of Gfég are dependence-inducing for fy.

One outstanding feature of traceable regressions is that many of their consequences can be
derived by just using the graph, for instance when one is marginalizing over some variables
in set M, and conditioning on other variables in set C. In particular, graphs can be obtained
for node sets N’ = N \ {C,M} which capture precisely the independence structure implied by
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Gﬁg, the generating graph in the larger node set N, for fys|c, the family of densities of Y%
given Y.

Such graphs are named independence-preserving, when they can be used to derive the
independence structure that would have resulted from the generating graph by conditioning
on a larger node set {C,c} and marginalizing over the set {M,m}. Otherwise, such graphs are
said to be only independence-predicting. Both types of graph transformations can be based
on operators for binary matrices that represent graphs; see Wermuth, Wiedenbeck and Cox
(2006), Wermuth and Cox (2004).

From a given generating graph, three corresponding types of independence-preserving
graph result by using the same sets C,M. These are in a subclass of the much larger class of
MC-graphs of Koster (2002), studied as the ribbon-less graphs by Sadeghi (2012a), or they
are the maximal ancestral graphs of Richardson and Spirtes (2002) or the summary graphs of
Wermuth (2011); see Sadeghi (2012a) for proofs of their Markov equivalence.

A summary graph shows when a generating conditional dependence, of ¥; on ¥} say, in fy
remains undistorted in fyrc, parametrized in terms of conditional dependences, and when it
be may become severely distorted; see Wermuth and Cox (2008). Some of such distortions
can occur in randomized intervention studies, but they may often be avoided by changing the
set M or the set C.

Therefore, these induced graphs are relevant for the planning stage of follow-up studies,
designed to replicate some of the results of a given large study by using a subset of the vari-
ables, that is after marginalizing over some variables, and/or by studying a subpopulation, that
is after conditioning on another set of variables.

For marginalizing alone, that is in the case of C = (), one may apply the following rules for
inserting edges repeatedly, keep only one of several induced edges of the same type, and gets
often again a regression graph induced by N' = N\ M. In general, a summary graph results;
see Wermuth (2011). The five transmitting Vs induce edges by marginalizing over the inner
node

i~—P<—k, i=—P—k i—P—k i~—P---k i~—P—k

to give, respectively,

i<~—k, i~—k, i—k, i--—k, i--k.

The induced edges ‘remember the type of edge at the endpoints of the V’ when one takes
into account that each edge 0---0 in Gfég can be generated by a larger graph, that contains
0<— @ —o. Thereby, the independence structure implied by this graph, for the node set
excluding the hidden nodes, { ﬁ} is unchanged.

For any choice of C,M and a given generating graph Gﬁ\ég , routines in the package ‘ggm’,
contained within the computing environment R, help to derive the implications for fy/c by
computing either one of the different types of independence-preserving graph; see Sadeghi
and Marchetti (2012). Other routines in ‘ggm’ decide whether a given independence-preserving
graph is Markov equivalent to another one or to a graph in one of the subfamilies, such as a
concentration or a directed acyclic graph; see Sadeghi (2012b) for justifications of these pro-
cedures. This helps to contemplate and judge possible alternative interpretations of a given
Gleg -

For two regression graphs, the Markov equivalence criterion is especially simple: the two
graphs have to have identical sets of node pairs with a collision V; see Theorem 1 of Wermuth
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and Sadeghi (2012). The result implies that the two sets may contain different ones of the
3 possible collision Vs. Also, the two sets of pairs with a transmitting V are then identical,
though a given transmitting V in one graph may correspond in the other graph to another one

of the 5 transmitting Vs that can occur in Gﬁg .

4.2 Constructing the regression graph via statistical analyses

As mentioned before, we use here data from the Mannheim Study of Children at riskt. The
study started in 1986 with a random sample of more than 100 newborns from the general pop-
ulation of children born in the Rhine-Neckar region in Germany. This sample was completed
to give equal subsamples, in each of the nine level combinations of two types of adversity,
taken to be at levels ‘no, moderate or high’. In other words, there was heavy oversampling of
children at risk.

The recruiting of families stopped with about 40 children of each risk level combination
and 362 children in the study. All measurements were reported in standardized form using
the mean and standard deviation of the starting random sample, called here the norm group.
Of the 362 German-speaking families who entered the study when their first, single child was
born without malformations or any other severe handicap, 347 families participated still when
their child reached the age of 8 years.

Two types of risks were considered, one relevant for cognitive the other for motor de-
velopment. One main difference to previous analyses is that we averaged three assessments
of each type of risk: taken at birth, at 3 months and at two years. This is justified in both
cases by the six observed pairwise correlations being all nearly equal. The averaged scores,
called ‘Psycho-social risk up to 2 years’, Y,, and ‘Biological-motoric risk up to 2 years’, X;,
have smaller variability than the individual components. This points to a more reliable risk
assessment and leads to clearly recognizable dependences, to the edges present in Figure 2.

The regression equations may be read off Tables 2 to 7 below. For instance for Y3, there
are four regressors and one nonlinear dependence on X4 with

Ejin(Ys|past of ¥g) = 0.03 +0.78 Y3 + (0.07 +0.10X4) X4 +0.11 E +0.12H.

The test results of Table 2 imply that the previous measurement of cognitive deficits at age 4
years, Y4 is the most important regressor and that the next important dependence is nonlinear
and on motoric deficits at 4 years, X7

For each individual response component of the continuous joint responses, the results
of linear-least squares fittings are summarized in six tables. In each case, the response is
regressed in the starting model on all the variables in its past. Quadratic or interaction terms
are included whenever there is a priori knowledge or a systematic screening alerts to them;
see Cox and Wermuth (1994).

The tables give the estimated constant term and for each variable in the regression, its
estimated coefficient (coeff), the estimated standard deviation of the coefficient (scoefr), as
well as the ratio zops =coeff/sqqefr, Often called a studentized value. Each ratio is compared to
the 0.995 quantile of a standard Gaussian random variable Z, for which Pr(Z > |2.58|) = 0.01.
This relatively strict criterion for excluding variables assures that each edge in the constructed
regression graph corresponds to a dependence that is considered to be substantively strong in
the given context, in addition to being statistically significant for the given sample size.

11



At each backward selection step, the variable with the smallest observed value |zops| is
deleted from the regression equation, one at a time, until the threshold is reached so that no
more variables can be excluded. The remaining variables are selected as the regressors of the
response. An arrow is added for each of the regressors to the graph containing just the nodes,
arranged in g1 < g» < --- < gJ.

The last column in each table shows the studentized value ngs, that would be obtained
when the variable were included next into the selected regression equation. Wilkinson’s model
notation is added in the table to write the selected model in compact form. For continuous
responses, the coefficient of determination is recorded for the starting model, denoted by R%ull
and for the reduced model containing the selected regressors, denoted by Rgel.

A dashed line is added, for a variable pair of a given joint response, when in the regression
of one on the other, there is a significant dependence given their combined set of the previously
selected regressors.

A full line is added for a variable pair among the background variables, when in the re-
gression of one on all the remaining background variables, there is a significant dependence
of this pair. This exploits that an undirected edge present in a concentration graph, must also

be be significant in such a regression; see Wermuth (1992).

Table 2: Regression results for Y3

Response: Yg, cognitive deficits at 8 years

starting model selected excluded
explanatory variables coeff  Scoeff  Zobs coeff  Scoeff  Zobs ngs
constant 0.00 — — 0.03 — — —
Y4, cognitive deficits, 4.5yrs 0.78 0.05 15.36 0.78 0.05 15.70 —
X4, motoric deficits, 4.5yrs 0.05 0.04 — 0.07 0.04 — —
Y,, psycho-social risk, 2yrs 0.00 0.07 0.01 - - — -0.13
X, biol.-motoric risk, 2yrs 0.07 0.07 1.07 — — — 1.08

E, Unprotect. environm., 3mths 0.10 0.06 1.81 0.12 0.04 2.62 —
H, Hospitalisation up to 3mths 0.09 0.05 191 0.12 0.04 3.00 —
X3 0.09 0.01 6.53 0.10 0.01 7.15 —

Rz, =0.67 Selected model Y3 :Ys+XZ+E+H R, =0.67

sel —

This strategy leads to a well-fitting model, unless one of the excluded variables has a too
large contribution when it is added alone to a set of selected regressors. Such a variable would
have to be included as an additional regressor. However, this did not happen for the given set
of data.
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Table 3: Regression results for Xg

Response: Xg, motoric deficits at 8 years

starting model selected excluded
explanatory variables coeff  Scoeff  Zobs coeff  Scoeff  Zobs ngs
constant 026 — 0,26 — — — —
Y4, cognitive deficits, 4.5yrs —0.01 0.06 —0.10 - - — 0.04
X4, motoric deficits, 4.5yrs 0.33 0.04 7.39 0.33 0.04 — —
Y,, psycho-social risk, 2yrs 0.01 0.08 0.19 - = — 0.43
X, biol.-motoric risk, 2yrs 0.17 0.08 2.27 0.19 0.06 2.97 —
E, Unprotect. environm., 3mths 0.01 0.07 0.17 — — — 0.44
H, Hospitalisation up to 3mths 0.01 0.08 0.26 - = — 0.26
X3; 0.18 0.23 341 0.05 0.02 2.89 —

R?, =036 Selected model Xg: X7 +X, RZ,=0.36

sel —

The tests for the residual dependence of the two response components gives a weak de-
pendence at age 8 with z,,s = 2.4 but a strong dependence at age 4.5 with zqps = 7.0.

Table 4: Regression results for ¥y

Response: Yy, cognitive deficits at 4.5 years

starting model selected excluded
explanatory variables coeff  Scoeff  Zobs coeff  Scoeff  Zobs ngs
constant —-0.29 — = —-0.29 — — —
Y,, psycho-social risk, 2yrs 0.36 0.08 4.81 0.36 0.05 6.77 —
X, biol.-motoric risk, 2yrs 0.17 0.09 — 0.18 0.07 — —
E, Unprotect. environm., 3mths —0.01 0.07 —0.14 — — — 0.39
H, Hospitalisation up to 3mths 0.14 0.04 3.36 - = — —0.12
X? 0.14 0.04 3.36 0.14 0.04 3.36 —

Rz, =025, Selected model Yy :Y,+X?, R2,=0.25

sel —
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Table 5: Regression results for Xy

Response: X4, motoric deficits at 4.5 years

starting model selected excluded
explanatory variables coeff  Scoeff  Zobs coeff  Scoeff  Zobs ngs
constant —-047 - — -047 — — —
Y,, psycho-social risk, 2yrs 0.33 0.10 3.44 0.28 0.07 4.21 —
X, biol.-motoric risk, 2yrs 0.62 0.11 5.50 0.50 0.09 — —
E, Unprotect. environm., 3mths —0.06 0.08 —0.66 — — — —-0.77
H, Hospitalisation up to 3mths  —0.13 0.07 —1.83 — — — —1.88
(X,)2 0.21 0.05 3.97 0.23 0.05 443 —

Rz, =037 Selected model X4 : ¥, +X? R%,=0.36

sel —

Table 6: Regression results for ¥,

Response: Y, psycho-social risk up to 2 years

starting model selected excluded
explanatory variables coeff  Scoeff  Zobs coeff  Scoeff  Zobs ngs
constant —-0.20 - — —-0.21 — — —
X, biol.-motoric risk, 2yrs —0.04 0.04 —0.81 — — — —1.51
E, Unprotect. environm., 3mths 0.57 0.03 — 0.55 0.03 — —
H, Hospitalisation up to 3mths ~ —0.03 0.04 —0.80 - = — —1.50
E? 0.16 0.03 6.12 0.16 0.03 6.20 —

R, =0.57 Selected model ¥, : E*  R2,; =0.56

Table 7: Regression results for X,

Response: X,, biologic-motoric risk up to 2 years

starting model selected excluded
explanatory variables coeff  Scoeff Zobs  COEfl  Scoeff  Zobs ngs
constant 025 — — 022 — — —
Y., psycho-social risk, 2yrs —-0.05 0.07 —-0.81 — — —1.22

E, Unprotect. environm., 3mths  0.17 0.06 3.04 0.12 0.04 — —
H, Hospitalisation up to 3mths 0.48 0.04 1230 0.48 0.04 12.40 —
E? —0.04 0.03 —1.09 - — —1.42

R%uu —=0.35 Selected model X,: E4+H R%,=0.35

sel

A global goodness-of-fit test, with proper estimates under the full model, may depend on
additional distributional assumptions and require iterative fitting procedures. For exclusively
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linear relations of a joint Gaussian distribution, such a global test for the joint regressions
would be equivalent to the fitting of a corresponding structural equation model, given the
unconstrained background variables, and the global fitting of the concentration graph model
to the context variables would correspond to estimation and testing for one of Dempster’s
covariance selection models.

4.3 Using a well-fitting graph

There are direct and indirect pathways from risks at three months to cognitive deficits at 8
years. The exclusively positive conditional dependences along different paths accumulate to
positive marginal dependences, even for responses connected only indirectly to a risk, for
instance for Yg to Y, or Xg to E.

Among the background variables, an unprotective environment for the 3 months-old child,
E, is strongly related to the psycho-social risk up to 2 years, Y, and hospitalization up to 3
months, H, to the biological-motoric risk up to 2 years, X,. The weakest but still statistically
significant dependence among these four risks occurs for an unprotective environment, £, and
the biological-motoric risk, X;..

Such a dependence taken alone can often best be explained by an underlying common
explanatory variable, here for instance a genetic or a socio-economic risk. This would lead
to replacing the full line for (E,X,) in Figure 2 by the common-source V, shown in Figure
3. The inner node of this V is crossed out because it represents a hidden that is unobserved
variable. Hidden nodes represent variables that are unmeasured in a given study but whose
relevance and existence is known or assumed.

E, Unprotective
Y8, Cognitive m .
O« (o) owem

deficits, 8yrs T ~
|
|
o
X8, Motoric (')
deficits, 8yrs

Xr H, Hospitalized

A
XX Q= ———
» 4

Figure 3: A graph equivalent to the one of Fig. 2 with one hidden, common explanatory
variable

Though Figure 3 appears to contain only a small change compared to Figure 2, this change
requires a Markov equivalence result for a larger class than regression graphs, as available for
the ribbon-less graphs of Sadeghi (2012a), since a path of the type i —o—<—+k does not
occur in a regression graph. Given these results, it follows that graphs Figure 4(a) and (b) are
Markov equivalent and that the structure of graph 4(b) can be generated by the larger graph
4(c) that includes a common, but hidden regressor node for the two inner nodes of the path.

@ o (b) o——o0 (c) o—o
// \

/

/ / ﬁ
/7
.o ot—o o+ o

Figure 4: A hidden variable graph (c) generating two Markov equivalent graphs (a) and (b)
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To better understand the distinguishing features of the pathways of dependence in Figure
2 leading to the joint responses of main interest at age 8, we generate the implied regressions
graphs when the assessments at age 8 and at 4.5 years are available for only one of the two
aspects. In that case one has ignored, that is marginalized over, the assessments of the other
aspect at age 8 and 4.5.

The resulting graph, for Y5 and Y4 ignored, happens to coincide with the subgraph induced
by the remaining, selected six nodes in Figure 1, as shown in Figure 5. Such an induced graph
has the selected nodes and as edges all those present among them in the starting graph and no
more.

Yr E, Unprotective
O environment
X8, Motoric o O/ o o
deficits, 8yrs X4 Xr H, Hospitalized

Figure 5: The regression graph induced by ignoring Yg and Y, in Figure 2; M = {Yg,Y4},C =0

The graph of Figure 5 implies that possible psycho-social risks of a child up to age 2, Y;,
do not contribute directly to predicting motoric deficits at school-age, Xg, also when the more
recent information on cognitive deficits is not available.

By contrast, the regression graph in Figure 6 that results after ignoring Xg and X4, shows
two additional arrows compared to the subgraph induced in Figure 2 by Yg,Y4,Y,. X, E . H.

Y8, Cognitive /N r E, Unprotective
Og o)

deficits, 8yrs Qe environment

Xr H, Hospitalized

Figure 6: The regression graph induced by ignoring Xg and X4 in Figure 2; M = {Xg, X4},
C=0

The induced arrows are for (¥3,Y,) and for (¥3,X,). The graph suggests that cognitive
deficits at school-age, Y3, are directly dependent on all of the remaining variables when the
more recent information on the motoric risks are unrecorded. There are direct and indirect
pathways from H and from E to Yg. They involve nonlinear dependences of cognitive deficits
on previous motoric deficits or risks. These are recognized in the fitted equations but not
directly in the graph alone.

What the graph also cannot show is that with Xg, X4 unrecorded, the early risks, Y, H are
less important as predictors when Y4, X,,X? E are available as regressors of Y3. This effect
is due to the strong partial dependences of Y,, E? given E,X,,H and of X,, H given E,E?,Y,.
Such implications, due to the special parametric constellations are not reflected in the graph
alone.



Many more conclusions may be drawn by using just graphs like in Figures 2 to 6. The
substantive research questions and the special conditions of a given study are important; for
some different types of study analyzed with graphical Markov models see, for instance, Klein,
Keiding and Kreiner (1995), Gather, Imhoff and Fried (2002), Hardt et al (2004), Wermuth,
Marchetti and Byrnes (2012).

One major attraction of sequences of regressions in joint responses is that they may model
longitudinal data from observational as well as from intervention studies. For instance, with
fully randomized allocation of persons to a treatment, all arrows that may point to the treat-
ment in an observational study, are removed from the regression graph. This removal reflects
such a successful randomization: independence is assured for the treatment variable of all
regressors or background variables, no matter whether they are observed or hidden.

5 Conclusions

The paper combines two main themes. One is the notion of traceable regressions. These are
sequences of joint response regressions together with a set of background variables for which
an associated regression graph not only captures an independence structure but permits the
tracing of pathways of dependence. Study of such structures has both a long history and at
the same time is the focus for much current development.

Joint responses are needed when causes or risk factors are expected to affect several re-
sponses simultaneously. Such situations occur frequently and cannot be adequately modeled
with distributions generated over directed acyclic graph or such a graph with added dashed
lines between responses and variables in their past to permit unmeasured confounders or en-
dogenous responses.

A regression graph shows, in particular, conditional independences by missing edges and
conditional dependences by edges present. The independences simplify the underlying data-
generating process and emphasize the important dependences via the remaining edges. The
dependences form the basis for interpretation, for the planning of or comparison with further
studies and for possible policy action. Propagation of independencies is now reasonably well
understood. There is scope for complementary further study that focuses on pathways of
dependence.

The second theme concerns specific applications. Among the important issues here are
an appropriate definition of population under study, especially when relatively rare events
and conditions are to be investigated, appropriate sampling strategies, and the importance of
building an understanding on step-by-step local analyses. The data of the Mannheim study
happen to satisfy all properties needed for tracing pathways of dependence. This permits
discussion of the advantages and limitations for some illustrated path tracings.

In the near future, more results on estimation and goodness of fit tests are to be expected,
for instance by extending the fitting procedures for regression graph models of Marchetti and
Lupparelli (2010) to mixtures of discrete and continuous variables, more results on the iden-
tification of models that include hidden variables such as those by Stanghellini and Vantaggi
(2012) and those by Foygel, Draisma and Drton (2012), and further evaluations of properties
of different types of parameters; see Xie, Ma and Geng (2008) for an excellent starting dis-
cussion.
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