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Case-control studies for rare diseases: improved estimation of

several risks and of feature dependences
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Abstract. To capture the dependences of a disease on several risk factors, a challenge is

to combine model-based estimation with evidence-based arguments. Standard case-control

methods allow estimation of the dependences of a rare disease on several regressors via

logistic regressions. For case-control studies, the sampling design leads to samples from

two different populations and for the set of regressors in every logistic regression, these

samples are then mixed and taken as given observations. But, it is the differences in

independence structures of regressors for cases and for controls that can improve logistic

regression estimates and guide us to the important feature dependences that are specific

to the diseased. A case-control study on laryngeal cancer is used as illustration.

Keywords: Conditional independence, Epidemiology, Odds-ratio, Regression graph.

1 Introduction

1.1 Motivation and goals

Logistic regression models the dependence of a binary response variable on a set of

regressor variables. These models have proven to be extremely successful tools in epi-

demiological and medical research, where the response is for instance survival or a disease

diagnosis. In these models, the parameters measuring dependence are the log-odds ra-

tios. And, in any two-way classifications of a response and a regressor, only functions

of the odds-ratios remain unaffected by changes in the margins and hence by changes

in the sampling schemes that allow to fix the overall count of the studied individuals,

the row sums or the column sums; see Edwards (1963).

The variants of these models with exclusively categorical regressors are named logit

regression; see Fienberg (1980, 2007). For logit regressions, goodness-of-fit tests com-

pare how well the estimated counts agree with the observed counts. For general logistic

regression instead, in which some of the regressors are quantitative and without repli-

cation for all level combinations, there is no similar formal test of goodness-of-fit. In

such logistic regressions, a poor quality of the fitted values shows in increased standard

deviations of the estimates but these give no direct pointers to locations of poor fit.

Also, for some research questions, originally quantitative measures may not be of direct

interest so that logit regressions can be focused on.

One may see it as an advantage of a model if it estimates in regions of sparse data by

borrowing strength from portions of the data with many observations, however there is
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the danger that conclusions are extrapolated to situations for which no data support is

available, or to put it differently, for which evidence-based arguments are lacking since

parameter estimates and statistical tests cannot be complemented by convincing basic

data descriptions.

A special situation arises for case-control data. By design, such data are always sam-

ples from two different populations. There is one population of the cases, the individuals

who have been diagnosed to have the disease under study and another population of the

controls, the individuals without the disease.

For any rare disease, the cases constitute a tiny fraction of the general population

in a given region at the time of study, so that for general public health decisions, the

distribution of risk factors among the controls is of main interest. But for contemplating

for instance a subsequent prospective study or the implementation of a small preventive

screening program for those at highest risk, the main focus of interest are those com-

binations of risk factors and of other features that summarize best how the cases differ

from the controls.

For case-control data, one conditions with each regression model on a mixture of

data from two populations. The mixing proportions of one case to several controls are

typically determined by cost considerations and, for rare diseases, they never define a

sample of a real population. Dependences among regressors that exist either in the

population of cases or in the population of controls may appear enlarged, diminished or

get cancelled with the mixed sample values that are taken in regressions as the given

observations of the regressors.

Therefore, we supplement the traditionally used logistic regressions for case-control

data in two main ways. First, we obtain subgroups of cases and controls that are relevant

for the main research questions and that are comparable in related, important features.

Second, we carry out separate analyses for cases and for controls and exploit differences

in dependence structures to obtain improved, smoothed estimates of odds-ratios and to

identify important feature combinations that distinguish cases from controls.

1.2 Background information to laryngeal cancer and to regression graphs

Laryngeal cancer is currently the second most common cancer of the respiratory tract.

Several risk factors have been reported in the literature. The risk in males increases

with the amount and duration of tobacco consumption; see e.g. Zatonski et al. (1991),

with regular alcohol consumption and with decreasing age at start of smoking, see e.g.

Talamini et al. (2002). It decreases with an increasing time since ceasing to smoke; see

IARC Monograph 83 (2003) and with only light inhalation when smoking cigarettes;

see Ramroth et al. (2011). Differential susceptibility for laryngeal cancer in men and

women may be related to hormones being involved in the carcinogenic process and to a

gender-specific predisposition to develop laryngeal cancer; see Chen et al. (2011).
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However, the understanding of the carcinogenic process and of the joint effects of

alcohol and tobacco consumption is still limited. We focus mainly on the combination of

these two well-established risk factors for laryngeal cancer when there are high exposures

to both and when some of the intrinsic variables are comparable; see Berrington and

Cox (2007) for a discussion of effects of intrinsic variables, which are characteristic of

the study participants that cannot be modified by intervention, and see Cornfield et al.

(1959), Cox and Wermuth (2003) for statistical aspects of causal relations.

Conditional independences identified separately in the sample of cases and in the

sample of controls, lead to well-fitting, simplified dependence structures, to improved

estimates of risks and to profiles of persons being at highest risk.

Regression graphs capture both independences and sets of directly important ex-

planatory variables; see Cox and Wermuth (1993), Wermuth and Sadeghi (2012). Here,

laryngeal cancer is the primary response of interest. Tobacco and alcohol consumption

represent the two components of a joint response of secondary interest, which may de-

pend on additional features of the participants that are considered to be also relevant for

the occurrence of this type of cancer. The two components of the joint response are in

turn joint risk factors for laryngeal cancer or, to put it differently, they are explanatory

for the response of main interest.

Thus for a general population in which laryngeal cancer is rare, a first ordering of

the variables in Figure 1 starts with the variable of main interest on the left, shows

alcohol and tobacco consumption as intermediate between laryngeal cancer and several

background variables, listed on the right, most of them being intrinsic features.

Tobacco

consumption

Acohol

consumption

Living area

Age at time

of study

Level of

formal education

Age when starting

to  smoke

Laryngeal

cancer

Figure 1: A first ordering of several variables relevant for laryngeal cancer.

A regression graph has nodes representing variables and an edge coupling a node

pair for dependences that are important in generating the joint distribution. An arrow,

i≺ j, points from a parent node j to its offspring node i, a dashed line, i j, connects

any two response nodes i, j if they are dependent given their joint set of parents and a

full line, i j couples two background nodes i, j if they are dependent given all other

background nodes.
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For a regression graph constructed by statistical analysis from a case-control study,

the arrows pointing to the disease result from estimated log odds-ratios and, for a general

population of a rare disease, the dependence structure of all its potential regressors

from an analysis of the controls alone. Additional insights can be gained by using more

explicitly that, by the case-control sampling design, one has conditioned on each level

of a binary response.

One consequence for all important regressors of the main response is that their

dependence structures show, separately for the cases and for the controls, in graphs of

only full lines, which have been named their induced concentration graphs; see Wermuth

(2011). Different cliques for the same node subsets in these two types of graphs point

to those dependence substructures of the features under study where the cases differ

mainly from the controls, the disease diagnosis set again aside.

An induced concentration graph is Markov equivalent to a regression graph in the

same node set and in the same set of edges if and only if it can be oriented such that no

collision V results, that is no three-node, two-edge subgraph of either one of the types

i ≻o≺ j, i o≺ j, i o j ;

see Wermuth and Sadeghi (2012). Thereby, the first ordering of the variables is taken

into account, the order that captures the available knowledge about how the joint dis-

tribution is generated.

Some difficulty of variable ordering arises in case-control studies when age at the

time of study does not have the same meaning for cases and controls. For the general

population, studied with the sample of the controls, age is clearly the intrinsic variable

of an individual. For the cases however, age is also a proxy for the length of exposure

to risks and hence for a higher morbidity status and as such a consequence of exposure

instead of a background variable.

1.3 Background information on the case-control study used as illustration

We use data from a Polish study of 249 males with exclusively glottic or subglottic

tumors diagnosed in 1986 and 1987 in Lower Silesia; see Zatonski et al. (1991). The

incidence rate of laryngeal cancer is reported for Lower Silesia as 35 in 100 000 for males

aged 34 to 65 in the years 1984 to 1987; see Parkin et al. (1997).

Of the laryngeal cancer cases in this study, 80% were blue collar workers, 79% lived

in an urban environment, that is in towns of more than 10 000 inhabitants, and 76%

had less than 8 years of formal schooling. In this context, gender, age when cigarette

smoking was started, living area are directly important intrinsic features while the level

of formal schooling is also a crude indicator for the standard of living of blue collar

workers in Poland at the time.
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For this study, controls were selected from the electoral roll, with stratification by

five-year age group and living area, rural versus urban. This stratification was used

to ensure that the sampled proportions conform to those in the population, since the

authors state that ‘the age distribution among controls is closely representative of that

of the general population within the age range 25 - 65 years, whereas the cases tend to

be older.’ Slightly fewer than 5 controls were recruited per case. Response rates in cases

and controls were high at 88% and 94% respectively. This resulted in the participation

of 249 cases and 965 controls, a total of 1214 men in the original study group.

1.4 Obtaining comparable relevant features of cases and controls

For a reliable estimation of the dependence of a disease on two or more specific risks,

the choice of controls is critical. The studied groups of cases and controls need to be

comparable with respect to other features that may distort these dependences when they

are ignored. Such features have been called possible direct confounders; see Wermuth

and Cox (2008).

In the literature on laryngeal cancer, tobacco consumption is typically described as

a more important risk than alcohol consumption. We expect this to be different for

high exposures and with the given data of the Polish study, we contrast high versus

extreme exposures. The latter are long-term heavy vodka drinking and long-term heavy

cigarette smoking.

The features considered as background variables, listed in the right-hand box of Fig-

ure 1, are possible direct confounders. In rural more than in urban Polish communities,

heavy vodka drinking and heavy cigarette smoking may have been socially accepted.

Cumulated exposure to these risks may increase with age at time of study and with the

age when cigarette smoking was started. Poor nutrition leads to poor health and higher

morbidity and may be more likely the lower the level of formal education.

To obtain comparable groups with respect to these possible confounders, we use the

same constraints on the cases and controls of the original study group. Every selected

man smoked on average 10 or more cigarettes per day, without any long non-smoking

periods and without ceasing to smoke more than 4 years prior to the time of study. He

started smoking 10 or more years before the time of study, at an age of 26 years or

younger. Further, every selected man was at least 33 years old and had less than 12

years of formal schooling since, otherwise, there would have been not one comparable

case in the rural communities.

The constraints taken together exclude more cases than controls, leaving 31% cases

(48 of 156) in rural areas and 37% cases (156 of 424) in urban areas. Combined, there

are 35% cases (204 of 580) in the selected study group compared to only 7% cases (45

of 634) in the subgroup excluded from the original study group.
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We define seven binary variables from the given, available raw data. With n = 580

study participants and seven binary variables, the classification into 27 = 128 level

combinations gives 27% empty cells. Hence any estimation can be successfully combined

with evidence-based arguments only if the data support many simplifying independences

or if a dependence model has been shown to be appropriate in a previous, larger study.

The binary variables are L, laryngeal cancer (1:=case, 0:=control), V , heavy vodka

drinking (1:=yes, regularly since 5 or more years, 0:=no), C, heavy cigarette smoking

(1:=yes, more than 20 cigarettes per day, 0:=no, 10 to 20 cigarettes per day), A, older

age group at time of study (1:=yes, 51 to 65 years, 0:=no, 33 to 50 years), E, lower

level of formal education (1:=yes, less than 8 years, 0:=no, 8 to 11 years), S, starting

age for cigarette smoking (1:=18 years or older but at least ten years before the time

of study , 0:= 17 years or younger), R, region of living, (0:=rural, 1:=urban). Except

for variables S and R, level 1 of the other four explanatory variables represents what is

expected to be a higher level of risk for laryngeal cancer than level 0.

Tables 1 and 2 give the typical features for the four subgroups defined by the region

of living, R, and the type of cigarette smoking, C.

Table 1: Features of the selected regular and heavy smokers in rural Polish communities

regular smokers, n = 103 heavy smokers, n = 53

feature min max mean std min max mean std

case, 0:=no, 1:=yes 0 1 22% 0 1 47%

yrs of drinking hard liquor 0 30 2.3 6.62 0 30 7.4 10.74

> 4 yrs heavy drinking, no/yes 0 1 12% 0 1 36%

< 8 yrs education no/yes 0 1 68% 0 1 74%

age in yrs at time of study 33 64 48.8 10.22 33 64 49.6 8.83

age > 50 yrs, no/yes 0 1 49% 0 1 49%

age in yrs smoking started 10 26 18.1 2.58 12 26 18.2 3.09

start smoking > 17 yrs, no/yes 0 1 67% 0 1 66%

av. # cigarettes per day 10 20 17.2 3.16 21 60 30.0 8.29

By Tables 1 and 2, the four groups are comparable with respect to the intrinsic

feature age when cigarette smoking was started. Within living areas, there are roughly

similar percentages of participants with a low level of formal education. The average

number of cigarettes smoked per day is comparable for rural and urban regular smokers

(17.2 and 17.7) as well as for rural and urban heavy smokers (30.0 and 30.1).

With the four group sizes being quite different, the much higher average level of

tobacco consumption for heavy smokers than for regular smokers requires conditioning

on smoking, while the longer exposure to heavy vodka drinking in urban compared to
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rural regular smokers requires conditioning on region when studying the effects of heavy

vodka drinking in addition to heavy smoking.

The chances of seeing cases of laryngeal cancer range from 22% to 47% in the four

groups. After merging the two groups of smoking given the regions or by merging the

two regional groups given the levels of smoking, the proportion of cases would only vary

between 31% and 37% for the two regions and between 31% and 47% for the two groups

of cigarette smokers.

Table 2: Features of the selected regular and heavy smokers in urban Polish communities

regular smokers, n = 310 heavy smokers, n = 114

feature min max mean std min max mean std

case, 0:=no, 1:=yes 0 1 33% 0 1 46%

yrs of drinking hard liquor 0 46 4.4 10.22 0 46 6.6 11.77

> 4 yrs heavy drinking, no/yes 0 1 17% 0 1 28%

< 8 yrs education no/yes 0 1 57% 0 1 61%

age in yrs at time of study 33 65 49.2 9.66 33 65 49.0 8.79

age > 50 yrs, no/yes 0 1 53% 0 1 46%

age in yrs smoking started 7 26 18.5 2.71 9 26 18.0 2.80

start smoking > 17 yrs, no/yes 0 1 69% 0 1 65%

av. # cigarettes per day 10 20 17.7 2.99 21 60 30.1 7.61

Thus by merging, one would give up the opportunity of investigating strong contrast

in the numbers of cases to controls and marginal estimates could be distorted estimates

of the conditional effects of heavy vodka drinking on laryngeal cancer.

2 Measures of marginal, conditional and overall dependence

2.1 Relevant recent results for different measures of dependence

For data obtained with a case-control design, the relation of counts for cases and controls

depends on the number of selected controls per case and on the selection criteria. As

one consequence, any observed percentage of cases does not translate directly into an

estimate of the probability that the illness occurs.

When n1y denotes the count of cases and n0y the count of controls at high exposure to

a risk factor (y:=yes), then the odds for cases versus controls are n1y/n0y, while otherwise

they are n1n/n0n for n:=no. For the study group of n = 580 men, the following table of

counts and percentages gives as observed odds-ratio (odr) for laryngeal cancer, L, and

heavy vodka consumption, V , as

odr(LV ) = (n1yn0n)/(n0yn1n) = (349× 88)/(116× 27) = 9.8.
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With a standard deviation of
√

1/349 + 1/88 + 1/116 + 1/27 = 0.245 for log odr(LV ),

9.8 represents a highly significant deviation from 1, the expected value of the odds-ratio

when two binary variables are independent.

The observed odds-ratio for an illness and a risk factor, for instance odr(LV ), takes

on a value of 1 if and only if the percentages of cases agree in the two categories of

exposure. In addition, an odds-ratio approximates a relative risk for rare events. In this

latter case, the odds expressed in terms of probabilities, say as π/(1 − π), are roughly

the same as the probability for the rare event, π, itself. Thus, if a disease is rare in

the population, odds ratios estimated in case-control studies, estimate relative risks in

a population; see also Prentice and Pike (1979).

In Table 3, the observed odds-ratio odr(LV ) = 9.8 differs substantially from the

ratio of the observed percentages, 77/25= 3.1 and from the observed risk difference,

77 − 25 = 55, the change in percentage points. However, the three measures always

agree regarding a positive dependence of A on B given C,Z when A,B,C are binary

variables and Z is vector background variable which may be a combination of categorical

variables, of quantitative variables or consist of both types.

Table 3: Counts of laryngeal cancer cases for given levels of vodka consumption

V , heavy vodka consumption

L, laryngeal cancer no yes sum

0:=controls 349 27 376

1:=cases (25%) 116 (77%) 88 (35%) 204

sum 465 115 580

odr(LV ) 9.8

To be more precise, we denote a probability Pr(A = i, B = j, C = k, Z = z) by

πABCZ
ijkz and marginal probabilities by summing over some of the levels +, so that for

instance π+BCZ
jkz =

∑

i π
ABCZ
ijkz and the conditional probability of A = 1 given B,C,X is

defined by π
A|BCX

1|jkz = πABCZ
1jkz /π+BCZ

jkz .

If we denote further the odds for A = 1 given B = 1 and arbitrary levels of C,Z

by Od(A|BCZ) = πABCZ
11kz /πABCZ

01kz , and for A = 1 given B = 0 by Od(A|B̄CZ), then

the odds-ratios of AB given C,Z are Odr(AB|CZ) = Od(A|BCZ)/Od(A|B̄CZ), the

relative risks for A = 1 comparing B = 1 to B = 0 given C,Z are πrr(A|BCZ) =

π
A|BCZ

1|1kz /π
A|BCZ

1|0kz and the following three statements of positive conditional dependences
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of A and B can be shown to equivalent; see also Theorem 1 of Xie, Ma and Geng (2008):

πrr(A|BCZ) > 1 (1)

Odr(AB|CZ) > 1 (2)

π
A|BCZ

1|1jz − π
A|BCZ

1|0jz > 0 . (3)

The same types of relation hold for observed instead of expected contingency tables,

as has been illustrated with Table 3. Equality in the three equations corresponds to

conditional independence of A,B given C,Z, written compactly as A ⊥⊥ B|CZ.

If the conditional independence A ⊥⊥ X|B holds, then the conditional density given

B factorizes accordingly, as fAX|B = fA|BfX|B and any measure of dependence of A on

B given X is unchanged after marginalising over X .

Given this result, one knows that two equal conditional odds-ratios for AB given a

binary variable C coincide with the marginal odds-ratio, Odr(AB), if A ⊥⊥ C|B. But,

there is an additional sufficient condition, since the conditional odds, Od(A|BC), relate

via conditional probabilities to the marginal odds as

Od(A|BC) = Od(A|B)(π
C|AB

1|11 /π
C|AB

1|01 )

Therefore, Odr(AB|C) = Odr(AB) if the second term on the right-hand side does not

depend on B, that is if C ⊥⊥ B|A. These two results together provide a direct proof

of simple collapsibility of equal conditional odds-ratios for binary variables A,B over a

binary variable C, that is

{Odr(AB|C = 0) = Odr(AB|C = 1) = Odr(AB)} ⇐⇒ (A ⊥⊥ C|B or B ⊥⊥ C|A) ; (4)

see also Whittemore (1978).

The same type of conditions as in (4) are sufficient but not necessary for simple col-

lapsibility of equal odds-ratios when conditioning is on more variables or on categorical

variable with more than two levels. In the framework of graphical models, these are

discussed by Didelez, Kreiner and Keiding (2010) and Barenboim and Pearl (2011) as

conditions for controlling selection bias for odds-ratios when there is outcome dependent

sampling. However, conditions for simple collapsibility of equal relative risks given C

are quite different from those for equal odds-ratios given C; see also Geng (1992).

If B ⊥⊥ C, then the marginal relative risk of A,B is an average of the conditional

risks of A,B given both levels of C with positive weights adding to one:

πrr(A|B) = {απrr(A|BC) + β πrr(A|BC̄)}/(α+ β) ,

where α = π++C
1 π

A|BC

1|01 and β = π++C
0 π

A|BC

1|00 . Thus, positive conditional dependences

always lead to a positive dependence after marginalizing over C and if the conditional
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relative risks given C are equal, then they also coincide with the marginal relative risk

for A given B that is

{πrr(A|BC) = πrr(A|BC̄) = πrr(A|B)} ⇐⇒ (A ⊥⊥ C|B or B ⊥⊥ C) . (5)

There can be strong differences in conditional odds-ratios in spite of equal conditional

relative risks and there can be strong differences in conditional relative risks in spite of

equal conditional odds-ratios. Both results are useful for conclusions to be drawn from

case-control studies, as shown here in Sections 3.5 and 4.

Possible effect reversal also needs attention. It is well-known that strongly dependent

explanatory variables B,C can lead to a marginal positive dependence of A on B being

reversed after conditioning on C, or vice versa, that conditionally positive dependences of

A on B given C can be reversed when C is ignored. This is relevant only when variables

B,C are two strongly dependent explanatory variables and there is, in addition, a

qualitatively similar dependence of response A on B at the given levels of C. This can

be deduced from the equivalent ways of expressing positive dependence in equations (1)

to (3) in combination with Theorem 1 of Vellaisamy (2012).

In case-control studies, such situations may arise in logistic regressions with the dis-

ease as response, for instance, when two important regressors measure essentially the

same risk, or when a strong dependence is induced between two important risk factors

by the specific way in which samples of cases and controls are mixed in the given data.

2.2 The overall effects of the six observed, possibly explanatory variables

With Table 4, we report the overall odds-ratios for response L. It shows the variable

pair in column 1, the observed overall odds-ratios for each variable pair in column 2

and the corresponding likelihood-ratio statistics for independence in column 3. Pear-

son’s chi-square statistics for pairwise independence are displayed in column 4, Pearson’s

correlation coefficients for the binary variables in column 5 and Pearson’s correlation

coefficients as computed for the original binary and quantitative variables in column 6.

Table 4: Observed pairwise marginal dependences for n = 580

variable odds- likelihood Pearson’s Pearson’s correlation

pair ratio χ2 χ2 binary raw data

(L, V ) 9.8 104.5 107.6 0.43 0.43

(L,C) 2.0 13.4 13.7 0.15 0.18

(L,A) 3.8 54.5 53.2 0.30 0.31

(L,E) 3.7 46.2 43.9 0.28 0.28

(L, S) 1.4 2.5 2.5 0.07 −0.01

(L,R) 1.3 1.8 1.8 0.06 0.06

Note that variable E has been coded to have 1:= lower level of education
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The last two columns of the table show how little the correlation coefficients of the

defined binary variables differ in size from correlations with the quantitative measure-

ments in the raw data. In addition, the two types of chi-square statistics agree extremely

well for the given set of data. In general, this is by no means the case since the likelihood

ratio statistic is based on the odds-ratio and Pearson’s chi-square statistic is instead a

monotone function of the correlation coefficient of two binary variables.

A high agreement of the likelihood chi-square and of Pearson’s chi-square can be

expected when the binary data have two special properties: (1) none of the directly

observed binary variables concerns a rare event and (2) the cutoff-points for the defined

binary variables do not generate rare events. The latter happens, in particular, when the

cutoff-point is near the median. This holds here since the observed percentages at level

one are for L, V, C,A,E, S, R, respectively, in percent 35.2, 19.8, 28.8, 50.5, 61.2, 67.4, 73.1.

The relevant, more general result is due to Cox (1966) who shows that the esti-

mated slope in a simple logistic regression does not differ much from a linear regression

coefficient whenever the observations at each of extreme levels of the response do not

correspond to a rare event, that is to percentages smaller than 10%, say.

With r denoting a correlation coefficient of two binary variables and n the sample

size, the value of Pearson’s chi-square statistic is nr2; for a proof see for instance Wer-

muth and Streit (2007), p. 344. Expressed differently, for n = 580, an absolute value

of these observed correlation coefficients larger than 0.11 =
√

6.63/580 is statistically

significant at a 0.01 level, of 0.14 at a 0.001 level.

3 The dependences for laryngeal cancer on several factors

3.1 Logit regressions for L as response to V,C,R

The observed dependences of laryngeal cancer, L, on heavy vodka drinking, V , are

shown first for the two regions and given regular versus heavy cigarette smoking.

Table 5: Counts, percentages and observed odd-ratios for L, V given C in rural regions

L, laryngeal levels of V, C (heavy drinking/ heavy smoking)

cancer no/no yes/no no/yes yes/yes

controls 73 7 26 2

cases (20%) 18 (42%) 5 (24%) 8 (89%) 17

sum 91 12 34 19

odr(LV |C,R = 0) 2.9 27.6

Table 5 is for rural communities. It shows a much stronger dependence of laryngeal

cancer on heavy vodka drinking when the men are heavy cigarette smokers than when
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they are regular but not so heavy smokers. By contrast for urban communities, Table 6

shows a much stronger dependence of laryngeal cancer on heavy vodka drinking when

the men are regular cigarette smokers than when they are heavy smokers.

Table 6: Counts, percentages and observed odd-ratios for L, V given C in urban regions

L, laryngeal levels of V, C (heavy drinking/ heavy smoking)

cancer no/no yes/no no/yes yes/yes

controls 198 9 52 9

cases (23%) 60 (83%) 43 (37%) 30 (72%) 23

sum 258 52 82 32

odr(LV |C,R = 1) 15.8 4.4

The corresponding logit model is written as L : V ∗ C ∗ R in Wilkinson’s notation

for generalized linear models; see e.g. McCullagh and Nelder (1989). It includes with an

important 3-factor interaction effect of V, C,R on L also all main effects and all 2-factor

effects so that the parameters are those of the saturated, i.e. the unconstrained, logit

regression and the maximum-likelihood estimates of the expected counts agree with the

observed counts.

The 3-factor interaction in the logit regression is estimated in terms of the four

observed odds-ratios in Tables 5 and 6 as

log(4.43/15.77)− log(27.62/2.90) = −3.52

with an estimated standard deviation of 1.22, giving zobs = −3.52/1.22 = −2.9.

We denote any estimated highest-order logit term divided by its standard deviation

by zobs, as it can roughly be viewed as a realisation of a Gaussian random variable that

is standardized to have zero mean and unit variance, provided the population term is

zero. With a p-value of 0.002, the 3-factor interaction is highly significant so that the

dependence structure in Tables 5 and 6 cannot be simplified.

Alternatively, the same judgement is reached with a likelihood-ratio goodness-of-fit

test for L : (V + C + R)2, the logit model with just the 3-factor interaction term of

V, C,R on L removed from the saturated model. With a chi-square value of 9.2 on 1

degree of freedom (df) and
√
9.2 = 3.0, again roughly the value of a standardized Gaus-

sian distribution if the model fits, the agreement with the absolute value of the above

reported zobs = −2.9 is high, as expected.

3.2 Dependence of L on V,C,R based on structure for cases and controls

For controls and for cases, the observed V CR table of counts are contained within the

tables of counts shown in Tables 5 and 6. For controls, these counts are well compatible
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with V C ⊥⊥ R so that the rates of heavy versus regular cigarette smokers are estimated

by the overall observed percentages of heavy vodka drinking given C, for regular smokers

with 5.6% versus 12.4% for heavy smokers. Thus, the risk for heavy vodka drinking at

the level of 5.6% is more than doubled when one looks at the control group of heavy

cigarette smokers compared to the control group of regular smokers.

For cases, there is a different, more complex dependence structure for V, C,R. For

cases in rural communities, vodka drinking is strongly increased when they are also

heavy cigarette smokers; from 22% to 68%. Thus the risk of heavy vodka drinking

starts at a level that is considerably higher than for any of the control groups and the

relative risk of heavy vodka drinking is estimated to be at a factor of about 3 for heavy

compared to regular smokers; with 68/22=3.1. For cases in urban communities instead,

heavy vodka drinking is observed at essentially the same rates for regular and heavy

cigarette smokers with 42% and 43%; see Table 7.

Table 7: Heavy vodka drinking for cases by cigarette smoking and living area

V , heavy R rural, C heavy smokers R urban, C heavy smokers

vodka drinking no yes no yes

0:= no 18 8 60 30

1:=yes (22%) 5 (68%) 17 (42%) 43 (43%) 23

odr(V C|R) 7.7 1.1

These basic data summaries in terms of the observed counts point to the differences

in exposure that explain already to a large extent the observed interactive effect of

V, C,R on L. They supplement the maximum-likelihood estimates of the probabilities

at the two levels of L which can be expressed formally for L = 0 and L = 1 as

π̂LV CR
0jkl = n0jk+n0++l/n

2
0+++ and π̂LV CR

1jkl = n1jkl/n1+++ ,

when nijkl denotes the observed count in the LV CR table and summing is indicated by

the +-notation in the same way as for probabilities. These are the estimates for two

graphical log-linear models; see Darroch, Lauritzen and Speed (1980). Their graphs are

also known as concentration graphs. The model for the controls has tables V C and R

as the set of minimal sufficient statistics and the model for the cases needs table V CR

to generate the joint distribution.

These types of models have representations in terms of undirected graphs with nodes

for variables but at most one full-line edge coupling each node pair. For exclusively

categorical variables, the set of minimal sufficient statistics of the model coincides with

the set of cliques in the graph. For a clique, each node is coupled to all other nodes

within the clique, and an incomplete graph is induced when just one further node of the
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graph is added to the nodes of a clique. In case-control studies these models arise as

independence structures that one can study directly for cases and for controls separately.

No graph distinguishes between additive and interactive effects, but each graph per-

mits to read off the graph all independence statements that the model implies; the

criterion for full-line graphs is given in connection with Figure 3 below. The two graphs

relevant here for V CR given L are the two simple graphs in Figure 2.

For the cases, there is a complete graph so that no independences are implied. For

the controls, nodes V C are coupled by an edge and are isolated from node R. This

captures V C ⊥⊥ R as well as independences that follow from the model, for instance,

V ⊥⊥ R|C or V ⊥⊥ R.

C C

V V
R R

a) b)

Figure 2: Graphs capturing the independence structure of V,C,R a) for controls, b) for cases.

By combining the counts estimated separately for controls and cases, shown in Table

8, smoothed odds-ratios result compared to a logistic regression which uses implicitly the

structure of two complete concentration graphs. The graphs summarize the estimated

independence structure in the populations of either the cases or of the controls, for a

set of variables that is directly explanatory for the disease.

Table 8: Estimates, obtained with separate models of V CR for cases and controls

L, laryngeal levels of V , heavy vodka drinking; C, heavy smoking; R, rural

cancer 000 100 010 110 001 101 011 111

controls 77.8 4.6 22.4 3.2 193.2 11.4 55.6 7.8

cases 18 5 8 17 60 43 30 23

Ôdr(LV |CR) 4.7 15.1 12.1 5.4

Smoothed, estimated odds-ratios obtained from counts in several cliques of graphs

are based on observations for more individuals than those using complete graphs. This

leads to smaller standard deviations of the estimated odds-ratios and hence to more

reliable results; provided only that the structures in the populations are well estimated.

The larger the numbers of observation, the more likely it is that this goal is reached,

unless there are variables that show extremely strong dependences. Even if results

appear to be reliable in this sense, confounding effects of additional variables need to be
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ruled out, here those of A,E, S. In the next sections, we do this first by using logistic

regressions with enlarged sets of regressors, next by exploiting again independences.

3.3 Effects of A, E or S on L in logit regressions when added to V,C,R

To contemplate directions of effects of A, of level of formal schooling, E, and of age when

starting to smoke, C, is to follow R.A. Fisher’s advice of making ‘theories elaborate’ as

quoted by Cochran (1965), that is ‘when constructing a causal hypothesis one should

envisage as many different consequences of its truth as possible’.

Since age at the time of study, A, is for cases partly a proxy for cumulated exposure

to several risk factors, currently known or still unknown, one can also expect that the

illness occurs more frequently the higher the age at study time, so that there is an

increasing, additive effect of A on L. The level of formal schooling, E, could have a

similar effect since it correlates strongly with A. On the other hand, since there is no

overall effect of S, age when cigarette smoking was started, one expects no direct effect

of S, when V, C,R,A or V, C,R,E are already used to predict L.

In the logit models for L that include in addition either age at study time, A, or level

of education, E, the three-factor effect term for V CR remains significant and there is

an additional significant main effect of the added variable. The goodness-of-fit of each

of the models can then be tested and is very good for model L : V ∗ C ∗ R + A with

a chi-square value of 4.1 on 7 df, it is a bit less convincing, looked at alone, for model

L : V ∗ C ∗R + E, where there is a chi-square-value value of 10.1 on 7 df.

Since the observed tables of counts for LV CRA and LV CRE are too sparse to report

sensible percentages, Table 9 shows only the observed odds-ratios. They confirm that

the general pattern of the dependences in Tables 5, 6 is approximately repeated given

the two levels of either A or of E, so that an additive main effect, in addition to the

interactive effect of V CR is a plausible description of the observed odds-ratios. Indeed,

they are close to the odds-ratios estimated under the two models L : V ∗ C ∗R + A or

L : V ∗ C ∗R + E, shown in Table 10.

Table 9: Observed odds-ratios for laryngeal cancer, L, and heavy vodka drinking, V

level combinations of CRA or CRE

000 100 010 110 001 101 011 111

odr(LV |CRA) 1.4 34.0 11.2 3.5 5.3 19.8 20.3 4.2

odr(LV |CRE) - 27.0 18.5 15.5 8.0 34.0 12.3 2.6

In Table 10, the estimates at level 0 of A are repeated at level 1 of A. At all levels

of CRA or CRE, a strong dependence of laryngeal cancer on heavy vodka drinking is

estimated, for instance with an odds-ratio of Ôdr(LV |C = 0, R = 0, A = 0) = 3.1, for
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rural regular smokers in the younger age group and with Ôdr(LV |C = 1, R = 0, A =

0) = 27.3 for rural heavy smokers in the older age group.

Table 10: Estimated odds-ratios for L and V for models L : V CRA and L : V CRE

level combinations of CRA or CRE

000 100 010 110 001 101 011 111

Ôdr(LV |CRA) 3.1 27.3 14.4 3.8 3.1 27.3 14.4 3.8

Ôdr(LV |CRE) 3.6 30.9 14.3 4.5 3.6 30.9 14.3 4.5

Instead variable S, age when cigarette smoking had been started, does not improve

prediction of L if added to V, C,R,A since none of the one df components is large for

15.4 on 16 df, the chi-square value resulting when model L ⊥⊥ S|V CRA is fitted. Overall,

these added logit regressions appear to support the hypotheses about the effect direc-

tions. However, more insight is gained by exploiting again independences present for

cases or for controls.

3.4 The independence models A ⊥⊥ V R|CL and V ⊥⊥ R|ACL

For V ACR given L, we compare first two independence models that are graphical log-

linear models, A ⊥⊥ V R|CL and A ⊥⊥ V ⊥⊥ R|L, with the logit regression model L : A +

V ∗C ∗R. Several special features show by conditioning explicitly on cases and controls.

The graph of model A ⊥⊥ V R|CL is given in Figure 3. For every statement a ⊥⊥ b|c
implied by this model for disjoint subsets a, b, c of {A, V,R, C, L}, every path from a to

b has a node in c. Thus in particular, every path from A to {V,R} passes through C

or L and, for instance with strong dependences of L on each of V,A, a dependence be-

tween V and A, which is absent given L,C,R, will be introduced by marginalising over L.

C, heavy cigarette

smoking

V, heavy vodka

drinking

R, living in an

urban area

A, older age group

at time of study

L, laryngeal

cancer

Figure 3: Concentration graph of model A ⊥⊥ V R|CL; likelihood chi-square: 4.7 on 12 df.

Table 11 shows how little the observed counts deviate from estimates under model

A ⊥⊥ V R|CL that is for heavy vodka drinking, V , and urban living area, R, conditionally
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independent of the age groups at study time, A, given C and cases or controls. It also

contains the fitted counts for model A ⊥⊥ V ⊥⊥ R|L and the V ARC table.

Table 11: Observed counts for the V ARCL table and estimates for A ⊥⊥ V R|CL

controls cases combined

V ACR levels count estim.∗ perc.∗ count estim.∗ perc.∗ count percent

0 0 0 0 41 43.24 6 4.14 47

1 0 0 0 5 4.15 8.7 1 1.15 21.7 6 11.3

0 1 0 0 32 29.76 12 13.86 44

1 1 0 0 2 2.85 8.7 4 3.85 21.7 6 12.0

0 0 1 0 17 16.94 3 3.08 20

1 0 1 0 1 1.30 7.1 6 6.54 68.0 7 25.9

0 1 1 0 9 9.06 5 4.92 14

1 1 1 0 1 0.70 7.1 11 10.46 68.0 12 46.2

0 0 0 1 118 117.28 14 13.81 132

1 0 0 1 6 5.33 4.3 8 9.90 41.7 14 9.6

0 1 0 1 80 80.72 46 46.19 126

1 1 0 1 3 3.67 4.3 35 33.10 41.7 38 23.2

0 0 1 1 35 33.89 14 11.54 49

1 0 1 1 5 5.87 14.8 7 8.85 43.4 12 19.7

0 1 1 1 17 18.11 16 18.46 33

1 1 1 1 4 3.13 14.8 16 14.15 43.4 20 37.7
∗estimated counts for model A ⊥⊥ V R|CL with deviance 4.7 on 12 df; percent for estim. V = 1

By mixing the samples from the two different populations, the cases and the controls,

for the V ARC table, a sizeable dependence of V on A given RC results. This shows

in the percentages in the last column of Table 11, which vary widely within some of

the fixed levels of C,R. If we had data from a prospective study with L as response

occurring in the future of the explanatory variables, it would be impossible to induce

any dependence by marginalizing over L.

For interpretation, the important feature of model A ⊥⊥ V R|CL is that it implies

V ⊥⊥ A|CRL. Therefore, for heavy vodka drinking, V , marginalizing over A leaves the

dependence of V on C unchanged for all level combinations of R,L. This explains

why the estimated rates of heavy vodka drinking given this model coincide with those

observed for the V CR tables at both levels of L. In particular, the estimated rates for

cases in Table 11, repeat for the two levels of A and are identical except for rounding

errors to the rates for cases in the observed V RC table of Table 7.

For model V ⊥⊥ R|CV L, the fit seems to be good with no large component chi-square

value in the eight tests for independence of pair V,R defined by the combinations of

17



C, V, L; the sum giving a chi-square value of 11.0 on 8 df and a p-value of 0.20. Its

graph arises from the one in Figure 3, by adding the two edges A V , A R and

removing V R. However, the fitted odds-ratios for L, V differ substantially from the

observed values in Table 9, while those of the other two models in Table 12 agree well.

Table 12: Odds-ratio estimates for L, V given CRA under selected models

level combinations of CRA

Ôdr(LV |CRA) for: 000 100 010 110 001 101 011 111

logit L : A + V ∗ C ∗R 3.1 27.3 14.4 3.8 3.1 27.3 14.4 3.8

log-linear A ⊥⊥ V R|CL 2.9 27.6 15.8 4.4 2.9 27.6 15.8 4.4

V ⊥⊥ R|ACL 6.5 6.6 6.5 6.6 15.1 6.7 15.1 6.7

This can be explained. The sparser a table gets, the more difficult it becomes to

decide among seemingly well-fitting models. If here the independence of pair V,R is

considered in addition to the extremely well-fitting model A ⊥⊥ V |RCL having a p-value

of 0.97, then it becomes a test in the marginal table V CRL and leads to a poorly fitting

model with a p-value of only 0.03; derived from a chi-square value of 10.7 on 4 df.

3.5 Further mixed count estimates to obtain smoothed odds-ratios

Though there is with A ⊥⊥ V R|CL a well-fitting independence structure for both cases

and controls, we expect substantial differences of the dependences and independences

in the two populations. After all, the main purpose of a case-control study is to gain

an understanding of what the differing features and dependences are of those who have

been diagnosed to have the disease from those who have not.

For cases and controls analyzed separately, two well-fitting structures are captured

by the graphs in Figure 4. They may for instance be derived by forward selection in

the general class of concentration graphs with a goodness-of-fit criterion for the selected

edges of p = 0.2; see Højsgaard, Edwards and Lauritzen (2012).

C, heavy cigar.

smoking
C, heavy cigar.

smoking

V, heavy vodka

drinking

V, heavy vodka

drinking
R, living in an

urban area
R, living in an

urban area

A, older age

group at

study time

A, older age

group at

study time

E, low level

education

E, low level

education

a) b)

Figure 4: Graphs of two separate well-fitting models for V,C,R,A,E a) a concentration graph

for cases with a fit of 16.2 on 21 df; b) a regression graph for controls with 17.9 on 23 df.
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The count estimates are reported in Table 19 in the Appendix and the estimates of

the conditional odds-ratios based on the separate models for cases and controls to the

graphs in Figure 4 are shown in Table 14 below. By marginalizing in both graphs of

Figure 4 over E and A, no additional edge is induced; see Wermuth (2011). The two

concentration graphs in Figure 2 arise, the first four smoothed estimates of the odds-

ratios in row 2 of Table 14 coincide with those estimated in Table 8 from the LV CR

table alone, and they are repeated in unchanged form for all level combinations of A,E.

For cases, Figure 4a) shows the selected concentration graph for which the overall

fit of the model to is given by a chi-square value of 16.2 on 21 df. For the controls,

Figure 4b) shows the selected regression graph which is Markov equivalent to a full-line

concentration graph in the same nodes and in the same set of edges, since there is no

collision V in the regression graph. The overall fit of the model in Figure 4b) is given

by a chi-square value of 17.9 on 23 df; for general fitting procedures of regression graph

models for categorical variables; see Marchetti and Lupparelli (2011).

The overall goodness-of-fit of these graphical log-linear models can typically be de-

composed into a sequence of much smaller fitting steps. For instance for cases, the

model E ⊥⊥ V CRA splits into the sequence E ⊥⊥ A|V CR, E ⊥⊥ V |CR, E ⊥⊥ V |R, E ⊥⊥ R

with chi-square values of 5.3, 3.7, 2.9 1.2 on 8, 4, 2, 1 df, respectively, while for the

additional fit of A ⊥⊥ V R|C with 3.0 on 6 df, no single degree of freedom component can

be significant.

Table 13 contains the estimates in two logit regressions. Choosing as highest order

interactions terms the cliques in Figures 4a) or 4b) assures a good fit.

Table 13: Estimates for logit models of laryngeal cancer as response

response L coeff scoeff zobs coeff scoeff zobs

(const.) −3.49 0.63 — −3.37 0.42 —

V 1.33 0.72 — 1.32 0.71 —

C 0.64 0.57 — 0.29 0.50 —

R 0.30 0.64 — 0.34 0.32 —

V C 2.04 1.14 — 2.08 0.16 —

V R 1.31 0.84 — 1.30 0.83 —

CR 0.50 0.58 — 0.50 0.58 —

V CR −3.34 1.32 −2.53 −3.39 1.32 −2.56

A 2.56 0.46 — 2.36 0.43 —

CA −0.59 0.46 −1.26 — — —

E 1.95 0.64 — 1.96 0.38 —

AE −1.88 0.50 −3.77 −1.87 0.49 −3.79

ER 0.04 0.65 0.06 — — —
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Wilkinson’s notation for the first logit models is L : V ∗C ∗R+C ∗A+A∗E+E ∗R.

This logit model is equivalent to the log-linear model which has as minimal sufficient

tables, LV RC,LCA,LAE,LAR and V CRAE, where the last table is the one of the

regressor variables; see Haberman (1974). The fit is given by a chi-square value of 19.8

on 19 df.

The model can be simplified by excluding just two non-significant interaction terms

CA and ER. This leads to model L : V ∗C ∗R+A∗E with a fit given by 21.4 on 21 df.

The additivity of the effects of V, C,R and of A,E in this logit regression model explain

why the odds-ratios for instance of L, V , estimated under model L : V ∗C ∗R+A ∗E,

repeat in unchanged form for all level combinations of A,E.

Table 14: Odds-ratio estimates for L, V given CRAE under two selected models, shown

only for E = 0; estimates are repeated in unchanged form for the eight levels of E = 1

level combinations of CRA given E = 0

Ôdr(LV |CRA) for: 000 100 010 110 001 101 011 111

logit model L : A ∗ E + V ∗ C ∗R 3.8 30.1 13.7 3.7 3.8 30.1 13.7 3.7

count estimates to Figures 4a), 4b) 4.7 15.1 12.1 5.4 4.7 15.1 12.1 5.4

As before in Table 8, the estimates based of the separate well-fitting concentration

graphs for cases and controls are more smoothed than those of the minimally fitting logit

regression. From both approaches, one concludes that each of five regressor variables is

an important explanatory variable but that age at study time and level of education do

not confound the dependence of L on V given C,R.

C, heavy

cigar. smoking

V, heavy vodka

drinking
L, laryngeal

cancer

R, living in an

urban area

A, older age

group at

study time

E, low level

education

Figure 5: A regression graph summarizing important dependences; for L, it shows the relevant

explanatory variables, but for V,C,R,A,E the independence structure among controls only.

For the general population, the fitted regression graph in Figure 5 and Figure 4b)

imply in particular V ⊥⊥ AE|CR since this follows from the complete independence

V C ⊥⊥ REA. Thus by the collapsibility criterion of equation (5), the constant increase

of the conditional relative risks of laryngeal cancer with heavy vodka drinking for both
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groups of smokers in rural and urban communities do not change with the two age

groups or with the two levels of formal education.

The differences in the cliques of the two concentration graphs for V, C,R,A,E to

Figure 4 point instead to how cases differ mainly from controls with respect to the re-

lations among these five features.

4 Understanding differences between cases and controls

Observed and estimated counts that exploits structure in the two separate samples of

cases and controls are given for the V RCAEL table in Table 19 of the Appendix. We

use them now together with the cliques in the two graphs of Figure 4 to appreciate how

the cases differ from the controls.

The two graphs in Figure 4 have three main distinguishing features. The subgraph

induced by nodes V CR, is complete in Figure 4a) and a V C-edge isolated from node R

in Figure 4b). The corresponding differences in exposure to heavy vodka drinking and

cigarette smoking have already been described in the discussion of the observed V CR

table in Section 3.1. Then, there is a V with inner node E connecting nodes A, R in

Figure 4b) and no such path in 4a). Finally, there is an AC-edge in Figure 4a) and no

such edge in 4b).

For controls, the graph in Figure 4b) implies A ⊥⊥ R|E, so that the almost equal ob-

served odr(EA|R = 0) = 7.2 and odr(EA|R = 1) = 7.5 are, by equation (4), collapsible

to a value near odr(EA) = 7.1. Similarly, the conditional odds-ratios for E,R given A

reduce by equation (4) to odr(ER) = 0.5; see also Table 15.

Table 15: Lower level of education for controls by age and by living area

E, low A, age group at study time R, living area

level educ. 33–50 51–65 urban rural

0:= no 151 32 40 143

1:=yes (34%) 77 (78%) 116 (62%) 68 (47%) 125

sum 228 148 108 268

For cases instead, the graph in Figure 3a) implies E ⊥⊥ AR. The observed percent-

ages of cases with a low educational level are essentially the same level for both age

groups in both living areas and estimated by the high overall rate of almost 80% (162

of 204). Thus, there is a kind of ceiling effect. Since almost all cases have the same low

educational level, no effect of education can show up for the cases.

For both controls and for cases, a smaller percentage of the men in the older age

group are heavy smokers; see Table 16. But the change from 25% to 21% for controls is

not large enough to be statistically significant. For cases, the decrease is from 51% to

33%; significant at a 0.05 level with 5.5 on 1 df.
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Table 16: Heavy cigarette smoking for cases and for controls by age

C, heavy A, age group; controls A, age group; cases

cigar. smoking 33–50 51–65 33–50 51–65

0:= no 170 117 29 97

1:=yes (25%) 58 (21%) 31 (51%) 30 (33%) 48

sum 228 148 59 145

As shown in Section 3, the risks for laryngeal cancer are highest for rural heavy smok-

ers and for urban regular smokers; the features of these two groups are summarized next.

Table 17: Comparing features of cases with controls for urban, regular smokers

L, laryngeal Observed percentages; counts Means; (st.dev.)

cancer V = 1 A = 1 E = 1 cV ∗ cA ∗ cC ∗

controls; n = 207 (4%) 9 (40%) 83 (48%) 99 1.1 46.8 17.2

(5.3) (10.1) (3.2)

cases; n = 103 (42%) 43 (79%) 81 (75%) 77 11.1 54.1 18.6

(13.9) (6.4) (2.2)

where e.g. cA∗ means that age is viewed as being continuous feature

In both Tables 17 and 18, one sees when changing from controls to cases, a tenfold

increase in the rate of heavy vodka-drinking, a doubling of the risk of being in the older

age group and a clear increase in the risk of having a lower level of education.

Table 18: Comparing features of cases with controls for rural, heavy smokers

L, laryngeal Observed percentages; counts Means; (st.dev.)

cancer V = 1 A = 1 E = 1 cV cA cC

controls; n = 28 (7%) 2 (36%) 10 (68%) 18 0.9 47.7 30.8

(3.7) (10.1) (8.8)

cases; n = 25 (68%) 17 (64%) 16 (84%) 21 14.7 51.7 29.1

(11.4) (6.7) (7.8)

Even though the groups in Tables 17 and 18 differ by design in the amount of tobacco

consumption, the relative risks of of laryngeal cancer due to heavy vodka drinking are

similar when estimated as 15.1 and 12.1 using the separate count estimates for cases and

controls; see Table 14. In particular cases and controls are, within both groups, quite

comparable regarding the average number of cigarettes smoked per day. But within both

living areas, the men who are cases are on average older than those who are controls,

a much larger proportion of the cases has a low level of formal education compared to
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the controls and heavy vodka consumption increases from an average of just one year

of exposure to more than 10 years. Thus, these negative three features accumulate in a

similar way in the two highest-risk groups of cases.

Nevertheless, it remains unexpected that no similar increase in risk is estimated for

the urban communities as for the rural ones, when the tobacco consumption is increased

to more than a pack of cigarettes per day.

5 Interpretation and discussion

5.1 General issues in the current case-control study

One main possibility to explain the differences in the two areas of living is that there

may have been other risk factors at work in rural and in urban Polish communities at

the time of study. These unmeasured competing risks may for instance be nutritional,

environmental or occupational. If for instance, there was a higher average morbidity

of men in urban communities, more of those who have been heavy smokers and vodka

drinkers may have died from other causes before they could have participated in the

study.

More specifically, the study group consists of men aged between 33 and 65 years in

the second half of 1980, thus they all suffered as children or young adults from poor

living conditions during and after the second world war. Since the nutritional status

was at the time in most European countries on average much worse in urban than in

rural communities, this may have led to a higher level of morbidity in urban than the

rural participants.

In addition, in Polish cities the heating was frequently centralized, using coal-fired

power stations nearby, while wood was preferably used for heating in rural areas. Thus

exposure to coal dust or to the generally higher level of air pollution in the urban than

in rural communities are plausible differences not reflected in the available data.

Drinking vodka of a particular poor quality or self-produced vodka, may be further

risks that differ by regions. All these are hypotheses that need to be confirmed or

rejected using more information on the participants of the present study or in similar

studies of risks for laryngeal cancer.

Distortions may also have been introduced by the way in which the study participants

were selected or in which they responded in the interviews. It has has been appreciated a

long time ago, that whenever there is individual case-control matching on some variables,

one gives up the chance of studying an interactive effect of the matching variables; see

McKinlay (1977), but this argument does not apply to the sampling in the current

study. Another source of possible distortions is a differential exposure-specific consent

in controls and cases.

There was a high response rate for the controls while the case consent rate was lower.
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In particular, because of the long-term exposure of the cases to the risk factors, some of

the men may have been too ill to respond to the extended interview. This is a problem

common to most case-control studies concerning a life-threatening illness.

However, an accumulation of several negative feature was seen in the current study

for persons at highest risk. When similar analyses of further case-control data confirm

these special combinations, it could help to set up feature-specific screening programs or

help physicians to decide when to check for direct early symptoms in their own patients.

5.2 A summary of the proposed strategy of analysis.

The proposed new approach to analyzing case-control data aims at supplementing infer-

ence based modeling with evidence based arguments and to exploit the special features

of case-control sampling for improved estimation of risks and for understanding major

differences between cases and controls.

After the main research questions are set out, one defines categorical variables that

lead to a cross-classification with at most a reasonable number of non-empty cells, to

correlations that do not differ substantially from those of the raw data and to subgroups

of cases and controls that are comparable with respect to important features known to

relate to the disease under study.

The special sampling scheme of case-control studies always leads to samples from

two different populations, one of the cases and one of the controls. After characterizing

the independences and dependence structures supported by the separate samples for

the regressor variables, the cliques of corresponding graphs lead directly to a well-fitting

logit regression model. However, in such a logit regression, effects that are statistically

significant only in the sample of the controls or of the cases but not in both, need not

show as being important and hence could remain undetected.

Therefore, to identify important differences between cases and controls, the two

separate well-fitting graphs, for the regressor variables alone, are combined with the

relevant observed counts and basic data summaries. This leads to direct evidence which

of the observed features of the diseased accumulate in a different way than in the general

population from which the controls are sampled.

The goodness-of-fit tests used in the logit regression with the binary disease as re-

sponse and for finding differential structure among the regressor variables alone depend

on the saturated models obtained after the initial data processing steps. Thus, there

is a remaining danger of relying too much on goodness of fit tests with these saturated

models as reference. But, re-analyses of larger case-control studies are possible and

feasible. They may help to confirm the more tentative results of a smaller study.

With more data than analyzed here, alternative data processing steps can also be

contemplated which use more refined stratifications than binary variables can offer. The

separate dependence structures of cases and controls together convincing data summaries
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to supplement model based estimates, are the key for gaining more insights than with

logistic regressions alone.

Appendix: Mixed count estimates for the two V CRAE tables

From the observed counts for V CRAEL and the estimated counts, obtained separately

for cases and controls using the well-fitting models to Figures 4a) and 4b), the odds-

ratios in Table 14 are obtained. For instance for the observation 21, 2, 4, 0, in the first

LV table at levels zero of each of the four remaining variables, the estimated counts,

23.79, 0.85, 1.40, 0.24, lead to an estimated odds-ratio of 4.7.

Table 19: Observed and estimated∗ counts for the two V CRAE tables

L = 0, controls L = 1, cases

E = 0 E = 1 E = 0 E = 1

V CRA levels count estim.∗ count estim.∗ count estim.∗ count estim.∗

0 0 0 0 21 23.79 20 19.55 2 0.85 4 3.29

1 0 0 0 4 1.40 1 1.15 0 0.24 1 0.91

0 1 0 0 8 6.85 9 5.63 1 0.63 2 2.44

1 1 0 0 1 0.97 0 0.79 1 1.35 5 5.19

0 0 1 0 84 85.04 34 35.94 4 2.84 10 10.97

1 0 1 0 3 5.02 3 2.12 2 2.04 6 7.86

0 1 1 0 26 24.48 9 10.35 2 2.38 12 9.16

1 1 1 0 4 3.45 1 1.46 1 1.82 6 7.02

0 0 0 1 4 5.04 28 29.46 1 2.85 11 11.00

1 0 0 1 1 0.30 1 1.74 0 0.79 4 3.06

0 1 0 1 1 1.45 8 8.48 0 1.01 5 3.91

1 1 0 1 0 0.20 1 1.20 2 2.15 9 8.31

0 0 1 1 21 18.02 59 54.15 13 9.51 33 36.68

1 0 1 1 0 1.06 3 3.20 7 6.82 28 26.29

0 1 1 1 5 5.19 12 15.59 1 3.80 15 14.66

1 1 1 1 0 0.73 4 2.20 5 2.91 11 11.24
∗estimates to concentration graphs; for controls in Figure 4b), for cases in Figure 4a)
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