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Abstract

This thesis presents results in multidimensional residue theory. From a
generically exact complex of locally free analytic sheaves C we construct a
vector valued residue current RC, which in a sense measures the exactness
of C.

If C is a locally free resolution of the ideal (sheaf) J the annihilator ideal
of R is precisely J. This generalizes the Duality Theorem for Coleff-Herrera
products of complete intersection ideals and can be used to extend several
results, previously known for complete intersections.

We compute R explicitly if C is a so called cellular resolution of an
Artinian monomial ideal J, and relate the structure of R to irreducible
decompositions of J.

If C is the Koszul complex associated with a set of generators f of the
ideal J the entries of RC are the residue currents of Bochner-Martinelli type
of f, which were introduced by Passare, Tsikh and Yger. We compute these
in case J is an Artinian monomial ideal and conclude that the corresponding
annihilator ideal is strictly included in J, unless J is a complete intersection.

We also define products of residue currents of Bochner-Martinelli type,
generalizing the classical Coleff-Herrera product, and show that if f de-
fines a complete intersection the product of the residue currents of Bochner-
Martinelli type of subtuples of f coincides with the residue current of Bochner-
Martinelli type of f.

Keywords: residue currents, Bochner-Martinelli formula, ideals of holo-
morphic functions, monomial ideals, coherent sheaves, free resolutions of
modules, cellular resolutions

AMS 2000 Subject Classification: 32426, 32A27, 32C30, 32C35, 13D02






This thesis consists of an introduction and the following papers:
Paper I:. Elizabeth Wulcan. Products of residue currents of Cauchy-Fantappie-
Leray type. Arkiv for Matematik, to appear

Paper II:. Elizabeth Wulcan. Residue currents of monomial ideals. Indiana
Univ. Math. J. 56 (2007) 365 — 388

Paper III:. Mats Andersson and Elizabeth Wulcan. Noetherian residue
currents. Preprint

Paper IV:. Elizabeth Wulcan. Residue currents constructed from resolu-
tions of monomial ideals. Preprint






Acknowledgments

First of all I would like to thank my advisor Mats Andersson for his
guidance and support during my time as a PhD student. I have learned a
lot from working with him and it really has been fun.

I want to thank all of my colleagues and friends at the Department of
Mathematical Sciences at Chalmers and Goteborg University, especially my
fellow PhD students. Special thanks to the complex analysis group, to my
co-advisor Bo Berndtsson, to my office mate Elin Gétmark and to Hakan
Samuelsson. Thanks to my previous advisors Einar Steingrimsson and Jeff
Steif for encouragement and support. Peter Hegarty and Mikael Persson
provided helpful comments on preliminary versions of this manuscript and
valuable computer help.

I would like to thank Jan-Erik Bjork, Anders Bjorner, Alicia Dickenstein,
Ralf Froberg, Ezra Miller, Mikael Passare, Vic Reiner, August Tsikh, and
Alain Yger for taking an interest in my studies and work and for many
interesting and stimulating discussions. Ezra’s invitation to Michigan was
very much appreciated and the SCV group at the University of Michigan
made me feel very welcome during my visit there. My thanks also to all my
mathematical friends that I have met at conferences and summer schools;
thanks to Berit and Linus for starting the KAUS tradition.

vii






RESIDUE CURRENTS AND THEIR
ANNIHILATOR IDEALS

ELIZABETH WULCAN

1. INTRODUCTION

Residue calculus was introduced by Cauchy in 1825 as a tool for comput-
ing integrals and univariate series, and has since then developed to become
a powerful tool in the study of many problems in algebra, geometry and
analysis. For historical accounts and some recent applications, including
effective versions of Hilbert’s Nullstellensatz, generalizations of the Jacobi
vanishing theorem, and explicit versions of the Fundamental principle, we
refer to the surveys and books [13], [23], [24], [56], and [57].

Recall that the one-dimensional residue of a meromorphic function is de-
fined as a contour integral around an isolated singularity of the function.
When extending the notion of residue to higher dimensions several diffi-
culties arise. In particular the zero set of a holomorphic mapping is no
longer a discrete set of points, but an analytic variety that may have sin-
gularities. There are basically two different approaches to multidimensional
residue theory. The so-called classical approach deals with integration of
closed differental forms over cycles and includes the Grothendieck residue,
see for example [33]. In this thesis we focus on the current approach which
started out in the fifties, after the concept of currents was introduced and
the importance of the J-operator was pointed out by Dolbeault.

If f = (f1,--., fr) is a holomorphic mapping defined in some domain in C"
that is a complete intersection, which means that f~1(0) is of codimension ,
then there is a “canonical” residue current associated with f, namely the
Coleff-Herrera product 9[1/ f,]A...A8[1/ f1], introduced in [25]. The Duality
Theorem, due to Passare [42] and Dickenstein-Sessa [26], which asserts that
the ideal (f) generated by fi,..., f, coincides with the annihilator of the
Coleft-Herrera product, has turned out to be useful in applications.

If f is not a complete intersection it is not so clear how to find a residue
current with the same properties as the Coleff-Herrera product. The key
step in the search for a good notion turned out to be the paper [46], by
Passare, Tsikh and Yger, in which residue currents of Bochner-Martinelli
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2 ELIZABETH WULCAN

type were introduced. In [3] these currents were recovered as the coefficients
of a residue current constructed from the Koszul complex.

In this thesis the residue currents of Bochner-Martinelli type are further
studied and developed. In Paper I products of residue currents of Bochner-
Martinelli type are defined, generalizing the Coleff-Herrera product. In Pa-
per 11 we investigate how far the residue currents of Bochner-Martinelli type
are from giving a duality theorem by computing them and their annihila-
tors for monomial ideals. In Paper III, which is a joint work with Mats
Andersson, we extend the construction of residue currents from the Koszul
complex from [3] to more general complexes; this yields a residue current
whose annihilator indeed equals (f). Finally, in Paper IV, we compute the
currents from Paper IIT for monomial ideals.

In this introductory part of the thesis we will start by providing some
background on residue currents, including a rather detailed description of
Andersson’s construction from [3], which is the starting point for our inves-
tigations. After that we will give brief overviews of the four papers included
in the thesis, and illustrate the results by some examples.

CONTENTS
1. Introduction 1
2. Residue currents 2
2.1. Coleft-Herrera-Passare products 4
2.2. Residue currents of Bochner-Martinelli type 8
3. Residue currents constructed from the Koszul complex 10
4. Paperl 12
5. Monomial ideals 13
6. PaperII 14
7. Paper III 18
8. Resolutions of monomial ideals 22
9. Paper IV 23
References 25

2. RESIDUE CURRENTS

Let us start by observing how a local ideal of holomorphic functions in
one variable can be described in terms of vanishing of certain residues. Let f
be a holomorphic function defined in some neighborhood 2 of a € C and
suppose that a is a zero of f of order m. Then a necessary and sufficient
condition for a holomorphic function ¢ to be locally (near a) in the ideal
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generated by f is that

(z —a)fo
f

for K < m — 1. Here Resyg just denotes the ordinary one-variable residue of
the meromorphic function g at a defined by

1

— d
o Jo? ¢

(2.1) Res, =0

where Ow is the (smooth) oriented boundary of some neighborhood w of a.

Now let us go on to the higher-dimensional case and introduce residue
currents as generalizations of residues. Let X be a domain in C" or, more
generally, a complex manifold of dimension n and let f : X — C be a
holomorphic mapping. Schwartz, [51], found that there exists a distribution
(or (0,0)-current) U such that fU = 1. One way of realizing such a U,
sometimes denoted by [1/f], is as the principal value of 1/f,

5.

The existence of this limit was originally proved by Herrera and Lieber-
man, [34], using Hironaka’s theorem on resolution of singularities, [35], to
deal with the singularities of Y = f~1(0). Applying the d-operator to [1/f],
we obtain a (0, 1)-current with support on Y, which we call the residue cur-
rent of f and which we denote by Rf. By Stokes’ theorem its action is given
by

(2'2) ,Dn,nfl(X) 3 5 + lim

where the limit is taken over the regular values of | f|.
Let (f) denote the ideal generated by f, and let ¢ be a holomorphic
function on X. Then we have the following duality:

(2.3) 9R’ =0 ¢ € (f) locally.

In other words, the principal ideal (f) in a local ring O, of holomorphic
functions defined in some neighborhood of a € X can be characterized as the
annihilator ideal of the corresponding residue current. To see this, suppose
that ¢ € (f). Then ¢ = f for some 9 € O, and so 9R = p(f[1/f]) =
$0(1) = 0. On the other hand, if ¢ € O, satisfies R/ = 0, let 1 = @[1/f].
Then f1) = ¢ in the sense of distributions. By hypothesis 0v = 0 and so,
by elliptic regularity for the d-operator, 9 € O, and consequently ¢ € (f).
Let us consider a simple example.
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Ezample 1. Let f = 2P : C — C. Then

omi  op~!

(2.4) 5 Llp] £2) dz = 60,

as can be seen from (2.2) by integration by parts. From (2.4) it follows that
@ € Op annihilates 0[1/2P] precisely if 9%p/02¢(0) = 0 for 0 < £ < p — 1,
that is, if ¢ € (2P). It is also clear that this is equivalent to the vanishing of
Resg(zfp/2P) for 0 < £ < p — 1; compare with (2.1). O

Finally, let us point out an alternative definition of the principal value
and residue currents, which traces back to Bernstein-Gelfand, [21], and
Atiyah, [9], and which will be frequently used in this thesis. By resolv-
ing singularities one can show that the form |f|?*/f has a meromorphic
continuation as a current to the entire plane, with poles on the negative real
axis; the value at A = 0 yields an extension of 1/f. Analogously 9[1/f] can
be obtained as the analytic continuation to A = 0 of | f|?}/f.

2.1. Coleff-Herrera-Passare products. Given a holomorphic mapping
f="(f,---,fr) + X = C, it is natural to look for an analogue of the
current R/ that can be used to characterize the ideal (f) generated by

fi,---, fr- If f is a complete intersection, that is, codim f~1(0) = r, one can
give meaning to the expression
=11 =11
25 aHA...AaH
( ) fr' fl ?

as was first done by Coleff and Herrera, [25], by proving the existence of
certain limits of the so-called residue integral

1 £
2.6 I5(e) = _ .
20 1= Gy Jry 7o T
Here € is a test form of bidegree (n,n—r) and T} = {|f1| =€1,...,|fr| =&}

is oriented as the distinguished boundary of the corresponding polyhedron.
Coleff and Herrera showed that (2.6) indeed converges when € tends to zero
along certain so-called admissible paths. In general though, the unrestricted
limit as € tends to zero does not exist; a counterexample was first found
by Passare and Tsikh in [45]. The convergence of (2.6) has later been the
subject of several investigations, including [22], [41], [44], and [59]. Recently,
Samuelsson [47], [48], [49], showed that when r < 3 an unrestricted limit can
be obtained by smoothing out the integration.

When f is a complete intersection, the Coleff-Herrera product (2.5), which
we will for short denote by R(fj 7> turned out to be a good notion of a residue
current. It is a closed current of bidegree (0, ), with support on Y = f~1(0),
and it satisfies the Duality Theorem, which generalizes (2.3).
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Theorem 2.1 ([26], [42]). Let X be an n-dimensional complez manifold,
f=(1,--sfr) : X =5 C a holomorphic mapping, and suppose that ¢ is
holomorphic on X. Then

©RL, =0 if and only if € (f1,..., f) locally .

The “if”-direction of Theorem 2.1 follows from the calculus for residue
and principal value currents that was developed in [41]. When f is not
a complete intersection, the residue integral (2.6) still converges when €
tends to zero along admissible paths, but in general the limit depends in
an essential way on the ordering of the f;. By taking certain averages of
the residue integral (2.6), Passare managed to circumvent this problem and
define products

1 1 1
fr fs+1 fs ’ fl

which are commuting with respect to the principal value factors 1/f; and
anti-commuting with respect to the residue factors 9(1/f;), and which satisfy
Leibniz’ rule. Alternatively, (2.7) can be obtained as the analytic continua-
tion to A =0 of

1 1
(2.8) T
r .fs-l—

as was proved in [40].
Let us denote by RCHP the Coleff-Herrera-Passare product [0(1/ fl)

..AO(1/f.)]). If f is a complete intersection, RCHP coincides with RC 9
and moreover (2.7) satisfies the rules

(2.7)

1

6 A 2)\ —,
5 -

A O| P

5l

1 1 -1 1 -1 _
(2.9) f |:fr fs—|—1 fs Aaﬁ] B |:f7"—1"'fs—|—1 aﬁ/\/\aﬁ
and
1 1
(2.10) f [fr T OB fl] 0.

In particular the “if”-direction of Theorem 2.1 follows. In light of (2.9) and
(2.10), note that the Coleff-Herrera product really behaves like an exterior
product of the currents 9[1/f,] through 0[1/f,]; this motivates our use of
brackets in (2.5).

Let us supply a proof of the other direction in the case when r = 2.
Suppose that ¢ is a holomorphic function such that

(2.11) ¢ 0 [%] A O [%] =0,
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and that we wish to find a holomorphic ¢ = (1)1,2) such that
(2.12) figr + fapa = o

The basic idea, which will be further developed in Sections 3 and 7, is to start
looking for a current solution to (2.12) and then modify it to a holomorphic
solution by solving a certain d-equation. Let v; = ¢[1/f1]. Then fiv; = ¢
and so (v1,0) is a current solution to (2.12). An arbitrary solution can now
be written as
Tﬁ = (Ulao) + ’Y(_fQ,fl)a

for some «y. Thus, in order to find a holomorphic solution 7 we need to solve
(2.13) fo07 = v =0 [ff]

1
(2.14) fioy = o.

According to the calculus for the Coleff-Herrera-Passare products and the
assumption (2.11) we have

~[1 ¢ S[17 A1
8[f28f1] a[fz] /\6[ 1] O
and so locally we can solve 0y = [(1/f2)0(1/f1)]. Clearly such a solution ry
solves (2.13), and moreover fi[(1/f2)0(1/f1)] = 0 by (2.9) and so v also
satisfies (2.14). Hence we have found a local holomorphic solution to (2.12).
The assumption that f is a complete intersection is crucial; in general
Leibniz’ rule and (2.10) cannot hold simultaneously, which we illustrate by

the following simple example.

Ezample 2. Let f = (22, zw) be defined in some neighborhood of the origin
in C2. Then f is clearly not a complete intersection; indeed Y = {z = 0}
has codimension 1. By Leibniz’ rule

-1 =1 1 (1 =11

Rl L, =|0—AND=|=208|=|Ad|=
b= P nz] =52 5] o o)
and so z2 does not annihilate RéHP, whereas w does. More precisely,
AnnRéHP = (23, w). O

Observe that in this particular example, Ann Ré yp 7 (f), which follows
immediately from the fact that the zero variety of Ann Ré gp» V(Ann Ré 7Zp)
is the origin, whereas Y = {z = 0}.

Remark 1. This idea can in fact be extended to prove that we fail to get
duality for the Coleff-Herrera-Passare product Ré yp @ soon as f is not a

complete intersection. In [43] it was shown that the support of RéHP is
contained in a variety of codimension r. Moreover, it is not hard to see
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that if T is a current with support contained in the analytic variety W,
then V(AnnT) is a subvariety of W. Hence, in the case when f is not a

complete intersection the dimensions of ¥ and V(Ann Ré gp) are different

and so we conclude that Ann RéHP = (f) if and only if f is a complete
intersection. O

As we will see below, to capture an ideal that is not a complete inter-
section will in general take more than one current. In Section 7 we will
construct residue currents that extend Theorem 2.1. These currents will
have different components corresponding to different primary components
of (f). Typically, the current corresponding to a primary component of
codimension p will be of bidegree (0, p).

Let us discuss some applications and further properties of the Coleff-
Herrera-Passare products.

Residue currents have been used together with weighted integral formu-
las to obtain explicit formulas for division and interpolation, extending the
construction of Berndtsson, [19]. Suppose that f = (f1,..., fr) is defined in
some strictly pseudoconvex domain Q in C". In [42] Passare constructed a
representation formula for ¢ € O(Q):

(2.15) o(2) = f(2) - /< T(C, 2)0(0) + /C 5(¢,2)(0).

Here T and S are currents that are holomorphic in z and S(., z) is closely
related to RY,; in particular Sp = 0 if 9RL, = 0. Note that this yields
the “only if”-direction of Theorem 2.1. Division formulas of this kind have
been used by several authors for various purposes, such as explicit versions
of the Fundamental principle, [20] and [62], sharp approximation by polyno-
mials, [63], estimates for the degree of solutions to the Bezout equation, [16],
and residue characterizations of ideals of smooth functions, [2]. See also the
monograph [13] and the references quoted there.

Dickenstein and Sessa, [26], showed that if Y is a subvariety of X of
pure dimension r, which is locally a complete intersection, then every 0-
closed current 7" on X of bidegree (0,7) with support on Y admits a unique
representation: T = R+ 0S. Here S is (0,7 — 1)-current with support on Y’
and R is a local residual current, which means that locally it is of the form
hRé g for some holomorphic function & and some complete intersection f
that vanishes on Y. In other words, the classes in the local cohomology
groups Hiy, (X,0) have canonical residue current representatives. In [31]
Fabre used residue currents to compute Dolbeault cohomology groups.
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Let us also relate RéH to the current of integration over Y = f~1(0).
Coleff and Herrera, [25], showed that if f is a complete intersection, then

(2.16) 9 [ﬂ .AD [;1] W 3" o)

Here [V] just denotes the current of integration over the variety V, Y; are
the irreducible components of Y, and «; are the corresponding Hilbert-
Samuel multiplicities. This kind of factorization formula has been used, for
example, to construct explicit Green currents of analytic cycles, [17], [18].
Observe that the residue current really contains more information than the
right hand side of (2.16). Indeed, in contrast to the one-dimensional case,
the ideal (f) is not determined by its multiplicities; in particular a; only
depends on |f|. Morally, residue currents represent ideals in the same way
that currents of integration represent varieties.

The Coleff-Herrera product satisfies the so-called Transformation law, [27]:
if g = ¥ f for some biholomorphic mapping ¥ : C" — C", then RéH =
det URY,, so Ré y really depends on the ideal (f) rather than the particu-
lar choice of generators.

If h € O(X) vanishes on Y, the Coleff-Herrera product Ré g is annihilated
by h. Similar statements hold also for the residue currents that will be
considered below. Basically this means that on the regular part of f1(0),
Ré 5 involves only holomorphic derivatives in the normal direction of f~1(0).

Finally, let us remark that the theory of multidimensional residue cur-
rents in general relies heavily on Hironaka’s famous theorem on resolution
of singularities from 1964, [35]. However, recently Mazzilli, [37], constructed
a residue current in the case r = 1, by elementary methods using only the
Weierstrass preparation theorem, and in [57], Tsikh and Yger used amoebas,
in the sense of [32], to prove the convergence of the residue integral (2.6) for
complete intersections when r = n.

2.2. Residue currents of Bochner-Martinelli type. In [46], Passare,
Tsikh and Yger introduced an alternative approach to the multidimensional
residue current, based on the Bochner-Martinelli kernel. In fact, Bochner-
Martinelli type division formulas were already used in [15] to obtain Jacobi
formulas and effective versions of the Nullstellensatz. Such formulas also
appeared in [13]. For each ordered index set Z = {i1,...,4t} C {1,...,7} of

cardinality k, let R% be the analytic continuation to A = 0 of

17 q tq
(2.17) a|f* /\Z 1) 1%,
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where |f|2 = |fi|?+---+|f-|>. Then R% is a well-defined (0, k)-current with
support on Y, which is annihilated by h € O(X) if h is locally in the integral
closure of (f)*. Recall that a holomorphic function k € O, belongs to the
integral closure of (f), denoted by (f), if |h| < C|f| for some constant C
in some neighborhood of a, or equivalently if h satisfies a monic equation
B+ gih* 1+ 4+ gy =0 with g; € (f)? for 1 <4 < s. Thus, letting Ann RS
denote the annihilator ideal, {h holomorphic, hR% = 0,VZ} in O,, we have
that

(2.18) (f)* C Anmm R/,

where 1 = min(r,n).

Moreover, R% vanishes whenever £k < codimY or k£ > u. In particular,
if f defines a complete intersection there is only one non-vanishing current,
R{l,_",r}. Note that R{l,...,r} can formally be seen as 0f*B, where B is the
Bochner-Martinelli kernel

B(w) = 3 (-1)

=1

o1 We Ngzedivg
|,w|2r

in C", whereas Ré g can be seen as the pullback of the multiple Cauchy
kernel C = 9(1/w;) A ... A (1/wy). Recall that 0B = C = 7, where
TAdwi A. .. Adw,[/(27i)" = [0], and so RY = Boy forw = (w1, ..., wy).
Thus, provided one can give meaning to f*B and f*C, it is reasonable to

expect R{l ) and Ré g to coincide also for more general f.

o7

Theorem 2.2 ([46]). Let X be an n-dimensional complex manifold and f =
(f1,---5 fr) : X = C" a holomorphic mapping that is a complete intersection.

Then the current R{l ot} coincides with the Coleff-Herrera product RéH.

The residue currents of Bochner-Martinelli type were further studied by
Andersson in [3]. From his global construction, which is based on the Koszul
complex and which will be described in more detail in Section 3, it follows
that goR% =0 forall Z C {1,...,r} implies that the holomorphic function
¢ belongs to the ideal (f) locally. In other words

(2.19) Amn R C (f),

which gives one direction of the Duality Theorem. However, the inclusion
is strict in general; in Paper II we show that in the case of Artinian mono-
mial ideals it is always strict unless (f) is a complete intersection. Still,
Ann R/ in some sense captures the “size” of (f). In particular, combined
with (2.18) it yields a new proof of the classical Briancon-Skoda theorem [53]:
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(f)* C (f). A proof of the Briangon-Skoda Theorem based on residue cal-
culus and division formulas was in fact already obtained in [13].

The residue currents of Bochner-Martinelli type have been used for dif-
ferent purposes; in particular for investigations in the non-complete inter-
section case, [18]. Vidras and Yger, [60], used residue currents of Bochner-
Martinelli type to prove some generalizations of Jacobi’s theorem on van-
ishing of residues, which were further developed in [14]. Andersson, [4],
obtained factorization formulas in terms of R% for the current of integration
of the component of Y of highest dimension, generalizing (2.16). In [52] a
local residue was defined following the ideas from [46]. The global construc-
tion from [3] was used in [7] to obtain solutions of membership problems with
control of the polynomial degrees, and in [3] a new geometric and simpler
proof of the Jacobi-type theorem from [60] was given; this idea was further
developed in [50].

3. RESIDUE CURRENTS CONSTRUCTED FROM THE KOSZUL COMPLEX

For future reference, we will give a description of Andersson’s construc-
tion of residue currents from the Koszul complex. Suppose that, given the
holomorphic mapping f = (f1,...,fr) : X = C", we are looking for a local
holomorphic solution 9 = (91, ...,1,) to

(3.1) fivr +---+ frpr = ¢

We will discuss how this division problem can be solved (when possible)
in terms of the Koszul complex. As in our proof of Theorem 2.1 we will
start by looking for a smooth or current solution to (3.1) and then modify
this to a holomorphic solution by solving certain 0-equations. We adopt an
invariant point of view and assume that f is a holomorphic section of the
dual bundle E* of a holomorphic r-bundle £ — X. If e1,...,e, is a local
holomorphic frame for F and e], ..., e} is the dual frame, we can write f as
> fi€;- Now the Koszul complez of f is the complex

4 ) ) 4 4 )

32 0-LANE-LAN'EL .  LANELELCxXx —o0,
where d; is contraction with f, that is, locally

(5f tep N Nej, — Z(—l)e_lfil e N Nej,_  Nej Ao Nejy .

l

Note in particular that d; acts on a section ¢ = ) 1pje; of E as 059 =
> fj®j, and thus (3.1) can expressed as
(3.3) Sy = .
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The Koszul complex is pointwise exact outside Y = f~1(0) and thus
outside Y one can find a smooth section u; of E which satisfies (3.3). In fact
we can choose u; as ) fje; /|f|2. In general u; will not be holomorphic, and
we need to compensate for that. Let us introduce the spaces £y 1 (X, A‘E) of
smooth sections of A(Tj, ® E) (where dz; A ej = —e; Adz;), that are (0, k)-
forms taking values in A’E, and the corresponding spaces ’D{),k(X ,A'E)
of currents. Note that J; and 0 extend to A(T§, ® E), where they anti-
commute. Thus, 6f5u1 = —5(5fu1 = 0, and due to the exactness at A’E
we can find a up € &1(X, A?E) such that drug = Ou;. We proceed by
successively solving

(3.4) dpuy =@, dpup = Oup_1, k>1

where uy € Eyp_1(X, A¥E). Now suppose that all uj have current exten-
sion over Y such that (3.4) still holds. Then in particular du, = 0, so by
successively solving equations

(3.5) Ovg—1 = ug_1 + 0 vy
for k£ < r, we finally arrive at the desired local holomorphic solution
% =y + dpvg
to (3.3). Now, if we introduce the notation Vj = §; — 9, the system of
equations (3.3) and (3.4) can be expressed as
Vfuf =,

where u/ = u;+- - -+u,. Note that V is an anti-derivation on @ & 1 (X, A‘E).

Notice that if Vpu/ = 1, it then follows that V;(pu’) = ¢ if ¢ is holo-
morphic. To find a solution to Vyu/ =1 in X \ Y, let us assume that E
is equipped with some Hermitian metric and let o be the section of £ with
pointwise minimal norm such that §;o = 1. Outside Y, the full Cauchy-
Fantappié-Leray form, introduced in [1],

fo __ 2 __9 _ A (5o) -1
“ Vio 6j0—00 1-—00 ;0 (99),

is well-defined (observe that do is of even degree), and Vju/ = 1. Now, the
form |f|>*u/ can be extended as a current to Re A > —¢, and the value at
X = 0, which we denote by U/, yields an extension of u/ over Y. By analogy
with the one-dimensional case, we will sometimes refer to U/ as a principal
value current. Moreover, V fo = 1— R/, where Rf = 9|f|** A uf |0
now defines the residue current of f. Clearly R/ will have support on Y
and Rl = R, + -+ + Ry, where Ry € D, (X,A*E), p = codimY and
p = min(r,n). In particular, if f is a complete intersection, then R = R,.
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Furthermore, suppose that ¢ is a holomorphic function on X such that
@R/ = 0. Then V;(pU’) = ¢V,;U/ = (1 — Rf) = ¢. Hence Vyw = ¢
has a current solution, and therefore by solving 0-equations (3.5), a local
holomorphic solution. Thus we have proved (2.19).

Note that if £ = C" x X with the trivial metric, then the coefficients
of R/ are just the residue currents of Bochner-Martinelli type, R%. Indeed,

if f =3 fj€}, then o = 3, fie;/| f|? and
=3 > fiej A (X 0fje)
l

|17

Hence the coefficient of e;, A... Ae;; will just be R{il ik} In this case we
will say that R/ is of Bochner-Martinelli type; in the more general case we
will say that it is of Cauchy-Fantappie-Leray type.

4. PAPER I

Given a tuple f of holomorphic functions f1, ..., f, defined on X we saw
above that the value at A = 0 of (2.8) defines a product of the principal
value currents [1/f;] and residue currents 8[1/f;] and moreover that this
product provides a natural notion of a residue current of f if f is a complete
intersections. In Paper I we extend this construction to allow also for the
more general currents of Cauchy-Fantappie-Leray type U/i and R/i from [3],
where each f; is itself a tuple of functions or, more generally, a section of a
Hermitian vector bundle.

Regarding each function f; as a section of the dual bundle E} of a trivial
line bundle E; — X over X with frame e] and e;, respectively, the Cauchy-
Fantappié-Leray form from Section 3 is just ufi = 1/f;e; and so (2.8) times
+e; A... A e, can be expressed as

A1) [f P2 Aul A A fop1 P AT AP AuTs AL A f1 P Al

This formulation suggests how to extend the definition of products. Let
the f; be holomorphic sections of the dual bundles E of Hermitian m,-
bundles E; — X over X and let ufi be the Cauchy-Fantappié-Leray form
with respect to some Hermitian metric, see Section 3. Then, for Re A large
enough, (4.1) can be seen as a form taking values in the exterior algebra over
E=FE&...®E,. The analytic continuation to A = 0, which we denote by

T=U"AN... AU ARs A... AR,

defines a (globally defined) product of the currents of Cauchy-Fantappie-
Leray type U’i and Rfi. It is commuting with respect to the principal
value factors Ui and anti-commuting with respect to the residue current
factors Rfi, and its support is contained in Ni_,Y:, where Y; = f, L0).

2
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Moreover T' = Tj, + - -+ + T, where Ty € D ,(A*E), p = codim (;_, Y;, and
g = min(m,n), where m = my + --- + m,. In particular, if f is a complete
intersection, R/ A ... A R consists of only one term of top degree m. If E
is a trivial bundle over X endowed with the trivial metric, the coefficient of
this current defines a product of the residue currents of Bochner-Martinelli
type Rﬁ,m’mi}; compare with the discussion in the previous section.

Hence, given a tuple of functions f we can define different residue currents
by dividing f into subtuples and taking the product of the residue currents of
Bochner-Martinelli type of each of these. In particular, letting the subtuples
consist of single functions one recovers the Coleff-Herrera-Passare product.
Our main result, which generalizes Theorem 2.2, asserts that when f is a
complete intersection these currents all coincide.

Theorem 4.1. Let f; be a holomorphic section of the Hermitian m;-bundle
E? and let f denote the section f1®...® f, of E* = E{®...@ E}. Suppose
that f is a complete intersection, that is, codim f~1(0) = mq + --- + m,.
Then

RI"A...AR" =R/,

The theorem is proved by finding currents V and V AU such that V V=
1-RI"A...ARM and V§(V AU') =V — U’. Then (recall that V; is an
anti-derivation)

0=ViVAU)=Vy(V-U')y=RI'"A...AR" - R,

and the result follows. The idea comes from Proposition 4.2 in [3] where
similar potentials were constructed to prove Theorem 2.2. The technical
core of Paper I consists of verifying the formal computations that allow us
to find such potentials.

If f is not a complete intersection, Theorem 4.1 in general fails to hold,
as is discussed and illustrated by examples in the last section of Paper I.

5. MONOMIAL IDEALS

Parts of this thesis concern monomial ideals. The theory of monomial
ideals is one of the strong links between commutative algebra, algebraic ge-
ometry and combinatorics and it has been extensively developed in recent
years, see for example [29], [38] and [55]. Because of their simplicity and
nice combinatorial description monomial ideals serve as a good toy model
for illustrating general ideas and results in commutative algebra and alge-
braic geometry, such as resolution of singularities and Briancon-Skoda type
theorems. On the other hand many results for general ideals can be proved
by specializing to monomial ideals, for example by the use of Grobner bases.
In fact, the existence of the analytic continuations of the forms (2.8), (2.17)
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et cetera is indeed proved by reducing to a monomial situation via resolution
of singularities.

Monomial ideals are therefore a natural starting point for explicit com-
putations of residue currents. A first result in this direction was obtained
in [46] where R{l,_“,n} was computed explicitly for monomial ideals gener-
ated by exactly n monomials. Also, in [3] and Paper I some residue currents
of monomial ideals were computed.

We will consider monomial ideals in the local ring Of of holomorphic func-
tions defined in some neighborhood of 0 € C} and in the polynomial ring
S =Clz1,-..,2,]. Anideal in either of these rings is said to be monomial if
it can be generated by monomials, z* = z{* - - - 28" for a = (ay,...,an) € N".
One can prove that a monomial ideal has a unique minimal set of mono-
mial generators. Another “minimal” description is given by its irredundant
irreducible decomposition. A monomial ideal is said to be irreducible if it is
generated by powers of variables. For b = (by,...,b,) € N* we will use the

by ) 2bn

notation m® for the irreducible ideal (27", ..., 22*). An irreducible decomposi-

tion of a monomial ideal M is an expression M = ﬂgzlmbz, for some b* € N,
If no intersectand can be omitted the decomposition is said to be irredun-
dant and the ideals m? are then called the irreducible components of M.
One can prove that each monomial ideal indeed has a unique irredundant
irreducible decomposition.

For A C N let z4 denote the tuple of monomials {z%},c4. Observe that
the monomial ideal (z4) is precisely the set of functions that have support,

supp Z cqz® = {a € Z"|c, # 0},
a€Z™

in (Jyca(e + RY) and thus the ideal can be represented by this set, see
Figures 1 and 2 and also the figures in Paper II and Paper IV. Here the
box constellations in the figures should be thought of as the area “below”
Useala + RY). Because of their, at least in two dimensions, staircase-like
appearance, these pictures of monomial ideals are usually referred to as stair-
case diagrams. Note that the coordinates of the “inner corners” are precisely
the set of minimal generators, whereas the “outer corners” correspond to the
irreducible components.

6. PAPER II

In Paper IT we compute residue currents of Bochner-Martinelli type asso-
ciated with monomial ideals. The main motivation is to investigate by how
much we fail to get duality for these currents. In light of (2.19) it is natural
to ask how big the annihilator of R/ is. Could it happen that Ann R/ = (f)
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without f being a complete intersection? We are also curious about the in-
clusion (2.18). The Briangon-Skoda Theorem is sharp, but still (2.18) might
always be strict.

Our main results concern Artinian monomial ideals (z), that is, {24 =
0} = {0}, in OF. Then, a priori, R*"* consists of one component R,,, which
could be seen as a vector valued current with one entry Rp for each subset
B C A of cardinality n. Note that from general distribution theory we know
that each Rp will be a sum of Dirac measures. The Newton polyhedron of
A is then defined as the convex hull of Usca(a+ R ) C R", and the Newton
diagram of A is the union of all compact faces of the Newton polyhedron.
We will say that a subset B = {a1,...,a,} C A is essential if there exists a
facet (face of maximal dimension) F' of the Newton diagram of A such that
B lies in F and if in addition B spans R”, that is, det(a1,...,a,) # 0. Our
main theorem states that Rp is non-vanishing precisely when B is essential.

Theorem 6.1. Let (24) be an Artinian monomial ideal in O}, and let R*
be the corresponding residue current of Bochner-Martinelli type. Then

A
R = (RB)B essentials

where
= 1 =] 1
(6.1) Rp=Cg 0 5 A...NO o5 |-
Z?l zn"
Here Cp is a non-vanishing constant and (of,....aB) =ap =3 pa.

An immediate consequence is that
af B
AnnRp = (z;',...,2p" ) =m*®
if B is essential, and since to annihilate R*" one has to annihilate all entries,
we find that N
AmR" = (] m*s.
B essential

Thus we get an explicit description of Ann R*" in terms of the Newton dia-
gram of A; its irreducible components correspond precisely to the essential
sets. In particular, it turns out that the inclusion (2.19) is always strict
unless () is a complete intersection, which should be compared with Re-
mark 1.

Theorem 6.2. Let (z7) be an Artinian monomial ideal in OF, and let R*
be the corresponding residue current of Bochner-Martinelli type. Then

AnnR* = (z)

if and only if (2*) can be generated by a complete intersection.
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From Theorem 6.1 one can, for example, also see that not all monomial
ideals are annihilator ideals of residue currents of Bochner-Martinelli type
(of monomial ideals), as shown in Example 3 in Paper II. It also follows
that different ideals can have the same annihilator ideal, as illustrated in
Example 4 in Paper II. Moreover, we show that the inclusion (2.18) is always
strict for n > 2; this is Corollary 3.5 in Paper II.

The proof of Theorem 6.1 is an explicit computation based on the proof of
the existence of residue currents of Bochner-Martinelli type in [46] and [3]. It
relies on an idea originally due to Khovanskii [36] and Varchenko [58]; from
the Newton polyhedron of A one can construct a certain toric manifold in
which it locally holds that the pullback of one of the monomials z%,a € A,
divides that of the others. The current R*" will be computed as the push
forward of certain currents on this toric manifold.

We also provide partial results in the non-Artinian case. When the variety
of (24) is of positive dimension the computations get more involved. Now
R = R,+---+ R, for p = codimY and p = min(r,n) if  is the number
of elements in A; here R € ’Df),k((C", AFE). Parts of the top degree term R,,
can be computed by the techniques from the Artinian case. Our method
for dealing with the terms of lower degree is to perform the computations
outside certain varieties, wherein some of the coordinates are zero. This
amounts to projecting A and brings us back to the top degree case in a lower
dimension. In this way we manage to determine precisely which entries of
Ry, are non-vanishing, but we fail in general to get an explicit formula like
(6.1) for all of them, and thereby to fully describe the annihilator of R,
See Theorem 5.2 in Paper II for a precise statement. Still our result allows
us to extend Theorem 6.2 to a much larger class of ideals; in particular it
holds for all monomial ideals when n = 2.

In view of the discussion in Remark 4 and Example 6 in Paper II, it is
reasonable to believe that Theorem 6.2 extends to all monomial ideals. Yet
it is not clear what one should hope for in the general case. Of course,
monomial ideals are very special ideals and very far from being complete
intersections (when they are not). On the other hand Theorem 6.2 suggests
that we rather seldom get equality in (2.19), which motivates the search for
a new notion of residue currents in the non-complete intersection case.

We should also point out that in the Artinian case the annihilator does not
depend on the particular choice of generators of the monomial ideal, whereas
in the non-Artinian case it does. This latter phenomenon is somewhat un-
satisfactory and further motivates the search for an alternative notion of
residue currents.

Finally, let us illustrate Theorem 6.1 by an example.
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FIGURE 1. The ideal (z*) and the Newton diagram in Example 3.

Ezample 3. Let

A= {a' =(3,0,0),a%® = (2,1,0),a® = (1,2,2),
a* = (0,4,0),a® = (0,3,1),a% = (0,0,4)} C N?,

and let us use the notation x,y, z for the variables in C3. The corresponding
Artinian ideal (z4) = (22, 2%y, zy?2%,y*,y%2, 2*) is depicted in Figure 1.
Note that A is precisely the set of coordinates of the inner corners of the
staircase. To the left we have also drawn the the Newton diagram of A; it
should be regarded as lying just below the transparent staircase, touching
the inner corners. Observe that the Newton diagram has two compact facets
with vertices {a',a?,a%} and {a?, a*,a®} respectively and moreover that a®
lies on the second facet. Hence we have the following essential sets:

{a',a?,a%}, {a?,a*,a’}, {a?,a?,a%}, and {a?,d®,a%},
with
a196 = (5,1,4), agus = (2,8,1), as = (2,5,4), and ags = (2,4, 5),
respectively. Note that the set B = {a*, a®,a®} is indeed a set of cardinality 3
that is contained in a facet of the Newton diagram. However, B does not

span R? since the generators lie on a line and consequently B is not essential.
Now, according to Theorem 6.1 the corresponding residue of Bochner-

Martinelli type R*" has one entry for each essential set. For example

=1 =1 =[1
R =0 8| | na |2 na | 5],
T Y z
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FIGURE 2. The ideal Ann R*” in Example 3.

for some constant C # 0, and so Ann Ry96 = (2°,y, 2*). It follows that
A R = (a8,y,2%) N (22,45, 2) N (a%,%, 2%) N (22,4, 2°),

which is equal to the ideal (25, 2%y, 2224, 32,92, y*2%, 2%), depicted in Fig-
ure 2. Observe that the essential sets correspond to the outer corners of
the staircase diagram of Ann R*". Note also that Ann R*" does not depend
on a3 which lies in the interior of the Newton polyhedron. O

7. PAPER III

The construction of residue currents from the Koszul complex in [3]
was further developed in [8] and [5] to produce residue currents from the
Buchsbaum-Rim and Eagon-Northcott complexes, respectively; for a de-
scription of these complexes we refer to [29]. The currents were used to
obtain, for example, effective results for polynomial mappings related to
classical results by Macaulay and Max Nother and explicit versions of the
Briangon-Skoda theorem. In our third paper we extend these ideas further
and construct residue currents from arbitrary complexes of vector bundles.
The aim is, given an ideal or, more generally, an ideal sheaf, J, to construct
a residue current whose annihilator is precisely J. It turns out that our
construction gives such “good” currents if the vector bundle complex comes
from a locally free resolution of 7. The basic philosophy is that to get all
necessary information about J one needs to know not only the generators
of J but also of its higher syzygies.



RESIDUE CURRENTS AND THEIR ANNIHILATOR IDEALS 19

Before presenting the general construction let us return to Example 2, and
see how we can in this case obtain a current with the “right” annihilator.

Ezample 4. Let f = (22, zw) be a section of the dual bundle E* of a trivial
2-bundle E — Q over some neighborhood Q of the origin in C2. Then the
Koszul complex (3.2) of f is given by

[ —zw

2] [z2 zw]

z
(7.1) 0A’E" — "E° — "CxQ—0.

It is easy to see that the corresponding complex of germs of holomorphic
sections at the origin is not exact at E. Indeed, (w,—z)T is in the kernel
of the right-hand map but not in the image of the left-hand one. Suppose
that E is equipped with the trivial metric. Then the residue current of
Bochner-Martinelli type R/ has two components

~ 1 =1
R = 3lfPola = | 1] A5
w z
and
= = 1 :[1 =1
Ry =0|f|* o AN Do|y—g = = O [—3] A O [—] .
2 z w
For the computation, see Example 3 in Paper ITI. Hence Ann R/ = (2) N
(23, w) = (23, zw), which is strictly included in (f).
In this particular case it is easy to see how to make an exact complex
out of (7.1); just divide both entries in the left-hand map by the greatest

common divisor z, that is, replace the left-hand map by F, = [ —zw ] .

Moreover, from this exact complex we can now construct a residue current
whose annihilator is precisely (f). Let o2 be the minimal inverse of Fy with
respect to the trivial metric. (See below for a definition of the minimal in-
verse.) In fact oo = (f3 fo) ' f5, where f; is the adjoint of fo. Furthermore,
let

~ 2 - =1 =1

Ry = |f|" 09 AN Do|y=g = 0O [—2] A0 [—] )

z w

Now, Ann Ry = (22, w) and so, if we let R = Ry + Ry, we have indeed con-
structed a residue current from the modified Koszul complex which satisfies
the Duality Theorem. O

In Paper III the idea of Example 4 is carried through more systematically.
Consider an arbitrary complex of Hermitian holomorphic vector bundles over
the complex n-dimensional manifold X,

(72) OHENﬂ)...gElﬂ)E()HO,
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that is exact outside an analytic variety Z of positive codimension, and that
is equipped with some Hermitian metrics. Outside Z, let o, be the minimal
inverse of F},, that is, Fj,0}, is the identity on Im F}, o}, vanishes on (Im F},)*,
and Im oy, is orthogonal to Ker Fy, and let u2 = 0x(00ok_1) --- (Oo1). Then ug
is a (0,k — 1)-form that takes values in Hom (Ey, E) and moreover

and
(7.4) Fyuj, = dup_y.

Let E be the bundle By @ ... ® Ey. Now, v’ = uf + --- —I—u(])v can
be continued as a Hom (Ey, E)-valued current U° over Z as the analytic
continuation to A = 0 of the form |g|>*u%, where g is a holomorphic function
(or tuple of functions) that vanishes on Z. However, (7.3) and (7.4) cannot
in general hold over Z. If we let F = Fy +---+ F, and V = F — 0, then (7.3)
and (7.4) can be expressed as Vu® = I,. Now, VU? = Iy, — R?, where
RY = 0|g|** A u®|y—¢. Clearly R° has support on Z and moreover R? =
R)+---+ RY, where R} is a (0, k — 1)-current with values in Hom (Ey, Ey),
p =codim Z and g = min(N, n).

Furthermore, if ¢ is a holomorphic section of Ey such that the (E-valued)
current R%p vanishes, then V(U%p) = (Ig, — R%)¢ = ¢ (indeed Fy should
be interpreted as 0), and by solving 0-equations like (3.5) we can locally
find a holomorphic section 1 of Fy so that Fi9 = ¢. Let O(Ey) denote
the sheaf of holomorphic sections of Ey, and let J = Im (O(E;) — O(Ey)).
Note that if rank Ey = 1 and F; = f, then J is just our familiar ideal (f).
To sum up, from (7.2) we have constructed a Hom (Ey, F)-valued residue
current R® whose annihilator (in O(Ey)) is contained in the sheaf J. Note
that if (7.2) is the Koszul complex (3.2), then U? and RP are just the currents
of Cauchy-Fantappié-Leray type U/ and R’, respectively, from Section 3.

The current R? represents one component of the more general construc-
tion in Paper III. By extending the algebraic formalism we construct from
(7.2) an EndE-valued residue current R = R® + --- + RN~! with R* tak-
ing values in Hom (FEy, F'), which in a sense measures the exactness of the
associated complex of locally free sheaves of O-modules

(7.5) 0— O(Ey) 25 ... 22 o) 25 0(Ey) — 0.

On the one hand, by similar arguments as above, R* = 0 implies that (7.5)
is exact at O(FEg).

The complex (7.5) is said to be a (locally free) resolution of O(Ey)/J if
it is exact everywhere except in homological degree 0. We will sometimes
be sloppy and say that (7.5) is a resolution of J. Now, on the other hand,
if (7.5) is a resolution of O(FEy)/J it turns out that Ry = 0 for £ > 1. To
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prove this we use the Buchsbaum-Eisenbud theorem (Theorem 20.9 in [29])
which basically says that if (7.5) is exact then the codimension of the set
where the rank of Fj, is not optimal is greater than or equal to k. Moreover,
intuitively speaking, we show that a residue current of bidegree (0, ¢) cannot
have support on a variety of codimension g + 1. Together, these two facts
force all components except R® to vanish when (7.5) is a resolution.

Furthermore, from the construction in Paper III it follows that if R! =0
and ¢ is a section of J then Ry = 0. We can now conclude our main result,
which extends Theorem 2.1.

Theorem 7.1. Let (7.2) be a complex of Hermitian holomorphic vector
bundles that is generically exact and let R be the associated residue current.
Suppose that the complex (7.5) is a resolution of O(Ey)/J, where J =
Im (O(E1) — O(Ey)). Let ¢ be a section of O(Ey). Then the current Ry
vanishes if and only if ¢ is in J.

In this case we say that R = RY is a Noetherian residue current for 7. The
notion comes from the analogy with Noetherian operators, introduced in [28]
and [39], which are differential operators that can be used to characterize
ideals.

Theorem 7.1 asserts that, given an exact complex (7.5), we can construct
a Noetherian residue current R whose annihilator is precisely J. We should
also mention that, given any subsheaf J of some locally free sheaf O(E)),
one can always find such a complex locally. This follows from the syzygy
theorem and Oka’s lemma, see [33]. If we equip the corresponding vector
bundles with Hermitian metrics we get at least locally a Noetherian current
for the sheaf J.

To some extent, the Noetherian residue current depends on the choice of
resolution and of the Hermitian metrics chosen on the bundles Ej,. However,
if O(Ey)/J is a sheaf of Cohen-Macaulay modules, then it turns out that
the associated Noetherian current R is essentially canonical: see Section 6
in Paper III for precise statements. In particular, if J is an ideal sheaf
that is a complete intersection we get back the Coleff-Herrera current (via
Theorem 2.2).

The Noetherian residue currents are used to extend several results, previ-
ously known for complete intersections. They fit nicely into the framework
of integral formulas developed in [6], which gives us explicit division formulas
of the type (2.15), realizing the ideal membership. We also provide formu-
las for polynomial ideals. By means of these we obtain a residue version
of the Ehrenpreis-Palamodov Fundamental principle, [28], [39], generalizing
the result of Berndtsson-Passare, [20]. Let f = (fi,...,fr) : C* — C"
be a polynomial mapping. Then any smooth solution to f7(i0/0t)¢ = 0
(where fT is just the transpose of f) on a smoothly bounded convex set
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in R™ can be written
€)= [ RTQAQe,
Cr

for an appropriate explicitly given matrix of smooth functions A; here R” is
the transpose of R, which is a Noetherian residue current for (f). Conversely,
any £(t) given in this way is a homogeneous solution.

8. RESOLUTIONS OF MONOMIAL IDEALS

The degree of explicitness of the residue currents computed in Paper 111 of
course depends directly on the degree of explicitness of the resolution (7.5).
In some simple cases, such as that of a complete intersection, a resolution of
O(Ey)/J can be constructed from the generators of the ideal. Indeed, the
Koszul complex (3.2) is exact if and only if f is a complete intersection. In
general, however, explicit resolutions are harder to find, see for example [10].

The first explicit resolution of an arbitrary monomial ideal was found
in 1966 by Diana Taylor [54]. Her construction can be seen as a general-
ization of our “divided Koszul complex” in Example 4. One nice feature of
monomials is that they have well-defined greatest common divisors and least
common multiples. Starting with the Koszul complex and dividing out by
greatest common divisors in a systematic way actually gives a resolution.

More formally, suppose that M = (myq,...,m,) is a monomial ideal in S =
Clz1,-.-,2n)- Let Ax be an S-module of rank (,Tc) with basis {e;}, where I
runs over all subsets of {1,...,r} of cardinality k, let m; = lem {m;|i € I}
and let

k
_1my
FkIGIH (—1)4 1—62;
Kz:; mye I
here I* = {i1,...,ip_1,%¢41,---,ix}. Now the complex
(8.1) 0— A . B4 Ds o

is acyclic, that is, it has zero reduced homology, and thus provides a free
resolution, the so-called Taylor resolution, of S/M.

Note that if M is a compete intersection the monomials m; do not have
any common factors. Hence my/m = my and so identifying e; with e;; A
... A e, gives back the Koszul complex.

Recall that a graded free resolution - - - — A ﬂ} Ap_1 — --- is minimal if
and only if for each k, fr maps a basis of Ay to a minimal set of generators of
Im fj (see Corollary 1.5 in [30]). The Taylor resolution is in general far from
being minimal. For example, if the monomial ideal M is of pure dimension,
in particular if it is Artinian, then the Taylor resolution is minimal if and only



RESIDUE CURRENTS AND THEIR ANNIHILATOR IDEALS 23

if M is a complete intersection, see [61]. The concept of Taylor resolutions
was further developed by Bayer, Peeva and Sturmfels in [11], and later
by Bayer and Sturmfels in [12]. Removing superfluous generators of higher
order syzygies in a clever way, they constructed smaller acyclic subcomplexes
of the Taylor resolution and managed to find a minimal resolution of a certain
class of ideals - the so-called generic ideals. More precisely, a monomial m’ €
S strictly divides another monomial m if m' divides m/z; for all variables z;
dividing m. We say that a monomial ideal M is generic if whenever two
distinct minimal generators m; and m; have the same positive degree in
some variable, then there exists a third generator m; that strictly divides
the least common multiple of m; and m;.

The basic idea in [11] is that, by identifying each I C {1,...,7r} with
a face of the (r — 1)-dimensional simplex %, the Taylor resolution can be
encoded into X if each face I of ¥ is equipped with the label m;. By
taking subcomplexes A of ¥ one gets new algebraic complexes Fa, which
can be seen to be acyclic precisely when the underlying labeled simplicial
complexes A satisfy a certain acyclicity condition (Proposition 4.5 in [38]).

In particular, if M is a generic monomial ideal, then the so-called Scarf
compler Ap; of M, which consists of the the collection of subsets I C
{1,...,7} whose corresponding least common multiple m; is unique, that
is,

Ay = {I C {1,...,r}|m1 =mp=>1= I’},
is acyclic. One can prove that Ajs is a simplicial complex, and that its
dimension is at most n — 1. (In fact, when M is Artinian, A,/ is a regular
triangulation of the (n—1)-simplex). Moreover, Fa,, is a minimal resolution
of S/M.

In [12] the construction in [11] is extended to more general polyhedral
cell complexes X. As above each face F' of X is equipped with a label
mp = lcm {m;|i vertex of F'}. The corresponding algebraic complex Fx is
called a cellular complex. If Fx is acyclic it is said to be a cellular resolution.
A more detailed description is given in Paper IV.

9. PAPER IV

In Paper IV we compute the residue currents R from Paper III in the case
when (7.2) comes from cellular resolutions of Artinian monomial ideals in
S =Cl#,-..,2,] and the metrics are trivial. A priori R has one entry Ry for
each (n—1)-dimensional face F' of the underlying polyhedral cell complex X.
The main technical result in Paper IV (Proposition 3.1) asserts that each Rp
is of the nice form

(9.1) CFB[%]/\---WLH,

2’1 n
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where (a1, ..., a,) = ap is the multi-degree of the label mp associated with
the face F', and CF is a constant; this should be compared with Theorem 6.1.
It immediately follows that if Cr is nonzero, then Ann Ry is the irreducible
ideal m®F. To annihilate R one has to annihilate each entry R, and so

(9.2) Ann R = ﬂ Ann Rp
F face of X

gives an irreducible decomposition of Ann R, which equals M by Theo-
rem 7.1.

The proof is inspired by Paper II; the residue current R is computed as the
push forward of certain currents on a toric manifold. When considering gen-
eral cellular resolutions the computations get more involved. In particular,
we need to compute the minimal inverses of all differentials Fj. Therefore,
unfortunately, we do not in general manage to determine whether or not the
constant Cp in (9.1) is zero. Nevertheless, if M is generic we do. Recall
that a facet of a simplicial complex is a maximal face.

Theorem 9.1. Let M be an Artinian generic monomial ideal in S and let R
be the residue current associated with the cellular resolution Fx . Then

R= (RF)F facet of Apps

where Ay is the Scarf complex of M, Rp is given by (9.1) and the con-
stant Cr there is non-vanishing.

In particular, if we choose X as Ajs, then all entries are non-vanishing.
In fact a generalization of this holds. Theorem 3.5 in Paper IV states that
whenever Fx is a minimal resolution of M (possibly non-generic) then all
entries are non-vanishing.

Once we know that Ry is given by (9.1), Theorem 9.1 is an easy conse-
quence of Theorem 3.7 in [11], which states that if M is generic, then

M= (] wm*
F facet of Ajpr

yields the irreducible irredundant decomposition of M.

Thus, the non-vanishing entries of R correspond precisely to irreducible
components of the generic ideal M. So in a sense, R contains no superfluous
information, which is sound. Exactly those entries that have to be non-
vanishing to determine the ideal are non-vanishing. Compare with the fact
that the residue currents of Bochner-Martinelli type in the non-Artinian
case turned out to in general depend on the generators, as was discussed in
Section 6. Also, if M is generic it follows that (9.2) yields the irredundant
irreducible decomposition of M.
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F1GURE 3. The Scarf complex Ay of the ideal M in Exam-
ple 5 (labels on vertices and facets).

Ezample 5. Let us consider again the ideal M = (z3, 22y, 24222, y*,y%2, 2*) =
(mq,...,mg) from Example 3. Note that M is generic since no generators
have the same positive degree in any variable.

The Scarf complex of M, depicted in Figure 3, consists of the facets
{15 2, 6}7 {27 3, 5}5 {27 3, G}a {25 4, 5}a and {37 9, 6}5 with a196 = (35 1, 4)7 Q235 =
(2,3,2), 236 = (2,2,4), Q245 = (2,4, 1) and a356 — (1,3,4), respectively.
Compare this to the Newton diagram in Figure 1. Thus according to The-
orem 9.1, the Noetherian residue current associated with a cellular resolu-
tion of M has one entry for each of these facets, and so “decomposing” M
with respect to R gives back the irreducible irredundant decomposition of
M = Ann R:

M = (z%,y,2*) N (2%, 9°,2%) N (2%, 4%, 2") N (2%, 9%, 2) N (2,97, 2%).

Note that the entries of R correspond to the outer corners of the staircase
in Figure 1. O
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PRODUCTS OF RESIDUE CURRENTS OF
CAUCHY-FANTAPPIE-LERAY TYPE

ELIZABETH WULCAN

ABSTRACT. With a given holomorphic section of a Hermitian vector
bundle, one can associate a residue current by means of Cauchy-Fantappie-
Leray type formulas. In this paper we define products of such residue
currents. We prove that, in the case of a complete intersection, the
product of the residue currents of a tuple of sections coincides with the
residue current of the direct sum of the sections.

1. INTRODUCTION

Let f be a holomorphic function defined in some domain in C" and let
Y = f71(0). Then there exists a distribution U such that fU = 1, as
shown by Schwartz [16]. For example, one can let U be the principal value
distribution [1/f], defined as

Dypp > ¢+ lim é

e—0 |f|>e f
The existence of this limit was proven by Herrera and Lieberman, [9], using
Hironaka’s desingularization theorem. By the Mellin transform, see for ex-

ample [13], one can show that the limit is equal to the analytic continuation
to A =0 of

(1.1) AH»/[ﬂ”?.

The residue current associated with f is defined as 0[1/f]; it has support
on Y and its action on a test form ¢ € D, ,_1 is given by the analytic
continuation to A = 0 of

AH/bm”A?

This paper concerns products of residue currents. Recall that it is in
general not possible to multiply currents (or distributions). However, given

1991 Mathematics Subject Classification. 32A26; 32A27; 32C30.
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a tuple of holomorphic functions f = (f1,..., fm), by certain limiting pro-
cesses one can give meaning to the expression

(1.2) a[%] /\a[fm]

as was first done by Coleff and Herrera, [7]. By the Mellin transform, this

so called Coleff-Herrera current, denoted by Ré 7> can be realized as the
analytic continuation to A = 0 of

(1.3) (§|fl|2Afi A NB| ]
1

m
In case f defines a complete intersection, that is, the codimension of Y =
f71(0) is m, then Ré y has especially nice calculus properties. For example
fiRéH = 0 for all 4, see [12], which yields one direction of the duality
theorem, due to Passare, [11], and Dickenstein-Sessa, [8], that asserts that
if f is a complete intersection, then a holomorphic function ¢ belongs to the
ideal (f) if and only if pRL,, = 0.

In [14] Passare, Tsikh and Yger introduced an alternative approach to
multidimensional residue currents by constructing currents based on the
Bochner-Martinelli kernel. For each ordered index set Z C {1,...,m} of
cardinality k, let Rf be the analytic continuation to A = 0 of

i df;
a|f|2)\/\z 3 1%,

where |f|2 = |f1|?+...+|fm|?. Then Rf is a well-defined (0, k)-current with
support on Y, that vanishes whenever k < codimY or k > min(m,n). If f
is a complete intersection, there is only one nonvanishing current, namely
R{L._.,m}, which corresponds to the classical Bochner-Martinelli kernel and

which we denote by Ré a- Then we have the following result.

Theorem 1.1 (Passare, Tsikh, Yger [14]). Assume that f is a complete
intersection. Then ; ;
Ry = Roy-

The Bochner-Martinelli residue currents R£ have been used for investiga-
tions in the non-complete intersection case; for example, in [6], Berenstein
and Yger used them to construct Green currents.

Based on the work in [14] Andersson, [1], introduced more general globally
defined residue currents by means of Cauchy-Fantappie-Leray type formulas.
Let us briefly recall his construction. Assume that f is a holomorphic section
of the dual bundle E* of a holomorphic m-bundle £ — X over a complex
manifold X. On the exterior algebra over E we have mappings d; : ATE —
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AE of interior multiplication by f, and 5; = 0. Let &x(X,A’E) be the
space of smooth sections of the exterior algebra of E* @ T(;; which are (0, k)-
forms with values in AYE, and let D(’),k(X ,A'E) be the corresponding space
of currents. The mappings J; extend to these spaces, where it anti-commutes
with 0. Thus DB’ (X, A‘E) is a double complex and the corresponding total
complex is

v v v
v L YXB) S (X E)
where L7(X, E) = @ p—, D()’k(X,A_ZE') and V; = §; — 0. The exterior
product, A, induces a mapping

A: L£7(X, B) x L3(X, E) - L(X, B)
when possible, and V; is an antiderivation with respect to A.

If ¢ is a holomorphic function such that is ¢ = Vv for some v €
L (X, E), one can prove, provided X is Stein, that there is a holomor-
phic solution 1 to the division problem ) ;f; = ¢. Andersson’s idea to
find such a v was to start looking for a solution to Vyu = 1. Assume that E
is equipped with some Hermitian metric and let s be the section of F with
pointwise minimal norm such that dys = |f|?> and let

ul =

s s B Z sA (és)e_1 B Z sA (553)[_1
Vs 6ps—0s 7 (5f$)Z Z |f12¢

be the Cauchy-Fantappie-Leray form, introduced in [2] in order to construct
integral formulas in a convenient way. Clearly uf € £~ is well-defined
outside Y and since Vs is of even degree the expression s/V s makes
sense, and it follows that Vju/ = 1 outside Y. In [1] it is proved that
the form |f|?*u/ has an analytic continuation as a current to Re X > —e.
The value at A = 0, denoted by U/, yields an extension of u/ over Y. In
analogy with the one function case, we will sometimes refer to U/ as the
principal value current. Clearly, if Y # 0, U/ can not fulfill V fo . In fact,
V iU/ =1- R/, where R/ = 0|f|** Auf|—¢ now defines the residue current
of f. It holds that Rf = Ry+...+R,, where R; € D(’),j(X, A), p = codimY
and p = min(m,n). Moreover, if 9 Rf = 0, then v = Uf yields the desired
solution to Vv = ¢ and thus ¢ belongs to the ideal generated by f locally.

If F is a trivial bundle endowed with the trivial metric, the coefficients
of R will actually be the Bochner-Martinelli currents R%. If f is a complete
intersection, the only nonvanishing coefficient will be Ré M-

Our first goal is to define products of currents of the type U/ and RY.
Let us consider (1.3). If we assume that each f; is a section of the dual
bundle E; of a line bundle E; with frame e; and dual frame e}, the Cauchy-
Fantappie-Leray form ufi is just e;/f;, so in fact (1.3) times the element
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e1 N\ ... Ae, can be expressed as
(1.4) ANfiP Auft AL AB|f P Al

In light of this, it is most tempting to extend this product to include not
only sections of line bundles but sections f; of bundles of arbitrary rank.
To be more accurate, we assume that f; is a section of the dual bundle of
a holomorphic m;-bundle E; — X. Further, we assume that each F; is
equipped with a Hermitian metric, we let s; be the section of F; of minimal
norm such that dy,s; = |fi|?, and we let u/i be the corresponding Cauchy-
Fantappié-Leray form. Then (1.4) has meaning as a form taking values in
the exterior algebra over £ = F; @ --- @ E,. Thus, in accordance with the
line bundle case, we can take the value at A = 0 of (1.4) as a definition of
RIT A ... A R, provided that the analytic continuation exists. However,
this is assured by Theorem 1.2, where products are defined also of principal
value currents.

Theorem 1.2. Let f; be holomorphic sections of the Hermitian
m;-bundles Ef — X. Let ufi be the corresponding Cauchy-Fantappié-Leray
forms and let Y; = f;(0). Then

(1.5) A= | folPudt A A [ fogp1[Pulstt AB| o)A Auds AL AB|fLPA Ault

has an analytic continuation as a current to Re A > —e.
We define T = Ufr A... AU+ ARFs A... AR as the value at X\ = 0.
Then T has support on (\;_,Y: and it is alternating with respect to the

principal value factors Ufi and symmetric with respect to the residue factors
R/,

Of course there is nothing special about the ordering that we have chosen;
we can just as well mix U’s and R’s.

If the bundle ¥ is trivial, endowed with the trivial metric, and moreover
if f1®--- @ f, is a complete intersection, then R/ A ... A Rft will consist of
only one term, which can be interpreted as a product of the corresponding
Bochner-Martinelli currents Réf u- In general, however, there will also occur
terms of lower degree.

Theorem 1.3. Let
T=U"AN.. . ANU " ARFsA... AR

be defined as above. Let m = mi1+...+m,. Then T =T, + ...+ T, where
T, € ’D('),Z(A'E), p=codimY; N...NYs and ¢ = min(m,n). In particular,
iff=fi® @ fr is a complete intersection, then RI* A ... AR/ consists
of only one term of top degree m.
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Observe that Theorems 1.2 and 1.3 extend Theorem 1.1 in [1].

Our next aim is to prove a generalized version of Theorem 1.1. Since,
in the particular case when the bundles E; are all line bundles, the current
R/ A ... ARF is just the Coleff-Herrera current of f times e; A... A e, we
can formulate the equivalence in the theorem as

(1.6) RN®-©fr — RIVA AR,

Now, the obvious question is, does this equality extend to hold for sections of
vector bundles of arbitrary rank. Our main result states that this is indeed
the case.

Theorem 1.4. Let f; be holomorphic sections of the Hermitian m;-bundles
E? and let f be the section fi®---@ fr of E*=E{®--- @ E}. If f is a
complete intersection, that is, codim f~1(0) = my + ...+ m,, then

R =ROA...ARF.

That is, in a local perspective, given a tuple of functions split into subtu-
ples, the product of the Bochner-Martinelli currents of each subtuple is equal
to the Bochner-Martinelli current of the whole tuple of functions. We give
an explicit proof of Theorem 1.4 based on the existence of two V g-potentials.

Theorem 1.5. Let f = f1 ®--- @ f, be a section of E* = Ef & --- @ E;.
Assume that f is a complete intersection. Then there exists a current V
such that

(1.7) V;V=1-R'A...ARF,
and furthermore a current Uf AV such that
ViU AV)=V -U7.

At first it might seem a bit peculiar to denote the second potential by
Uf A V. However, notice that on a formal level, if we were allowed to
multiply currents so that V; acted as an antiderivation on the products,
then

ViU AV)=1~-R)AV U A1~ R"A...ART),

since Uf is of odd degree. From Theorem 1.3 we know that R/ and
R A ... A Rfr take values in A™E, since f is a complete intersection.
But since V and U/ have positive degree in e; it is reasonable to expect the
products V A R and U/ A Rf* A ... A RI" to vanish. Thus we are left with
V — U/, and the notation is motivated.

Proof of Theorem 1.4. Recall that Vfo = 1 — Rf. Hence, applying \7
twice to Uf AV yields

0=V3U/AV)=V,U/-V)=R'A...ARI" - R,
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and thus we are done. O

The disposition of this paper is as follows. In Section 2 we give proofs of
Theorem 1.2 and Theorem 1.3. In Section 3 we prove Theorem 1.5. Finally,
in Section 4 we give an example of products of Cauchy-Fantappie-Leray
currents and also discuss a possible generalization of Theorem 1.4.

2. PRODUCTS OF RESIDUE CURRENTS OF
CAUCHY-FANTAPPIE-LERAY TYPE

We start with the proof of Theorem 1.2. For further use a slightly more
general formulation is appropriate. Indeed, the proof of Theorem 1.5 requires
a broader definition of products of currents. We need to allow also products
of currents of sections of the bundle F, that are not necessarily orthogonal,
at least in certain cases. Thus we give a new, somewhat unwieldy, version of
Theorem 1.2 that however covers all the currents that we will be concerned
with.

By the notion that a form (or current) is of degree k in dZ;, we will just
mean that it is a (e, k)-form. In the same manner, we will say that a form
is of degree £ in e; when it takes values in AE.

Proposition 2.1. Let f = f1 @ ... ® f, be a holomorphic section of the
bundle E* = ET @ ... ® E;, where E} is a Hermitian m;-bundle. For a
subset I = {Iy,...,Ip} of {1,...,r}, let fr denote the section fr, ®...® f1,
of BEf = B ®.. .GBE’I“p, let ufT be the corresponding Cauchy-Fantappié-Leray

form, let Y7 = f;l((]), and let mp = mp, +...+my,. IfI', ... I are subsets
of {1,...,r}, then

(2.1)

Ao | frePrudtt A A | frea |Pudsrt A B frs| P2 AT AL A fn [P Aud

has an analytic continuation to Re A > —e.

We define T = Ulrt A ... ANUSst1 A RI1s A ... A RITY as the value at
A = 0. Then T has support on (i, Yyx and it is alternating with respect
to the principal value factors U and commutative with respect to the residue
factors R.

Note that Theorem 1.2 corresponds to the particular case when each I7
is just a singleton. The proof of Proposition 2.1 is very much inspired by
the proof of Lemma 2.2 in [14] and Theorem 1.1 in [1]. It is based on the
possibility of resolving singularities by Hironaka’s theorem, see [3], and the
following lemma, which is proven essentially by integration by parts.
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Lemma 2.2. Let v be a strictly positive smooth function in C, ¢ a test
function in C, and p a positive integer. Then

A — /'U)‘|S|2Ag0(3) dS A ds

sp

and

Ao [N el

both have meromorphic continuations to the entire plane with poles at ratio-
nal points on the negative real azxis. At A = 0 they are both independent of v,
and the second one only depends on the germ of ¢ at the origin. Moreover,
if p(s) = 59Y(s) or ¢ = ds A1, then the value of the second integral at A = 0
is zero.

Proof of Proposition 2.1. We may assume that the bundle £ = E1&--- D E,
is trivial since the statement is clearly local. Note that f; = ) f; je! oD
where e} i is the trivial frame. The proof is based on the possibility to
resolve smgularltles locally using Hironaka’s theorem. Given a small enough
neighborhood U of a given point in X there exist a n-dimensional manifold u
and a proper analytic map II, : U — U such that if Z = {Hi,j fij = 0}
and Z = I, (Z), then IL : U \ Z — U \ Z is biholomorphic and such that

moreover Z has normal crossings in U. This implies that locally in U we have
that II} f; ; = a; s, where a; ; are non-vanishing and p; ; are monomials
in some local coordinates 7. Further, given a finite number of monomials
p1--.,pm in some coordinates 74 defined in an n-dimensional manifold Uy,
there exists a toric variety Z/{t and a proper analytic map Il;: Z/{t — U such
that II; is biholomorphic outside the coordinate axes and moreover, locally
it holds that, for some i, IIfu; divides all I} u;, see [5] and [10]. Clearly,

if p; divides p; in Uy then IT}p; divides IIfu; in U;. Thus after a number,
say g, of such toric resolutions II;, we can locally consider each section fy;
as a monomial times a non-vanishing section. More precisely we have that
IT* fri = pi f7;, where IT =TI, 0 - - o T, o ITy,, p; is a monomial and f7; is a
non-vanishing section of E%;.

Let ¢ be a test form with compact support. After a partition of unity
we may assume that it has support in a neighborhood U as above. Then,
since Il is proper, the support of II} ¢ can be covered by a finite number of
neighborhoods in which it holds that I} ¢ = aj jpij - If 9 is a test form with
support in such a neighborhood, then the support of IIf 7 can be covered
by finitely many neighborhoods in which we have the desired property that
the pull-back of one monomial divides some of the other ones, and so on.

Thus, for ReX > 2max; myi, (2.1) is in L] ., and since II is biholomorphic
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outside a set of measure zero we have that
/ \FrePPudrt AL A fren [Pultstt A fro P2 Au AL AB [P AuIt A g

is equal to a finite number of integrals of the form
(2.2)

/H*(|fﬂ|”ufrt Ao A froet [Paulrst i AD| frs|PAAufT AL NS fr P2 Aul) A .

Here

¢ = pt, 115 (- - pi, 1T, (pn113())),
where the pe’s are functions from some partitions of unity, so that the test
form ¢ has support in a neighborhood where it holds that IT*f;i = p;f7,.
In such a coordinate neighborhood the pullback of sy is i; times a smooth
form, so that TT*(s;i A (0si)¢!) is ¢ times a smooth form. Moreover
I1*| f7i|? = |pi|?a;, where a; is a strictly positive smooth function. Thus

=l .
Ml = Hi%ie Z Q0

|22 £

where «; 4 are smooth forms taking values in AE, and so (2.2) is equal to a
finite sum of integrals

Qi g Fs+1,L
(2.3) / P at =5 A A g [Pal = oA
Ky s+1
_ Qs 0, = (e 7
O(|ps|?ad) A ;7 A ... AO(lu1a}) A “—ell A ¢.
s 1

Expanding each factor 0(] uj|2)‘a§‘) by Leibniz’ rule results in a finite sum of
terms. Letting 0 fall only on the monomials y; yields integrals of the form

(2.4) /a)‘|,u'|2)‘z—§ ABIo% P2 AL A BT A A G,

where o; is one of the coordinate functions 7; that divide p;, @ = a;---a;
is a strictly positive smooth function, uy = uft ---ufl is a monomial in 7},
¢’ is a monomial in 7; not divisible by any o; and ar = Cayy, A ... Ay,
is a smooth form, where C is just a constant that depends on the relation
between ¢; and the number of ¢;’s in u;. The remaining integrals, that arise
when 0 falls on any of the a;, vanish in accordance with Lemma 2.2. Indeed,
consider one of the integrals obtained when 0 falls on a1,

A /akmﬂz—L ABlo® P AL ABlo® P A Bay A G
L
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This is just A times an integral of the form (2.4), so provided that we can
prove the existence of an analytic continuation of (2.4), it must clearly vanish
at A =0.

Now an application of Lemma 2.2 for each 7 that divides any of the u;’s
gives the desired analytic continuation of (2.4) to Re A > —e. Note that for
o1,...,0s we get integrals of the second type, for the remaining 7; integrals
of the first type, so that the value at A = 0 is a current with support on
{os =0} N...N{o1 = 0}. Thus the value of (2.3) at A = 0 has support on

{,us:()}ﬂ...ﬂ{,ul:O}:f/}sﬂ...ﬂ?p,

where 17'. = H_IY., and accordingly Ult A ANUTs+t ARfTS AL ARIT i
a current with support on Yzs N... N Y.

Since the form (2.1) is alternating with respect to the factors |fyi|**u/ri
and symmetric with respect to the factors 9|f;:|** A u/ri, it follows that
Ut A .AUTrs+1 ARTIs A.. AR is alternating with respect to the principal
value factors and symmetric with respect to the residue factors. O

We continue with the proof of Theorem 1.3.

Proof of Theorem 1.3. Notice that Ty is the analytic continuation to
A = 0 of the terms

25)  |fPuf A A e Pl NOIFPA Al AL A AP A

where
fi _ SiA (581’)4”5_1
R
and the total degree in dz; (that is &1 + ...+ 4, — 7+ s) is L.
Following the proof of Proposition 2.1, a term of the form (2.5), integrated
against a test form ¢, is equal to a sum of terms like

(67 Qst1.0
@6) [ InePa 5 A APy, A

L £s
Hor :usJ:—ll
3 s 0, 3 (e W 7
a(|ps?al) A ﬁ Ao AO(|pa[Pad) A Mgll N o,
s 1

where the o;,’s are smooth forms of degree /; in ej, the a;’s are non-
vanishing functions, the p;’s are monomials in some local coordinates T;
and ¢ is as in the previous proof. We can find a toric resolution such that
locally one of y1, ..., us divides the other ones, so without loss of generality
we may assume that p; divides uo, ..., phs-

We expand 0(|u1]|**a?) by Leibniz’ rule. Observe that when 0 falls on a?
the integral vanishes as in the proof of Proposition 2.1, and thus it suffices to
consider the case when 9 falls on one of the 7; that divide y1, say on |o|?*.
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If £ < p, we claim that this part of (2.6) vanishes when integrating with
respect to o. In fact, we may assume that ¢ = ¢; A dzy, where ¢; is an
(n,0)-form and dzr = dzr, A ... AdZ1, ,. Now dzr vanishes on the variety
Y1 N...NY; of codimension p for degree reasons. Consequently IT*(dZzr)
vanishes on ¥; N...NY,, and in particular on {o = 0}. However, this is a
form in d7; with antiholomorphic coefficients since II is holomorphic, and
therefore each of its terms contains a factor da or a factor . Indeed, if ¥(7)
is a form in d7; with antiholomorphic coefficients we can write

V(1) = U'(1) Ad + ¥ (1),

where ¥”(7) does not contain da. The first term clearly vanishes on {o = 0}
since do does. If ¥(7) vanishes on {o = 0}, then ¥”(7) does, and hence it
contains a factor & due to antiholomorphicity. In both cases the o-integral,
and thereby (2.6), vanishes according to Lemma 2.2. O

3. THE COMPLETE INTERSECTION CASE

Our way of proving Theorem 1.4, that is, via Theorem 1.5, is inspired by
Proposition 4.2 in [1], in which potentials were used to prove Theorem 1.1.
The proof is self-contained and we hope that this construction of poten-
tials will be of use for further investigations in the case of a non-complete
intersection.

Proof of Theorem 1.5. We let
V=Ul+UPAR" +UBANRP AR + ...+ U ARF-* AL AR
To motivate this choice of V, note that on a formal level
(3.1) VUi AR A AR =Ri-1 AL AR —RIi A AR,
so that
V;V=1-RI"A...AR.

Indeed, observe that V; acts on Ufi just as Vy,, so that Vfoi =1-
RJi. Thus, to prove the first claim of the theorem we have to make this
computation legitimate.

First, notice that if a form A()), depending on a parameter A\, has an
analytic continuation as a current to A = 0, then clearly V;A()) has one.
The action on a test form ¢ is given by

i/A()\) AV ;4.
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However, by integration by parts with respect to V; and due to the unique-
ness of analytic continuations, this is equal to

/ VAN A ¢,

To be able to perform the integration by parts in a stringent way we have to
regard the currents T € Dok (A‘E) as functionals on

’Dn’n_k(A”_‘qE A A"E*). So far we have been a little sloppy about this.
Thus, to compute V;V we consider the form

o = | f1Put + | fo| P a2 A B 1P At +
o fe P AO froa| P AT AL A B AU,

since, by definition, v*|,—9 = V, and accordingly V;V = (V sv*)|5=0. More
precisely, to verify (3.1), let us consider (recall that V jufi = 1)

V(| filPudi A B fica | Aulimt AL A1 Audt) =
—Ofil* Ault A O fia P Aufitt AL A DI AT+
1£i| 228 fica | Aulit AL A B fL| P Ault + R,

where R is a sum of terms of the form
|fil P udt A B fia |2 Aufizt AL 5|fj\2)‘ A g‘fj—l‘” Ao NOIf1[P Ault,

that arise when V falls on any uli, j < i. The value at A\ = 0 of the first
term is just —R ARfi-1 A.. AR and it follows from Lemma 3.1 that the
second term has an analytic continuation to A = 0 equal to Rfi-1 A... AR,
The remaining terms, R, vanish according to Lemma 3.3. Thus (1.7) is
proved, and thereby the first part of the theorem.

Furthermore, let

UIANV=U AUN + U AU AR+
UIANUBARP ARM + ...+ U AU ARF-V AL AR
We compute V of each term. To do this we use a form as above whose

analytic continuation to A = 0 is equal to this particular current. Now, we
actually need the extended version of Theorem 1.2, that is Proposition 2.1.
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Indeed, consider
V(1 f P uf AP A B fict [P Auli=t AL A D f1|PA Audt) =
—AIfPA Aud AP uli ABfi P AuFimt AL A B AP AT+
F1PM £l P ufi A B fioa |2 Aufi=t AL A B f1 P A ult+
17122 ud A BIfi) P2 Aufi AB|fici | Aulit AL A B|f1|PA A ult
— 1P AFPAAD fia P Aufmt AL A B 1P Al
1F1Puf AR.

The first term corresponds to —Rf AU A Rfi=1 A ... A Rf1. Since f is a
complete intersection and RY therefore is of top degree in dz; according to
Theorem 1.3, it is most reasonable to expect also this product to be of top
degree in dz;, but because of the factor Ufi ¢ £L71(E;) that is apparently not
possible unless the product vanishes. This is indeed the case, as follows from
Lemma 3.2. The second, third and fourth terms have analytic continuations
as Ui ARfiv AL AR, UF AR A...ANR" and —U' ARfiv A L. A
R/, respectively, by Lemma 3.1. The remaining terms vanish according to
Lemma 3.3. Hence

.
VU AV) =Y Ul ARFi- AL ARD

i=1

> (UIARF= AL AR U AR A AR =
i=1
V-U'+U AR A AR,

Finally, the term Uf A R’ A ... A Rt vanishes by Lemma 3.4, and thus
taking the lemmas 3.1 to 3.4 for granted, the theorem is proved. O

What remains is the technical part, to prove the lemmas. We have tried
to put them as simply as possible. Still the formulations may seem a bit
strained. Hopefully, the remarks will shed some light on what matters. We
will use the word codegree for the difference between the dimension n of X
and the degree.

Lemma 3.1. Let f = f1 ® - ® f, be a section of E* = Ef ®--- @ E}.
Assume that f is a complete intersection. Let s < r and s < r' < r. If
h=f, or if h = f; for some i > s, then

(3.2) |BPA )P ul AL A | fort|Pulstt AD|f|PA Auls AL AD| 1P Ault

has an analytic continuation to Re A > —e, which for A = 0 is equal to the
current Uf A ... ANUfs+t ARFs A... AR,
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Moreover,
(3.3) B )
| F 1P uf A for|Pude A A fot|Puls AB oA AuTe AL A f1 [P Audt

has an analytic continuation to Re A > —e, which for A = 0 is equal to the
current UL AU A . AUt ARfs AL AR

Remark 1. The crucial point is that inserting a factor |h|>*, where h is any
tuple of holomorphic functions and |-| is any Hermitian metric, has no effect
on the value at A = 0, as long as

codim{h=0}NY;N...NY; >codimY;N...NY7,

since then all possibly “dangerous” contributions to the current will vanish
for degree reasons as in the proof of Theorem 1.3. That the currents are
unaffected by the factor |h|?* is closely related to them being their own
standard extensions in the sense of Barlet [4]. O

Proof. We give a proof of the first claim of the lemma. The second one,
concerning (3.3), can be proved along the same lines.
For a compactly supported test form ¢, we consider

/|h\2’\\f,,,\2’\ufr’ A AN fspr [Pulst ADfo|P Aufs AL A f1P Ault A @

After a resolution of singularities as described in the proof of Proposition 2.1,
for Re X large enough, this integral is equal to a sum of

O[5+1’gs+1

A A X Gl A, A
(34) / |,Uh|2 |,U7,.,|2 G,TIT A A |u8+1|2 ad, e A
ad Hst1
_ O g, _ Qe -
Olus?al) A =22 A A O(pa[Pad) A =52 A g,
Hs® pt

where the a;’s are strictly positive functions, the p;’s are polynomials in
some local coordinates 7;, the j s,’s are smooth forms and ¢ is as in the proof
of Proposition 2.1. The existence of the analytic continuation to Re A > —e¢
follows from Lemma, 2.2 as before.

Our aim is to prove that the factor |h|** does not affect the value at A = 0.
Let o be one of the coordinate functions 7 that divides yp. When expanding
each factor O(| uj|2)‘a§‘) by Leibniz’ rule we get two different types of terms,

integrals with an occurrence of a factor 0|c®|?* for some «, and integrals
with no such factors. In the second case the extra factor |¢|** does no harm,
since, in fact, the value at A = 0 is independent of the number of |0|2>"s in
the numerator as long as there is no ¢ in the denominator. Furthermore,
we claim that each integral of the first kind actually vanishes at A = 0. The
argument is analogous to the one in the proof of Theorem 1.3. Let us first
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consider the case when h = f. Observe that the terms in (3.2) are of degree
at most my +...+mp —7' +5 <m—1indz;, where m =m; +... + m,.
The crucial term -1 appears because of the (at least for the proof) necessary
condition that r > s, that is that we have at least one factor U. Thus, it is
enough to consider test forms of codegree in dz at most m — 1. We assume
that ¢ = ¢;AdZ;, where ¢ is a smooth (n,0)-form and dz;y = dzp, A.. . Adz,
where p > n — (m; + ... + m;) + 1. Now, dz; vanishes on the variety
Y = f~1(0), since it has codimension m, and accordingly IT*(dz;) vanishes
onY = II"'Y, and in particular on {o = 0}. Since it is a form in dr; with
antiholomorphic coefficients, each of its terms contains a factor & or do,
see the proof of Theorem 1.3, and so in both cases the g-integrals vanish
according to Lemma 2.2.

In the second case, when h = f;, the proof becomes slightly more compli-
cated. We want to prove that the o-integral vanishes due to the occurrence
of a factor ¢ or do as above, but now the desired factors ¢ and d& do not
necessarily divide the test form ¢. We need to look at a “larger” form than ¢,
in fact at the “largest” possible “o-free” form. Without loss of generality we
may assume that, for some numbers s’ and 7'/, 1 < s’ < s < r"” < 7', o divides
Ms'+15-+-5 s and Bt 415 ey Mot but neither B1y--yphs DO fhgi1y .- - 5 Myt
Recall that uf/i = 3", U{;/|fi|2e, where v,! = s; A (0s;)%71. Let the smooth
form

ol A AT NI P A A A B A

be denoted by Fy, and let
YI:{fSI+1:...:fS:fTII+1:___:fT, :h:O}

As above we may assume that ¢ consists of only one term ¢; A dzy. Then,
by inspection, the form Fy A dzy is of codegree at most

Mgy1+ ... +Mg+Mmpry1+ ... +mp —r 4"
in dz;, which is strictly less than
codimY' = Mgy + ... Mg+ Mypr1 + .0 + My + My,
because of the assumptions of complete intersection. Consequently Fy A dzr
vanishes on Y, and thus IT*(F; A dz;) vanishes on II"'Y”, and in particular

on {o = 0}. Since it is a form in d7; with antiholomorphic coefficients,
each of its terms contains a factor & or a factor do. Using that 9|f|** =
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A fZA=D3|£|2, we can write (3.4) as

() Qptt 1.0
2 P 22 A il
+ / |pon |“M o |70 g, N A |porn 1 | apn g ————=N

[
Hy 'urr’,i:_ll
5 st A Qlg' 41,0
O(lus 2a2) A5 A A B Pad) A =

° 'u’s’—|—1

A-1 A1
|/j,7.u 2>‘G/1),\H Tt |,Ufl|2/\0/{‘ s |/1,Sl|2)‘(],g, ) . |H1|2>‘Gg ) H*(F ) \ &
| |20 - gy 1| 241 g [2Esr D) - g (2 +D) ) )

where the sign depends on the relation between r',7",s and s’. Now the
only way a factor & in the numerator (more precisely in II*(Fy) A ¢) could
be cancelled out when A is small is by the occurrence of a factor & in one of
W1, -- -, g, but that would obviously contradict the assumption made above.
Hence each term in the integral must contain a factor & or do independently
of the value of A and thus the o-integral vanishes according to Lemma 2.2.

O

Lemma 3.2. Let f = f1®--- ® f, be a section of E* = E} & --- ® E}
of rank m and let h = f @ f', where f' is a section of the dual bundle of
a holomorphic m'-bundle E'. Assume that h is a complete intersection. If
r > s, then

(3.5)

NP Aul NP2 ud™ AL A fora |2 ulstt AD|fs)A Auds AL ADf1|PA Al

has an analytic continuation to Re A > —e that vanishes at A = 0.

Remark 2. Notice that the value at A = 0 corresponds to the current
RMAUF A ...ANUf+1 ARFs A ... AR, Since h is a complete intersec-
tion, R" is of degree m +m/ in dz; according to Theorem 1.3, and therefore
it is reasonable to expect also the product to be of degree m + m’ in dz;.
However, since the product contains at least one principal value factor, the
degree in e; must be strictly larger than the degree in dz;, and so, the prod-
uct must vanish. We will see that the assumption that » > s is crucial also
for the proof. O

Proof. After a resolution of singularities as described in the proof of Propo-
sition 2.1, we can write (3.5) integrated against a test form ¢ as a sum of
terms of the type

= (7 ) Qe Osy10
/ OlunlPan) =5t Alur[ap =57 A Al [Pad =72 A
Hp Hr Hsiq

= Qs 0, = ary . x
|ps[ad) A =22 A A O(|paPa)) A —52 A g,

£ £
s '
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where the o;y,’s are smooth forms of degree 4; in e;, the a;’s are non-
vanishing functions and the y;’s are monomials in some local coordinates Ty
and ¢ is as in the previous proofs.

We expand the factor 9(|ps|**a}) by Leibniz’ rule and consider the term
obtained when 0 falls on |o|?*, where ¢ is one of the 7;’s that divide p. We
prove that this term vanishes when integrating with respect to o. The term
that arises when O falls on aﬁ clearly vanishes as before, see the proof of
Proposition 2.1. Since the rank of E® E’' is m+m/, the terms in (3.5) are of
degree at most m +m’ — 1 in dz, since we have at least one U-factor. Thus
it is enough to consider test forms of codegree in dz at most m +m’ — 1. As
in the previous proofs we may assume that ¢ = ¢r A dz;. It follows that dz;
vanishes on Y = h~!(0) for degree reasons, and thus II*(dZ;) vanishes
on II7'Y. Since this is a form in d7; with antiholomorphic coefficients,
each of its terms contains a factor & or do and consequently the o-integral
vanishes according to Lemma 2.2. O

Lemma 3.3. Let f = f1 @ -+ ® f, be a section of E* = E{ & --- @ E;.
Assume that f is a complete intersection and let s < r. Then

(3.6)

el ul AN Fep P uls A B f PP AU A LA f P AL A f1 P AU

and
B7) F1Pu A PPul A A foPrafort A DI £PA Aufn

o ANOFP AL ANB P Al
have analytic continuations to Re A > —e that vanish at A = 0.

Remark 3. Morally, what this lemma says is that when applying Leibniz’
rule to V; acting on a product of principal value and residue currents, there
will be no contributions from V falling on a residue factor. Of course this
is expected, since the residue currents are V y-closed. O

Proof. For (3.6) the result follows from Lemma 3.1 after an integration by
parts with respect to V. (Recall that ¢ is a form taking values in A" EEA
A"E*.) Note that 0|f:|** = —V|f:|**. By Stokes’ theorem,

[ 150t A APt B At A
AV AL A AP A A =

+ / U = OV (P05 A o A fasrPulorin

A fs| Auls AL ABIf1IPA Auft A @),
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S0 it is enough to prove that this expression vanishes at A = 0. Now, applying
Leibniz’ rule to

V(1 felPufm Ao A fspa [Pt A DI £|2A Auls AL A D FLPA Ault A )

gives a sum of terms, of which the ones arising when V falls on a factor uft
for 1 < ¢t < r will vanish for degree reasons, whereas the others will be
precisely as in the hypothesis of Lemma 3.1. Moreover f; is an h of the
second kind, so according to Lemma 3.1 the factor |f;|** does not have any
effect on the value at A = 0. Thus we are done.

In the case of (3.7), after an integration by parts, we have to prove that

/ (£ = DV Pul APl A A o PPal A
Ofs| Auls AL AB|f1|P Ault A @)

vanishes at A = 0. The term when V falls on the factor |f[**u/ is of the
type in Lemma 3.2. Tt is easy to see from the proof that the factor |f;|*}
does not affect the value at A = 0 and so this term vanishes. The remaining
part is as in the hypothesis of the latter statement of Lemma 3.1, thus the
result follows as above. O

Lemma 3.4. Let f = f1 ®--- ® f, be a section of E* = E{ & --- @ E;.
Assume that f is a complete intersection. Let h = fr, © --- @ fr,, where
I={L,....,I,} c{1,...,r}. Then

(3.8) |l A B|f |22 Aulm AL A B fLPA Au
has an analytic continuation to Re A > —e that vanishes at A = 0.

Remark 4. The value at A = 0 corresponds to the current U AR A. . .ARF".
Since the R-part is of top degree according to Theorem 1.3 this product
should formally vanish by arguments similar to those in Remark 2. O

Proof. As in the proofs of the previous lemmas we start by a resolution of
singularities. Thus, the form (3.8) integrated against a test form ¢ is equal
to a sum of terms of the type

Qp0 = Oy, = (%W ~
[ P A o Pad) A S5 A n 0 Pad) A A G,
Hp, Hr Hy
where o; 4, a;, p; and q~5 are as above. Further, we can find a resolution
to a certain toric variety so that locally one of the monomials p1,..., u,
divides the other ones. Without loss of generality we may assume that p
divides all y1;'s. We expand 9(|uu1|**a?) by Leibniz’ rule. The term obtained

when 0 falls on a7 vanishes as in the proof of Proposition 2.1, so it is enough
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to consider the terms that arise when 0 falls on |o|?*, where o is one of the
coordinates in p.

We claim that the o-integral vanishes at A = 0. As usual, we observe that
the terms of (3.8) are of degree at most m — 1 in dZ;, where the -1 in this
case is due to the factor U”, so it suffices to consider test forms of codegree
at most m — 1. We assume that ¢ = ¢; A dzy, where ¢ is an (n,0)-form
and dzy = dzp, A ... ANdzp,, where p < n —m + 1. Then dz; vanishes on
the variety Y = f~1(0) for degree reasons, and accordingly I1*(dZ) vanishes
on II7'Y, and in particular on {o; = 0}. By arguments as in the proof of
Theorem 1.3 it follows that IT*(dz) must contain a factor ¢ or do since it
is a form in d7 with antiholomorphic coefficients, and hence the o-integral
vanishes as before. O

Remark 5. If f = f1, fo defines a complete intersection, then
= 1 - 1

A= () [ BIAPN £ ABIRP 2 A
h fo

is holomorphic at A = 0, see [13], as was first proven by Berenstein and Yger.
The result has been claimed to extend to any finite number of functions f;,
but we have found no proofs in the literature. It was recently verified to
be true in the case of three functions by Samuelsson [15]. His proof shows
that, in the three- (or more-) dimensional case, the question of analyticity
becomes a global problem in the resolutions, which makes it much more
involved.

Provided the Mellin transform of the residue integral is shown to be an-
alytic in A = (Aq,...,A;), most likely, similar arguments could be used to
prove that

t(A) := O|f | Ault AL AB|f1)PM Ault
is analytic in A. Note that t((A,...,A))[x=0 by definition is our current

R/ A ... AR/, Presuming t()\) to be analytic, we can give a soft proof of
Theorem 1.4, based on Theorem 1.1. Indeed, let

the, (V) = Of1 A,
and
1
fm’
where CF L and C'H of course stand for Cauchy-Fantappie-Leray and Coleff-

Herrera, respectively. With this notation the equality in Theorem 1.1 can
be expressed as

(3.9) th o (Vlazo =t () ro-

_ 1 _
thy(\) = 8|f1|”ﬁ Ao A B fn]?
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Now let f and g be sections of the bundles E] and E3, respectively, and
assume that f @ g is a complete intersection. By definition,

RI AR =t (V) At (Vazo,
and
RI®9 = 39 (N|r=o,
so we need to prove that
t6rL ) A tpr(Nlamo = 1% (V) ao-
If Re )\, is large enough, t&; (X2) is in L{ , and so by (3.9)
thpr () A g (02) =0 =t (M) At e (A2)|x, =0,
and analogously, if Re \; is large enough

th (A1) A tpr (A2) =0 = g (M) Aty (A2)a=o-
Now, by assumption

(A1, A2) =t (A1) A t2(Xa),

where e stands for either CFL or CH, is holomorphic at the origin, and
thus it follows that

téFL()‘) A t%‘FL()‘)‘AZO - téH()‘) A t%‘H()‘)b\:O’
but the right hand side is, by (3.9), equal to téel?&()\)hzo, and so we obtain
Theorem 1.4 for r = 2. However, the argument easily extends to arbitrary r,
since

O A AL D) A AT (O a0 =
O A AL A A () =0

by (3.9) if \;,j # i are large enough.

We should mention that the above method actually gives a proof of The-
orem 1.4 in the special case when f is of rank 2 and g is of rank 1. It follows
from Samuelsson’s result, [15], and the fact that ¢()\) indeed is holomorphic
if r = 2. The latter statement is not hard to verify, see for example [17]. O

4. AN EXAMPLE

We conclude this paper with an explicit computation, by which we en-
lighten the possibility of extending Theorem 1.4 to a slightly weaker notion
of complete intersection. Indeed, when generalizing Theorem 1.1, or rather
its line bundle formulation (1.6), to sections of bundles of arbitrary rank,
it is not obvious how one should interpret the assumption of f being a
complete intersection. In the formulation of Theorem 1.4 we require the
codimension of f~1(0) to be equal to the rank of the bundle E. A less
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strong hypothesis would be to just demand the f;’s to intersect properly,
that is, that codim f~1(0) = p; + ... + p, if p; = codim f;. However, the
following example shows that Theorem 1.4 does not extend to this case.

Ezample 1. Let fi = 22, fo = z120 and g = z23. Then

Yp=f0)={zn=0}, Y=g '(0)={n=0}U{zs=0}
andY =Y;NY, = {21 = 2 =0} U{z = 23 = 0}.
Note that Yy and Y, have codimension 1, and that Y has codimension 2.
Thus f and ¢ intersect properly, although they do not define a complete

intersection.
Let us compute (Rf A R9),. Adopting the trivial metric we get

sl = fie1 + foes = Z1(z1€1 + Z2€2) and |f|2 = |21|2(|21|2 + |22|2)7

so that _ _
f _ z1€1 + z9eg
z1(|21]? + |22?)
Let ¢ be a test form of bidegree (3,1) with support outside {zo = 0}. Then
Rf A R9.¢ is given by

u

= zZ1€e1 + zgeg = o\ es
ad 212)‘ 212—|- 222)‘ A\ A Olzozg|“* A —— A @|y=g =
[ BNl ) A P B A g

o[ H[A) ro[] nernesne

Note that the support of the current is on the zs-axis, as expected since ¢
has support outside the z3-axis.

To deal with test forms with support intersecting {z2 = 0} we need to
resolve the singularity of f at the z3-axis. Let U be the blow-up of C3 along
the z3-axis and let II : U — C2 be the corresponding proper map. We can
cover U by two coordinate charts,

O ={(r1,72,23); (11,7172, 23) =2 € (Cz}

and Qo = {(01, 09, 23); (01092,01,23) =z € (Cz}

In e1 + Tae
H*u{ = ﬁa
and thus
R/ ARTY = 9| |** A % A O|ima23** A %‘A:O =
2 .11 + 7 1
3 0Las) A S ML) A
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Let ¢ be a test form of bidegree (3,1); we can write ¢ as ¢; A dz, where
dz = dz1 Adze Ndzs and ¢ = @' (2)dZz1 + ¢%(2)dZs + ¢3(2)dZ3. Now [ RS A
RING = [ RW I A RW9 A II*¢. To compute the contribution from the
chart 1, let 5 = xII*¢, where x is a function of some partition of unity
with support in €2;. We may without loss of generality assume that x only
depends on |7;| and also that x(0,0, z3) = 1. Then we get that RTIART. ¢
is equal to

g/é)[ilg] /\61/\8[:—2] [z%] NesAxp® (11,172, 23) dZ3 AdT Ad(T17T2) Nd23 =
2

(271) 2 /goi’ (0,0, 23) —61/\63/\dZ3AdZ3—

2 1 1
2 [A A ] nemesns
where we have used the well known fact that
1 o2mi  OP!
[ 3[5] nwtents = = o)

Computing RS A R'9 in O, gives yet another contribution. Altogether
we get

w

(Rf ARY), = —é[zil] [i] A 5[%] Aeg Aes

-0l R[5 nernen+ g[S ] ol

Similar computations yield

e = o[ 4] o[ [L] e o[ ][] o

224 Llz3 21 % 23

1
T[] Aes nes.
2-L23

]AEQ/\eg.

For details, we refer to [17]. See also Theorem 5.2 in [18].
To conclude, Rf AR9 # R®9_ and hence Theorem 1.4 does not generalize
to the case of proper intersections. O

Acknowledgements: The author would like to thank Mats Andersson,
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RESIDUE CURRENTS OF MONOMIAL IDEALS

ELIZABETH WULCAN

ABSTRACT. We compute residue currents of Bochner-Martinelli type
associated with a monomial ideal I, by methods involving certain toric
varieties. In case the variety of I is the origin, we give a complete
description of the annihilator of the currents in terms of the associated
Newton diagram. In particular, we show that the annihilator is strictly
included in I, unless I is defined by a complete intersection. We also
provide partial results for general monomial ideals.

1. INTRODUCTION

Let f be a tuple of holomorphic functions fi,..., fi, in C* and let Y =
{fi=... = fm = 0}. If fis a complete intersection, that is, the codi-
mension of Y is m, the duality theorem, due to Dickenstein-Sessa, [6], and
Passare, [10], asserts that a holomorphic function h locally belongs to the
ideal (f) = (f1,- .-, fm) if and only if hRL, = 0, where R, is the Coleff-
Herrera residue current of f. In [11], Passare, Tsikh and Yger introduced
residue currents for arbitrary f by means of the Bochner-Martinelli kernel.
For each ordered index set Z C {1,...,m} of cardinality k, let R% be the
analytic continuation to A = 0 of

i df;
6|f|2)\/\z E 1%,

where |f|? = |f1|> + ... + |fm|>. Then R% is a well-defined (0, k)-current
with support on Y, that vanishes whenever k£ < codimY or k£ > min(m, n).
In case f defines a complete intersection, the only nonvanishing current,
R{l m} is shown to coincide with the Coleff-Herrera current.

The concept of Bochner-Martinelli residue currents was further developed
by Andersson in [1]. From his construction, based on the Koszul complex,
follows that hR% = 0 for all Z implies that the holomorphic function h

1991 Mathematics Subject Classification. 32A27,32A26.
Key words and phrases. residue current, Bochner-Martinelli formula, ideals of holo-
morphic functions, Newton polyhedron, Newton diagram.
1
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belongs to the ideal (f) locally. Thus, letting Ann R/ denote the annihilator
ideal, {h holomorphic, hR% = 0,VZ}, we have that

(1.1) Ann R/ C (f).

The inclusion is strict in general, and thus the currents R% do not fully char-
acterize (f) as in the complete intersection case. Still the ideal Ann R/ is big
enough to catch in some sense the “size” of (f). Recall that a holomorphic
function h belongs locally to the integral closure of (f), denoted by m, if
|h| < C|f] for some constant C, or equivalently if A fulfills a monic equation
h™+gih™™ 1 +...+ g, =0 with g; € (f)* for 1 < < r. In [11] it was proved
that hR% = 0 for any h that is locally in the integral closure of (f)*, where
k = |Z|, and thus we get

(1.2) (f)* C Ann R/,

where y = min(m,n). Now, combining (1.1) and (1.2) yields a proof of the
Briangon-Skoda theorem [5]: (f)* C (f). This motivates us to study the
ideal Ann R/.

In this paper we compute the Bochner-Martinelli currents R% in case
the generators f; are all monomials. Because of their simplicity and nice
combinatorial description monomial ideals serve as a good toy model for
illustrating general ideas and results in commutative algebra and algebraic
geometry, such as resolution of singularities and Briancon-Skoda type the-
orems, see [13]. On the other hand many results for general ideals can be
proved by specializing to monomial ideals. Recall from [11] and [1] that the
existence of (Bochner-Martinelli) residue currents indeed is proved by reduc-
ing to a monomial situation by resolving singularities. Monomial ideals are
therefore a natural starting point for investigating the inclusions (1.1) and

(1.2) and for producing examples of R%. A first result in this direction was
obtained in [11] (Proposition 3.1) where R{l’___’n} was computed explicitly
for monomial ideals generated by exactly n monomials.

Our main result, Theorem 3.1, gives a complete description of Ann R/ in
terms of the Newton diagram associated with the generators, when (f) is
a monomial ideal of dimension 0. In particular it turns out that Ann RS
depends only on (f), not on the particular choice of generators. Also, it
follows that we have equality in (1.1) if and only if (f) is a complete inter-
section and moreover that the inclusion (1.2) is always strict. The proof of
Theorem (3.1), given in Section 4, amounts to computing residue currents in
a certain toric variety constructed from the generators, using ideas originally
from Varchenko, [14], and Khovanskii, [8]. In Section 5 we provide partial
results for the case of general monomial ideals.
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2. PRELIMINARIES AND NOTATION

Let A be a set in Z"} and let 24 denote the tuple of monomials {2%}4ca,
where 2% = 2% ... 29 if a = (a1,...,a,). The ideal (2*) admits a nice geo-
metric interpretation as the set Ugca(a + R} ) C R™. Indeed, a holomorphic
function is in the ideal precisely when its support (supp Y, ¢q.2* = {a €
7%, pq # 0}) is in Usea(a + R ). The Newton polyhedron I't(A) of A is
defined as the convex hull of Usca(a + R}) C R® and the Newton diagram
I'(A) of A is the union of all compact faces of the Newton polyhedron. Recall
that a face of maximal dimension is called a facet. For further reference we
remark that the set of vertices of the Newton polyhedron is a subset of A,
see for example [15].

We will work in the framework from [1] and use the fact that the cur-
rents R% appear as the coefficients of full Bochner-Martinelli current in-
troduced there. We identify z4 with a section of the dual bundle E* of a
trivial vector bundle E over C" of rank m = | A| (the number of generators),
endowed with the trivial metric. If {e,}qca is a global holomorphic frame
for E and {€}}qca is the dual frame, we can write 24 = 3 _, 2%%. We
let s be the dual section ) . 4 2%, of z4. Also, we fix an ordering of A.

Next, we let

o Z ENA (ES)E_1
= - AR
where [24]% = 3,24 |7%|%, be the full Bochner-Martinelli form, introduced
in [2] in order to construct integral formulas with weight factors in a conve-
nient way. Then u is a smooth section of A(E @ Ty ;(C")) (where e, AdZ; =
—dz; A e,), that is clearly well defined outside Y = f~1(0), and moreover

Az A

has an analytic continuation as a current to Re A > —e. The (full) Bochner-
Martinelli residue current R*" is defined as the value at A = 0. Then R*"
has support on Y and R = R, + ...+ R, where p = codimY and p =
min(m,n), and where Ry € Df),k((C“,AkE), by analogy with the fact that
the current R% vanishes if |Z| is smaller than p or greater than p. We should
remark that Andersson’s construction of residue currents, using kernels of
Cauchy-Fantappie-Leray type, works for sections of any holomorphic vector
bundle equipped with some Hermitian metric. Observe that in our case
(trivial bundle and trivial metric), though, the coefficients of R*" are just
currents of the type Ré. Indeed, letting sp be the section ), 5 2%,, we
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can write u as a sum, taken over subsets B of A, of terms

sB A\ (gsB)k_l

uB = |2AJ2n ’
where k is the cardinality of B. The corresponding current,
(2.1) ANz Nup

evaluated at A = 0, denoted by RZBA or Rp for short, is then merely the

current R% with Z corresponding to the subset B, times the basis element
eB = M,cp €, Where the wedge product is taken with respect to the or-
dering. Henceforth we will deal with the Bochner-Martinelli currents rather
then currents R%.

Let us make an observation that will be of further use. If the section s
can be written as ps’ for some smooth function y we have the following
homogeneity:

(2.2) s A (8s)F71 = ks A (8s')F T,

that holds since s is of odd degree.

We will use the notation 9[1/f] for the value at A = 0 of d|f|**/f and
analogously by [1/f] we will mean |f|>*/f|x=o, that is just the principal
value of 1/f. By iterated integration by parts we have that

(2.3) / é[zlp] A gdz = %%w(oy

In particular, the annihilator of 9[1/2”] is (2?). The currents R%A will typi-
cally be tensor products of currents of this type.

3. MAIN RESULTS

Our main result is an explicit computation of the Bochner-Martinelli
residue current R*" in case Y is the origin. Before stating it let us introduce
some notation. We say that a subset B = {a1,...,a,} C A is essential if
there exists a facet F' of I't(A) such that B lies in F and if in addition B
spans R", that is det(ai,...,a,) # 0. It follows, when Y = {0}, that the
essential sets are contained in the Newton diagram I'(A). Indeed, Y = {0}
precisely when A intersects all axes in Z"™ and thus the only non-compact
faces of I'" are contained in the coordinate planes in Z". But if B is con-
tained in a coordinate plane, B can not span R". Also, when Y = {0}, all
points in ANT(A) are in fact contained in some essential set. Next, if B is
a subset of A, let o =Y a. Notice that if B is essential, then o lies
on nI. In fact, «®/n is the barycenter of the simplex spanned by B. We
are now ready to formulate our main theorem.
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Theorem 3.1. Let z4,A C 7" be a tuple of monomials in C" such that

{z4 = 0} = {0}, and let R* be the corresponding Bochner-Martinelli
residue current . Then
A
Y R,

BCA
where

1
af
1

1
]AAB[TE]AeB’
Zn

(3.1) Rp = Cp 5[

and where Cpg is a constant that is nonzero if B is an essential set and zero
otherwise.

An immediate consequence is that if B is essential then
B
Ann Rp = (zi11 ,...,zz‘f),
where Ann Rp just denotes the ideal of holomorphic functions annihilating
Rp. Note in particular that Ann Rg depends only on the set B and not on
the remaining A. Furthermore, since the basis elements ep are all different
it follows that

Amn R*' = ﬂ Ann Rp.
B essential

Thus, Ann R*" is fully determined by the Newton diagram I'(A) and the
points in A lying on it. In particular Ann R** depends only on the ideal, not
on the particular choice of generators. We also see that different monomial
ideals () and (z") give rise to the same annihilator ideal if and only if
ANT(A) =A'NT(A).

Furthermore, Theorem 3.1 implies that the inclusion (1.1) is strict unless
we have a complete intersection.

Theorem 3.2. Let z4,A C 7", be a tuple of monomials such that {z4 =

0} = {0}, and let R*" be the corresponding Bochner-Martinelli residue cur-
rent. Then

AnnR*" = (z%)
if and only if (2) can be generated by a complete intersection.

For the proof we need a simple lemma.

Lemma 3.3. Let B be an essential subset of A such that (z8) C AnnRp.
Then (2B) is a complete intersection.

Proof. Denote the elements in B by a;,7 = 1,...,7n and let > be the natural
partial order on Z". Suppose that (z) C Ann Rg. We have that 2% €
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Ann Rp precisely when one of the generators of Ann Rp divides z%, that is,
when

(ali,...,am) Z (Zalj,o,...,O) or

v

(aflia ... aa'm')

J
(O,Zagj,o,...,O) or
J

(@16, sani) > (0,...,0,)  anj).
J

This set of inequalities holds for all 1 < ¢ < n, and it is easy to see that this
implies first that agg # 0 for at most one k, which means that ay lies in one
of the coordinate axes, and second that there is at least one a, intersecting
each coordinate axis. Thus, B intersects all coordinate axes in Z", which in
turn implies that (z?) is a complete intersection. O

Proof of Theorem 3.2. We need to show the “only if” direction. Suppose
that (z4) = Ann R*" and let B be an essential subset. Clearly essential
subsets always exist, since otherwise R** = 0 and AnnR*" = (z4) is the
whole ring of holomorphic functions, which contradicts that ¥ = {0}. Now,
in particular () C Ann Rp, and by Lemma 3.3, (zP) is a complete inter-
section. Thus

(%) = AmnR*” = Amn Ry 2 AmR*" = (24) 2 (27),
where the second equality follows since Ann Rg only depends on B and not
on A. Hence (z7) = (2P) and the result follows. O

We give some examples to illustrate Theorems 3.1 and 3.2.

Ezample 1. Let
A= {a' = (8,0),a" = (6,1),a® = (2,3),a" = (1,5),a° = (0,6)} C Z*.

We identify the ideal (z4) with the set |J,c 4(a + R?) as in Figure 1, where
we have also depicted the Newton diagram I'. Such pictures of monomial
ideals are usually referred to as staircase diagrams, see [9]. The points in A
should be recognized as the “inner corners” of the staircase. The Newton
diagram T'(A) consists of two facets, one with vertices a' and a® and the
other one with vertices a® and a®, and thus we have the essential sets

{a,l,GQ}, {al’a3}’ {a2’a3}’ {a3’a5}’
with
a12 = (147 1),0{13 = (10,3),()(23 = (8,4),0{35 = (2a9)a
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A

T as

ai

>

FIGURE 1. The ideal (24) and the Newton diagram T'(A) in Example 1

FIGURE 2. The ideals Ann R*" (dark gray) and (z4) (light
gray) in Example 1

respectively. It follows from Theorem 3.1 that

A
Anmn R = (z%‘la 22) N (Z%O’ Zg) n (Z?a Zg) n (Z%a z%)a

which is equal to the ideal (214, 21029, 2823, 2223, 23), see Figure 2. Observe

that Ann R*" is given by the staircase diagram with o/ as “outer corners”.

Note also that AnnR*" does not depend on a*, which lies in the interior
of I'M(A). O
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ai

F1GURE 3. A complete intersection

Ezample 2. Consider the complete intersection {z% ,...,z%"}. The associ-
ated Newton diagram is the n-simplex spanned by

A={(a',0,...,0),...,(0,...,0,a™)}

and there exists only one essential set, namely A itself, with o = (a', ..., a").
Thus according to Theorem 3.1,

1 n

Anmn R*" = (2% 5. h2m ),
so the annihilator ideal is equal to (z*), which we already knew. Figure 3
illustrates the two ways of thinking of the ideal when n = 2; either as
a staircase with (a',0) and (0,a?) as inner corners or as a staircase with
o = (a',a?) as the (only) outer corner. O
FEzample 3. We should remark that not all monomial ideals arise as anni-
hilator ideals associated with monomial ideals. The idea is that the outer
corners of the staircase of an annihilator ideal must lie on a hypothetical
Newton diagram. Indeed, from the discussion just before Theorem 3.1 we
know that each a” corresponding to an essential set B lies on nI'. In other
words, the lines joining adjacent outer corners must lie on the boundary of
a convex domain above the staircase, and thus a necessary condition is that
the “slope” of the staircase decreases while we are descending it.

For example, consider the ideal

_ 5 4.2 4 5
I= (21,25122,21252,2’2)

with staircase diagram as in Figure 4, where we have also marked the slope.
Clearly, the outer corners cannot lie on the boundary of a convex Newton
polyhedron, and thus [ is not an annihilator ideal. O
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[ 3

0,.5). o ¢ .I.

0(1’04) .

- (452)

(5,0 !

F1GURE 4. The ideal in Example 3. The thick lines illustrate
the “slope” of the staircase.

Remark 1. Observe that adding an extra generator to an ideal (z4) does
not necessarily make the corresponding annihilator ideal smaller or larger.
However, with a fixed Newton diagram an extra generator can only make
the annihilator ideal smaller. In fact, given I'; Ann R*" is maximal if 4 is
chosen as the vertex set of I' and minimal if A is all integer points on I', as
we will see in Example 4. O

Let us now consider the inclusion (1.2). We start by interpreting the left
hand side in case f is monomial.

Lemma 3.4. The integral closure of the monomial ideal (z*) is the mono-
mial ideal generated by 2%, a € T (A).

The result is well known from algebraic contexts, see for example [12].

Next, we claim that the ideal (24)" is generated by 2z%,a € rT'*(A4). The
ideal (24)" is generated by z%a € A+ ... + A (r times), so we need to
show that the Newton polytope of A + ...+ A is equal to rI'"(A). But
A+...4+ADrAand thusTT(A+...4+4A4) DT (rA) = rI't(A4). On the other
hand A+...+ A CTT(A)+...+TT(A) = r['"(A), where the equality holds

since 't (A) is a convex set, and so it follows that Tt (A+...+A) C rI'"(A).

Corollary 3.5. Suppose n > 2. Let z* be as in Theorem 3.1. Then the

integral closure of the ideal (zA)" is strictly included in Ann R,

Observe that Corollary 3.5 fails when n = 1. Then, in fact, (z4) =
Ann R*" = (24).

Proof. Let (b1,0,...,0) be the intersection between I'(A) and the z;-axis
and let f = 21, Then (nb; — 1,0,...,0) ¢ nl'T(A) and thus f ¢ (z4)".
However, f € Ann Rp for all essential B. To see this, observe that the
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~

FIGURE 5. The ideals (2) (light gray) Ann R** (medium

gray) and (24)% (dark gray) in Example 1

simplex spanned by the intersection points between I' and the axes sepa-

rates I' from {z; = b1}, and so I intersects the hyperplane {z; = b1} only

at the point (b1,0,...,0). This implies in particular that o < nb; — (n—1)
B

for all essential B and thus f € (z? ') C Ann Rp. Hence we have found a

function f in Ann R*" \ (z4)". O

Another, probably more illuminating, way of thinking of the ideals is in
terms of staircase diagrams as in the examples above. The fact that the

ideal (24)" is generated by {2%},a € nI'* means that its staircase lies just
above n'. On the other hand we know that the outer corners of the staircase
of Ann RzA, the o?, lie on nI" and therefore the staircase must lie under nT.
Thus the staircase of Ann R*" is “strictly lower” than the staircase of (z4)"
and so the corresponding inclusion of ideals is strict. For an illustration,
see Figure 5, where we have drawn the staircases of the three ideals (z4)
Ann R*" and (24)" for A from Example 1.

7

Ezample 4. Let T’ be the simplex with vertices (3,0) and (0,3). In Fig-
ure 6 we have drawn the staircases of the ideals (z4) (light gray), Ann R**
(medium gray) and (24)2 (dark gray) for different A = A; with T" as Newton
diagram; more precisely for A; = {(3,0),(0,3)}, 42 = {(3,0),(2,1),(0,3)},
and finally for A3 = {(3,0),(2,1),(1,2),(0,3)}. We see that Ann R*" de-
creases when we add points to A. In particular integrally closed ideals, that
is ideals I such that I = I, have the smallest annihilator ideals. O
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N

N

Ao N

FIGURE 6. The various ideals in Example 4

4. PROOF OF THEOREM 3.1

The proof of Theorem 3.1 is very much inspired by the proof of Lemma 2.2
in [11] and the proof of Theorem 1.1 in [1]. We will compute R*" as the push-
forward of a corresponding current on a certain toric variety X constructed
from the Newton polyhedron I'*(A). To do this we will have use for the
following simple lemma, which is proved essentially by integration by parts.

Lemma 4.1. Let v be a strictly positive smooth function in C, ¢ a test
function in C, and p a positive integer. Then

ds Nds
Ao [ sl =5 E

and p
= S
Ao [N el
both have meromorphic continuations to the entire plane with poles at ratio-
nal points on the negative real axis. At A = 0 they are both independent of v
and the second one only depends on the germ of ¢ at the origin. Moreover,
if p(s) = 59Y(s) or ¢ = ds A1, then the value of the second integral at A = 0
18 zero.

Throughout this section we will write 1 for the unit vector (1,1,...,1).
We will regard the elements in A as column vectors and denote by B the
matrix with the vectors in the set B as columns. Also we will use the
notation &; for oy A ... A1 A1 A Ay

Let us start by describing X, following [4]. Let S be the set of normal
directions to the facets of I'" represented by vectors p with minimal integer
non-negative coefficients. Then § provides a partition of the first orthant
of R” into a finite number of distinct n-dimensional cones. Such a system
of cones with the same apex together with their faces is called a fan. We
say that the fan is generated by S and we denote it by A(S). By techniques

due to Mumford et al., [7], S can be completed into a system S of vectors P
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such that if p1,. .., p, generate one of the n-dimensional cones of A(S), then
det(p1,...,pn) = £1. Such a fan is called regular. We will construct X by
gluing together different copies of C", one for each n-dimensional cone of
A(S). Let 7 be such a cone and denote its generators by p1,...,p,. Let U be
the corresponding copy of C* with local coordinates ¢t = (¢1,...,t,). Let P
be the matrix with p; = (p14,...,pni) as rows and let II be the mapping

nm:-u — C
t — tP,
where t* is a shorthand notation for (/' .- #pmt ... 0 ... ¢hrm),

Two points ¢t € Y and t' € U’ are identified if the monoidal map II'~1 oII :
U — U’ is defined at ¢ and maps ¢ to t'. Gluing the charts U together induces
a proper map I : X — C" that is biholomorphic from X \ IT=}({z1 -+ 2, =
0}) to C* \ {21 --- 2z, = 0}, that is, outside the coordinate planes. It holds
that II=* ({21 - - - 2, = 0}) is a set of measure zero in X, and moreover I~ (0)
consists of a system of various CP"~*, corresponding to i-dimensional cones
of the fan A(S). In particular, each vector p, that generates a 1-dimensional
cone, corresponds to a CP" 1, denoted by S, and obtained by gluing together
parts of the charts from the cones determined by n-dimensional cones that
have p as one of its generators. In fact, if the vector p determines the
coordinate ¢; in U, then S, is covered by the {¢; = 0}-part of U.

Observe that R*" = R, since Y = {0}. Therefore, we only need to
compute the currents Rp when B is a subset of cardinality n. For Re A
large enough, (2.1) is integrable and since II is biholomorphic outside a set
of measure zero it holds that

0 Nug n g = [ (@A™ Aug) AT,

Cn X

if ¢ is a test form of bidegree (n,0). It is easy to see that the analytic
continuation to Re A > —e of II*(9]z4|** A up) exists in each chart U, ; we

will actually compute it below. Thus, because of the uniqueness of analytic
continuations,

Rp := ﬁ*(é\ZAP/\ AuB)|r=0

defines a (globally defined) current on X’ such that II.Rg = Rp. We will
start by computing Rp in a fixed chart Uy parametrized by II corresponding
to the cone 7.

Claim 1. The current ITBB vanishes in Uy whenever B is not contained in

a facet whose normal direction is one of the generators of 79. Moreover Rp
vanishes if det B = 0.



RESIDUE CURRENTS OF MONOMIAL IDEALS 13

In particular, a necessary condition for Rp not to vanish is that B is
essential.

Proof. First, note that the pullback II* transforms the exponents of mono-
mials by the linear mapping P;

(41) II*2% = H*Ztln L. zgn _ t€11a1+...+p1nan L. t,,plnla1+"'+pnna" _ tPa'

It is well known that for some ag € A, IT*z% divides IT*2? for all @ € A, and
moreover, in view of (4.1) one easily checks that ag has to be a vertex of
I'*(A). Using this we can write

IT*s = 7%,
where s’ is the nonvanishing section
s = Z t*P(a—ao)ea’
acA
and furthermore
I [z = [P0 (),

where

I/(t) _ Z |t|2P(a—ao)n

acA

is nonvanishing. By homogeneity, see (2.2),
(s A (53)"_1) = rPaog! A (53')”_1,

and thus

sy A (0s') 1

S A/142A\Pag . A
(4.2) Rp = 0(|t| V) tnPaoy (t)n

A=0

By Leibniz’ rule and Lemma 4.1, (4.2) is equal to a sum of currents

[ 1 1 shs A (9s'g)" L
4. . | AZE B
( 3) a [t?m'ao :| ® |:]-_[];£Z t;_LpJ -ag :| U(t)n
We need to compute s’z A (0s’3)" 1. Denote the elements in B by by, ..., b,

in such a way that eg = e, A... A ep,. Furthermore, let C' be the matrix
with columns Pb; — Pag so that

sy = Y BN ey,
1

and let D; be the determinant of C with row ¢ replaced with the unit vector 1.
Then we have the following lemma.
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Lemma 4.2. We have that

(4.4) sy A\ (08g)" 1)et Z )it D ' Aeg,
where
dt; dt dt;_ dt; dt,
NP iy a0
t; ty ti1 ti11 tn

Observe that all ¢; in the denominator are cancelled since (4.4) is in fact
smooth.

. __ FC1i TCni C_ dt ! n ]
Proof. Let oj = 17"+ --tnmebj and f; = T*. Then sj3 = >_j—1 @ and

0s'y = Z Cij - N 5 - ctpiey, = Z Zcijﬂi A aj.
(]

j=1i=1 j=1li1=1
Thus we get

n n

853 Za] ZZC”’BZ /\Oéj)n*1 =

j=11i=1

DD Co@r@  Cotmyrm) @) A Bo() A r@y Ao A Bon) A Gy =

ceS™ TeSn

D D Colr) CotmyrtmBa2) A e-- Aoy Nz A Aty =

gES™ TEST

D 2 (U o)) Cotmyrtm Bo(z) A Aoy Aom A A =

geS™ TEST

Z Z D;(— )Sgn060(2)/\---Aﬁg(n)/\an/\.../\al:

1=1 geS";0(1)=4

n
S (= DD (-1 B AL Bi e ABu A A Ao =
i=1
@012 )y~ D% dtz e
Here S™ just denotes the set of permutations of {1, ceey M) O

Now (4.3) is equal to

1 —1)! D, ¥C1 gt
:| (n ) 7 _’L/\eB’

= 1
45 0|0 [H#i ) MO LI
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that can vanish for two reasons. First, by Lemma 4.1, (4.5) vanishes when-
ever the numerator contains a factor ¢;, that happens if ¢;; > 0 for some j,
which means that Pb; has a greater ¢;-coordinate than Pagy. Thus, a neces-
sary condition for (4.5) not to vanish is that P(B) is contained in the facet
of P(I'") parallel to the coordinate plane {¢; = 0}; in other words, since P is
invertible, that B is contained in the facet F; of I'" with normal direction p;.
Hence the first part of Claim 1 follows.

Second, (4.5) vanishes if D; = 0. Assume for simplicity that 4 = 1. Then
p1 - a is constant and equal to p1 - ap on Fy, that is, (PB)y; = (Payg); for
all 7, and we get

1 ... 1 1 1
D C21 't Cop (PB)21 — (Pag)2 +++ (PB)2n — (Pag)2
1= . .= ) ) =
Cpl *** Cpp (PB)nl - (PGO)n tee (PB)nn - (PGO)n
1 1 (PB)11 (PB)ln
(PB)2r == (PB)an| 1 | (PB)a -+ (PB)n | det(PB)
: : (Pao)1 : : ~ (Pag)1
(PB)p1 -+ (PB)py (PB)p1 -+ (PB)pn
But since P is invertible (Pag); # 0 and det P # 0. Thus D; = 0 if and
only if det B = 0. O

Note that it follows from the proof of Claim 1 that Rp has support on S,
if B is contained in the facet with normal direction p. Indeed EB survives
precisely in the charts corresponding to cones 7 with p as one of its generators
and in each such chart it has support on the part covering S,,.

Now let us fix a set B contained in the facet with normal direction p;, so
that (4.5) is nonvanishing, and compute the action of Rp on the pullback
of a test form ¢ = ¢(z) dz of bidegree (n,0). Here dz is just a shorthand
notation for dz; A...Adz,. Let {x;} be a partition of unity on X subordinate
the cover {U;}. It is not hard to see that we can choose the partition in
such a way that the x, are circled, that is they only depend on |¢1],..., |t,].
Now ﬁB =>, XTEB- We will start by computing the contribution from
our fixed chart Uy where Rp is realized by (4.5).

Since R has support at the origin it does only depend on finitely many
derivatives of ¢ and therefore to determine Rp it is enough to consider the
case when ¢ is a polynomial. We can write ¢ as a finite Taylor expansion,

N %a800) 4 5
“0_2[; il 2 e
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where a = (@1, ., an), B=(B1,---,bn)
S SUR C R
A Z I = R

and o! = a1!--- !, B' = B! -- B,! with pullback to Uy given by
Pa,p PazPg
o= T Eederei
A computation similar to the one in the proof of Lemma 4.2 yields
I*dz = det P tF=D1 4t
Hence XTﬁB'H*¢ is equal to

I 1 1 LHC-D1 i A e
o] ] 0[] N Eorcn,
4 [zt v(t)

J

©a,8(0) pq 7P, (P—I)1 ©a,5(0)
xr(t) i Tl tPatPhy dt =K ZB:I as N oG OB
a’ ’

where K = (n — 1)!D; det P and

3 1 xr(1) EPI./B T
(4.6) lop = /3[m] ® [Ma,ﬁ]T)fl Adt; A dt,
%

and where p, g is the Laurent monomial in ¢; and #; for j #
fas = Htjp.j-(a—klfnao)—l E;?j-(ﬂ—t—Bl—nao)—l.
J#i

Observe that p; - (8 + B1 —nag) —1 > 0 so there are no ¢; in the denomina-
tor. Recalling (2.3), we evaluate the ¢;-integral. Since v and x, depend on

[t1],- .-, |tn| it follows that gtf A\ —o = 0 for £ > 1 and thus (4.6) is equal
to
(4.7) 2 / XrWlu=olras] o\
i Y=o
if
(4.8) pi-(nag—a—1)+1=1
and

and zero otherwise. Moreover, for symmetry reasons (4.7) vanishes unless
(4.10) pj-(@+1—mnay) —1=p;-(6+B1l—na)—1
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for j # 4. From the discussion just before Theorem 3.1 we know that the
facet containing B is compact, which means that its normal vector has
nonzero entries. Thus (4.9) implies that 8 = (0,...,0). Using the fact that
pi-a = p;-ag for all @ € B we can rewrite the left hand side of (4.8) as
pi-(Bl—1—a—1)+1 and thus summarize the conditions (4.8) and (4.10)
on « as

(4.11) P(a+1) = PB1.

But, since P is invertible there exists exactly one « that fulfills (4.11), namely
a = (B — 1)1, which is precisely «® — 1. With these values of o and 3 the
Laurent monomial y, g is nonsingular and so the integrand of (4.7),

ary g [ Xl TP
t v(t)"|t:=0
becomes integrable.

To compute EB.ﬁ*QZS we want to add contributions from all charts. How-
ever, Uy covers the support of Rp except for a set of measure zero, since
Rp has support on S,,, and moreover all integrands that appear are of the
form (4.12) and therefore integrable. Thus Rp.II*¢ is equal to

dt; A dt;

/ ST ()24 A ug) A xo 1T
X T

~ /A ~ PaB -1 0(0)
I (@A Aug) ATIG| = Cp “2 28 e,
/MO @R Aug) AT, =Cp — 1 5—es
where
. |t:|2(pj - (B1—nag)—1) —_
Cp =2miK | il dt; A\ dt;.

& (PCaea [Tt |20 temeod)n
Hence Rp is of the form (3.1) and the result follows.

5. GENERAL MONOMIAL IDEALS

If the zero variety of z* is of positive dimension the computations of R
get more involved. Recall that in general R = R, +...+ Ry, where p =
codimY, g = min(m,n) and Ry € Dé),k((C",AkE). Parts of the top degree
term R, can be computed by the techniques from the proof of Theorem 3.1.
Our method for dealing with the terms of lower degree, though, is to perform
the computations outside certain varieties, where some of the coordinates
are zero. This amounts to projecting A and brings us back to the more
familiar top degree case in a lower dimension. The price we have to pay is
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that we miss parts of C*. More precisely, we will compute the current Ry
outside the (k + 1)-dimensional variety

Vk = U ﬂ Hi,
Z,Z|=k+14€Z

where H; denotes the hyperplane {z; = 0}. However, it turns out that Ry
will not carry any essential information on such “small” varieties. To be
precise, we have the following lemma, which can be proved analogously to
the proof of Lemma 2.2 in [3].

Lemma 5.1. Let hy,...,hs be a tuple of holomorphic functions and let
Yy = {h1 =...hs = 0}. Suppose that codimY, NY >k . Then the current
|h|22 Ry, where |h|2 = |h1|? + ... + |hs|?, has an analytic continuation to
Re)y > —€ and

R[22 Rg[xy=0 = Ri-

It follows, in particular, that to annihilate Ry it suffices to do it outside
Vi (or any variety of codimension k+1). Indeed hRy = 0 outside V}, implies
that hR; = 0.

Before stating our result, a word of notation: For Z = {i1,...,ix} C
{1,...,n}, let Tz be the projection

Tr:Z" — Z*
(a'la""an) = (a"ila"'aaik)'
We say that T7(B) is essential if T7(B) is contained in a facet of 't (Tz(A))
and if T7(B) spans R/ZI.

Theorem 5.2. Let z4, A C 7", be a tuple of monomials in C*, and let

R =3 Rg

BCA
be the corresponding Bochner-Martinelli residue current. Then outside Vg,
Rp = Z Rp 1,
IC{1,..n},IZ|=|B|

where the current Rpz1 vanishes unless Tr(B) is essential. Moreover if
Tz (B) is essential and contained in a compact facet of TV (T (A)), then

(51) Rez=Crzln® N\3[—s] Aes,
1€ Z; t

where 1 denotes the z;,1 ¢ T, and Cpz(n) is a smooth function not identi-
cally equal to zero.
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Several remarks are in order. First, an immediate consequence is that

aoB
Ann RB,I = (Z,i ¢ )iEI
if Rp 1 is of the form (5.1), since annihilating such a current clearly is equiv-

alent to annihilating the /\iezé[%] part. Moreover the support of (5.1)
Z; i

is the set Njez{z;i = 0}. Note that all the computable Rp 7 have different
supports.

Remark 2. Observe that adding elements to A that lie in any of the non-
compact facets of I'"(A), not contained in any coordinate plane, gives rise
to new essential sets. For example we can add redundant generators to (z4)
and thus in general Ann R*" is not independent of the choice of generators
as in the case of a discrete zero variety. O

Remark 3. Theorem 3.1 is just a special case of Theorem 5.2. Let us say a
word about how to see that the currents of lower degree vanish when Y is the
origin. This hypothesis means precisely that A intersects all axes, which in
turn implies that the image of A under any projection 77, |Z| < n, contains
the origin. However, if 0 € A, the Newton polyhedron I't(A) equals the
first orthant and there are no essential sets; note that this corresponds to
the case when f contains a nonvanishing function. Thus R = Z‘ Bl=n Rp,
where Rp = Rp1,.n) and Theorem 3.1 follows. Of course, by slightly
refined arguments one can see how the currents Ry, k < codimY vanish in
general.

We should also mention that Theorem 5.2 includes Proposition 3.1 in [11]
except that the smooth contributions Cp 7 are not made explicit. O

Remark 4. By Theorem 5.2 we can extend Theorem 3.2 to hold for a much
larger class of ideals. Recall that a crucial point of the proof of Theorem 3.2
was the existence of essential sets. If the Newton diagram of A is of dimen-
sion n — 1, though, we can always find essential sets, for example take the
vertices of one of the facets, and the proof applies immediately. In fact, one
can show that Theorem 3.2 holds unless I'(A) is not parallel to any of the
coordinate planes. Yet, there are ideals for which Theorem 5.2 does not give
enough information to decide whether the inclusion (1.1) is strict or not,
as we will see in Example 6. Still, in this particular case, one can show by
explicit computations that the annihilator ideal is strictly included in the
ideal and we believe that Theorem 3.2 holds for monomial ideals in general,
although we do not know enough to prove it. O

Let us illustrate Theorem 5.2 with some simple examples.
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(0;1)
[ .o

.
Py >

FIGURE 7. The ideals Ann R*" (dark gray) and (z4) (light
gray) in Example 5

Ezample 5. Let A = {a' = (6,1),a®> = (3,2),a®> = (2,4)}. There are
two essential subsets of A, {a',a?} and {a? e}, with o2 = (9,3) and
o® = (5,6), respectively. Moreover, I'*(T(13(A)) is the interval [2,00) and
consequently I'(T{;3(A4)) = {2}. Thus the only set such that its image
under Ty is essential is {a3}, with a® = a3, and according to Theorem 5.2
Ann Rygsy 11y = (2?). Similarly, projecting A on the second axis yields one
current, Ry,1y oy, with annihilator (22). Altogether we get

AR = (20,23) N (2, 28) N (23) N (z2),

that is equal to (220, 2723, 2225), see Figure 7. Observe, apropos of Re-

mark 2, that adding a point to A in any of the noncompact facets gives a
new essential set and thereby essentially changes R*. O

In view of Example 5 it should be clear that Theorem 5.2 actually gives
a complete description of Ann R*" in case n = 2, provided we choose a

minimal set of generators (or at least avoid to pick redundant generators
from the unbounded facets of I'"(A)).

Ezample 6. Let T be the ideal (z4), where A = {a' = (1,0,1),a®> =
(0,1,1)} C Z3. The codimension of {* = 0} is 1 and thus I is not a
complete intersection (nor can be defined by one). Note that the set A is
to small to be essential, whereas the image of A under any projection to Z?
is, as shown in Figure 8. Still, Theorem 5.2 gives the annihilator ideal only
for one of the corresponding currents, namely Ann R, (191 = (21,22). In
both of the other cases the projection of A lies in a noncompact facet of
the Newton polyhedron. Furthermore, projecting A to Z yields the currents
Rya1y,43y and Ry,2y ¢33, both with annihilator (z3). Observe that the inter-
section of the computable currents is precisely I. Thus we have found an
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A A A

I (T 93(4))

I+ (Ty13(4))

I Ty (4))

a? a? a! a? a!

[ . . . L 3 L
\al . . .

FIGURE 8. The image of A under the various projections to
Z? in Example 6

example of an non-complete intersection where Theorem 5.2 does not give
enough information to decide whether the inclusion (1.1) is strict or not.
In this simple example, however, it is easy to compute the remaining parts
of R?" and see that the inclusion is indeed strict. O

Proof of Theorem 5.2. We start by considering the term of top degree,

R,= Y  Rs,

BCA,|B|=n

for which the result follows easily from the proof of Theorem 3.1. To see this,
observe first that the proof of Claim 1 does not depend on the codimension
of Y. Thus we conclude that R = 0 unless B is essential.

Next, suppose that B is contained in a compact facet Fp of I'T with
normal direction p;. As in the proof of Theorem 3.1 let Uy be a chart
parametrized by II, determined by the cone 7y that has p; as its ith generator.
Recall from the proof that the support of Rp in Uy is given by {t; = 0}.
That F'g is compact means precisely that all entries of p; are strictly positive,
which implies that II({p; = 0}) = {0}. Consequently, when computing Rp
in Up, we only need to consider it acting on test forms ¢ = ¢ dz, where ¢
is a polynomial. Hence the rest of the proof of Theorem 3.1 applies, and we
get that Rp = Rp (1, n) is of the form (3.1) that is equivalent to (5.1) in
case k =n.

We will compute the terms of lower degree by looking outside certain
coordinate planes, which will correspond to projections of A. More precisely,
to determine R; we will look where n — k of the z; are nonzero. To do this
let us fix Z = {i1,...,ix} C {1,...,n} and let M7 be the set where z; is
nonvanishing if ¢ ¢ Z, that is

Mz = (| H)C.
i¢T
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Denote the z;,i € Z, by ¢ and the z;,7 ¢ Z, by n and write 2* = (%n%,
where a; and a;, are the images of a under T7 and T;c, respectively. Let A¢
and A, denote the corresponding images of A, and let ¢ be a test form of
bidegree (n,k) with (compact) support in Mz. Now Ry acting on ¢ is the
analytic continuation to A = 0 of

(as)k 1
[ 31 A A Ao
that is equal to a sum, taken over B such that |B| =k, of terms

8 —1
(5.2) //mAW ”ﬁ&ﬁ) A(C,n) d¢ Adij Ady.

It is easily checked that Ry vanishes unless ¢ is of the form ¢((,n) dijAdnAdC.
We can now compute the inner integral of (5.2) as in the top degree case
(with A¢ in (C’g) Indeed, since 7 is nonvanishing, we can regard z# as the
monomials ¢4¢ times the parameters n7. It follows that, at A = 0, (5.2)
vanishes unless T7(B) is essential, and moreover, if Tz(B) is contained in a
compact facet of I'(Tz(A)), then the inner integral is equal to

Cpz(n) ® 6[ ! ] /\8[ ! ]/\eB/np(g n) d¢,
% Ckk

where Cg 7 depends smoothly on 7.
In other words, if we let Rp 7 be defined by (5.2) (meaning that its action
on a test form ¢ is the value of (5.2) at A = 0), then Rp 7 is of the form (5.1).
When looking in M s for each index set J of cardinality k we miss

U M= U (U=
T T|=k T, T\=k i¢T
N U#w= U [ H

T\ T|=ki¢T T, T|=k+1i€T

that is precisely V. Clearly each current Rp 7 extends to J 7,17]=k Mz, In

fact Rp z has support only in Mz. Thus outside V;, we have Ry, = ) Rp 1,
where the Rp 7 are of the desired form and we are done. O
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NOETHERIAN RESIDUE CURRENTS

MATS ANDERSSON & ELIZABETH WULCAN

ABSTRACT. Given a coherent ideal sheaf J we construct locally a vector-
valued residue current R whose annihilator is precisely the given sheaf.
In case J is a complete intersection, R is just the classical Coleff-Herrera
product. By means of these currents we can extend various results, pre-
viously known for a complete intersection, to general ideal sheaves. We
get a residue characterization of the ideal of smooth functions gener-
ated by J. If J is a polynomial ideal we get an integral formula that
for all polynomials p of a given degree realizes the membership as soon
as p belongs to J. By integral formulas we also obtain a residue version
of the Ehrenpreis-Palamodov fundamental principle. Analogous results
hold true also for a coherent subsheaf of a locally free analytic sheaf.

1. INTRODUCTION

Let J be a primary ideal in the local ring Qg of germs of holomorphic
functions at 0 € C" and let Z be the associated germ of a variety. There is
a finite collection of holomorphic differential operators L1, ..., L,, so-called
Noetherian operators, such that a function ¢ € Oy belongs to J if and only
if

(1.1) Lip=-=L,p=0 on Z

If J is an arbitrary ideal one obtains a similar description after a primary
decomposition J = NiJx. The existence of Noetherian operators (for poly-
nomial ideals) is one of the keystones in the celebrated fundamental principle
due to Ehrenpreis and Palamodov, [27] and [39]; for an accessible account of
these matters, see [17] and [32]. In one complex variable, a local ideal J is
just the set of holomorphic functions that vanish to a given order k at 0, and
it is described by the Noetherian operators £; = §7/927, j = 0,...,k — 1.
In this case the equalities (1.1) can be collected elegantly in the simple re-
quirement that ¢ annihilates the residue current R = 9(1/2%). There is a
well-known multivariable generalization of R. Let h = hq, ..., hy,, be a tuple

1991 Mathematics Subject Classification. 32A26, 32A27, 32C35.
The first author was partially supported by the Swedish Natural Science Research
Council.
1
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of holomorphic functions at 0 € C" such that their common zero set Z has
codimension m, and let
=1 =1

be the Coleff-Herrera product introduced in [22]. It was proved indepen-
dently by Dickenstein-Sessa, [25], and Passare, [40], that a holomorphic
function ¢ is in the ideal J(h) generated by hi, ..., hy, if and only if the cur-
rent ¢R2‘h vanishes, i.e., ¢ belongs to the annihilator annRgh. Since Rgh has
supporton Z, ¢ € annRZh means, roughly speaking, that certain derivatives
of ¢ vanish on Z. Therefore it seems natural to say that Ri‘h is a Noether-
ian residue current for the ideal J(h). (Our precise definition of Noetherian
residue current is given below.)

In the literature this characterization of J(h), i.e., J(h) = annRP, is
often referred to as the duality principle, but we will restrict this term
to the (stronger in one direction) fact, also proved in [25] and [40], that
¢ € J(h) if and only if ¢R,; vanishes on all test forms that are 0-closed in
a neighborhood of Z.

The Coleft-Herrera product Rgh has a variety of important applications,
and it is therefore desirable to find analogues for more general ideals. Given
any ideal J one can find a finite tuple v = (7y1,...7,) of so-called Coleff-
Herrera currents such that I = anny = Njann+y;; this is in fact closely related
to the existence of Noetherian operators, see [19]. (One should mention that
there are constructive ways to find Noetherian operators for a polynomial
ideal via a choice of a Grobner basis, see, [7], [38], [45], and [23].) However,
much of the utility of Rgh depends on the fact that it is quite explicitly
constructed from the generators h; of the ideal J(h) and that it fits into
various integral representation formulas, e.g., division-interpolation formu-
las. Therefore one should look, given a general ideal, for an analogue of
the Coleff-Herrera product that also shares these additional properties to
some extent. One step in this direction was achieved in [26] where each
analytic functional annihilating a Cohen-Macaulay ideal J is represented
by a smooth form times a quite explicit Coleff-Herrera product. Explicit
(in terms of generators) residue currents of Bochner-Martinelli type related
to quite general ideals are also used in [42] and [13]. Inspired by [42], the
first author introduced in [1] a vector-valued residue current R" for an arbi-
trary tuple h, based on the Koszul complex induced by h, with the property
that R" has support on Z and
(1.3) TR« J(Rymntmn) ¢ annRh C J(h),
where m is the number of generators and I denote the integral closure of
the ideal I. In particular, (1.3) immediately implies the Briang¢on-Skoda
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theorem, [21]. In the case of a complete intersection R coincides with R?,
so the rightmost inclusion in (1.3) is an equality, but in general the inclusion
is strict; recently the second author has proved, [46], that in case of mono-
mial ideals of dimension zero, the inclusion is always strict unless J(h) is a
complete intersection.

Using the Buchsbaum-Rim and the Eagon-Northcott complexes generated
by a mapping h: O™ — OF", the construction in [1] was extended, [4]
and [5], and in the case when codim J(det h) = m —r+ 1, the annihilators of
the residue currents so obtained coincide with the module J(Im &) and the
associated determinantal ideal J(det h), respectively. These constructions
are actually global, so if h is globally defined, then the annihilators of the
global residue currents coincide with the corresponding coherent sheaves.

The purpose of this paper is to extend these ideas to obtain what we
will call a Noetherian residue current for a general coherent ideal sheaf (or
coherent subsheaf of O®"), and provide some applications, previously known
in the case of a complete intersection. The basic philosophy is that to get all
necessary information of an ideal one needs generators not only for the ideal
itself but also for all higher syzygies, i.e., a resolution of the ideal, cf., [29].
Our Noetherian residue currents will be constructed from a resolution of the
ideal; in simple cases, as a complete intersection, one can easily construct a
resolution from a (minimal) set of generators of the ideal.

To begin with we consider an arbitrary complex of Hermitian holomorphic
vector bundles over a complex manifold X,

(1.4) 0 Ey 2% .. LB, 2 B Y R,

that is exact outside an analytic variety Z of positive codimension. To this
complex F, we associate a current R = R(F,) taking values in End(®yEy)
and with support on Z. This current in a certain way measures the lack of
exactness of the associated complex of locally free sheaves of O-modules

(1.5) 0— O(En) — - = O(E1) = O(Ey).

Let R’ denote the component of R that takes values in Hom (Ey, ®E}). Our
first main theorem states that (1.5) is exact if and only if R = 0 for £ > 1
(Theorem 4.1). If this holds we say that R = R is a Noetherian residue for
the analytic subsheaf J = Im (O(E1) — O(Ejy)) of O(Ey) generated by fi.
Our second main result (Theorem 4.3) states that if R is Noetherian, and
ann(O(Ey)/J) is nonzero, in particular if J is a nonzero ideal sheaf (i.e.,
rank By = 1), then a holomorphic section ¢ of O(Ey) is in J if and only
if the current R¢ vanishes; this fact thus motivates the notion Noetherian
residue current. In case ann(O(Ey)/J) = 0 a similar characterization holds
except that an additional compatibility condition is needed.
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If J is any coherent subsheaf of some locally free sheaf O(Ey), then at least
locally O(Ey)/J admits a resolution (1.5), and if we equip the corresponding
complex of vector bundles with any Hermitian metric we thus locally get a
Noetherian residue current for J. In case J C O(Ep), rank Ey = 1, is
defined by a complete intersection, the Koszul complex provides a resolution,
and our Noetherian residue current so obtained is just the Coleff-Herrera
product, see Section 5.

To some extent, the Noetherian residue current depends on the choice
of resolution and of the Hermitian metrics chosen on (1.4). However, if
O(Ep)/J is a sheaf of Cohen-Macaulay modules, then it turns out that the
associated Noetherian current R is essentially canonical, see Section 6 for
precise statements. In the Cohen-Macaulay case we can also define a coho-
mological residue for J, so that the duality principle extends (Theorem 6.2).

Combined with the framework of integral formulas developed in [6], we
present in Section 7 a holomorphic decomposition formula

(1.6) dazﬁw/im@ﬂo+/sm@mwm,

for holomorphic sections ¢ of a trivial bundle Ey, where T and S are certain
integral kernels. Here we assume that ann(O(Ep)/J) is nonzero; for the
general case see Section 7. If R is Noetherian, then as soon as ¢ € J, (1.6)
provides an explicit realization of the membership.

By means of a similar integral formula we also obtain a residue character-
ization (Theorem 7.2) of the sheaf £J of £-modules generated by J; this is a
generalization of the corresponding result for a complete intersection in [2].

In Section 9 we consider the module J over C[z1,...,2,], generated by
an ro X ri-matrix F(z) of polynomials in C* of generic rank ry. We find
a global Noetherian residue current R for J in C". It is obtained from
a resolution of the module over the graded ring C|zg,..., 2,] induced by
a homogenization of F. For each natural number m we get a polynomial
decomposition formula like (1.6), holding for all (ro-tuples of) polynomials &
of degree at most m; for ® in J thus realizing the membership.

Finally we present a residue version of the fundamental principle: If FT
is the transpose of F, then any smooth solution to F*(i9/0t)¢ = 0 on a
smoothly bounded convex set in R can be written

swaéﬁmmmwﬁ

for an appropriate (explicitly given matrix of smooth functions) A; here RT
is the transpose of R. Conversely, since R is Noetherian, any £(¢) given in
this way is a homogeneous solution. This follows along the same lines as
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in [16], where Berndtsson and Passare obtained this result for a complete
intersection F' by means of the Coleff-Herrera product.

Acknowledgement: We express our sincere gratitude to Jan-Erik Bjork,
Ralf Froberg, and Alain Yger for invaluable discussions on these matters.

2. SOME PRELIMINARIES

Assume that E and @) are holomorphic Hermitian vector bundles over
an n-dimensional complex manifold X and let f: £ — @ be a holomorphic
vector bundle morphism. If we consider f as a section of E*®(Q), then for any
positive integer ¢, F' = fq = f?/q! is a well-defined section of AY(E* ® Q) ~
AE* @ AQ), and it is easily seen that F' is non-vanishing at a point z if and
only if rank f(z) = dimIm f(z) > ¢. Let us assume now that rank f(z) < ¢
for all z € X. Then Z = {z; rank f(z) < ¢} is equal to the analytic variety
{F =0}.

If € is a section of a Hermitian bundle, the section 5 of the dual bundle
with minimal norm such that n¢ = |£|? will be called the dual section of ¢.

Let s be the section of £® Q* that is dual to f, and let S be the section of
MNE ® A1Q* that is dual to F. Notice that f induces a natural contraction
(interior multiplication) mapping

5f: A€+1E®A€+1Q* N AEE®AEQ*

and let (67), = 5?/6!, sg = st/0! etc. Moreover, in X \ Z, let 0: Q = E
be the minimal inverse of f, i.e., fo is the identity on Im f, o vanishes on
(Im f)+, and Tm o is orthogonal to Ker f.

Lemma 2.1. In X \ Z we have that

(2.1) S = sq (= 57/q!)
and
(2:2) o= (37)g—1S/|F .

Proof. Since the statements are pointwise we may assume that f: E — @ is
just a linear mapping between finite-dimensional Hermitian vector spaces.
Let € be an ON-basis for ) such that Im f is spanned by €;,...,€;,. Then
[ =>"1Fk Qe with f, € E*, and it is easy to see that

q
s:Zsk®e};,
1

where ¢, is the dual basis and sy are the duals of fz. Now F = fiA...Af;®
€1 ... Aeg, and since s1A...Asq is the dual of fiA...Af, it follows that
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8q = 81N ... Asq ® €I/ ... Aey is the dual of F, and thus (2.1) is shown. In
particular,

(2.3) IF2 =67 -85 (s1A- .. Asy),

where dy; is interior multiplication with f;. To see (2.2), first notice that

q
(0)g 18 =D (=1)7 165, -+ 65,07, 1 - 0, (17 ... Asg) ® €5
7j=1

Thus o = (6¢)g—15, considered as an element in Hom (Q, F), vanishes on
(Im f)*, and since each s; is in (Ker f;)* C (Ker )1, « takes values in
(Ker f)*. Finally, if we compose with f we get, cf., (2.3),

q q
fa=3 b7 Sn(s1n.. . As)e; @€ = [FPY ¢; @ ¢,
T 1

which shows that «/|F|? is the identity on Im f. Altogether this means that
a/|F|? = o by definition. O

Clearly o is smooth outside Z. We also have

Proposition 2.2. If F = FOF' in X, where F° is a holomorphic function
and F' is non-vanishing, then Fc is smooth across Z.

Proof. Since F = FOF' we have that S = F0S’, where S’ is the dual of F,
and |F|? = |F°]?|F'|?, where |F'|? is smooth and non-vanishing. Thus by
Lemma 2.1,

FP0 = F%(87)q-15/|F|” = (87)q-15"/|F"?,

which is smooth across Z. O

Throughout this paper, £(X) denotes the space of smooth functions,
Eo(X) the space of smooth differential forms, D, the space of test forms,
D.(X) denotes the space of currents on X, and £(X, E) the space of smooth
sections of E over X. Furthermore, O(F) denotes the analytic sheaf of holo-
morphic sections of E, and £(FE) denotes the sheaf of smooth sections.

We will frequently use some basic facts of analytic sheaves, see, e.g., [30].
Let F be an analytic sheaf in X. Recall that F is coherent if it locally
admits a presentation

OE) B oEy) = F—o,

where E7 and Ej are holomorphic vector bundles. Given such a presentation
in X' C X, the open subset of X’ where F is locally free, i.e., a vector
bundle, coincides with the open set where f1, considered as a vector bundle
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morphism, has locally constant (i.e., optimal) rank; the complement of this
set, cf., above, is an analytic variety Z with positive codimension.

The mapping f; is pointwise surjective, i.e., it has full rank, outside Z if
and only if the the annihilator ideal annF; in the local ring O, is nonzero
for each z € Z. In this case, the set Z coincides with the zero locus of the
ideal sheaf annF.

3. RESIDUE CURRENTS OF GENERICALLY EXACT COMPLEXES

Let

f fN-1 f-mMy2 f-m41 B

(3.1) 0—>EN—N)EN_1—>... — E_M_|_1 — m—0

be a holomorphic complex of Hermitian vector bundles over the n-dimensional
complex manifold X, and assume that it is generically exact, i.e., pointwise

exact outside an analytic set Z of positive codimension. Then for each k,

rank fy is constant in X \ Z and equal to

(3.2) pr = dim Ey — dimEk_H + .-+ dim Ey.

Since z +— rank fi(z) is lower semicontinuous it follows that rank fx(z) < pg
everywhere in X.

We are now going to define a residue current associated to (3.1), and to
this end we will need some algebraic formalism. The bundle £ = @F), has
a natural superbundle structure, i.e., a Zo-grading, F = E* @ E-, ET and
E~ being the subspaces of even and odd elements, respectively, by letting
ET = @y Fy and E~ = @91 Fr. The space of E-valued currents

Dy(X, E) = D.(X) ®¢(x) £(X, E)

is a left £ (X )-module, and it gets a natural grading by combining the grad-
ings of De(X) and £(X, E). We make D,(X, E) into a right £ (X)-module
by letting £ = (—1)e88deePp¢ for sections & of D,(X,E) and smooth
forms ¢.

The Zo-grading on E induces a Zy-grading EndE = (EndE)* & (EndE)~,
where (EndE)~ consists of odd mappings, i.e., mappings which, like f =
> fj, map E¥ — ET, and (EndE)™" is the subspace of even mappings. We
get a Zo-grading of D, (X, EndE) as well, and 0 extends to an odd mapping
by the formula 04 = o A — (=1)4844 09 for A € D.,(X,EndE), i.e.,
so that O(A¢) = (OA)¢ + (—1)48AA(9¢) for a section ¢ of E. Since f is
holomorphic, f = 0.

We now introduce the mapping V = f — 0 on D.(X, E). Actually, it is
(minus) the (0, 1)-part of the superconnection D — f introduced by Quillen,
[43], where D is the Chern connection on E. It is easy to see that V is an
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odd mapping and that V? = 0. Moreover, it extends to an odd mapping
VEnd on D, (X,EndE) so that

(3.3) V(9€) = (VEnag)é + (—1)*89g(VE)

for sections g € D,(X,EndFE) and £ € £.(X, E), and Vnd(gh) = (VEnag)h+

(—1)4%89g(Vpnah) for sections g,k € E(X,EndE). Moreover, V& , = 0.
In X'\ Z we have the minimal inverses oy : Ex_1 — Ej of f, cf., Section 2,

and we let 0 = o_p41+ -+ on: E — E. If I denotes the identity
endomorphism on E, then

(3.4) fot+of=1.
Moreover, it is easily checked that oo = 0, and thus we get
(3.5) o(0o) = (00)o.

In view of (3.3),

Vengo =Voo+ocoV=fo+of —(0oog+c0d),
so we get
(3.6) Vingo = I — Oo.
Notice that 0o has even degree. In X \ Z we define the EndE-valued form,
cf., (3.6),
(3.7) u=0(Vgnqo) ™t = o(I — 00) ™t =0 + 0(do) + 0(95)* + ...
Now,

VEndt = VEndo(VEndo) ™" = 0Vend(Venao) ™,

and since V%nd = 0 we thus have

(3.8) Vinau = 1.
Notice that
XY

¢ k>0+1
where
(3.9) uf = ok(0ok_1) -+ (0041)
is in & g—¢—1(X \ Z,Hom (Ey, Ey)). In view of (3.5) we also have
(3.10) up = (00k)(0ok—1) - (00¢42) 0011
Let

= Y uf.

E>0+1

i.e., u’ is u composed with the projection E — E,. Following [42] and [1]

we can make a current extension of u across Z.



NOETHERIAN RESIDUE CURRENTS 9

Proposition 3.1. Let F be any holomorphic function (or tuple of holo-
morphic functions) that vanishes on Z. Then X +— |F|* u, a priori defined
for Re A >> 0, has a continuation as a current-valued analytic function to
Re )\ > —e. Moreover,

U:= |F|2)‘U|A:0
is a current extension of u across Z that is independent of the choice of F.

Proof. The proof is very similar to the proof of Theorem 1.1 in [1] so we only
provide an outline. For each j, following Section 2, we have a section F); of
APIE? ® A Ej 4, and its dual S; such that o; = (37;)p;15;/|Fj|*. After
a sequence of suitable resolutions of singularities we may assume that, for
all j, Fj = FJOF]’, where FO is a monomial and Fj is non-vanishing, and that
also F is a monomial F° tlmes a non—vanlshlng factor. By Proposition 2.2
therefore o; = (sz/F0 where «; is smooth across Z. Since ajiio; = 0

outside the set {F? i = 0}, thus aj110; = 0 everywhere. Therefore, cf.,
(3.10), it is easy to see that
ol (Octerr) Qe k1) -+~ (Dtera)orss
0+k =
Fp 4k - Fy £+1

Since F; only vanish on Z and F' vanishes there, F° must contain each
coordinate factor that occurs in any F]Q. Therefore, cf., e.g., [1], the proposed
analytic continuation exists and the value at A = 0 is the natural principal
value current extension. O

In the same way we can now define the residue current R = R(F,) asso-
ciated to (3.1) as

R = 5|F|2)‘/\U|)\:0.
It clearly has its support on Z. If Rf = 9|F|** Au| -0 and R’ is defined

analogously, then
R= ZR‘ > > R

¢ k>e+1

Notice that RY is a Hom (E,, Ek)-valued (0, k — £)-current. The currents U*
and U,f are defined analogously. Notice that U has odd degree and R has
even degree.

Proposition 3.2. Let U and R be the currents associated to the complex
(3.1). Then

(3.11) VenaU =1-R, VEnaR = 0.

Moreover, Ri vanishes if k — £ < codim Z, and éR = 0 if ¢ is holomorphic
and vanishes on Z.
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We can also write (3.11) as
VoU+UoV=1I-R, VoR=RoV.
Proof. In fact, if Re X is large,
Vind (|F|?u) = |F|*Vgnau — 0|F | Au = |F|** T — 0| F|** Au.

By the uniqueness of analytic continuations this equality must hold for
Re A > —¢, and the first statement in (3.11) now follows by taking A = 0.
The second statement follows immediately since V%, = 0. The vanishing
of Rﬁ for kK — £ < codim Z follows from the principle that a residue current of
bidegree (0, ¢) cannot have its support contained in a variety of codimension
higher than q. For a precise argument for this fact, as well as for the last
statement of the proposition, see, e.g., the proof of Theorem 1.1 in [42] or
Theorems 1.1 and 1.2 in [1]. O

The following theorem suggests that the residue current R = R(F,) mea-
sures to what extent the associated complex of sheaves of holomorphic sec-
tions of F, is not exact. Notice that if ¢ is a holomorphic section of Ey,
then Rf¢ is a E-valued current.

Theorem 3.3. Let (3.1) be a generically exact holomorphic complex of Her-
mitian vector bundles, let R = R(F,) be the associated residue current, and
let ¢ be a holomorphic section of Ey.

(i) If fedp =0 and Rt$ =0, then locally there is a holomorphic section v of

Eyy1 such that for19 = .
(i) If moreover R“t1 = 0, then the ezistence of such a local solution

implies that Rt = 0.

Proof. Let U be the associated current such that (3.11) holds. Then V(U¢) =
¢ —U(Vp) — Rp. Since Up = Ulp, Rp = Rt¢, and V¢ = fop — D¢, it fol-
lows from the assumptions of ¢ that V(U%) = ¢. Thus we have a current
solution v = U%¢ to

fer1ver1 = &, ferrr1Verrsr = Ovegr, k> 1,

where vpi g € D()’k_l(X , E1¢). By solving the sequence of 0-equations

OWpk, = Votk + forh-r1Werkt1

locally, we end up with the desired holomorphic solution ¥ = vgy1+ feroweyo,
cf., [1]. For the second part, assume that f; 19 = ¢. Then by (3.11),

R'¢ = Rp = R(Vy) = V(Ry) = V(R 'y) = 0.
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Now assume that

(3.12) 0= By % .. Bp, B IR,

is a generically exact holomorphic complex of Hermitian bundles. Since
rank f; is generically constant, we can define o7 in an unambiguous way in
X \ Z, and therefore the currents R’ for £ > 0 can be defined as above, and
we have:

Corollary 3.4. If (3.12) is a generically exact complex of Hermitian vector
bundles, then Theorem 3.3 still holds (for £ > 0), provided that fod = 0 is
interpreted as ¢ belonging generically (outside Z) to the image of f1.

If f; is generically surjective, in particular if rank Fy = 1 and f; is not
identically 0, then this latter condition is of course automatically fulfilled.

Proof. The corollary actually follows just from a careful inspection of the
arguments in the proof of Theorem 3.3. However, a possibly more satisfac-
tory way to derive the corollary is to extend (3.12) to a generically exact
complex (3.1) and then refer directly to Theorem 3.3, still noting that the
definition of R for £ > 0 as well as the condition fo¢ = 0 are independent
of such an extension.

The complex (3.12) can be extended in the following way. By assumtion
the dual mapping f;: Ef — E7 induces a sheaf mapping O(E;) — O(EY)
which (at least locally) can be extended to an exact complex (a resolution)

0— O(EZy) — ... > O(Ey) — O(EY).
In particular the corresponding complex of vector bundles is generically

exact, and taking duals and combining with (3.12) we get a generically
exact extension. O

4. CONSTRUCTION OF NOETHERIAN RESIDUE CURRENTS

We will now discuss how one can find a current whose annihilator coincides
with a given ideal sheaf (or subsheaf of O%®"). Notice that the complex (3.12)
corresponds to a complex of locally free analytic sheaves

(4.1) 0= O(EN) = = O(E) = O(Ey),

that is exact outside Z; conversely, any such sequence of locally free sheaves
that is exact outside some analytic set gives rise to a generically exact com-
plex (3.12) of vector bundles. Our basic result is the following characteriza-
tion of exactness of (4.1).

Theorem 4.1. Assume that (3.12) is generically exact, let R be the asso-
ciated residue current, and let (4.1) be the associated complex of sheaves.
Then R® =0 for all £ > 1 if and only if (4.1) is exact.
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For the proof we will use the following characterization of exactness due
to Buchsbaum-Eisenbud, see [28] Theorem 20.9: The complex (4.1) is exact
if and only if

(4.2) codim Z; > j
for all j, where, cf., (3.2),
Zj = {z; rank f; < p;}.

Remark 1. To be precise we will only use the “only if”-direction. The
other direction is actually a consequence of Corollary 3.4 and (the proof of)
Theorem 4.1. O

Proof. From Corollary 3.4 it follows that (4.1) is exact if R =0 for £ > 1.
For the converse, let us now assume that (4.1) is exact; by the Buchsbaum-
Eisenbud theorem then (4.2) holds. We will prove that R! = 0; the case
when £ > 1 is handled in the same way. The intuitive idea in the proof is
based on the somewhat vague principle that a residue current of bidegree
(0,¢) cannot be supported on a variety of codimension g+ 1. Taking this for
granted, we notice to begin with that R} = 0|F|** Aca|a—¢ is a (0, 1)-current
and has its support on Z,, which has codimension at least 2. Hence R}
must vanish according to the vague principle. Now, o3 is smooth outside Zs,
and hence R} = 0a3AR) = 0 outside Z3; thus R} is supported on Z3 and
again, by the same principle, Ré must vanish etc. To make this into a strict
argument we will use the following simple lemma.

Lemma 4.2. Suppose that v(s,T) is smooth in C x C" and that moreover
v(s,T)/8 is smooth where 71 - - - T, # 0. Then (s, T)/§ is smooth everywhere.

Proof. The assumption means that (s, 7) = sw(s, 7) where 11 --- 7, # 0 and
w is smooth outside 71 - - - 7, = 0. It follows that, for each £, (9¢/0s%)v(0,7) =
0 where 71 - - - 7, # 0, and hence by continuity it holds also when 71 - - - 7. = 0.
It now follows from a Taylor expansion in s that (s, 7)/s is smooth. O

After a sequence of resolutions of singularities the action of R} on a test
form ¢ is a finite sum of integrals of the form

51 70122 (5%)(5%71)‘”(5&3)&2 e
J e 0 Y07 AL N

where FO, Fio and «; are as in the proof of Proposition 3.1 and where E
is the pullback of £&. To be precise, there are also cutoff functions involved
that we suppress for simplicity. Observe that 9|F°?} is a finite sum of
terms like a)\|F°|? d5/5, where a is a positive integer and s is just one of
the coordinate functions that divide F°. We need to show that all the
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corresponding integrals vanish when A = 0, and to this end it is enough to
show, see, e.g., Lemma, 2.1 in [1], that

y = §A(5ak)(éak_1) . (Do) anhE

is smooth ((ds/5)AB being smooth for a smooth §, means that each term
of B contains a factor 5 or ds).

Let £ be the largest index among 2,...,k such that s is a factor in F}
(possibly there is no such index at all; then £ below is to be interpreted as 1)
and let 7q,..., 7. denote the coordinates that divide F,? --- F19+1- We claim
that, outside 71 - - - 7 = 0, the form

ds (Oag)--- (0« ~
T/\( }f,()) (FO “1)/\5
3 pERE a1

is smooth. This follows by standard arguments, see, e.g., the proof of
Lemma 2.2 in [42] or the proof of Theorem 1.1 in [1]; in fact, outside
ZpN...NZgyq the (n,n — £+ 1)-form (Ooy) ... (dop1)AE is smooth and it
must vanish on Z; for degree reasons, since Z; has codimension at least £.
Thus the form

. ds = = ~

= S ABar) -+ (BN &
is smooth outside 7y -+ 7, = 0. By Lemma 4.2, applied to

v = dsA(Day) -+ (Dag1) S,
7] is smooth everywhere, and therefore 7 is smooth. O

Definition 1. A current R = R(F,) associated to a holomorphic complex of
Hermitian vector bundles (3.12) such that the corresponding sheaf complex
(4.1) is exact, or equivalently, R® = 0 for all £ > 1, will be called a Noetherian
residue current.

If R = R(FE,) is Noetherian, with no ambiguity, we write Rj rather
than Rg. The definition is motivated by the following result and its corol-
laries. Recall that if F is a coherent sheaf, then (4.1) is a (locally free)
resolution of F if (4.1) is exact and F = O(Ey)/Im (O(E;1) — O(Ep))-

Theorem 4.3. Let (4.1) be a locally free resolution of the coherent analytic
sheaf F, and assume that Ey are equipped with some Hermitian metrics.
Then the associated Noetherian residue current R has support on the analytic
set Z where F is not locally free. Furthermore, a holomorphic section ¢ of
O(Ey) is mapped to zero in F if and only if ¢ is mapped to zero in F
outside Z and the current R¢ vanishes.
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Proof. A free resolution of a locally free sheaf is pointwise exact. There-
fore u° is smooth outside Z and thus the support of R must be contained
in Z. Since R! = 0 the second assertion follows from Corollary 3.4. O

Notice that if
J =Im (O(E;) — O(Ey)),
then F = O(Ey)/J, so the theorem can be rephrased as: A holomorphic
section ¢ of O(Ep) is in J if and only if ¢ is in J outside Z and R¢ = 0.
This fact motivates the notion of Noetherian current for J.

Recall that the condition ¢ = 0 in F outside Z can be expressed as
fo¢ = 0 for an appropriately chosen mapping fy. Of course, the condition
is automatically fulfilled if F = 0 outside Z:

Corollary 4.4. Assume thatrank Ey = 1 and that the ideal sheaf J C O(Ep)
is nonzero. Then R has support on the zero locus of J and a holomorphic
section ¢ of Ey is in J if and only if R = 0.

More generally, assume that rank Ey > 1 and ann(O(Ey)/J) is nonzero.
Then R has support on the zero locus of ann(O(Ey)/J) and a section ¢ of
Ey is in J if and only if R$ = 0.

Remark 2. Let J be any ideal sheaf with zero locus Z. It could have been
natural to allow a wider definition and say that any (vector-valued) current T
with support on Z such that annT = J is a Noetherian residue current for J.
For example, one could take an appropriate tuple of Coleff-Herrera currents,
cf., the introduction. Here is another example: If we take a resolution (4.1)
and extend it on the left with a non-exact sequence, then R’ can be non-
vanishing for large £ but since R! = 0, the current 7' = R° will be Noetherian
in this wider sense. We do not know if R? being Noetherian in the wider
sense, implies that R¢ vanish for “small” £; even not for £ = 1. However, for
simplicity we keep the more restrictive notion of Noetherian residue current;
it will cover all currents of this type that we consider in this paper. O

Given any coherent sheaf F in a Stein manifold X and compact subset
K C X, one can always find a resolution

(4.3) cee 3y OBy 0971 _y 9®T0

of F in a neighborhood of K, e.g., by iterated use of Theorem 7.2.1 in
[32]. The key stone in the proof of Theorem 4.1, the Buchsbaum-Eisenbud
theorem, in general requires that the resolution (4.3) starts with 0 somewhere
on the left. However, by the Syzygy theorem and Oka’s lemma, Ker (0% —
0%e-1) is (locally) free for large £, so we can replace such a module O®"¢
with this kernel and 0 before that. Therefore Theorem 4.1 holds and we
have
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Proposition 4.5. Let J be a coherent subsheaf of OP™ in a Stein manifold
X. For each compact subset K C X there is a Noetherian residue current R
for J defined in a neighborhood of K.

Notice that in this case R = (Ry), where Ry, is an ry X ro-matrix of scalar-
valued residue currents. If ¢ is an r¢-column of functions in O(K) then Ry¢
is an rg-column of currents in a neighborhood of K. We can also choose a
matrix fy such that ¢ is generically in the image of f; if and only if fop =0
and we have, cf., the proofs of Theorem 3.3 and Corollary 3.4:

The column ¢ € O(K)™ of holomorphic functions is in the image of
O(K)™ — O(K)"™ if and only if fo¢ = 0 and all the residue currents Ry¢
vanish.

The degree of explicitness of such a Noetherian residue current R is of

course directly depending on the degree of explicitness of a resolution of the
sheaf F.

5. EXAMPLES

We will now consider some explicit examples of the residue currents de-
fined above.

Ezample 1 (The Koszul complex). Let H be a Hermitian bundle over X of
rank m and let h be a non-trivial holomorphic section of the dual bundle H*.
It can be considered as a morphism H — C x X, and if we let § denote
contraction (interior multiplication) with h we have the Koszul complex

0= A™H %S .. 5 N2H S S Cxx,
which is exact where h is non-vanishing. Notice that in this case the super-
bundle structure on the total bundle E = ®A¥H = AH is obtained from the
natural grading on AH. Moreover, the desired £,(X)-module structure of
D.(X, E) is obtained from the wedge product in A(H @ T*(X)). Of course
we assume that £ has the Hermitian structure induced by H. Let £ be the
section of H over X \ Z with minimal norm such that h-& = 1. It is easy
to verify that o,n = EAn for sections 1 of A¥H. Therefore,

up = ENDE*
acting on AYH via wedge multiplication, and hence
Ry, = O|h|**NEA(OE) 7 x=o-

This is precisely the current(s) considered in [1].

The associated complex of sheaves is exact if (and only if) codim Z = m;
this is very well-known, and follows, e.g., from the Buchsbaum-Eisenbud
theorem, cf., also Remark 1. In this case R is a Noetherian residue current



16 MATS ANDERSSON & ELIZABETH WULCAN

for the ideal sheaf J = Im (O(H) — O). Since A™H has rank 1, R = RY,
has just one entry. If h = hie] + --- 4+ hpe;, in some local holomorphic
frame e} for H*, then R is precisely the Coleff-Herrera product (1.2) times
eiA ... ey, where e; is the dual frame, see [1]. O

We now consider some generalizations of the Koszul complex, but for sim-
plicity we only discuss the most interesting component R® of the associated
residue current.

Lemma 5.1. If the mapping f1 in (3.12) is generically surjective, then ug
are the unique forms in X \ Z with values in Hom (Ey, (Ker fx)*) such that

(51) flu(l) = Ian fk+1u2+1 = éug, k > 1.

Proof. Since u ; = o41(0uy), cf., (3.9), it is clear that u)  , takes values in
Hom (Ejy, (Ker f;)*). Since f; is generically surjective we can extend (3.12)
with fo = 0 on the right. From (3.8) we get, restricting to the action on FEy,
that

ful — oud + Ul fy = Ig,,
which is precisely (5.1) since fy = 0. O

Ezample 2 (The Eagon-Northcott and Buchsbaum-Rim complexes). Sup-
pose that H and @ are Hermitian bundles of ranks m and r respectively,
and h: H — @ is a generically surjective holomorphic morphism. We then
have a natural morphism

deth: A"H — det @,

cf., Section 2. Let S¢Q* denote the bundle of symmetric tensors of degree £.
If B, = A"PF—1H®S8%-1Q* for k > 1, and § is contraction with h, considered
as a section of £* ® @), we get the Eagon-Northcott complex

8 g ) 8 ar gy deth
. m—r )
(5.2) 0= Epn_i1 == E3s—>Ey— AN"H — detQ

which is exact (precisely) where h is surjective, see, e.g., [28]. Moreover,
the corresponding complex of sheaves is exact in the generic case, i.e., when
codimZ = m — r 4+ 1; this, e.g., follows from the Buchsbaum-Eisenbud
theorem. In this case thus R is a Noetherian current for the ideal sheaf
J(det h) = Im det h.

Let us now give a more explicit description of the current R?, that will
also show that it coincides with the residue current constructed in [5].
Let €; be a local holomorphic frame for @ with dual frame €. Then
h =371 hj®¢; where h; are sections of H*. Let & = )77 {;®¢; be the section
of Hom (Q, H) = H®Q" with minimal norm such that h{ = 3, €;®€; = Iq.
This means that {; are the sections of H over X \ Z with minimal norms
such that &; - hy, = 6. In particular, &; take values in (Ker h)=*.
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Proposition 5.2. With the notation above,
up =EA() 0@ e;-)@’(k’l) Re/(k-1), k>1,
J

where 2 = &N ... N and € = €]A ... A€,

r

Here ® shall be interpreted as wedge product on the first factors, i.e., 55]-,
and symmetric tensor product on the second factors, i.e., the ;.

Sketch of proof. Clearly, the ug in the proposition are sections of Ep ®
det Q* = A" 1H @ S¥1Q* ® det Q* and it is readily verified that they
satisfy (5.1), see [5] for details. In view of Lemma 5.1 we therefore just have
to verify that the image of u{ is orthogonal to the kernel of det h, and the
image of ug is orthogonal to the kernel of § for £ > 1.

Since h is surjective in X \ Z, {; are linearly independent, and hence they
span (Ker h)'. Moreover, notice that decomposable elements in A H with
different number of factors {; are orthogonal. Since Ker det h is spanned by
decomposable elements with fewer than r factors {; it follows that Z® €* is
orthogonal to Ker det h in A" ® det Q*.

We now use induction over k. Since 9¢; is in (Ker h)1, (each term in) the
minimal solution to 0n = OJuj; must contain all r factors ¢;. However, we
claim that 7 = ug41 is the unique such solution. In fact, we can consider
as a homogeneous polynomial in €; with coefficients in A E, and dn = 0 then
means that the gradient of the polynomial vanishes, which in turn implies
that n = 0. O

Now let instead E1 = H and Fy = @. There is a closely related complex,
the Buchsbaum-Rim complex, where

E,=AN""T1TH® S 2Q* @ det Q*, k> 2,
fi=nh, foa =deth and fi is interior multiplication with h for k£ > 3, see [4].
Again, if codim Z = m — r + 1, the induced complex of sheaves is exact and

hence R = RC is a Noetherian residue current for the sheaf J = Imh. By
similar arguments as above one can verify that

W=2 u)=3A(Y050¢)* " Vecod/k-2), k>2
j

One now sees that R? coincides with the current introduced in [4]. O

There has recently been a lot of work done on finding free resolutions
of monomial ideals, see for example [36], [8] or [10]. In case the monomial
ideal fulfills a certain genericity condition, there are explicit algorithms that
produce a minimal resolution.

We now consider a simple example of a non-complete intersection ideal.
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Ezample 3. Consider the ideal J = (22, 2122) in C? with zero variety {z; =
0}. It is easy to see that

(5.3) 0 0L 002 1o
where

flz[z% zle] and f2:|:_z;1:|,

is a (minimal) resolution of O/J. We equip the corresponding vector bun-
dles with the trivial Hermitian metrics. Since the associated residue current
R is Noetherian and Z has codimension 1, R consists of the two parts
Ry = O|F|*Au|x=0 and R; = O|F|**Auf|r=o, where u) = 09001 and
ul = o1, respectively. Notice that o1 = fi(fiff) ! and o2 = (f5f2) 1 f5.
To compute R we consider the proper mapping II : Uu-—-u , where U is a
neighborhood of the origin and U is the blow up at the origin of /. We cover
u by the two coordinate neighborhoods

Q= {t; (tltg,tl) =z € Z/{} and Q9 = {3; (81,3132) =z € U}
In Q1 we get II* f1 = t%tg [ to 1 ] SO

1 to
Ty = ———— ;
T B+ [P [ 1 ]
Moreover
" 1
" fo=1 [ 4 ]
2

which gives
1

Shar )

H*O'Q —tg ] .

It follows that B
Y P R—
tita(1 + [t2]?)?
To compute Ry, take a test form ¢ = p(z)dz1Adze. In Oy, [T*dz1Adze =
—t1dt1 A\ dty and thus

=] 1 1 dty

5.4 Rop=— | 8|5 | Al = | ——2——0(tits, t1) dty A dis,
6 e == [ o[ 0|2 | i aetn ) an nat
where the brackets denote one-variable principal value currents. To be pre-
cise one has to check that no extra contributions appear from 29, but we
omit that simple verification, cf., [46]. In view of the one-variable formula

=1l

3[—] Nds = 2mi[s = 0]

S
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([V] denotes the current of integration over V'), a Taylor expansion of ¢ and
symmetry considerations reveal that (5.4) is equal to

; dt—Z A dty o
7rz/t2 (1+|t2|2)2¢1’0( ,0) = (27m1)%1,0(0,0),
where ¢10 = 0p/0z;. Thus

RFaH AaH.
2 z9

A similar computation yields that

0 17471
m=| V] )
We see that annRy = (22, z3) and annR; = (21), and hence annR = (22, z5)N

(21) = J as expected.
Notice that the Koszul complex associated with the ideal J is like (5.3)

but with
| R1%2
f2 |: _z% :| )

i.e., with an extra factor z;. Clearly, then it is no longer a resolution. The
current RY is of course the same as before, but

=Yool

In this case annR’ = annRY N annR) = (23,27) N (21) which is strictly
smaller than J. As expected thus R is not Noetherian. Roughly speaking,
the annihilator of R is too small, since the singularity of o and hence of uJ
is too big, due to the extra factor z; in fo. O

We proceed with somewhat more involved zero-dimensional example.

Ezample 4. Consider the ideal J = (27, 2329, 25) with variety Z = {0} in C?.
We have the (minimal) resolution

(5.5) 0 082 L2y 083 11, o
of O/J, where
0 29
fi= [ 2 Bz 2 } and fo= | 25 —2?
3
_Zl O

Since Z is of dimension 0, R = Ry = 0|F|*Aud|y—o. To compute R we
consider the proper mapping II : «f — U, where U is a toric variety covered
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by the three coordinate neighborhoods
Oy = {t; (tita,t2) =2z €U}, Oy = {s; (3132,3133) =z €U} and
Q3 ={r; (r1,rire) =z €U},

By considerations inspired by [46] it is enough to make the computation
in Q9. We get

0 1
II* f; = sisd [ s 1 83 ] and TI*fy = 5153 s2s5  —s1
—s2s9 0

It follows that

5
IT* 71 11

o= stsdu(s) | =3 |
152 83

where v(s) = (1 + |s1]|? + |s3|?). A simple computation yields

Moy o 515 $B —(1+]s1?)
s3s3u(s) | sis2(1+]s3?) —sPsisy  —sidis) ’

and thus
W — 1 Slggdgl — 35%(1 — |81|2)d§2
2 3{3%1/(3)2 3%82(1 + |S%|2)d§1 — 35%518%§%d§2 )
Let us compute the action of Re on a test form ¢ = @pdziAdze. In Qo,
II*dz1 Adzo = sls%dsl A dss, and so

al 1 1] 1 [ —35%ds, 9
Ry.¢ = /B[E]A[g] 2 [ 5 ] 90(3132,8132) ds1 Adso+
17 (171 0 )
/6[5]/\[%} ) [ ds, ] ©(8182,8185) ds1 A dsa.

Let us start by considering the first term. Evaluating the si-integral, the
“upper” integral becomes

27ri/L2|4<p (0,0) dsa A ds —2'3'8{i]/\3[i] o;
(14 [sf6)2 722007 T2 T2 Z T 03 I

indeed, for symmetry reasons everything else vanish as in Example 3. Con-
tinuing with the second term, the “lower” integral is equal to

1 =1 =1
27t | ——————= 0,0) dsiy ANds1 =419 —<| NO|—].
7”/ (1+|81‘2)2 (p4,0( ) ) S1 S1 [Z?:| |:212:| ¢

Thus annR = (23,25) N (27, 22) = J as expected. O

We conclude with a simple example where ann(O(Ey)/J) = 0.
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Ezample 5. Consider the submodule J of O®? generated by
212
(56) n=|"3]

—2?
and the resolution
(5.7) 001 092,

Notice that Z = {z; = 0} is the associated set where where O®?/J is not
locally free, or equivalently where f; is not locally constant. Moreover, notice
that ann(O®2?/J) = 0. It is easily seen that (5.7) is the minimal resolution.
The associated Noetherian residue current 0|F|** A u{|x—g, where v = o1,
can be computed as Example 3, and we get that

R:Rlz[i]é[i][o 1].

<2 21

If we extend (5.7) with the mapping fo = [ z1 2z | the new complex is still
exact outside Z. Observe that annR is generated by z; 1 ] and moreover

zZ2

that ker fy is generated by [ ] Thus Ker fy NannR = J as expected.

O

6. COHEN-MACAULAY IDEALS AND MODULES

Let F, be a O -module. The minimal length v, of a resolution of F, is
precisely n — depth F,, and depth F, < dim F,, so the length of the reso-
lution is at least equal to codim F,. Recall that the F, is Cohen-Macaulay
if depth F, = dim F,, or equivalently, v, = codim F, see [28]. As usual we
say that an ideal J, C O, is Cohen-Macaulay if F;, = Oy/J; is a Cohen-
Macaulay module.

A coherent analytic sheaf F is Cohen-Macaulay if F, is Cohen-Macaulay
for each z. If we have any locally free resolution of F and codim F = p, then
at each point Ker (O(E,_1) = O(Ep_2)) is free by the uniqueness theorem,
see below, so by Oka’s lemma the kernel is locally free; hence we can modify
the given resolution to a locally free resolution of minimal length p.

Notice that if h is a complete intersection, cf, Example 1, then J(h) C O
is a Cohen-Macaulay ideal sheaf, i.e., O/J(h) is Cohen-Macaulay. Moreover,
in Example 2, if h: H — @ and codimZ = m — r + 1, then J(deth) C O
is a Cohen-Macaulay ideal sheaf, and O(Q)/J is Cohen-Macaulay, where
J=Imh C O(Q).

Notice that the Noetherian residue current associated with a resolution
of minimal length p just consists of the single term R = Rg, which locally is
a rp X ro-matrix of currents.
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The definition of a Noetherian current in general depends slightly on the
chosen Hermitian metric. However, we have the following generalization of
the corresponding result (in [1]) for a complete intersection.

Proposition 6.1. Suppose that F is a coherent analytic sheaf with codi-
mension p > 0 that is Cohen-Macaulay, and assume that
(6.1) 0—= O(Ep) = --- = O(E1) = O(Ey)

is a locally free resolution of F of minimal length p. Then the associated
Noetherian current is independent of the Hermitian metric.

Notice that since p > 0, i.e, annF # 0, the right-most mapping in (6.1)
is pointwise surjective outside Z.

Proof. Assume that u and v’ are the forms in X \ Z constructed by means
of two different choices of metrics on E. Then Vgyqu = I and Vgpqu' = 1
in X \ Z, and hence
Vind(vt') = (Vinqu)u' — uVgpqu' = v’ — u,
where the minus sign occurs since v has odd order. For large Re A we thus
have, cf., the proof of Proposition 3.2,
Vend (|F|?uu’) = |F|* ' — |F|2u — 0|F|* Audd.

As before one can verify that each term admits an analytic continuation to

Re X > —e¢, and evaluating at A = 0 we get VgoaW = U’ — U — M, where
W = |F|* uu'|x—g, and M is the residue current

(6.2) M = 3|F|** hu | s=o-
Since V%nd = 0, by Proposition 3.2 we therefore get
(6.3) R— R = VgngM.

However, since the complex ends up at p, each term in uu’ has at most
bidegree (0,p —2) and hence the current M has at most bidegree (0,p — 1).
Since it is supported on Z with codimension p, it must vanish, cf., the proof
of Proposition 3.2. O

When F = O(E)y)/J is Cohen-Macaulay we can also define a cohomolog-
ical residue that characterizes the module sheaf J = Im (O(E;) — O(Ey))
locally. Suppose that we have a fixed resolution (6.1) of minimal length
and let us assume that p > 1. If w is any solution to Vgpqu = I in
X\ Z, then u) is a d-closed Hom (Ey, Ep)-valued (0,p — 1)-form. More-
over if u’ is another solution, then it follows from the preceding proof that
O(un' )g = ug - ug). Therefore ug defines a Dolbeault cohomology class
w € H% (X \ Z,Hom (Ey, E,)). If ¢ is a holomorphic section of Ej
then w¢ = [ud¢] is an element in H*P~1(X \ Z, E,). Moreover, if v is
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any solution in X \ Z to Vv = ¢, then v, defines the class w¢. In fact,
V(w) =v —up = v — u¢ so that (uv), = uJ¢ — v,.

Precisely as for a complete intersection, [25] and [40], we have the following
duality principle.

Theorem 6.2. Let X be a Stein manifold and let (6.1) be a resolution of
minimal length p of the Cohen-Macaulay sheaf O(Ey)/J over X, and as-
sume that p > 1. Moreover, let w be the associated class in HP~1(X \
Z,Hom (Ey, Ep)). For a holomorphic section ¢ of Eq the following condi-
tions are equivalent:

(i) ¢ is a section of J.

(ii) The class wp in X \ Z vanishes.

(iii) [wpNOE = 0 for all & € Dppp(X, E}) such that 06 =0 in a
neighborhood of Z.

Notice that if R is the associated Noetherian current, then 5U1(,) = Ry,
so by Stokes’ theorem, (i47) is equivalent to that [ Rp¢AE = 0 for all £ €
Dnn—p(X, Ej;) such that 9§ = 0 in a neighborhood of Z.

It is important that p > 1 in the theorem. If p = 1, then f; is an
isomorphism outside Z, so its inverse w = o is a holomorphic (0, 0)-form in
X \ Z. Thus a holomorphic section ¢ of Fj belongs to J if and only if w¢
has a holomorphic extension across Z.

Proof. If (i) holds, then ¢ = f19 for some holomorphic 9; thus Vi = ¢.
However, since p > 1, 4 has no component in E,, and hence by definition
the class w¢ vanishes. The implication (ii) — (i4i) follows from Stokes’
theorem.

Let us now assume that (7i7) holds, and choose a point z on Z. Let
v = ugqﬁ. If X' is an appropriate small neighborhood of z, then, since Z
has codimension p and v, is a 0-closed (0, p)-current, one can verify that the
condition (ii7) ensures that Ow, = v, has a solution in X'\ W, where W is
a small neighborhood of Z in X’. Then, successively, all the lower degree
equations Owy = vg + fer1wri1, k > 2, can be solved in similar domains.
Finally, we get a holomorphic solution 1 = vy + fows to f19p = ¢, in such
a domain. By Hartogs’ theorem 1) extends across Z in X’. Alternatively,
one can obtain such a local holomorphic solution 1), using the decomposition
formula (7.5) below and mimicking the proof of the corresponding statement
for a complete intersection in [40]; cf., also the proof of Proposition 7.1 in [6].
Since X is Stein, one can piece together to a global holomorphic solution to
f1 = ¢, and hence ¢ is a section of J. O

Ezample 6. Let J be an ideal in Oy of dimension zero. Then it is Cohen-
Macaulay and for each germ ¢ in O, w¢ defines a functional on Oy(E;;) ~
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Og*. If J is defined by a complete intersection, then we may assume that
(6.1) is the Koszul complex. Then r, = 1, and in view of the Dolbeault
isomorphism, see, e.g., Proposition 3.2.1 in [40], w¢ is just the classical
Grothendieck residue. O

For the rest of this section we will restrict our attention to modules over
the local ring Op, and we let O(E)) denote the free Op-module of germs of
holomorphic sections at 0 of the vector bundle Ej. Given a free resolution

(6.4) 0= O(Ey) 22 ... L5 0By L5 0(Ey)

of a module Fy over Oy and given metrics on Fj we thus get a germ R of a
Noetherian residue current at 0. Recall that the resolution (6.4) is minimal
if for each k, fx maps a basis of O(E)) to a minimal set of generators of
Im f. The uniqueness theorem, see, e.g., Theorem 20.2 in [28], states that
any two minimal (free) resolutions are equivalent, and moreover, that any
(free) resolution has a minimal resolution as a direct summand.

For a, Cohen-Macaulay module Fy over Oy we have the following unique-
ness of Noetherian currents.

Proposition 6.3. Let Fy be a Cohen-Macaulay module over Oy of codi-
mension p. If we have two minimal free resolutions O(E,) and O(E.) of
Fo, then there are holomorphic invertible matrices g, and go (local holo-
morphic isomorphism gy: E, ~ E, and go: Ey ~ Ey) such that such that
R=g,Rg;".

Since minimal resolutions have minimal length p, the currents are inde-
pendent of the metrics, in view of Proposition 6.1.

Proof. By the uniqueness theorem there are holomorphic local isomorphisms
gr: B} — E}, such that

0 - om) o LB oom) L owm)
g g1l g0
0 - OFE,) o L oom) L o)

commutes. Let g denote the induced isomorphism E — E’. Choose any
metric on E and equip E’ with the induced metric, i.e., such that [£]| = |g71¢]|
for a section £ of E'. If 0: E — FE and o': E' — FE' are the associated
endomorphisms over X \ Z, cf., Section 3, then ¢/ = gog~! in X \ Z, and
therefore

u' =o'+ (00')o' + - = g(o + (00)o +---)g™! = gug™'.

Therefore, (u )2 = gpugga !, and hence the statement follows since R = R, =
R). O
P
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We shall now consider the Noetherian current associated to a general free
resolution.

Theorem 6.4. Let Fy be a Cohen-Macaulay module over Oy of codimen-
sion p. If R is the Noetherian residue current associated to an arbitrary free
resolution (6.4) (and given metrics on Ey) and R' = R, is associated to a
minimal resolution

0 0E) L2 ... 2 o) L o(my),
then
(6.5) R, = hyR, o,

where Bo: Ey — Ej is a local holomorphic pointwise surjective morphism
and hy is a local smooth pointwise injective morphism hy: E'Z', — Ey. More-
over, for each £ > 0,

Rpio= auRy,

where ay is a smooth Hom (E,, Ep4)-valued (0, £)-form.

Proof. By the uniqueness theorem for resolutions, the resolution E is iso-
morphic to a direct summand in F,, and in view of the preceding proposition,
we may assume that

O(Ey) = O(Ey, & Ey) = O(Ey) @ O(Ey)
and fi = f; @ f!, so that

0 5 oom) oo L oom L om)
ip+1 4 ip 4 i1 d i 4
SOE) T ooE) B o 2 oE) I o),

where iy : B} — E} @ E}/ are the natural injections, and

S O(EL) 2 oE!y s s oy s o(my)

is a resolution of 0. In particular,
le)’+1 " f,’,’ é’ n I 1’ "
= Eppn — Ey — - — By — Ej =0

is a pointwise exact sequence of vector bundles, and therefore the set Z
where rank fj, is not optimal coincides with the set Z; where rank f; is
not optimal. In particular, Z; = () for k£ > p. If we choose, to begin with,
Hermitian metrics on Ej, that respect this direct sum, and let oy, o}, and o}/
be the corresponding minimal inverses, then

op =0}, Doy
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and hence
uy = (90}, ® 90})(90), 1 @ Ioy_+) -+ (903 & Dog) (01 D of) = (u)y & (u")}
for all k. However, (u”)} is smooth, and hence

Rp:R;,@O, Ry =0 for k # p.

For this particular choice of metric thus (6.5) holds with h, as the natural
injection 4p: EI', — E, and ) as the natural projection.

Without any risk of confusion we can therefore from now on let R;, denote
the residue current with respect to this particular metric on FE, and moreover
let o’ denote the minimal inverse of f with respect to this metric etc. We now
choose other metrics on F}, and let Ry from now on denote the Noetherian
residue current associated with this new metric. Following the notation in
the proof of Proposition 6.1 we again have (6.3), and for degree reasons
still MZ(,) = 0; here M ,f denotes the component of M that takes values in
Hom (Ey, Ey). Thus

Ry — R;; - fp+1Mz(a)+1-

Moreover, if we expand uu’, we get

MY, = 8PP [ops104(80) ) - (By) +
0p+1(80p)ay,_1(00y, ) -+ (801) + - -+ ] |a=0-
However, op41(00p) = (00p41)0, and 0,41 is smooth since Z,11 is empty,
S0
Mpyy = —0pp1 Ry + (B0p41) M) = —0p 1 Ry,
Thus,
Ry, = R, — fpr10p11R, = (I, — fpr10p41) Ry,

Since fp11 has constant rank, H = Im f,;1 is a smooth subbundle of E,.
Notice that IT = Iy, — fp+10p41 is the orthogonal projection of E, onto the
orthogonal complement of H with respect to the new metric. In this case
therefore h in (6.5) becomes the natural injection i,: E;, — E, composed
by II, and since EI'j N H =0, h is pointwise injective.

Since Zj, is empty for & > p, oy, is smooth for &k > p and hence for £ > p,
Ry = 3|F|PA(Doy) - - - (5ap+1)ug = (Do) - - - (50p+1)5|F|2’\/\ug =wyR,

where oy = (0ay) -+ (00p11)- O
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7. DIVISION AND INTERPOLATION FORMULAS

Explicit formulas for division and interpolation were introduced by Berndts-
son [15], and have been used by many authors since then, notably for in-
stance [12], [13], [41], [40]; see also [14] and the references given there. To
obtain such formulas that involve our currents R and U we will use the
general scheme developed in [6], that we first recall briefly.

Let z be a fixed point in C”, let §;_, denote interior multiplication by the
vector field

- )
2 y . . ,
i El (¢ ZJ)@QJ-

and let Ve_, = d¢—, — 0. Moreover, let g = 90,0 + -+ + gn,n be a smooth
form with compact support such that V¢_,g = 0 and go,0(2) = 1; here lower
indices denote bidegree; such a form will be called a weight with respect to
the point z. The basic observation is that if g is a weight, then

(7.1) ¢(2) = / 99

holds for each function ¢ that is holomorphic in a neighborhood of the
support of g, see [6].

Ezample 7. Let D be a ball with center at the origin in C" and let
S
2mi([¢]? = (¢, 2))

Then 6;_,s =1 and
1 9ICPA99I¢)*)* !

(2mi)k (IC12 = (¢ 2))F

If x is a cutoff function that is 1 in a neighborhood of D, then for each z in

a neighborood of D,
s

Y

is a weight, and it depends holomorphically on z.

For other choices of weights, e.g., in strictly pseudoconvex domains, see [6].
O

sA(Ds)F~1 =

g=x— OxA\ = x — OxA[s + sADs + sA(0s) 4 --- + sA(Ds)" 1]

Let (3.1) be a complex of (trivial) bundles over a neighborhood of the
closed unit ball D in C*, and let J = Im f;. Let us fix global frames for the
bundles Ej. Then Ej, ~ C"% Pk and the morphisms f), are just matrices of
holomorphic functions. One can find (see [6] for explicit choices) (k — £,0)-
form-valued holomorphic Hefer morphisms, i.e., matrices, Hﬁ: E, — Ep
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depending holomorphically on z and {, such that H ,‘g =0fork <¢, H f = Ig,,
and in general,
(7.2) 5szH1€ = H/Sﬂfk - fz+1(z)Hﬁ+1;
here f stands for f({). Let
H*MU =) H;"'U{, H'R=> H{R;.
k k

Thus H*™'U takes a section of Ey depending on ¢ into a (current-valued)
section of Fy, 1 depending on both ¢ and z, and similarly, R takes a section
of Ey into a section of Ey. We let HU = 5, H'U and HR =3, H'R.

Proposition 7.1. The form
d=f(z)HU+ HUf+ HR
maps Fyp into Ey for each ¢,
(7.3) Ve g =0 and gy, =Ig.
Proof. For any End(E)-valued current A =3, , A, where A¢ takes values

in Hom (Ey, E}), let temporarily HA denote the composition with H =
Dkt HY. Then ¢ is the part of

(7.4) f(z)HU + HUf + HR

that maps Fy to Ejy for each £. In view of (7.2) and Proposition 3.2, (7.4) is
equal to

HfU -6, HU+ HUf+ HR =
H[fU4+Uf-0U+R) - 6_,HU + HOU = H — V(_,(HU).
Recalling that H f = Ig,, therefore

g =1Ig—V¢ (D HU),
kot

and from this (7.3) follows. O

If ¢ is a holomorphic section of F, then ¢’¢Ag has compact support,
Ve—zg'¢Ng = 0, and (¢'¢Ag)o,0lc=- = ¢(2). By a slightly more general form
of (7.1), we therefore have, cf. Proposition 5.4 in [6], the representation

b(2) = /< ddng

for z in a neighborhood of D. Expressed in another way,

(7.5) ¢(2) = f(2)(T¢)(2) + T(f$)(2) + S¢(2),
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where
To(z) = /C HUpNg,  S9(2) = /< HRpAg.

Thus we get an explicit realization (in terms of U) of a solution ¢ = T'¢ of
f=¢,if fo =0 and R¢$ = 0. By translation and dilation, we achieve an
explicit proof of Theorem 3.3 (i).

Now suppose that we have a complex (3.12) over a neighborhood of D,
and assume that either f; is generically surjective or we have an extension
to a generically exact complex ending at E_;. Then for ¢ € O(X, Ey) we
have

(7.6) #(z) = fl(Z)/€H1U¢Ag+ /CHOUfogb/\g—I—/CHORqS/\g.

If R is Noetherian, then the last two terms vanish if and only if ¢ is in J.
We thus obtain an explicit realization of the membership of J.

In the same way as in [2] one can extend these formulas slightly, to obtain
a characterization of the module £J of smooth tuples of functions generated
by J, i.e., the set of all ¢ = f19 for smooth 1. For simplicity we assume that
O(Ey)/J has positive codimension so that fo = 0. Let R be a Noetherian
current for J. First notice that if ¢ = f11, then, cf., Proposition 3.2,
R¢ = R = R°f14p — R'Oy = RVy = VR = 0, so that R = 0. Since

each partial derivative 0/0Z; commutes with f;, we get that
(7.7) R(0%¢/0z%) =0

for all multiindices a. The converse can be proved by integral formulas
precisely as in [2], and thus we have

Theorem 7.2. Assume that J C O%™ s a coherent subsheaf such that
0% | J has positive codimension, and let R be a Noetherian residue current
for J. Then an ro-tuple ¢ € EL™ of smooth functions is in EJ if and only
if (7.7) holds for all a.

One can also obtain analogous results for lower regularity as in [2] and [6],
as well as a version where the codimension of O®™/.J is zero; one then must
add the compatibility condition fo¢ = 0.

In the case of a complete intersection, Bjork, [20], has recently given
a simple proof of Theorem 7.2 based on a deep criterion for membership
of ideals of smooth functions in terms of formal power series due to Mal-
grange, [34]. It extends to a general ideal if our current R is replaced by a
tuple of Coleff-Herrera currents vy; such that I = Nann-y;.

Remark 3. One should notice that the corresponding statement, where
“smooth” is replaced by “real-analytic” easily follows from the holomorphic
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case. In fact, if #(¢) is real-analytic, then ¢(¢) = ¢(¢, (), where

. 8% -
ZCDED DA I
o
is holomorphic in a neighborhood of (¢,¢) in C* x C*. Notice that R® 1
is a Noetherian current for J ® 1 in C* x C*. If (7.7) holds, it follows that

R® 1¢ = 0; hence f1(¢)¥(¢,w) = ¢(¢,w) and thus f1(()9((,¢) = ¢(¢). O

Let J be a coherent Cohen-Macaulay ideal sheaf of codimension p over
some pseudoconvex set X and let y be an analytic functional that annihi-
lates J. In [26] was proved (Theorem 4.4) that x4 can be represented by an
(n,n)-current i with compact support of the form i = aAR, where « is a
smooth (n,n — p)-form with compact support and R is the Coleff-Herrera
product of a complete intersection ideal contained in J. In particular, f
vanishes on £J. As another application of our integral formulas we prove
the following more general result.

Theorem 7.3. Let X be a pseudoconvez set in C"* and let J be a coherent
subsheaf of O(Ey) ~ O% such that O(Ey)/J has positive codimension. If
p € O'(X, Ef) is an analytic functional that vanishes on J, then there is an
(n,n)-current fi with compact support that represents u, i.e.,

(78) pE=pg, &€ O(Xa EO),
and such that {i vanishes on EJ. More precisely we can choose i of the form

la = Z akRk}a
k

where R is a Noetherian residue current for J and oy, € Dy p—i(X, Ef).

Here Ej, refers to the trivial vector bundles associated to a free resolution
of O(Ey)/J.

Proof. Assume that p is carried by the O(X)-convex compact subset K C X
and let V' be an open neighborhood of K. For each z € V we can choose a
weight g° with respect to z, such that z +— ¢® is holomorphic in V and all g*
have support in some compact K C X, see Example 10 in [1]. Let R be a
Noetherian residue current for J, associated to a free resolution of O(Ey)/J
in a neighborhood of K, cf, Proposition 4.5. Now consider the corresponding
decomposition (7.6) that holds for z € V, with g = ¢#; notice that fo = 0 by
the assumption on J. The analytic functional x4 has a continuous extension
to O(K, Ep) and since O(X) is dense in O(K) p will vanish on the first term
on the right hand side in (7.6). If we define the (n,n)-current

fi = po(PNHOR = 1195 g kNHR)RE =D iRy,
k k
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then «y have compact support and (7.8) holds. Since R is Noetherian, [
annihilates £.J. O

8. HOMOGENEOUS RESIDUE CURRENTS

We will now make a construction of homogeneous Noetherian residue cur-
rents in C**1. It is the key to find global Noetherian currents for polynomial
ideals in C" by homogenization in the next section. Let S = C[z, 21, - . . , 2]
be the graded ring of polynomials in C"*!. Moreover, let S(—d) be equal
to S considered as an S-module, but with the grading shifted by —d, so that
the constants have degree d, the linear forms have degree d 41 etc. Assume
that

(8'1) 0> My —---— M — M,
is a complex of free graded S-modules,
(8.2) My =S(-df)®--- @ S(—df).

Then the (degree preserving) mappings are given by matrices of homoge-
neous elements in S. We can associate to (8.1) a complex of vector bundles
over P",

(8.3) 0= Ex 2% . Bm 2p Y p,

in the following way. Let O(£) be the holomorphic line bundle over P
whose sections are (naturally identified with) ¢-homogeneous functions in
C**1. Moreover, let E% be disjoint trivial line bundles over P and let

E,=(Ef@O(-d})) @ (Bf ®O(-d})).

The mappings in (8.1) induce vector bundle morphisms fy: Ey — Ex_1. We
equip F; with the natural Hermitian metric, i.e., such that

2d
(2, = Z 1€ (=) 2]

if & = (&,...,&,). If (83)is generlcally exact, which, e.g., holds if (8.1)
is exact, then we can define the associated currents U and R as before,
following the general scheme in Section 3.

Ezample 8. For each 7,k let ef be a global frame element for the bundle E;“
Then

Tt Tk

Rp=)_ > (Bpij @€ ®(€)",

i=1 j=1
where each (R%);; is a (0,k — £)-current on P", taking values in
Hom (O(—dﬁ), O(—dF)) ~ O(dg — d¥); alternatively (RY);; can be viewed as
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a (dg — dF)-homogeneous current on C"*1 \ {0}. In the affine part Uy =
{[z] € P"; 2y # 0} we have, for each k, a holomorphic frame
k_ 4 &

zy T€5, =11k,

for the bundle F;. In these frames

Te Tk

(8.4) Ry =) " (Rp)i @ ef @ (ef),

i=1 j=1

where (R{);; are (scalar-valued) currents in Uy ~ C*. Since (R});; are the
dehomogenizations of (Rf);;, and df —dF <0, it is easily seen that (}?ﬁ)”
have current extensions to P". O

In analogy with Theorem 4.1 the exactness of (8.1) is related to the van-
ishing of R:

Proposition 8.1. Let (8.1) be a graded complex of free S-modules, N <
n+ 1, let (8.3) be the corresponding complex of Hermitian vector bundles

over P, and let R be the associated residue current on P". Then Rt vanishes
for all £ > 1 if and only if (8.1) is ezact.

The restriction on the length of the resolution is needed for the “if”-
direction to avoid cohomologous obstructions; we now need global solutions

to the O-equation, and we will use the following lemma; for a proof, see,
e.g., [24].

Lemma 8.2. HY(P", O(v)) = 0 for all v if 0 < q < n, whereas HO"(P", O(v)) =
0ifv>-—n.

Also recall that HO%(P", O(v)), i.e., the global holomorphic sections of O(v)
are naturally identified with the v~-homogeneous polynomials in C**+1.

Proof of Proposition 8.1. First assume that (8.1) is exact for £ > 1. Accord-
ing to the Buchsbaum-Eisenbud theorem for graded rings, see [29], the set
in C"*! (or equivalently in P") where the rank of f, is strictly less than
the generic rank pg, has at least codimension k. Precisely as in the proof of
Theorem 4.1 it follows that R =0 for £ > 1.

Conversely, assume that Rt = 0 for all £ > 1. Consider a homogeneous
element ¢ in My, £ > 1, of degree r that is mapped to zero in My ;. Then ¢
corresponds to a global section of F; ® O(r) that we also will denote ¢, and
fep = 0. Notice that R and U can just as well be considered as the currents
associated with the complex

05 Eveom % .. 2B oor) IS Byo o).
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Since R = 0 we therefore have that V(U%¢) = ¢. We want to find a
holomorphic solution by solving a sequence of 0-equations, cf., the proof of
Theorem 3.3. The first J-equation to be solved is Ow = Uf;[qﬁ. However,
since N < n+ 1 and £ > 1 the right hand side is a (0, ¢)-current with
g < n — 1 and thus solvable by Lemma 8.2. Neither for the remaining
equations there are any cohomological obstructions and hence we obtain a
holomorphic section ¢ of Fyr1 ® O(r) such that fy119 = ¢; this section 1

corresponds to the desired element in My, ;. O

Let J C My be a homogeneous submodule of M. Let us choose a graded
resolution (8.1) of My/J; in view of Proposition 8.1 the associated residue
current R is then Noetherian for the subsheaf of O(Fy) generated by J.
We also assume that the resolution has minimal length, which is n + 1 —
depth (My/J) by the Auslander-Buchsbaum theorem, see [28]. Let ¢ be
a holomorphic section of Fy ® O(r) that is generically in the image of f;
and such that R¢ = 0. Then V(U’¢) = ¢, cf., the proof of Corollary 3.4.
Arguing as in the preceding proof we can find a global solution fi19 = ¢
provided that either the complex terminates at (at most) level n, or if the 0-
equation of top degree is solvable, which it indeed is in view of Lemma 8.2 if
r— d;”l > —n for all j. Summing up we have the following partial analogue
of Theorem 4.3:

Proposition 8.3. Assume that J C My is a homogeneous submodule of
the free graded S-module My, and let R be the Noetherian residue cur-
rent associated with a resolution of My/J of minimal length N. Let ¢ be
a holomorphic section of Ey ® O(r) that lies generically in the image of
fi: E1®O(r) = Ey @ O(r). If either

(i) N <n
or

(i) r > ma,Xj(d;-LH) -,
then fi1 = ¢ has a global holomorphic solution if (and only if) R¢ = 0.

Remark 4. The condition (i) is equivalent to that depth (My/J) > 1 which
means that My/J contains a nontrivial nonzerodivisor. If J is defined by a
complete intersection, then the condition (i) is fulfilled. Also if Z is discrete
and all the zeros are of first order, then depth S/J = 1, see [29], so that (i)
holds.

The least possible value of r in (74), i.e., man(dJ"-H) —n is closely related
to the degree of regularity of J, see, e.g., [29]. An estimate of the regularity
for zerodimensional ideals is given in [44]. See [9] for a general criterion for
a given degree of regularity. See also Remark 5 below. O
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9. NOETHERIAN RESIDUE CURRENTS FOR POLYNOMIAL IDEALS

We will now use the results from the previous section to obtain Noetherian
residue currents for (sheaves induced by) polynomial modules in C*. Let
Zz' = (#1,...,2n) be the standard coordinates in C"* that we identify with
Uy = {[z] € P"; 2y # 0}, where [z] = [20, ..., 2] are the usual homogeneous
coordinates on P". Let F; be a Hom (C™,C")-valued polynomial in C",
whose columns F!,...,F™ have (at most) degrees di,...,d! and let J
be the submodule of C[z1,...,2,]™ generated by F! ... FT. After the

S d} .
homogenizations f*(z) = z,* F¥(2'/29) we get an ry X ri-matrix f; whose
columns are d,lc—homogeneous forms in C"*!; thus a graded mapping

fi: S(=di) @ --- @ S(—d;,) = S,

Extending to a graded resolution (of minimal length) (8.1) we obtain a
Noetherian residue current R for the sheaf generated by fi and an associated
current U. In the trivializations in C* ~ Uy, described in Example 8, the
component Ry of R is the matrix (Rg)” In the same trivializations U
corresponds to a matrix (Of)m Moreover, the mappings fi correspond
to the matrices Fj that are just the dehomogenizations of the matrices f
in (8.3).

If @ is an rg-tuple of polynomials in C* and there is a tuple ¥ of polyno-
mials such that ® = F; ¥ in C" then clearly R® = 0. Conversely, if R® = 0
in C* (and the equation is locally solvable generically) we know that ® is in
the sheaf generated by F; and hence by Cartan’s theorem there is a poly-
nomial solution to F1¥ = ®. However, we now have a procedure to find
such a U: Take a homogenization ¢(z) = 2[®(2'/z) for some r > deg®.
The condition R® = 0 in C* means that R¢ = 0 outside the hyperplane at
infinity, so if r is large enough, R¢ = 0 on P". Now Proposition 8.3 applies
if either r is so large that condition (ii) is fulfilled, or if the length of the
resolution is less than n + 1. If r is chosen large enough we thus have a holo-
morphic section 9 of E1 ® O(r) such that f11) = ¢. After dehomogenization
we get the desired polynomial solution ¥ = (¥/) to ¥ = Y FI¥I = @,
and deg F/UJ < r. It is well-known that in the worst case the final de-
gree has to be doubly exponential; at least d2(n/10), if d is the degree of F1,
see [35].

Remark 5. The final degree is essentially depending on the maximal poly-
nomial degree in the resolution, and it is known to be at worst like (2d)?" !
if d is the degree of the generators, see [7]. O

We proceed with a result where we have optimal control of the degree of
the solution; it is a generalization of Max Noether’s classical theorem, [37];
see also [30].
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Theorem 9.1. Let F',... F"™ be ro-columns of polynomials in C* and let
J be the homogeneous submodule of My = S®™ defined by the homogenized
forms fl,... fr. Furthermore, assume that the quotient module My/J is
Cohen-Macaulay and that no irreducible component of Z is contained in the
hyperplane at infinity. If ® belongs to the submodule J C C[z']" generated by
Fl,... F", then there are tuples of polynomials UJ with deg (F/W¥7) < deg®
such that F1U! ... 4+ F1y™ = @,

Sketch of proof. We follow the procedure described above. Assume that
codim Mj/J = p. The Cohen-Macaulay assumption means that dim My/J =
depth My/J = n+1—codim My /J. By the Auslander-Buchsbaum theorem
therefore we can choose a resolution (8.1) of My/J of length p, see [29].
Moreover all irreducible components of Z have codimension p. We choose
r = deg ®. Since @ is in the ideal in C* we have that R¢ = 0 in C*. By
Proposition 3.2, R = R, and since Z has no component contained in the hy-
perplane at infinity, we can copy the argument in the proof of Theorem 1.2
in [3] and conclude that R¢ = 0 in P". Since p < n+ 1, cf., Proposition 8.3,
we can find a holomorphic section 9 of E1 ® O(r) such that fi19p = ¢. After
dehomogenization we get the desired solution V. O

We conclude this section with an explicit integral formula that provides
a realization of the membership of ® in J C C[z,...,2,]™; for simplicity
we assume that the matrix Fy = (F!,... F™) is generically surjective, i.e.,
has generic rank r9. From now on we write z rather than z’.

Lemma 9.2. One can choose Hefer matrices of forms H,f satisfying (7.2)
(with fy replaced by Fy) that are polynomials in both z and (.

Sketch of proof. Following the proof of Proposition 5.3 in [6] one can con-
struct H f inductively, using the following two statements:

(i) If p is a polynomial, then there is a polynomial-valued (1,0)-form A such
that éc_.h = p({) — p(2).

(ii) If p(¢,2) is a polynomial-valued (g,0)-form in d{, ¢ > 1, such that
d¢—.p = 0, then there is a polynomial-valued (¢ + 1,0)-form A such that
d¢—h = p.

The first one is easy and the second one is also quite elementary. In
fact, notice that 7; = (; — z; is a complete intersection in (Cg x C7, so the
sheaf complex induced by the Koszul complex is exact above level 0, and so
there are local holomorphic solutions in C x C7. One can obtain a global

polynomial solution for instance from Proposition 8.1 by homogenization.
O
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Notice that _
_14(2)
1+ |¢?
is a weight in C" with respect to the point z, cf., Section 7. Indeed, g is
equal to

K- 2
+ 27r8810g(1—i—|§| )

1 -V, ,0log(1+ [¢[*)/2mi.

Since )
r=o(it)
|¢]#
for fixed z and HY consists of polynomials, it follows that
(9.1) g"AHR, ¢“AH'U

have current extensions to P" if y is large enough, cf., Example 8. Let
xx(C) = x(|C|/k), where x(t) is a cutoff function that is 1 for ¢ < 1 and 0
for t > 2. If u is sufficiently large, depending on the order at infinity of R
and U, we have that
(9.2) xxg"AH°R — g"AH°R, OxpAg"AH°R — 0,

kG ANHIU — g"AH'U, OxiANg*ANH'U — 0, k — oo.
Let

= Y& — OXEA ,
9k = Xk Xk Vc—zs

where s is the (1,0)-form in Example 7 in Section 7. Then gyAght™ is a

compactly supported weight with respect to z if £ > |z|, cf., Section 7, and
hence we have the representation (writing F' rather than F})

®(z) = F(z) / GAGTAH' U + / g A" T AHOR®.

Notice that (E )
1+(C,z)\m
(e & ) P©)
is smooth on P™ for fixed z if P is a polynomial with deg P < m. If we let
k — oo we therefore obtain

Theorem 9.3. Let F be a 1y X r1-matrix of polynomials in C* with generic
rank ro and let J be the submodule of C[zy, ..., 2,]" generated by the columns
of F. For each given integer m, with the notation above and for a large
enough u, we have the polynomial decomposition

(9.3) ®(z) = F(2) / GTMAHIUD + / g ANH'RD

of ro-columns ® of polynomials with degree at most m, and the last term
vanishes as soon as ® € J.
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The integrals here are to be interpreted as the action of currents on test
functions on P". If ® belongs to J thus (9.3) provides a realization of the
membership, expressed in terms of the current U and the Hefer forms.

10. THE FUNDAMENTAL PRINCIPLE

Let E; and Ej be trivial bundles, let F' be a Hom (E7, Ey)-valued poly-
nomial of generic rank ry = rank Fy and let FT be the transpose of F.
Furthermore, let K be the closure of an open strictly convex bounded do-
main with smooth boundary in R” containing the origin. The fundamental
principle of Ehrenpreis and Palamodov states that every homogeneous so-
lution to the system of equations F1(D)¢ = 0, D = i9/0t, on K is a
superposition of exponential solutions with frequencies in the algebraic set
Z = {z; rank F(z) < r}. Following the ideas in [16] we can produce a
residue version of the fundamental principle.

Let p(n) be the support function

sup(n, t)
teK

for K but smoothened out in a neighborhood of the origin in R"®. Since p
is smooth i R” and 1-homogeneous outside a neighborhood of the origin, all
its derivatives are bounded. Let

p'(n) = (Op/Om, - -, Op/Omn).

We extend to complex arguments ( = £ + in by letting p({) = p(n) and
p'(¢) = p'(n). Then p’ maps C" onto K, see [16]. The convexity of p implies
that

(10.1) eP(©) ‘eup'(o,cfz)‘ < @),

We are to modify the decomposition (9.3) to allow entire functions h with
values in Fy satisfying an estimate like

(10.2) Ih(2)] < C(1+ |2])Mer®)

for some, from now on, fixed natural number M. We will use the same
notation as in the previous section. First we introduce a new weight.

Lemma 10.1. The form
"y ina o, i \¢
g' = P (OX—2)+700p — (ilp'(O)C—2) Z (%aap) /0!
>0

s a weight for each fized z € C".
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Proof. Notice that
o _ i,

Therefore,
Ly - —dp
v =11p'(¢),{ —2) + ;Bap(o = Vc—z?
is V¢_,-closed and vp,0(z) = 0. Thus e” is a weight. O

It follows from (10.1) that
G*NgNH'UR, ¢*Ag' \NH°RR

will vanish to a given finite order at infinity if y is large enough and h(()
satisfies (10.2). Therefore, if p is large enough, using the compactly sup-
ported weights g and arguing as in the proof of Theorem 9.3, we obtain the
decomposition

(10.3)  h(z) = F(2) / gAG*NH'UR + / g Ag“*NHORh = FTh + Sh

for all entire h satisfying (10.2). Furthermore, Sh vanishes if h = Fq for
some holomorphic ¢, and in view of (10.1), both Th and Sh satisfy (10.2)
for some other large number M’ instead of M.

Let &'(K) be the space of distributions in R” with support contained in
K and let £"M(K) denote the subspace of distributions of order at most
M. For w € £'(K) let &(¢) = w(e~™%)) be its Fourier-Laplace transform.
The Paley-Wiener-Schwartz theorem, see [33] Thm 7.3.1, states that if v €
E'"M(K), then
(10.4) P(0)] < O+ [g]) e,

and conversely: if h is an entire function that satisfies such an estimate then
h = 1 for some v € £'(K).

From (10.3), applied to & for v € SI’M(K, Ey), we therefore get mappings
T: MK, By - E(K,Ey), 8:&MK, Ey) — E'(K,Ey),
such that
v=F(-D)Tv+ Sy,

and Sv = 0 if v = F(—D)w for some w € & (K, E;). By duality we have
mappings

T*: E(K,Ef) - CM(K,E}), S*:E(K,E)) — CM(K,Ep)
and they satisfy
(10.5) E=T'F'(D)E+8%, ¢c&(K, Ep).
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Theorem 10.2. Suppose that M > degF. If £ € E(K,Ef), then S*¢ €
CM(K,E}) satisfies FT(D)S*¢ = 0. If in addition FT(D)¢ = 0, then

S*¢ = &. Moreover, we have the explicit formula
(106)  S€) = [ BQaT(¢ D)) ner D,
¢
where o (¢, D)&(p') is the result when replacing each occurrence of z in
al'(¢,z) by D, letting it act on £(t) and evaluating at the point p'(C).

Thus S* is a projection onto the space of homogeneous solutions.

Recall that p’ € K. Also notice that Re —i((,t) = (n,t) < p(n) if t € K,
so combined with (10.1) we get that

Re —i(¢,t —p'(¢)) <0, teK

(for ¢ outside a neighborhood of 0). Therefore the integral in (10.6) has
meaning if y is large enough.

Proof. Suppose that M > deg F. Then for w € £ "M~ F (K ) we have
(10.7) w.FT(D)S*¢ = F(—D)w.S8*¢ = S(F(—D)w).£ =0

since 7 = F(—D)w € £"M(K, Ep) so that S = 0. From (10.7) the first
statement now follows. The second one follows immediately from (10.5).

It remains to prove (10.6). The argument is very similar to the proof of
Theorem 2 in [16] so we only sketch it. To begin with we have

(10,8 9(2) = [ ol RO perte

where a(-, z) = g* AH? is a polynomial in z. Let §; be the Dirac measure at
t € K. Then, letting T denote transpose of matrices, we have

S*(t) = 0.8 = (55t 38

Z(Z‘,p )6( ) _i<Cat_p >/\e7raap

As in [16] one can verlfy that it is legitimate to interchange the order of
integration, and then (10.6) follows by Fourier’s inversion formula. O

Corollary 10.3. For any solution & € £(K, E}) of FT(D)¢ = 0, there are
smooth forms Ay (C) with values in Ej such that

(10.9) €)= [ S REOAQ)e 6O,
¢k

Conversely, for any such smooth forms Ay (C) with sufficient polynomial de-
cay at infinity the integral (10.9) defines a homogeneous solution.
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The last statement follows just by applying F7 (D) to the integral and
using that FT(¢)RT = 0.

Remark 6. In case F' defines a complete intersection, formulas similar to
(10.9) were obtained in [16] and [41]. In [16] is assumed, in addition, that
FT(D) is hypoelliptic; then one can avoid the polynomial weight factor g*
and so the resulting formula is even simpler. See also [11] and [14]. O

Ezample 9 (A final example). The ideal (27, z122) corresponds to the system
0? 0?
9 _¢(t) =0,
8t§£( ) Ot 0ty
In view of (10.9) and Example 3, the solutions are precisely the functions
that can be written

£(t) = 0.

) = / [i] 9 [l] A A(2) dog A dzy A dzp e ritel)

22 21

/5[%] A é[ziz] A Ag(z) dz1 A dzy e~ HFrtitaets)

%1
for smooth functions A; and A, with appropriate growth. It is easily checked
directly to be the general solution, since the first integral is a quite arbitrary

function C(t2) whereas the second integral is an arbitrary polynomial C; +
Cot;. O

REFERENCES

[1] M. ANDERSSON: Residue currents and ideals of holomorphic functions, Bull. Sci.
Math., 128, (2004), 481-512.

[2] M. ANDERSSON: Ideals of smooth functions and residue currents, J. Functional
Anal. 212 (2004), no. 1, 76-88.

[3] M. ANDERSSON: The membership problem for polynomial ideals in terms of residue
currents, Ann. Inst. Fourier 56 (2006), 101-119.

[4] M. ANDERSSON: Residue currents of holomorphic morphisms, J. Reine Angew.
Math. 596 (2006), 215-234.

[65] M. ANDERSSON: Ezplicit versions of the Briancon-Skoda theorem with variations,
Michigan Math. J. 54 (2006), 361-373.

[6] M. ANDERSSON: Integral representation with weights II, division and interpolation
formulas, Math. Z. 254 (2006), 315-332.

[7] D. BAYER & D. MUMFORD: What can be computed in algebraic geometry?, Com-
putational algebraic geometry and commutative algebra (Cortona, 1991), 1-48,
Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993..

[8] D. BAYER & I. PEEVA & B. STURMFELS: Monomial resolutions, Math. Res. Lett.
5 (1998), no. 1-2, 31-46.

[9] D. BAYER & M. STILLMAN: A criterion for detecting m-reqularity, Invent. Math.
87, (1987), 1-11.

[10] D. BAYER & B. STURMFELS: Cellular resolutions of monomial modules, J. Reine
Angew. Math. 502 (1998), 123-140.



[11]

[12]
[13]
[14]

[15]
[16]

[17)
18]
[19]
[20]
[21]
[22]
[23)
[24]
[25]
[26]

27]

28]

[29]

[30]
31]

32]

NOETHERIAN RESIDUE CURRENTS 41

C. BERENSTEIN & A. YGER: About L. Ehrenpreis fundamental principle, Geomet-
rical and algebraical aspects in several complex variables (Cetraro, 1989), 4761,
Sem. Conf., 8, EditEl, Rende, 1991.

C. BERENSTEIN & A. YGER: Effective Bezout identities in Q[z1,--+ ,2n], Acta
Math. 166 (1991), 69-120.

C. BERENSTEIN & A. YGER: Analytic residue theory in the non-complete intersec-
tion case, J. Reine Angew. Math. 527 (2000), 203-235.

C. BERENSTEIN & R. GAY & A. VIDRAS & A. YGER: Residue Currents and Bézout
Identities, Birkhduser (1993).

B. BERNDTSSON: A formula for division and interpolation, Math Ann. 263 (1983).
B. BERNDTSSON & M. PASSARE: Integral formulas and an explicit version of the
fundamental principle, J. Func. Analysis 84 (1989).

J-E BJORK: Rings of differential operators, North-Holland Mathematical Library,
21. North-Holland Publishing Co., Amsterdam-New York, 1979, 374 pp..

J-E BIORK: Analytic D-modules and applications, Mathematics and its Applica-
tions, 247. Kluwer Academic Publishers Group, Dordrecht, 1993.

J-E BIORK: Residues and D-modules, The legacy of Niels Henrik Abel, 605-651,
Springer, Berlin, 2004.

J-E BJIORK: Annihilating ideals of residue currents, Manuscript Stockholm (2005).
J. BRIANGON & H. SKODA: Sur la cloture intégrale d’un idéal de germes de fonc-
tions holomorphes en un point de C*, C. R. Acad. Sci. Paris Sér. A 278 (1974),
949-951.

N.rR. COLEFF & M.E. HERRERA: Les courants résiduels associés a une forme
méromorphe, Lect. Notes in Math. 633, Berlin-Heidelberg-New York (1978).

A. DAMIANO & I. SABADINI & D. STRUPPA: Computational Methods for the Con-
struction of a Class of Noetherian Operators, ArXiv math.AC/0411574.

J-P DEMAILLY: Complez Analytic and Differential Geometry, Monograph Grenoble
(1997).

A. DICKENSTEIN & C. SEssA: Canonical representatives in moderate cohomology,
Invent. Math. 80 (1985), 417-434..

A. DICKENSTEIN & R. GAY & C. SESSA & A. YGER: Analytic functionals anni-
hilated by ideals, Manuscripta Math. 90 (1996), 175-223.

L. EHRENPREIS: Fourier analysis in several complex variables, Pure and Applied
Mathematics, Vol. XVII Wiley-Interscience Publishers A Division of John Wiley
& Sons, New York-London-Sydney 1970.

D. EisENBUD: Commutative algebra. With a view toward algebraic geometry, Grad-
uate Texts in Mathematics, 150. Springer-Verlag, New York, 1995.

D. EISENBUD: The geometry of syzygies. A second course in commutative algebra
and algebraic geometry, Graduate Texts in Mathematics, 229. Springer-Verlag, New
York, 2005.

PH. GRIFFITHS & J. HARRIS: Principles of Algebraic Geometry, John Wiley and
Sons, (1978).

R. GUuNNING & H. Rossi: Analytic functions of several complex variables, Prentice-
Hall, Inc., Englewood Cliffs, N.J. 1965.

L. HORMANDER: An introduction to compler analysis in several variables, Sec-
ond revised edition. North-Holland Mathematical Library, Vol. 7. North-Holland
Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New
York, 1973.



42

[33]
[34]
[35]
[36]
37]
[38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

MATS ANDERSSON & ELIZABETH WULCAN

L. HORMANDER: The Analysis of Linear Partial Differential Operators I, Second
Ed. Springer-Verlag 1990.

B. MALGRANGE: Une remarque sur les idéauz de fonctions différentiables, Invent.
Math. 9 (1969/1970), 279-283.

E. MAYR & A. MAYER: The complezity of the word problem for commutative semi-
groups and polynomial ideals, Adv. in math. 46 (1982), 305-329.

E. MIiLLER & B. STURMFELS: Combinatorial commutative algebra, Graduate Texts
in Mathematics, 227. Springer-Verlag, New York, 2005.

M. NOTHER: Uber einen Satz aus der Theorie der algebraischen Functionen, Math.
Ann. (1873), 351-359.

U. OBERST: The construction of Noetherian operators, J. Algebra 222 (1999), 595—
620.

V.P. PALAMODOV: Linear differential operators with constant coefficients, Trans-
lated from the Russian by A. A. Brown. Die Grundlehren der mathematischen
Wissenschaften, Band 168 Springer-Verlag, New York-Berlin 1970.

M. PASSARE: Residues, currents, and their relation to ideals of holomorphic func-
tions, Math. Scand. 62 (1988), 75-152.

A. YGER: Formules de division et prolongement méromorphe, Séminaire d’Analyse
P. Lelong—P. Dolbeault-H. Skoda, Années 1985/1986, 226-283, Lecture Notes in
Math., 1295, Springer, Berlin, 1987.

M. PaSsARE & A. TSIKH & A. YGER: Residue currents of the Bochner-Martinelli
type, Publ. Mat. 44 (2000), 85-117.

D. QUILLEN: Superconnections and the Chern character, Topology 24 (1985), 89—
95.

B. SHIFFMAN: Degree bounds for the division problem in polynomial ideals, Michigan
Math. J. 36 (1989), 163-171.

B. STURMFELS: Solving systems of polynomial equations, CBMS Regional Confer-
ence Series in Mathematics, 97. Published for the Conference Board of the Mathe-
matical Sciences, Washington, DC; by the American Mathematical Society, Provi-
dence, RI, 2002.

E. WULCAN: Residue currents of monomial ideals, Indiana Univ J math (to ap-
pear).

DEPARTMENT OF MATHEMATICS, CHALMERS UNIVERSITY OF TECHNOLOGY AND THE
UNIVERSITY OF GOTEBORG, S-412 96 GOTEBORG, SWEDEN
E-mail address: matsa@math.chalmers.se, wulcan@math.chalmers.se



Paper IV






RESIDUE CURRENTS CONSTRUCTED FROM
RESOLUTIONS OF MONOMIAL IDEALS

ELIZABETH WULCAN

ABsTRACT. Given a free resolution of an ideal J of holomorphic func-
tions, one can construct a vector valued residue current R, whose annihi-
lator is precisely J. In this paper we compute R in case J is a monomial
ideal and the resolution is a cellular resolution in the sense of Bayer and
Sturmfels. A description of R is given in terms of the underlying poly-
hedral cell complex and it is related to irreducible decompositions of 7.

1. INTRODUCTION

Given a free resolution of an ideal J of holomorphic functions, in [2] a
vector valued so called Noetherian residue current R was constructed, which
has the property that the ideal of holomorphic functions that annihilate R
is precisely J. This relation generalizes the well known duality theorem for
Coleff-Herrera currents for complete intersection ideals, due to Dickenstein
and Sessa, [7], and Passare, [16].

The degree of explicitness of the current R of course directly depends
on the degree of explicitness of the resolution. In case J is a complete
intersection the Koszul complex is exact and the corresponding current is
the classical Coleff-Herrera current, [6], as shown in [17] and [1]. In general,
though, explicit resolutions are hard to find. In this paper we will focus on
monomial ideals, for which there has recently been a lot of work done, see
for example the book [13] and the references mentioned therein. Because of
their simplicity and nice combinatorial description monomial ideals serve as
a good toy model for illustrating general ideas and results in commutative
algebra and algebraic geometry, see [19] for examples, which make them
a natural first example to consider. In [21] residue currents of Bochner-
Martinelli type, in the sense of [17], were computed for monomial ideals,
and in [2], there are presented some explicit computations of Noetherian
residue currents of certain simple monomial ideals. On the other hand many
results for general ideals can be proved by specializing to monomial ideals.
In fact, recall that the existence of Bochner-Martinelli as well as Noetherian
residue currents is proved by reducing to a monomial situation by resolving
singularities.

1
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The aim of this paper is to compute Noetherian residue currents associ-
ated with monomial ideals and by that also illustrate the extended duality
theorem. We will consider so called cellular resolutions, which were intro-
duced by Bayer and Sturmfels in [3], and which can be nicely encoded into
polyhedral cell complexes. The construction will be described in Section 2.

Our results, which are presented in Section 3, concern Artinian monomial
ideals, that is (monomial) ideals with zero-dimensional variety. A priori the
Noetherian residue current R corresponding to a cellular resolution has one
entry R for each (n — 1)-dimensional face F' of the underlying polyhedral
cell complex. The main technical result in this paper, Proposition 3.1, asserts
that each Rp is a certain nice Coleff-Herrera current:

~r1 =7 1
¢ 0| And| 5]
2 2’
where a = (a1,...,a,) can be read off from the cell complex and c¢ is a con-
stant. In particular, if ¢ # 0 the ideal of functions annihilating Rr, Ann Ry,
is (21,...,2%"). A monomial ideal of this form, where the generators are

powers of variables, is called irreducible. One can show that every mono-
mial ideal can be written as a finite intersection of irreducible ideals; this is
called an irreducible decomposition of the ideal. Since one has to annihilate
all entries Rp to annihilate R, [ Ann Rp yields an irreducible decomposi-
tion of the ideal Ann R, which by the duality theorem equals J, and so the
(nonvanishing) entries of R can be seen to correspond to components in an
irreducible decomposition. In particular, the number of nonvanishing en-
tries are bounded from below by the minimal number of components in an
irreducible decomposition.

In general, we can not extract enough information from our computations
to determine which entries Rp that are nonvanishing. Still, for “most” mono-
mial ideals we can; if the monomial ideal J is generic, which means that the
exponents in the set of minimal generators fulfill a certain genericity condi-
tion (see Section 2 for a precise definition), then Theorem 3.3 states that Rp
is nonvanishing precisely when F' is a facet of the Scarf complex introduced
by Bayer, Peeva and Sturmfels, [4]. In particular, if the underlying cell com-
plex is the Scarf complex, then all entries of R are nonvanishing. The cellular
resolution so obtained is in fact a minimal resolution of the generic ideal J.
Theorem 3.5 asserts that whenever the cellular resolution is minimal, the cor-
responding Noetherian residue current has only nonvanishing entries. Also,
the number of entries is equal to the minimal number of components in an
irreducible decomposition.

The technical core of this paper is the proof of Proposition 3.1, which is
given in Section 4. It is very much inspired by [21], where similar results were
obtained for currents of Bochner-Martinelli type corresponding to the Koszul
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complex. When considering general cellular resolutions the computations
get more involved though; in particular, they involve finding inverses of all
mappings in the resolution. As in [21], the proof amounts to computing
currents in a certain toric manifold constructed from the generators of the
ideal, using ideas originally due to Khovanskii [11] and Varchenko [20]. Once
Proposition 3.1 is proved, Theorems 3.3 and 3.5 follow easily by invoking
results from [4] and [12].

2. PRELIMINARIES AND BACKGROUND

Let us start by briefly recalling the construction of residue currents in [2];
for details we refer to this paper. Consider an arbitrary complex of Hermitian
holomorphic vector bundles over a complex manifold €2,

(2.1) 0= By . g Pyp YR,

that is exact outside an analytic variety Z of positive codimension, and
suppose that the rank of Ey is 1. In Q\ Z, let o, be the minimal inverse
of fr, with respect to some Hermitian metric, let ¢ = 0g + ... + on, u =
o(I-00)~! = 0+0(00)+0(00)?+. .., and let R be the analytic continuation
of O|F|** A to A =0, where F is any tuple of holomorphic functions that
vanishes on Z. It turns out that R is a well defined current taking values in
End(FE), where E = @y F), which has support on Z, and which in a certain
way measures the lack of exactness of the associated complex of locally free
sheaves of O-modules O(E})) of holomorphic sections of Ej,

(2.2) 0 O(Ey) L% - 25 0(B) 15 0(By).

In particular, if J is the ideal sheaf Im (O(E;) — O(Ep)) and ¢ € O(Ey)
fulfills that the (E-valued) current Ry = 0, then locally ¢ € J.

Moreover, letting Rﬁ denote the component of R that takes values in
Hom (Ey, Ey) and R = Y7, RY, it turns out that R® = 0 for £ > 1 is
equivalent to that (2.2) is exact, in other words that it is a resolution of
O(Ey)/J, see Theorem 4.1 in [2]. In this case, Ry = 0 precisely when ¢ € J
(Theorem 4.3 in [2]), and we say that R is Noetherian. The notion comes
from the analogy with Noetherian operators (introduced in [10] and [15]),
which are differential operators that can be used to characterize ideals.

Let us continue with the construction of cellular complexes from [3]. Let S
be the polynomial ring Clz, ..., z,] and let deg m denote the multidegree of
a monomial m in S. When nothing else is mentioned we will assume that
monomials and ideals are in S.

Next, a polyhedral cell complex X is a finite collection of convex polytopes
(in a real vector space R? for some d), the faces of X, that fulfills that if
F € X and G is a face of F (for the definition of a face of a polytope, see for
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example [22]), then G € X, and moreover if F' and G are in X, then F NG
is a face of both F' and GG. The dimension of a face F', dim F', is defined as
the dimension of its affine hull (in R?) and the dimension of X, dim X, is
defined as maxpex dim F. Let X, denote the set of faces of X of dimension
(k — 1) (Xp should be interpreted as {#}). Faces of dimension 0 are called
vertices. We will frequently identify F' € X with its set of vertices. Maximal
faces (with respect to inclusion) are called facets. A face F is a simplex if the
number of vertices, |F|, is equal to dim F'+ 1. If all faces of X are simplices,
we say that X is a simplicial complex. A polyhedral cell complex X' C X is
said to be a subcomplex of X.

Moreover, we say that X is labeled if there is monomial m; in S associated
to each vertex ¢. An arbitrary face F' of X is then labeled by the least
common multiple of the labels of the vertices of F', that is mp = lem{m;|i €
F}. Let N* 5 ap = deg (mp). By N we mean 0,1,2,.... We will sometimes
be sloppy and not differ between the faces of labeled complex and their labels.

Now, let M be a monomial ideal in S with minimal generators {m1,...,m,}
(recall that the set of minimal generators of a monomial ideal is unique).
Throughout this paper M will be supposed to be of this form if nothing else
is mentioned. Moreover, let X be a polyhedral cell complex with vertices
{1,...,r} endowed with some orientation and labeled by {m;}. We will asso-
ciate with X a graded complex of free S-modules: for K =0,...,dim X + 1,
let Ay be the free S-module with basis {er}rex, and let the differential
fk: : Ak — Ak*l be defined by

m
(2.3) fr:er— Z sgn (G, F) =E e,
facets GCF ma

where the sign sgn (G, F) (= 1) comes from the orientation on X. Note
that mp/me is a monomial. The complex

fdilnxfl
_) .

FX50—>AdimX—1 £>A1£)A0

is the cellular complex supported on X, which was introduced in [3]. It is
exact if the labeled complex X fulfills a certain acyclicity condition. More
precisely, for 8 € N* let X<3 denote the subcomplex of X consisting of all
faces F' for which ar < 8 with respect to the usual ordering in Z". Then Fx
is exact if and omly if X<g is acyclic, which means that it is empty or has
zero reduced homology, for all 5 € N™, see Proposition 4.5 in [13]. We then
say that Fx is a cellular resolution of S/M.

In particular, if X is the (r — 1)-simplex this condition is fulfilled and we
obtain the classical Taylor resolution, introduced by Diana Taylor, [18]. Note
that if M is a complete intersection, then the Taylor resolution coincides with
the Koszul complex. If X is an arbitrary simplicial complex, Fx is the more
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general Taylor complez, introduced in [4]. Observe that if X is simplicial the
orientation comes implicitly from the ordering on the vertices.

Recall that a graded free resolution --- — Ay ﬂ) Ap_ 1 — -+ 18
minimal if and only if for each k, fr maps a basis of Ay to a minimal
set of generators of Im f, see for example Corollary 1.5 in [9]. The Taylor
complex Fx is a minimal resolution if and only if it is exact and for all F' € X,
the monomials mp and mp\; are different, see Lemma 6.4 in [13].

Now, to put the cellular resolutions into the context of [2], let (2.1) be the
vector bundle complex where (N = dim X + 1 and) Ej is a trivial bundle
over C" of rank |Xj|, endowed with the trivial metric, and with a global
frame {er}rex,, and where the differential is given by (2.3). Alternatively,
we can regard fi as a section of E} ® Ej_q, that is

fr = Z Z sgn (G, F) mr er ®egq.

m
FeXy, facets GCF G

We will frequently say that the corresponding residue current R is associated
with X, and we will use Rp to denote the coefficient of ep ® €.

It is well known that the induced sheaf complex (2.2) is exact if and only
if Fx is. (For example it can be seen from the Buchsbaum-Eisenbud theorem,
Theorem 20.9 in [8], and residue calculus - the proof of Theorem 4.1 in [2].)

Observe that the elements in S (holomorphic polynomials) can be regarded
as holomorphic sections of Fy. In this paper, by the annihilator ideal of a
current 7', AnnT', we will mean the ideal in S which consists of the elements
@ € S for which Ry = 0.

For b = (by,...,b,) € N* we will use the notation m® for the irreducible
ideal (20',...,2%). If M = NZ_,m¥, for some & € N*, is an irreducible
decomposition of the monomial ideal M, such that no intersectand can be
omitted the decomposition is said to be irredundant, and the ideals m®'
are then called the irreducible components of M. One can prove that each
monomial ideal M in S has a unique irredundant irreducible decomposition.
Giving the irreducible components is in a way dual to giving the generators
of the ideal (see Chapter 5 on Alexander duality in [13]), and the uniqueness
of the irredundant irreducible decomposition corresponds to the uniqueness
of the set of minimal generators of a monomial ideal. This duality will be
illustrated in Example 1.

We will be particularly interested in so called generic monomial ideals. A
monomial m’ € S strictly divides another monomial m if m’ divides m/z;
for all variables z; dividing m. We say that a monomial ideal M is generic if
whenever two distinct minimal generators m; and m; have the same positive
degree in some variable, then there exists a third generator my that strictly
divides the least common multiple of m; and m;. In particular M is generic
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if no two generators have the same positive degree in any variable. Almost all
monomial ideals are generic in the sense that those which fail to be generic
lie on finitely many hyperplanes in the matrix space of exponents, see [4].
We will use the notation 9[1/f] for the analytic continuation of 8|f|**/f
to A = 0, and analogously by [1/f] we will mean |f|**/f|x—o, that is, just
the principal value of 1/f. By iterated integration by parts we have that

(2.4) /Zé[zip] A pdz = %%w(m.

In particular, the annihilator of 9[1/2P] is (2P).
3. RESIDUE CURRENTS CONSTRUCTED FROM CELLULAR RESOLUTIONS

We are now ready to present our results, which concern residue currents R
associated with cellular complexes of Artinian monomial ideals. We are
interested in the component R?, which takes values in Hom (Ey, E). In fact,
when (2.2) is exact R = R®. From Proposition 3.2 in [2] we know that if M is
Artinian, then R® = RY, where R? is a Hom (Ey, E,)-valued current. Thus,
a priori we know that R? consists of one entry Rr er ® ey for each F' € X,.
We will suppress the factor ej in the sequel.

Proposition 3.1. Let M be an Artinian monomial ideal, and let R be the
residue current associated with the polyhedral cell compler X. Then

(3.1) R = Z Rr er,
FeXn,
where
=1 1 =r 1
2] 2Zn"
Here cp 1is a constant and (a1,...,an) = ap. If any of the entries of ap

is 0, (3.2) should be interpreted as 0.

Note that Proposition 3.1 gives a complete description of R® except for
the constants cp. We are particularly interested in whether the cg are zero
or not. Indeed, note that

Anng[i]/\.../\é[

(63}

1
|-
21

"
so that Ann Rp = m®F if ¢cp # 0. Note in particular that Ann Rr depends
only on ¢p and mp and not on the particular vertices of F' nor the remain-
ing faces in X. Furthermore, to annihilate R® one has to annihilate each
entry Rr and therefore

Amn R® = ﬂ mer,
FeX; cp#0
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Now, suppose that the cellular complex Fx is exact. Then, R = R?, and
from Theorems 4.1 and 9.3 in [2| we know that

Ann R = M.

Thus a necessary condition for ¢y to be nonvanishing is that M C m®¥. In
general though, Proposition 3.1 does not give enough information to give a
sufficient condition, as will be illustrated in Example 2.

Below we will discuss two situations, however, in which we can determine
exactly which ¢y that are nonzero.

First we will consider generic monomial ideals. To this end let us introduce
the Scarf complex Apy of M, which is the collection of subsets I C {1,...,r}
whose corresponding least common multiple my is unique, that is,

Ay ={Ic{l,...;r}ymr=mp =>1=T}

One can prove that the Scarf complex is a simplicial complex, and that its
dimension is a most n — 1. In fact, when M is Artinian, A/ is a regular
triangulation of (n — 1)-simplex. For details, see for example [13]. In [4]
(Theorem 3.2) it was proved that if M is generic, then the cellular complex
supported on Aps gives a resolution of S/M, which is moreover minimal.
Furthermore, if M in addition is Artinian, then

(3.3) M= (] e,
F facet of Ay

yields the unique irredundant irreducible decomposition of M, as follows as
a special case of their Theorem 3.7. To be precise, originally in [4], a less
inclusive definition of generic ideals was used, but the results above were
extended in [14] to the more general definition of generic ideals we use.

We can now deduce the following.

Proposition 3.2. Let M be an Artinian generic monomial ideal and let R
be the residue current associated with the polyhedral cell complex X. Suppose
that Fx is exact. Then cp in (3.2) is non-zero if and only if F € X, is a
facet of the Scarf complex Ajpy.

Proof. Suppose that F' € X, is not a facet of Aps. We show that M ¢ m*F,
which forces cr to be zero.

Let J be the largest subset of {1,...,r} such that my = mp. Then for
some j € J it holds that mj; = mp, as follows from the definition of Apy.
If m; strictly divides my then clearly m; ¢ m*F and we are done. Otherwise,
it must hold for some k € J\ j that m; and m; have the same positive degree
in one of the variables. Then, since M is generic, there is a generator my that
strictly divides the least common multiple of m; and my and consequently
also strictly divides mp. Hence m, ¢ m®F.
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On the other hand, since (3.3) is irredundant, ¢y has to be nonzero when-
ever F is a facet of Ajy. O

Thus, to sum up, Proposition 3.1 and Proposition 3.2 yield the following
description of the Noetherian residue current of a generic monomial ideal.

Theorem 3.3. Let M be an Artinian generic monomial ideal and let R be
the residue current associated with the polyhedral cell compler X. Suppose
that Fx is exact. Then

R = Z RF €r,
F facet of Apr
where Ay is the Scarf complex of M, Rp is given by (3.2), and the con-
stant cp there is nonvanishing.

In particular if we choose X as the Scarf complex Ajps we get that all
coefficients cg are nonzero.

Remark 1. Observe that it follows from Theorem 3.3 that X must contain
the Scarf complex as a subcomplex. Compare to Proposition 6.12in [13]. O

An immediate consequence is the following.

Corollary 3.4. Let M be an Artinian generic monomial ideal and let R be
the residue current associated with the polyhedral cell complex X. Suppose
that Fx is exact. Then
M = n AnnRp
FeX
yields the irredundant irreducible decomposition of M.

Another situation in which we can determine the set of nonvanishing con-
stants cp is when Fx is a minimal resolution of S/M. Indeed, in [12] (The-
orem 5.12, see also Theorem 5.42 in [13]|) was proved a generalization of
Theorem 3.7 in [4]; if M is Artinian and Fx is a minimal resolution of S/M,
then the irredundant irreducible decomposition is given by

(3.4) M= (] m.

F facet of X
Hence, from (3.4) and Proposition 3.1 we conclude that in this case all cp
are nonvanishing.

Theorem 3.5. Let M be an Artinian generic monomial ideal and let R be
the residue current associated with the polyhedral cell complex X. Suppose
that Fx is a minimal resolution of S/M. Then

R= Y Rrep,
F facet of X
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FIGURE 1. The staircase diagram of M in Example 1.

where Rp is given by (3.2) and the constant cy there is nonvanishing.

Finally, we should remark, that even though we can not determine the
set of non-vanishing entries of a Noetherian residue current associated with
an arbitrary cell complex, we can still estimate the number of nonvanishing
entries from below by the number or irreducible components of the corre-
sponding ideal.

Let us now illustrate our results by some examples. First observe that
the ideal (24) = (2¢ = 2{*+.-2%]a € A C N*) in § is precisely the set of
functions that have support in (J,c4(a + R} ), where

supp Z cez® ={a € Z"|c, # 0},
aEZ™

and thus we can represent the ideal by this set, see Figure 1. Such pic-
tures of monomial ideals are usually referred to as staircase diagrams. The
generators {z?} should be identified as the “inner corners of” the staircase,
whereas the “outer corners” correspond to the exponents in the irredundant
irreducible decomposition.

FEzample 1. Let us consider the case when n = 2. Note that then all mono-
mial ideals are generic. If M is an Artinian monomial ideal, we can write

M = (w220, ... 2% 1w¥-1 %),

for some integers a2 < ... < a, and by > ... > b,_1. Now Ay is one-
dimensional and its facets are the pairs of adjacent generators in the staircase.
Moreover my; ;1) = z%+1b% | which corresponds precisely to the ith outer
corner of the staircase. Thus, according to Theorem 3.3 the Noetherian
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72

FiGURE 2. The Scarf complex Ay of the ideal M in Example 2.

residue current R associated with a cellular resolution of M is of the form

n—1
= 1 =1 1
R = ZCZ' 8 |:zai+1:| A 6 [E] e{i,i—l—l}a

for some nonvanishing constants ¢;. The annihilator of the ith entry is the
irreducible component (z%+1, 2%).

Figure 1 illustrates the two ways of thinking of M, either as a staircase
with inner corners (a;, b;), corresponding to the generators, or as a staircase
with outer corners (a;+1,b;), corresponding to the irreducible components or
equivalently the annihilators of the entries of R. O

Let us also give an example that illustrates how we in general fail to
determine the set of nonzero ¢y when the ideal is not generic.

Example 2. Consider the non-generic ideal
M = (22, zy,y?, yz, 22) =: (m1,...,ms).

The Scarf complex Ajs, depicted in Figure 2, consists of the 2-simplex
{2,3,4} together with the one-dimensional “handle” made up from the edges
{1,2},{1,5} and {4, 5}. Moreover the irredundant irreducible decomposition
is given by M = (z,y?, z) N (x2, vy, 22).

Let X be the full 4-simplex with vertices {1,...,5} corresponding to the
Taylor resolution. It is then easily checked that for the associated Noetherian
residue current, c(s 3 41 and at least one of ¢y 5 51 and c(y 45} have to be zero,
whereas c{1,2.4) and ¢y 45} can be either zero or nonzero. The remaining cp
has to be zero since for them M ¢ m®F. Thus, in general Proposition 3.1
does not provide enough information to determine which of the coefficients cp
that vanish.
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However, let instead X’ be the polyhedral cell complex consisting of the
two facets {2, 3,4} and {1,2,4,5}, that is the triangle and the quadrilateral
in Figure 2. The resolution obtained from X', which is in fact the so called
Hull resolution introduced in [3], is minimal. Thus, according to Theorem 3.5
the two entries of the associated residue current, which correspond to the two
facets of X' are both nonvanishing, with annihilators (z, 2, 2) and (22, y, 22)
respectively. This could of course be seen directly since we already knew the
irredundant irreducible decomposition of M. O

4. PROOF OF PROPOSITION 3.1

The proof of Proposition 3.1 is very much inspired by the proof of The-
orem 3.1 in [21]. We will compute R° as a push-forward of corresponding
currents on a certain toric variety. To do this we will have use for the fol-
lowing simple lemma which is proved essentially by integration by parts.

Lemma 4.1. Let v be a strictly positive smooth function in C, ¢ a test
function in C, and p a positive integer. Then

dz Ndz
Al |2X
A= /'u |z (p(z)T

and p

Ao [N A p) S
both have meromorphic continuations to the entire plane with poles at rational
points on the negative real azris. At X\ = 0 they are both independent of v
and equal to [1/2P] and O[1/2zP] respectively (acting on suitable test forms).
Moreover, if p(z) = Zi(z) or ¢ = dZAv), then the value of the second integral
at A =0 1is zero.

Before presenting the proof of Proposition 3.1, let us just give a very brief
overview of it. First, we will give a description of the current R in terms of
the cell complex X. After that we will introduce the toric variety mentioned
above and show that R? equals the push-forward of certain currents on this
variety. Finally, we will compute these currents.

Let us start by recalling from Section 3 in [2] that R? is the analytic
continuation to A = 0 of 9| F|** Aul, where F is a holomorphic function that
vanishes at the origin and

ud = (804)(00p—1) - - (8o2)01.
By Lemma 2.1 in [2]
s,

4.1 - Jk 7
(4.1) Ok |Fe|?
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where gy, is the rank of fi, 0y, is contraction with fi, F}, = (fx)% /qi! and
Sk = (sk)% /qx! is the dual section of Fj. For details, we refer to Section 2
in [2]. Furthermore, s is the section of E} ® E}_, that is dual to f; with
respect to the trivial metric, that is,

e
Sk = Z Z sgn (H,G) m:eg@e’fq.
GeXy facets HCG H

Here ¢ just denotes the conjugate of mg. Notice that, since oxor—1 =0,
as follows by definition, it holds that only the terms obtained when the 0
fall in the numerator survive, and so

o _ O0F T S0) -+ O0F " S)of 1
" |[Fnl? - | F1[?

Observe furthermore that the numerator of the right hand side of (4.1) is a
sum of terms of the form

(4.2) ok = Hwpl? 22 eq ® ejr,
myg

where G € X, and H € X, is a facet of G and

mGl lllquk71
W = )
MH, " quk—l

where for 1 <2 < q, —1, Gy € X}, and Hy € X_1 is a facet of Gy. The £
in front of |wg| depends on the orientation on X. Note that the coefficients
are monomials. It follows that uY is a sum of terms of the form

) (Do) -+ (Bu)w
Uy = u{?)l,---’v’"r} - |FTL|2 T |'F11|2 ’

where each vy is of the form (4.2), and where
(4.3) vn---'ul:j:|wn---w1|2m—FeF®e(’5

for some F' € X,,.

Observe that each Fj, has monomial entries. By ideas originally from [11]
and [20], one can show that there exists a toric variety X and a proper
map II : X — C" that is biholomorphic from X \ I !({z -2, = 0})
to C* \ {z1---2, = 0}, such that locally, in a coordinate chart U of X,
it holds for all k that the pullback of one of the entries of Fj, divides the
pullbacks of all entries of Fj. In other words we can write II*Fj, = F,SF,Q,
where F,? is a monomial and F}, is nonvanishing, and analogously we have

II*F = FOF'. The construction is based on the so called Newton polyhedra
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associated with Fj and we refer to [5] and the references therein for details.
The mapping IT is locally in the chart U given by

n:u —»
t — tF

where P = (p;;) is a matrix with determinant +1 and ¥ is a shorthand no-
tation for (¢7** ... tpmt, ... t{*" ... th™"). Hence, the pullback IT* transforms
the exponent of monomials by the linear mapping P;

¥ _a _ TT7* .01 an __ 4P1°Q -a _ 4 Pa
M2 =M 2" e zgn =t b0 =479

where p; denotes the ith row of P, so that the pullback of a monomial is
itself a monormial.
Now, from Proposition 2.2 in [2] we know that FJII*oy is smooth in U.
However,
IT* v/ T*v!
FOT*a,. = Tk _ 'k
ki Ok Z FO|FI 2 Z Z FOF?

J Q€N gog H*vi:a

where vi are just the different terms vy that appear in the numerator of oy.
Therefore clearly for each o € N* the sum

J
> e
~ FY|F!%’
deg IT*v], = k| k|
which is just equal to Ct*/ (FQ|F}|?) for some constant C, has to be smooth
and consequently t®/(F?|F{|?) is smooth or C' = 0. Hence, to compute R°
we only need to consider terms wu,, where v = (v1,...,v,) is such that
*vy, /(FP|F}|?) is smooth on X for all k. For such a v let us define

RY := 3|F|* Auy|r—o and RO :=1II*(8|F|** A uy)|r—o.

From below it follows that R and R? are well defined (globally defined)
currents and moreover that ﬁ*ﬁg = RY. Furthermore, it is clear that R? =
> RY. where the sum is taken over all v. Next, observe that, in view of (4.2),
the frame element of u, is er ® e, where F' € X, is determined by vy,
Hence Ry ep in (3.1) will be the sum of currents R, where v is such that v,
contains the frame element er. Thus, to prove the proposition it suffices to
show that R is of the desired form.
Let us therefore consider ég in Y. Observe that

IT*((9vn) - - - (Qv2)v1)

(4.4) RO = §|FOF' |2 A
! [FQ - FPPu(t) =0




14 ELIZABETH WULCAN

where v(t) := (|F!|---|F{|)? is nonvanishing. For further reference, note
that v(t) only depends on |t1], ..., |t,|. Moreover, let us denote deg (F? - - - F?)
by N* 5 v = (y1,...,7n) and deg (wp, - --w1) by S, and recall that degmp =
ap. By Leibniz’ rule and Lemma 4.1, recalling (4.3), we see that (4.4) is
equal to a sum of terms of the form a constant times

(4.5)

7pi-(ap+B)—i pj-ar—1
5[7{)%—1%'/3] ® [H |tj|2(ﬂj-ﬂ—7j)] A t; V(lgﬁfz L dt; ep ® e,

where t; is one of the variables which fulfills that ¢; divides the monomials F°
and F,? e Flo, whereas t1 - - tj_1tj41 - - tp, divides II*mp. In fact, it is not
hard to check that, unless the latter requirement is fulﬁll/ezl, the correspond-
ing contribution will vanish for symmetry reasons. Here dt; is just shorthand
for dty A ... Adti1 Adtiza A ... Adt,. Note that since IT*vy /(FP|Fy|?) is
smooth there will be no occurrences of any of the coordinate functions ¢; in
the denominator, except for them in v(t), and in particular it follows that
v; — pj - B > 0 when j # i. Moreover, due to Lemma 4.1, (4.5) vanishes
whenever there is an occurrence of ¢; in the numerator. Hence a necessary
condition for (4.5) not to vanish is that

pi - (ap + B) —vi = 0.

We will now compute the action of }~22 on the pullback of a test form
¢ = ¢(z)dz of bidegree (n,0). Here dz = dz; A ... Adz,. Let {U;} be the
cover of X that naturally comes from the construction of X' as described in
the proof of Theorem 3.1 in [21], and let {x,} be a partition of unity on X
subordinate {U;}. It is not hard to see that we can choose the partition in
such a way that the x, are circled, that is, they only depend on |t1],...,|ts].
Now ﬁg =>. XT}~22. We will start by computing the contribution from our
fixed chart Y )with corresponding cutoff function ), where RO is realized as
a sum of terms (4.5).

Recall that R has support at the origin; hence it only depends on finitely
many derivatives of ¢ at the origin. Moreover we know that h annihilates R
if h is a holomorphic function which vanishes on Z, see Proposition 3.2 in [2].
For that reason, to determine R it is enough to consider the case when ¢ is
a holomorphic polynomial. We can write ¢ as a finite Taylor expansion,

a!

o= Z QOa(O) za’
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a1 gon

where a = (a1,...,an), Yo = 5,01 " g P and a! = aq!---a,!, with pull-
21 Zn

back to U given by

Z (Pa tPa _ Z (Pa p1 a tzn-a_

Moreover a computation similar to the proof of Lemma 4.2 in [21] yields

IT*dz = det P t(F—D1 gt

where 1 = (1,1,...,1).
Since det P # 0, it follows that xR0.IT*¢ is equal to a sum of terms of the
form a constant times

1 H';,g'fej.aFilA
= 2psi-B—rys 7 n *
J#i
Z‘Pa )tPatP Dig — ZI /\ r Qe
Q)a
where
_[5 1 x(t) =
(46) Ia = /a[m] ® [Ma] A m dtz A dt.

Here p, is the Laurent monomial
H Pi (Brat )=y =1 gpj-(B+ap)—7;—1
J J :
J#i
Invoking (2.4) We evaluate the ¢;-integral. Since v and x depend on |¢1],. .., |ty
it follows that 2 8t‘ |tq, —0 =0 for £ > 1 and thus (4.6) is equal to

Ha =

[ x@)lri=olpa] =
(4.7) 2mL T di; A dt;,
if
(4.8) pi-(ap—a—1)+1=1,

and zero otherwise. Moreover, for symmetry reasons, (4.7) vanishes unless
(4.9) pj-(ap—a—-1)=0

for j # 4, that is, unless u, is real.
Thus, since P is invertible, the system of equations (4.8) and (4.9) has
the unique solution a = ap — 1 if ap > 1. Otherwise there is no solution,



16 ELIZABETH WULCAN

since a has to be larger than (0,...,0). With this value of a the Laurent
monomial u, is nonsingular and so the integrand of (4.7),

X(8)lri=0 TTjp [t 205 Prem) =i —1)
v(t)si=0 ’
becomes integrable. Hence I, is equal to some finite constant if a = ap — 1
and zero otherwise.
Now, recall that the chart & was arbitrarily chosen. Thus adding contribu-

tions from all charts reveals that R0 and thus R is of the desired form (3.2),
and so Proposition 3.1 follows.

Remark 2. We should compare Proposition 3.1 to Theorem 3.1 in [21]. It
states that the residue current of Bochner-Martinelli type of an Artinian
monomial ideal is a vector with entries of the form (3.2), but it also tells pre-
cisely which of these entries that are non-vanishing. If we had not cared
about whether a certain entry was zero or not we could have used the
proof of Proposition 3.1 above. Indeed, the Koszul complex, which gives
rise to residue currents of Bochner-Martinelli type, can be seen as the cel-
lular complex supported on the full (r — 1)-dimensional simplex with labels
mp = {[[;cpmi}- It is not hard to see that the proof above goes through
also with this non-conventional labeling. O
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