
GLOBAL REPRESENTATION OF SEGRE NUMBERS BY
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Abstract. On a reduced analytic space X we introduce the concept of a generalized
cycle, which extends the notion of a formal sum of analytic subspaces to include also a
form part. We then consider a suitable equivalence relation and corresponding quotient
B(X) that we think of as an analogue of the Chow group and a refinement of de Rham
cohomology. This group allows us to study both global and local intersection theoretic
properties.

We provide many B-analogues of classical intersection theoretic constructions: For
an analytic subspace V ⊂ X we define a B-Segre class, which is an element of B(X)
with support in V . It satisfies a global King formula and, in particular, its multiplicities
at each point coincide with the Segre numbers of V . When V is cut out by a section of
a vector bundle we interpret this class as a Monge-Ampère-type product. For regular
embeddings we construct a B-analogue of the Gysin morphism.

1. Introduction

Throughout this paper X is a reduced analytic space of pure dimension n and J → X
is a coherent ideal sheaf with zero set Z with codimension κ. Tworzewski, [21], and
Gaffney and Gassler, [13], independently introduced, at each point x ∈ X, numbers
eκ(J , x), . . . , en(J , x) that generalize the Hilbert-Samuel multiplicity at x. These def-
initions, although slightly different, are both of a geometric nature. There is also a
purely algebraic definition, see [1] and [2] by Achilles-Manaresi and Achilles-Rams, re-
spectively. In [6] were introduced semi-global currents whose Lelong numbers at x are
precisely the ek(J , x), thus providing an analytic definition. Following [13] we call these
numbers Segre numbers and, indeed, we will see in Theorem 1.1 below that they are
closely related to Segre classes.

The main goal in this paper is to define concrete global analytic-geometric objects that
represent the Segre numbers at each point. A secondary goal is to provide a framework,
based on currents, to connect local intersection theory with global constructions.

Intersection theory deals with the Z-module Z(X) of analytic cycles and its quotient
module A(X), the Chow group. In general there are no cycles or elements in A(X)
that can represent the Segre numbers at each point. To find global representations
we introduce an extension GZ(X) of Z(X) that we call the Z-module of generalized
cycles. Formally the elements in GZ(X) are a certain kind of closed currents but we
prefer to think of them as geometric objects. In particular, ordinary cycles are certainly
geometric objects but formally represented by their associated Lelong currents in GZ(X).
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Many of the well-known geometric properties of Z(X) extend to GZ(X): We have the
natural grading by dimension GZ(X) = ⊕n0GZk(X), where GZk(X) are the submodules
of generalized cycles of pure dimension k. At each point a generalized cycle µ has a
well-defined multiplicity that is an integer. There is a notion of Zariski support of µ,
and any µ has a unique decomposition in irreducible components. Moreover, GZ(X) is
closed under multiplication by components of Chern and Segre forms of Hermitian vector
bundles1. To get independence of various choices we introduce a certain quotient module
B(X) of GZ(X); B(X) preserves the above-mentioned geometric properties of GZ(X).
For instance, Z(X) is a submodule of B(X), we have a grading by dimension B(X) =
⊕n0Bk(X) and well-defined multiplicities, etc. Moreover, B(X) admits a multiplication
by components of Chern and Segre classes. A proper mapping2 f : X ′ → X induces
a mapping f∗ : GZ(X ′) → GZ(X), which in turn induces a mapping B(X ′) → B(X).
Assume that i : V ↪→ X is a subvariety. The image of the injective mapping i∗ : GZ(V )→
GZ(X) is precisely the elements in GZ(X) that have Zariski support in V . Conceptually
we identify GZ(V ) with its image. In the same way B(V ) is identified with the elements
in B(X) that have Zariski support on V .

We define the B-Segre class S(J , X) in B(Z) in analogy with the Segre class in A(Z),
cf. Remark 5.1 below: First assume that X is irreducible. If J vanishes identically on X,
then S(J , X) = 1 on X. Otherwise, let π : X ′ → X be any modification of X such that
the ideal sheaf π∗J is principal3, let c1(L) be the first Chern class of the line bundle L
defining the exceptional divisor D in X ′, and let [D] be its Lelong current. For instance,
X ′ can be the blow-up of X along J . Then

(1.1) S(J , X) = π∗
(
[D]∧ 1

1 + c1(L)

)
=

n∑
j=1

(−1)j−1π∗
(
[D]∧c1(L)j−1

)
.

Since π is proper, (1.1) defines an element in B(Z). We will see that it is independent of
the choice of modification. If X consists of the irreducible components X1, X2, . . ., then
we let S(J , X) = S(J , X1) + S(J , X2) + · · · which is a locally finite sum on X.

We are now ready to formulate our first main result, which is a generalized King
formula, [16, 17], for these objects and that in particular provides the desired global
representation of the Segre numbers of J . Let Sk(J , X) be the component of S(J , X)
in Bn−k(Z).

Theorem 1.1 (Global generalized King formula). Let J → X be a coherent ideal sheaf
over a reduced analytic space of pure dimension n and let κ be the codimension of the
zero set Z of J . The class S(J , X) only depends on the integral closure class of J . We
have unique decompositions

(1.2) Sk(J , X) =
∑
j

βkj [Zkj ] +NJk , k = 0, 1, 2, . . . ,

1All vector bundles in this paper are holomorphic.
2Mappings between spaces are always assumed to be holomorphic.
3In this paper we let π∗J denote the ideal generated by the pullback of generators of J .
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in Bn−k(Z), where Zkj are the (Fulton-MacPherson) distinguished varieties of J of codi-

mension k, βkj are positive integers, and NJk has the following property: The multi-

plicities multxN
J
k are nonnegative integers, and the set of x where multxN

J
k ≥ 1 has

codimension at least k + 1. Moreover, Sk(J , X) = 0 for k < κ, NJκ = 0, and

(1.3) multxSk(J , X) = ek(J , x), k = κ, . . . , n, x ∈ X.

Our next objective is to present specific representatives for the B-Segre class S(J , X).
Assume that we have a holomorphic section σ of a Hermitian vector bundle E → X such
that σ generates J . If X is projective such a σ always exists. One can give a meaning
to the Monge-Ampère products (ddc log |σ|2)k for all k = 0, 1, . . ., as follows. To begin
with it is defined as 1 when k = 0. The higher powers are defined recursively in [3] as

(1.4) (ddc log |σ|2)k = ddc
(

log |σ|21X\Z(ddc log |σ|2)k
)
.

For k ≤ codimJ this definition coincides with Demailly’s extension of the classical
Bedford-Taylor definition. Proposition 4.4 in [3] states that

(1.5) (ddc log |σ|2)k = lim
ε→0

(ddc log(|σ|2 + ε))k,

which gives further motivation for the notation. It was recently proved in [7] that one
can also take the limit when ` → ∞ of (ddcu`)

k, where u` = max(log |σ|2,−`); several
other, but not all (sic!), sequences of plurisubharmonic functions decreasing to log |σ|2
also work.

Theorem 1.2. Let σ be a holomorphic section of a Hermitian vector bundle E → X
and let J be the ideal sheaf generated by σ. The current

(1.6) Mσ
k := 1Z(ddc log |σ|2)k, k = 0, 1, 2, . . . ,

is a generalized cycle that represents the Bn−k(Z)-class Sk(J , X).

Since Z(Z) is a subgroup of B(Z) we conclude the following global version of [6,
Theorem 1.1] from Theorems 1.1 and 1.2.

Corollary 1.3. We have unique decompositions

(1.7) Mσ
k =

∑
j

βkj [Zkj ] +Nσ
k , k = κ, . . . , n,

where Nσ
k are elements in GZn−k(Z). In particular, multxM

σ
k is equal to the Segre

number ek(J , x) at each point x.

Given a generalized cycle µ ∈ GZm(X) with Zariski support |µ| we define in Section 5
for each k ≥ 0 a generalized cycle Mσ

k ∧µ with Zariski support on Z ∩ |µ| and dimension
m− k. Its class in Bm−k(Z ∩ |µ|) only depends on J and the class of µ in Bm(X). We
let Mσ∧µ = Mσ

0 ∧µ+Mσ
1 ∧µ+ · · · . We think of Mσ ∧ µ as (the push-forward to X of)

a representative of the Segre class Sk(J , µ) of J on µ, cf. Remark 5.4.

Notice that a coherent ideal sheaf J → X can be identified with the, possibly non-
reduced, embedded space ZJ ↪→ X with underlying reduced space Z and structure sheaf
OX/J . If i : µ ↪→ X is a reduced analytic subspace, then we denote by s(J , µ) the class
in A(Z), called the Segre class, that is denoted by s(Zi∗J , µ) in [12], cf. Remark 5.1
below.
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In intersection theory the notion of regular embedding W ↪→ X plays a central role.
With the identification above “regular” means that the associated sheaf J → X is
locally a complete intersection4. Since our second goal concerns intersection theory
we will pay special attention to such sheaves J and describe S(J , X) in more detail.
In this case the normal cone NJX is a vector bundle over Z and we let s(NJX) =
1 + s1(NJX) + s2(NJX) + · · · + sn−κ(NJX) be its associated total Segre class. Here
lower index ` denotes the component of bidegree (`, `). Let [ZJ ] be (the Lelong current
of) the fundamental cycle of ZJ , cf. [12, Ch. 1.5].

Proposition 1.4. If J defines a regular embedding ZJ ↪→ X, then

Sk(J , X) = sk−κ(NJX)∧[ZJ ], k = κ, . . . , n,

in Bn−k(X).

As in the case with general ideal sheaves we are interested in specific representatives,
so let us assume that J is defined by a section ϕ of a Hermitian vector bundle F → X
and let F ′ be the pull-back of F to Z. There is a canonical holomorphic embedding
iϕ : NJX → F ′ of NJX in F ′, see Section 7. Let us equip NJX with the induced
Hermitian metric and let ŝ(NJX) be the associated total Segre form which indeed is
smooth on Z, see Section 2.

Proposition 1.5. If ϕ is a section of the Hermitian vector bundle F defining J , then
we have the equality of generalized cycles

Mϕ
k = ŝk−κ(NJX)∧[ZJ ], k = κ, . . . , n.

We have a mapping

(1.8) Bk(X)→ Bk−κ(Z), µ 7→
(
c(NJX)∧S(J , µ)

)
k−κ,

where lower index denotes dimension, and c(NJX) = 1/s(NJX) is the total Chern class
of NJX. If we choose a section ϕ of F as above we get a representing mapping

(1.9) GZk(X)→ GZk−κ(Z), µ̂ 7→
(
ĉ(NJX)∧Mϕ∧µ̂

)
k−κ,

where ĉ(NJX) is the associated total Chern form. The mapping (1.8) is a B-analogue
of the Gysin mapping, [12, Proposition 6.1], see Section 2 for the notation,

(1.10) Ak(X)→ Ak−κ(Z), µ 7→
(
c(NJX) ∩ s(J , µ)

)
k−κ.

In Section 10 we introduce a quotient space Ĥ`,`(X) of closed (`, `)-currents with
support on X, coinciding with the usual de Rham cohomology in case X is smooth.

There are natural mappings Ak(X)→ Ĥn−k,n−k(X) and Bk(X)→ Ĥn−k,n−k(X).

Proposition 1.6. For each k, the images of Ak(X) and Bk(X) in Ĥn−k,n−k(X) coin-
cide.

Proposition 1.7. Assume that J → X defines a regular embedding ZJ ↪→ X of codi-
mension κ and let Z be the (reduced) zero set of J . If µ is a cycle on X, then the images

in Ĥ∗,∗(Z) of the Gysin and the B-Gysin mappings, (1.10) and (1.8), respectively, of µ
coincide.

4We will assume that a regular embedding has codimension κ ≥ 1.
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In Section 9 we consider a general ideal sheaf J → X that is generated by a tuple
σ = (σ0, . . . , σm) of global sections of a line bundle L→ X. In this situation Stückrad-
Vogel, [20], introduced an algorithm to produce concrete cycles, Stückrad-Vogel cycles,
that determine a Chow class v(J , L,X), which is related to s(J , X) via van Gastel’s
formulas, [14]. Given a Hermitian metric on L we define a global generalized cycle ML,σ

by taking a certain mean value of Stückrad-Vogel cycles. If we consider σ as a section
of E = ⊕m0 L we have an analogue of van Gastel’s formulas relating ML,σ and Mσ as
elements in GZ(X).

2. Preliminaries

Locally there is an embedding i : X → Ω ⊂ CN into an open subset Ω ⊂ CN . The

sheaf En−`,n−kX of smooth (n − `, n − k)-forms on X is by definition the quotient sheaf

En−`,n−kΩ /Ker i∗, where Ker i∗ is the sheaf of forms ξ on Ω such that i∗ξ vanish on Xreg.
Since all embeddings are essentially equivalent, this definition is independent of the

choice of embedding. The sheaf C`,kX of currents of bidegree (`, k) on X is by definition

the dual of En−`,n−kX . Given the embedding X → Ω, currents µ in C`,kX can be identified
with currents µ′ = i∗µ on Ω of bidegree (N − n + `,N − n + k) that vanish on Ker i∗.
We say that µ has order zero if i∗µ has order zero; recall that this means that i∗µ has

measure coefficients. A current µ in Cn−d,n−dX is said to have (complex) dimension d. If
f : X → X ′ is proper, then f∗ is well-defined on smooth forms and f∗ is well-defined on
currents and preserves dimension, see [5]. If µ is a current on X and η is a smooth form
on X ′, then

(2.1) η ∧ f∗µ = f∗(f
∗η ∧ µ).

Moreover, if µ has order zero then so has f∗µ and

(2.2) 1V f∗µ = f∗(1f−1V µ),

where 1V is the characteristic function of the analytic subset V . If µ is a closed positive
current then so is f∗µ. The Lelong number `xµ of µ at x is defined as the Lelong number
of i∗µ at i(x) where i is a local embedding in a smooth manifold, see, e.g., [6, Section 2.2].
If V is a subvariety of X of pure dimension d ≥ 0, then there is an associated closed
positive current of dimension d, the Lelong current,

φ 7→ [V ].φ =

∫
Vreg

φ.

Recall that to any Hermitian line bundle L→ X there is an associated (total) Chern
form ĉ(L) = 1 + ĉ1(L). If L′ is the same line bundle but with another Hermitian metric,
then there is smooth function ξ on X such that

(2.3) ĉ1(L′)− ĉ1(L) = ddcξ.

Assume that E → X is a Hermitian vector bundle of rank r, and let π : P(E) → X be
the projectivization of E, by which we mean the projective bundle of lines through the
origin in E. Let L = O(−1) ⊂ π∗E be the tautological line bundle equipped with the
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induced Hermitian metric, and let ĉ(L) be its Chern form. The (total) Segre form of E
is defined as

(2.4) ŝ(E) = π∗(1/ĉ(L)).

Thus5 ŝ(E) = 1 + ŝ1(E) + ŝ2(E) + · · · where

(2.5) ŝ`(E) = (−1)`+r−1π∗ĉ1(L)`+r−1

is the component of bidegree (`, `). It is indeed is a smooth form on X: if X is smooth
this follows since π is a submersion and in general it follows by embedding X locally in
a smooth space and extending E to a Hermitian bundle over this space.

Let X ′ be another analytic space and f : X ′ → X a proper mapping. Then the
tautological line bundle L′ → P(f∗E) associated with P(f∗E) → X ′ is the pullback of

L → P(E) under the induced map f̃ : P(f∗E) → P(E) and so ĉ1(f̃∗L) = f̃∗ĉ1(L). It
follows that

(2.6) ŝk(f
∗E) = f∗ŝk(E).

If E is a line bundle, then P(E) = X, L = E, and hence

(2.7) ĉ(E) = 1/ŝ(E).

For a general Hermitian vector bundle E → X we take (2.7) as the definition of its
(total) Chern form. Thus ĉ(E) = 1 + ĉ1(E) + ĉ2(E) + · · · where the component ĉk(E)
of bidegree (k, k) is a polynomial in the ŝ`(E). From (2.6) we get

(2.8) ĉk(f
∗E) = f∗ĉk(E).

Let E and E′ be the same bundle but with two different Hermitian metrics and let L
and L′ be the associated Hermitian line bundles over P(E). In view of (2.3), (2.5) and
(2.7) (and that π is a submersion) we have, for k ≥ 1, that

(2.9) ŝk(E
′)− ŝk(E) = ddcωs, ĉk(E

′)− ĉk(E) = ddcωc,

for suitable smooth (k − 1, k − 1)-forms ωs, ωc on X. We let sk(E) and ck(E) denote
the cohomology classes, which we for simplicity refer to as the Segre and Chern classes,
although we only consider representatives obtained from a Hermitian metric as above.

The Hermitian metric on E determines a Chern connection and thus a curvature
tensor ΘE . It is proved in [19, Proposition 6] that the definition used here and the
differential-geometric definition of Chern form coincide, that is,

(2.10) ĉ(E) = det(I + (i/2π)ΘE).

An analytic k-cycle µ on X is a formal locally6 finite linear combination
∑
ajVj , where

aj ∈ Z and Vj ⊂ X are irreducible analytic sets of dimension k. We let

[µ] :=
∑

aj [Vj ]

be its associated Lelong current. Note that if Vj has dimension n (the dimension of
X), then [Vj ] = 1Vj . We will denote the Z-module of analytic k-cycles on X by Zk(X).

5It is not obvious that ŝ0(E) = 1; however it follows from the corresponding statement for the Chow
class, see [12], or from (2.10) below.

6Algebraic geometry only deals with finite linear combinations, but we use the more “analytic”
definition.
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The support |µ| of the cycle µ is defined as the union of the Vj for which aj 6= 0 and it
coincides with the support of the current [µ]. Recall that

(2.11) multxµ = `x[µ],

where `xγ denotes the Lelong number of the closed positive current γ at x, and multxµ is
the multiplicity of µ at x (defined as in [10, Ch. 2.11.1]), see, e.g., [10, 3.15, Proposition 2].

Let f : X ′ → X be a proper mapping. For each irreducible subvariety V ⊂ X ′, let
deg fV denote the degree of f |V : V → f(V ); if dim f(V ) < dimV it is defined as zero.
The push-forward of µ ∈ Zk(X ′) is the cycle

(2.12) f∗µ =
∑

ajdeg fVjf(Vj),

in Zk(X), see, e.g., [12, Section 1.4]. Since f∗[V ] = deg fV [f(V )] it follows that

(2.13) f∗[µ] = [f∗µ].

In particular, if i : X → Y is an embedding in another reduced space Y , then µ ∈ Zk(X)
can be regarded as a cycle on Y and i∗[µ] = [µ]. For the rest of this paper we often skip
the notation [µ] and identify a cycle with its Lelong current.

Let dc = (∂ − ∂̄)/4iπ so that7 ddc log |z|2 = [0] in C. The Poincaré-Lelong formula,
usually stated on a smooth manifold, has an extension to our nonsmooth case (see also
Section 8). We say that a meromorphic section of a line bundle is non-trivial if it is
generically holomorphic and non-vanishing.

Proposition 2.1 (The Poincaré-Lelong formula). Let h be a non-trivial meromorphic
section of a Hermitian line bundle L→ X. Then log |h|2 has order zero on X,

(2.14) ddc log |h|2 = lim
ε→0

ddc log(|h|2 + ε)

where h is holomorphic, and there is a cycle divh such that

(2.15) ddc log |h|2 = [divh]− ĉ1(L).

In case X is smooth, divh is the usual divisor defined by h.

Proof. Let π : X ′ → X be a smooth modification. Since π∗h is non-trivial on X ′,
log |π∗h|2 is locally integrable and hence a current of order 0. Since π is a biholo-
morphism generically, log |h|2 = π∗ log |π∗h|2. Thus log |h|2 has order zero. For the
same reason the limit (2.14) holds where h is holomorphic, and π∗ĉ1(π∗L) = ĉ1(L). By
the Poincaré-Lelong formula on a smooth manifold, ddc log |π∗h|2 = [divπ∗h]− ĉ1(π∗L).
Applying π∗ we get (2.15) with [divh] = π∗[divπ∗h]. It follows from (2.13) that divh is a
cycle, and it follows from (2.15) that it is independent of the choice of modification. �

Let i : V ↪→ X be a subvariety. If i∗h is non-trivial, then we say that divh intersects
V properly, and we have the proper intersection [divh]∧[V ] := i∗(divi∗h), cf. [10, Ch 2,
12.3] and Section 8 below. Letting log |h|2[V ] := i∗ log |i∗h|2 and noting that ĉ1(L)∧[V ] =
i∗ĉ1(i∗L), we get from (2.15) the formula

(2.16) ddc(log |h|2[V ]) = [divh]∧[V ]− ĉ1(L)∧[V ].

7We write [0] rather than [{0}] for the point mass at 0.
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Recall that µ ∈ Zk(X) is rationally equivalent to 0, µ ∼ 0, if there are subvarieties
ij : Wj ↪→ X of dimension k + 1 and meromorphic non-trivial functions gj on Wj , such
that, writing gj rather than i∗jgj for simplicity,

(2.17) µ =
∑
j

(ij)∗[divgj ] =
∑
j

(ij)∗dd
c log |gj |2 =

∑
j

ddc(log |gj |2[Wj ]),

cf. (2.16), where the sums are locally finite. We denote the Chow group of cycles Zk(X)
modulo rational equivalence by Ak(X), cf. [12, Chapter 1.3]. Note that if X is irreducible
and compact and µ is a Cartier divisor, then µ ∼ 0 precisely if µ = [divg] = ddc log |g|2
for some meromorphic function g on X, i.e., the line bundle O(µ) defined by µ is trivial.
Thus for Cartier divisors (when X is compact), rational equivalence precisely means
linear equivalence. If f : X ′ → X is a proper mapping and µ ∼ 0 in Zk(X ′), then
f∗µ ∼ 0 and thus (2.12) induces a mapping, cf. [12, Theorem 1.4],

(2.18) f∗ : Ak(X ′)→ Ak(X).

Each component ck(E) of a Chern class on X induces a mapping A∗(X)→ A∗−k(X),
µ 7→ ck(E) ∩ µ, see, [12, Section 3.2]. If h is a nontrivial meromorphic section on |µ| of
a line bundle L, then c1(L) ∩ µ is the class in A(|µ|) defined by [divh]∧µ.

3. Generalized cycles

The generalized cycles is the smallest class of currents that is closed under proper
direct images and contains sums of wedge products of Lelong currents and components
of Chern forms. More formally, we say that a current µ in X is a generalized cycle if it is
a locally finite linear combination over Z of currents of the form τ∗α, where τ : W → X
is a proper map, W is smooth, and α is a product of components of Chern forms for
various Hermitian vector bundles Ej over W , i.e.,

(3.1) α = ĉk1(E1) ∧ · · · ∧ ĉkr(Er).
We will keep this notation throughout this section. Since we can restrict τ to each
connected component of W we can assume that W is connected.

Note that a generalized cycle is a real current of order zero that is closed (in particular
it is normal) with components of bidegree (∗, ∗). We let GZk(X) denote the Z-module of
such currents of (complex) dimension k, i.e., of bidegree (n−k, n−k), and let GZ(X) =⊕
GZk(X). If µ ∈ GZ(X) and γ is a component of a Chern form on X, then γ∧µ ∈

GZ(X). In fact, if µ = τ∗α, where τ : W → X, then γ∧µ = τ∗(τ
∗γ∧α), cf. (2.1).

Remark 3.1. In view of (2.7) each form (3.1) is a finite sum of similar forms but with ĉ
replaced by ŝ. Morover, we can assume that each factor in (3.1) is the first Chern form
of a Hermitian line bundle. To see this it is enough to verify that any α = ŝk1(E1)∧· · ·∧
ŝkt(Et), where Ej → W are Hermitian vector bundles of rank rj , is of this form. Let
π : W ′ →W be the fiber product W ′ = P(E1)×W · · · ×W P(Et), let Lj be the pullback
to W ′ of the tautological bundle O(−1)→ P(Ej), and let ĉ1(Lj) be the first Chern form
on Lj induced by the metric on Ej . Then, cf. (2.5),

α = ±π∗
(
ĉ1(L1)k1+r1−1 ∧ · · · ∧ ĉ1(Lt)

kt+rt−1
)
.

�



GLOBAL REPRESENTATION OF SEGRE NUMBERS BY MONGE-AMPÈRE PRODUCTS 9

Lemma 3.2. Let i : V ↪→ X be a subvariety and µ ∈ GZ(X).

(i) Then 1V µ ∈ GZ(X).

(ii) If

(3.2) µ =
∑
k

(τk)∗αk,

where τk : Wk → X are proper, Wk are smooth and connected, and αk are as in (3.1),
then

(3.3) 1V µ =
∑

τk(Wk)⊂V

(τk)∗αk.

Proof. Since the right hand side of (3.3) is in GZ(X) by definition, (i) follows from (ii).
Assume now that (3.2) holds. By (2.2),

(3.4) 1V µ =
∑
k

(τk)∗
(
1τ−1

k V αk
)
.

Assume that τk(Wk) 6⊂ V . Then τ−1
k (V ) has positive codimension in Wk since Wk is

connected. Since αk is smooth it follows that 1τ−1
k V αk = 0, and hence the corresponding

term in (3.4), vanishes. Thus (3.3) holds. �

If i : V ↪→ X is a subvariety of X, then [V ] = i∗α, where α = 1, which is the 0th
Chern form of any vector bundle over V . Thus we have an embedding

Zk(X)→ GZk(X)

and we think of Zk(X) as a subset of GZk(X). If h : X ′ → X is proper, then we have a
natural mapping

(3.5) h∗ : GZk(X ′)→ GZk(X).

Indeed, if µ = τ∗α, then h∗µ = (h ◦ τ)∗α and h ◦ τ is proper. In particular, if i : V ↪→ X
is a subvariety of X, then we have an injective mapping

(3.6) i∗ : GZk(V )→ GZk(X).

Given µ ∈ GZ(X) there is a smallest variety |µ|, that we call the Zariski support of
µ, such that µ vanishes outside |µ|. In fact, |µ| is the Zariski closure of the support of µ
as a current.

Example 3.3. Assume that X is irreducible and let L → X be the trivial line bundle.
Then any smooth function ϕ on X determines a metric |s|2L = |s|2e−ϕ on L with the
corresponding first Chern form ddcϕ. Since µ := ddcϕ can vanish on an open subset of
X without vanishing identically, it is a non-zero generalized cycle with support strictly
smaller than X but with |µ| = X. �

Proposition 3.4 (Dimension principle). Assume that µ ∈ GZk(X) has Zariski support
V . If dimV = k, then µ ∈ Zk(X). If dimV < k, then µ = 0.
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Proof. Since µ is closed, of dimension k and order zero it follows from [11, Corol-
lary III.2.14] that it is a sum of various currents aj [Vj ] where Vj is irreducible of dimension
k and aj is a number. By Proposition 6.1 below the Lelong number of a generalized cycle
is an integer at each point, and it follows that the aj are integers. If dimV < k it follows
from [11, Thm III.2.10] that µ = 0. �

Example 3.5. If µ ∈ GZn(X), then µ =
∑

j aj1Xj , where Xj are the irreducible compo-
nents of X and aj are integers. �

Proposition 3.6. The image of (3.6) is precisely those µ ∈ GZk(X) such that |µ| ⊂ V .

Thus we can, and will indeed do, identify generalized cycles on V with generalized
cycles in X with Zariski support on V .

Proof. Assume that µ is on the form (3.2) and has support on V . Since µ = 1V µ it
follows from Lemma 3.2 that µ is equal to the right hand side of (3.3). For each of these
τk we have a factorization τk = i ◦ τ ′k where τ ′k : Wk → V is proper. It follows that

µ′ :=
∑
k

(τ ′k)∗αk

is in GZ(V ) and µ = i∗µ
′. �

Definition 3.7. We say that µ ∈ GZ(X) is irreducible in X if |µ| is irreducible and
1V µ = 0 for any proper subvariety V ⊂ |µ|.

Thus irreducibility is connected to an irreducible subvariety of X. If µ ∈ GZ(X) is
irreducible with Zariski support V it has a unique decomposition

(3.7) µ = µp + · · ·+ µ0,

where µk is the component of dimension k and p = dimV . It follows from Proposition 3.4
that µp is a[V ] for some integer a.

Lemma 3.8. Assume that µ ∈ GZ(X) is of the form µ = τ∗α, where τ : W → X, W is
connected, and τ(W ) = V . Then µ is irreducible and |µ| = V or µ = 0.

Proof. Since W is irreducible, so is V . Clearly, |µ| ⊂ V . Assume that V ′ is a proper
subvariety of V . Then τ−1V ′ has positive codimension in W since W is connected. Thus

(3.8) 1V ′µ = τ∗(1τ−1V ′α) = 0

since α is smooth. If |µ| is a proper subvariety of V , therefore µ = 1|µ|µ = 0. If not, it
follows from (3.8) that µ is irreducible. �

Notice that if µ, µ′ are irreducible with the Zariski support V , then µ + µ′ either
vanishes or is again irreducible with Zariski support V .

Proposition 3.9. Each µ ∈ GZ(X) has a unique decomposition

(3.9) µ =
∑
j

µj ,

where µj ∈ GZ(X) are irreducible with different Zariski supports.
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Proof. We first prove the uniqueness. Let Vj = |µj |. Assume that (3.9) holds with
µ = 0. If there are non-vanishing µj then we can choose k such that µk 6= 0 and Vk has
minimal dimension among the Vj for which µj 6= 0. For each j 6= k then Vk ∩ Vj has
positive codimension in Vj and hence 1Vkµj = 1Vk∩Vjµj = 0 since µj is irreducible. Thus
µk = 1Vkµk = 1Vkµ = 0 which is a contradiction. We conclude that µj = 0 for all j.

To prove the existence, we may assume that µ is of the form (3.2), where τk : Wk → X
and Wk are connected. For each subvariety Vj ⊂ X that appears as the Zariski support
of one of the summands in (3.2), let µj =

∑
(τk)∗αk, where the sum is over all k such

that τk(Wk) = Vj . Then, by Lemma 3.8, µj is irreducible with Zariski support Vj or
µj = 0. We now get the decomposition (3.9). �

Remark 3.10. It follows from the proof that an irreducible µ ∈ GZ(X) with |µ| = V
is a finite sum of terms like i∗τ∗α where τ : W → V is proper, τ(W ) = V and W is
irreducible. Since τ is proper it is a submersion outside an analytic set τ−1V ′, where
V ′ ⊂ V has positive codimension, so that γ = τ∗α is closed and smooth on V \ V ′. �

Given µ ∈ GZ(X), for each each of the irreducible components µj in (3.9) consider

the decomposition µ
pj
j + · · ·+ µ0

j as in (3.7). We have the unique decomposition

(3.10) µ = µfix + µmov,

where

(3.11) µfix :=
∑
j

µ
pj
j ,

(3.12) µmov =
∑
j

∑
k<pj

µkj ,

are called the fixed and moving part of µ, respectively. Notice that µfix is a cycle in
view of the dimension principle. We say that each term in (3.11) is a fixed component
and each term in (3.12) a moving component of µ. The reason for this terminology will
be clarified in Section 9 but already here we can present an illustrating example of a
moving generalized cycle:

Example 3.11. Assume that X = Pn[z0:...:zn] and let θ = ddc log
(
|z1|2 + · · ·+ |zn|2

)
. Then

θn−k, k ≥ 1, is a generalized cycle in Pn of dimension k and with Zariski support Pn. To
see this, let π : BlpPn → Pn be the blow-up at p = [1: 0 : . . . : 0] and notice that θ = π∗ω̂,
where ω̂ is minus the first Chern form of the line bundle, with respect to the “standard”
metric, associated with the exceptional divisor D. By repeated use of (2.1) we have
that θn−k = π∗ω̂

n−k outside the origin. Since both sides are positive closed currents it
follows by the dimension principle that the equality must hold across p. Thus θn−k is in
GZk(Pn) and by Lemma 3.8 it is irreducible with Zariski support Pn. Thus it has one
single moving irreducible component. One can verify that θn−k is indeed a mean value
of all k-planes through p, cf. [6, Eq. (6.2)] with f = (z1, . . . , zn). More conceptually, one
can thus think of θn−k as such a k-plane moving around p. �
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4. Equivalence classes of generalized cycles

If 0 → S → E → Q → 0 is a short exact sequence of Hermitian vector bundles over
X we say that

(4.1) ĉ(E)− ĉ(S)∧ĉ(Q)

is a B-form on X. Let β be the component of bidegree (k, k) of a B-form. If k = 0
then β = 0 so let us assume that k ≥ 1. In view of (2.10) one can just as well use
the differential-geometric definition of Chern form. From [9, Proposition 4.2] we get a
smooth form γ on X of bidegree (k − 1, k − 1) such that β = ddcγ. In fact in [9] only
the case when X is smooth is discussed. However, the construction of γ is completely
explicit and local, and locally we can extend our short exact sequence to a neighborhood
in a smooth ambient space and conclude that γ is smooth on X.

Notice for future reference that if τ : W → X, then τ∗β is a component of a B-form
if β is. We say that µ ∈ GZk(X) is equivalent to 0 in X, µ ∼ 0, if µ is a locally finite
sum of currents of the form

(4.2) ρ = τ∗(β∧α) = ddcτ∗(γ ∧ α),

where τ : W → X is proper, W is smooth and connected, β is a component of a B-form
on W , and α is a product of components of Chern forms. If µ = µ0 + µ1 + · · · , where
µk ∈ GZk(X), we say that µ ∼ 0 if µk ∼ 0 for each k. Let B(X) denote the Z-module of
generalized cycles on X modulo this equivalence. A class µ ∈ B(X) has pure dimension
k, µ ∈ Bk(X), if µ has a representative in GZk(X). Thus B(X) = ⊕kBk(X).

If E → X is a Hermitian vector bundle, then for each k we have the mapping

(4.3) ĉk(E)∧ : GZ∗(X)→ GZ∗−k(X), µ 7→ ĉk(E)∧µ.

Proposition 4.1. The mapping (4.3) induces a mapping

(4.4) ck(E)∧ : B∗(X)→ B∗−k(X)

with the following properties: If F → X is another vector bundle, then

(4.5) c`(F )∧ck(E)∧µ = ck(E)∧c`(F )∧µ.

If f : W → X is proper, then

(4.6) f∗
(
ck(f

∗E)∧µ
)

= ck(E)∧f∗µ

for µ ∈ B(W ). If 0→ S → E → Q→ 0 is a short exact sequence on X, then

(4.7) ck(E)∧µ =
(
c(S)∧c(Q)

)
k
∧µ.

Proof. First assume that µ̂ ∈ GZ(X) and µ̂ ∼ 0. With the notation above we may
assume that µ̂ = τ∗(β∧α), where τ : W → X and τ is a B-form on W . It follows that
ĉk(E)∧µ̂ = τ∗(β∧ĉk(τ∗E)∧α) and hence by definition ∼ 0. Thus ĉk(E)∧ is well-defined
on B(X). We must verify that it does not depend on the particular choice of metric
on E. To this end, assume that 0 → S → E → Q → 0 is a short exact sequence of
Hermitian vector bundles on X and let β be the component of bidegree (k, k) of the
associated B-form. Assume that τ : W → X and µ̂ = τ∗α is an element in GZ(X). Then
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0→ τ∗S → τ∗E → τ∗Q→ 0 is a short exact sequence on W and τ∗β is the component
of bidegree (k, k) of the associated B-form on W . It follows that

(4.8) β∧µ̂ = τ∗(τ
∗β∧α) ∼ 0.

If S = 0 so that E and Q are isomorphic but with possibly different metrics, then
β = ĉk(E)− ĉk(Q) so we can conclude that ĉk(E)∧µ̂− ĉk(Q)∧µ̂ = 0 in B(X). Thus (4.4)
is well-defined. Now (4.5) and (4.6) are obvious and (4.7) follows from (4.8). �

Remark 4.2. If β is a component of (4.1), but where all ĉ are replaced by ŝ, then still
β∧α ∼ 0. In fact, if lower index ` denotes component of bidegree (`, `), then

(
ŝ(E)− ŝ(S)∧ŝ(Q)

)
k

=
k∑
`=0

(
ĉ(E)− ĉ(S)∧ĉ(Q)

)
`
∧
(
ŝ(E)∧ŝ(S)∧ŝ(Q)

)
k−`,

so the claim follows from Remark 3.1. It is clear that Proposition 4.1 holds, with the
same proof, if c is replaced by s. �

Notice that if h : X ′ → X is a proper mapping and µ ∼ 0, then h∗µ ∼ 0 so we have a
natural mapping h∗ : B(X)→ B(X ′).

Lemma 4.3. If i : V ↪→ X is a subvariety, then i∗ : B(V )→ B(X) is injective.

Proof. Assume that µ ∈ GZ(V ) and i∗µ ∼ 0 in GZ(X). Then i∗µ =
∑
ρj , where

ρj = (τj)∗(βj∧αj), τj : Wj → X, are as in (4.2). In view of Lemma 3.2 we may assume
that τj(Wj) ⊂ V for each j. For each j there is a map τ ′j : Wj → V such that τj = i ◦ τ ′j .
Let ρ′j = (τ ′j)∗(βj ∧ αj). Then

i∗µ =
∑
j

ρj = i∗
∑
j

ρ′j ,

so that µ =
∑

j ρ
′
j . Thus µ ∼ 0 on V . �

Proposition 4.4. The mapping Z(X)→ B(X) is injective.

Thus we can consider Z(X) as a subgroup of B(X).

Proof. Assume that µ =
∑

j ajWj ∈ Zk(X) and µ ∼ 0 in GZk(X). If i : |µ| → X is the
natural injection and

µ′ =
∑

aj1Wj ,

then µ = i∗µ
′. By Lemma 4.3, µ′ ∼ 0 in GZ(|µ|). Since µ̂ has full dimension in |µ|, and

thus bidegree (0, 0), it must vanish in view of (4.2). �

Proposition 4.5. For each open subset U of X there is a natural restriction mapping
r : GZ(X)→ GZ(U) that induces a mapping r : B(X)→ B(U).

Proof. Assume that µ ∈ GZ(X) and µ = τ∗α. Then the restriction of the current µ
to U is equal to τ ′∗α

′, where τ ′ and α′ are the restrictions to U ′ := τ−1U of τ and α,
respectively. Notice that τ ′ : U ′ → U is proper and that α′ is a product of components
of Chern forms since α is. Since also the restriction to U ′ of a B-form is a B-form, it
follows that r is well-defined on B(X). �
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Lemma 4.6. Assume that µ ∈ GZ(X), µ ∼ 0, and that (3.9) is its decomposition in
irreducible components. Then µj ∼ 0 for each j.

Proof. Using the notation from above, we can assume that µ is of the form

µ =
∑
`

(τ`)∗(β`∧α`),

where τ` : W` → X are proper and W` are connected. It follows from the proof of
Proposition 3.9 that

µj =
∑

τ`(W`)=|µj |

(τ`)∗(β`∧α`)

and thus µj ∼ 0 by definition. �

Let µ̂ be a representative of µ ∈ B(X) and let µ̂ =
∑

j µ̂j be its decomposition in

irreducible components. We claim that for each j the corresponding class µj in B(X)
is independent of the choice of µ̂. In fact, assume that ν̂ is another representative with
decomposition

∑
` ν̂`. The sums are (locally) finite and each term corresponds to a

unique irreducible set, so by adding terms 0 if necessary we have that∑
j

(µ̂j − ν̂j) ∼ 0

and hence by the lemma µ̂j − ν̂j ∼ 0 for each j. Now the claim follows, and taking into
account only the non-vanishing classes we get the unique decomposition

(4.9) µ =
∑
j

µj ,

where µj are well-defined elements in B(X) with well-defined Zariski supports |µj |.
In case this sum consists of just one non-zero term we thus have a well-defined irre-

ducible subvariety, and so the following definition is meaningful:

Definition 4.7. We say that µ ∈ B(X) is irreducible if it has a representative µ̂ ∈ GZ(X)
that is irreducible. The Zariski support |µ| of µ is then equal to |µ̂|.

We have the following simple consequences of the discussion above:

Proposition 4.8. (i) If µ ∈ B(X) is irreducible and p = dim |µ|, then we have a unique
decomposition µ = µp + · · ·+ µ0, where µk ∈ Bk(X).

(ii) Any µ ∈ B(X) has a unique decomposition µ = µ1 + µ2 + · · · , where µj ∈ B(X) are
irreducible.

Definition 4.9. In view of (ii) we define the Zariski support |µ| as the union of the |µj |.

From Proposition 3.6 and Lemma 4.3 we get

Proposition 4.10. If i : V ↪→ X, then the image of i∗ : B(V ) → B(X) is precisely the
µ in B(X) with Zariski support on V .

That is, we can identify the elements in B(V ) with elements in B(X) with Zariski
support contained in V .
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Precisely as for generalized cycles we define µfix and µmov by (3.11) and (3.12),
respectively, and get the unique decomposion, cf. (3.10),

(4.10) µ = µfix + µmov,

in B(X) in a fixed and a moving part, and in view of Proposition 4.4 the fixed part is
indeed a cycle in X.

Remark 4.11. Let X be compact, L→ X be a line bundle, and ω = c1(L). The mass

a :=

∫
X
µ∧ωj

of µ ∈ GZj(X) is an integer that only depends on the class of µ in Bj(X) and of L. In
fact, we may assume that µ = τ∗α, where α is a product of first Chern forms of line
bundles over W and τ : W → X is proper. Then µ∧ωj = τ∗(α∧τ∗ωj) and thus

a =

∫
W
α∧τ∗ω̂j

which is an integer since it is the integral of a product of first Chern forms of line bundles
and thus an intersection number. By (4.2) and Stokes’ theorem it only depends on the
class of µ and of L. When j = 0 and dim |µ| > 0 we think of µ as a points moving
around on |µ|, cf. Section 9. �

5. The B-Segre class

Since any modification π : X ′ → X such that π∗J is principal factorizes over the
blow-up BlJX of X along J , it follows by Proposition 4.1 and a standard argument
that S(J , X), as defined in the introduction, cf. (1.1), is a well-defined element in B(Z).
Recall the restriction map r of Proposition 4.5. We claim that

(5.1) S(J |U , U) = rS(J , X).

In fact, by linearity it is enough to check the case when X is irreducible. If J is the
0-ideal then (5.1) is trivial. If not, let π : X ′ → X be a modification such that π∗J is
principal. Then the restriction π′ : π−1U → U of π is a modification where the pullback
of J |U is principal. Let D′ and L′ be the restrictions of D and L, respectively, to π−1U .
Then

rS(J , X) = rπ∗
(
[D]∧ 1

1 + c1(L)

)
= π′∗

(
[D′]∧ 1

1 + c1(L′)

)
= S(J |U , U).

Remark 5.1. In intersection theory, given a proper subscheme W → X there is a well-
defined Chow class s(W,X) in A(W ) ' A(Z), Z = |W |, called the Segre class. As in
the introduction let us think of W as the nonreduced subspace of X with structure sheaf
OW = OX/JW , where JW is a coherent ideal sheaf over X. Based on Chapter 4 in [12]
(the summary on page 70 and Corollary 4.2.2) it follows that s(JW , X) := s(W,X) can be
defined as S(JW , X) in (1.1) if we interpret c1(L)j−1∧[D] as the element c1(L)j−1∩[D] in
the Chow groupA(|D|) and π∗ as the push-forward of Chow classes, so that sk(JW , X) :=
(−1)k−1π∗(c1(L)k−1 ∩ [D]) is an element in A(Z) for k ≥ 1. Since W is proper, Z has
positive codimension and therefore s0(JW , X) vanishes. �
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We shall now discuss concrete representatives of the B-Segre class. In particular, these
representations allow us to define the B-Segre class not only on an analytic space but on
a generalized cycle µ. To this end we first consider Monge-Ampère products on µ, cf. [6,
Sections 5, 6]. Recall that ∼ is the equivalence relation defining B(X).

Theorem 5.2. Assume that σ is a holomorphic section of a Hermitian bundle E → X
and let J be the associated coherent sheaf with zero set Z.

(i) For each µ ∈ GZ(X) the limits

(5.2) (ddc log |σ|2)k∧µ := lim
ε→0

(
ddc log(|σ|2 + ε)

)k∧µ, k = 0, 1, 2, . . . ,

exist and are generalized cycles with Zariski support on |µ|, and the generalized cycles

(5.3) Mσ
k ∧µ := 1Z(ddc log |σ|2)k∧µ, k = 0, 1, 2, . . . ,

have Zariski support on Z ∩ |µ|.
(ii) If µ ∼ 0, then Mσ

k ∧µ ∼ 0.

(iii) If g is a holomorphic section of another vector bundle such that 8 |σ| ∼ |g|, then
Mσ
k ∧µ ∼M

g
k∧µ.

(iv) If h : X ′ → X is proper and µ′ ∈ GZ(X ′), then

Mσ
k ∧h∗µ′ = h∗

(
Mh∗σ
k ∧µ′

)
.

The hypothesis in (iii), which clearly holds if both g and σ define J , precisely means
that the sheaves defined by σ and g have the same integral closure, see, e.g., [6]. We will
refer to (iv) as the projection formula. We let

Mσ∧µ := Mσ
0 ∧µ+Mσ

1 ∧µ+ · · · .

Proof of Theorem 5.2. We can assume that µ = τ∗α, where τ : W → X is proper and
W is smooth and connected. We first consider the case when τ∗σ vanishes identically
on W , or equivalently, |µ| ⊂ Z. For k ≥ 1 the limit in (5.2) trivially exists and is 0, and
so is (5.3). If k = 0, then (5.2) is µ and Mσ∧µ = 1Zµ = µ as well. Thus (i) holds, and
(ii)-(iv) are easily verified.

We can thus assume that τ∗σ does not vanish identically on W and hence it defines
a subvariety of positive codimension. Then Mσ

0 ∧µ = 1Zµ = 0 since µ is irreducible,
cf. Lemma 3.8. Thus we may assume that k ≥ 1 and (possibly after a modification of
W ) that τ∗J is principal on W . This precisely means that τ∗σ = σ0σ′, where σ0 is a
section of the line bundle LD → X ′ that defines the exceptional divisor D and σ′ is a
non-vanishing section of τ∗E ⊗ L−1

D = Hom (LD, τ
∗E). Thus σ′ defines an isomorphism

between LD and a line subbundle of τ∗E, and so LD inherits a metric from τ∗E such
that |σ0| = |τ∗σ|. If we let

(5.4) ω̂ = −ĉ1(LD),

we have by the Poincaré-Lelong formula that

(5.5) ddc log |τ∗σ|2 = [D] + ω̂.

8Between norms ∼ has the standard meaning that there are constants c, C > 0 such that c|σ| ≤ |g| ≤
C|σ|.
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By (2.1),

(5.6) (ddc log(|σ|2 + ε))k∧µ = τ∗
(
(ddc log(|τ∗σ|2 + ε))k∧α

)
.

By [3, (4.6)],

(5.7) (ddc log(|τ∗σ|2 + ε))k∧α→ (ddc log |τ∗σ|)k∧α = ([D] + ω̂)∧ω̂k−1∧α, ε→ 0,

where the middle expression is recursively defined by (1.4). The equality is a simple
consequence. We conclude that the limit (5.2) exists for each k ≥ 1 and that

(5.8) (ddc log |σ|2)k∧µ = τ∗
(
([D] + ω̂)∧ω̂k−1∧α

)
.

This is a generalized cycles with Zariski support contained in τ(W ) = |µ|, cf. (3.5). Since
|D| = τ−1Z we have by (2.2) that

(5.9) Mσ
k ∧µ = 1Z(ddc log |σ|2)k ∧ µ = τ∗

(
[D]∧ω̂k−1∧α

)
.

Clearly it is in GZ(X) and has Zariski support contained in Z ∩ |µ|. Thus (i) is proved.
If α = β∧α′ for some component β of a B-form, then

Mσ
k ∧µ = τ∗

(
[D]∧ω̂k−1∧β∧α′

)
,

and hence ∼ 0. Thus (ii) holds.
If g is a section as in (iii), then we may assume that also τ∗g = g0g′. Since |g| ∼ |σ|

it follows that g0 and σ0 define the same divisor and hence are sections of the same line
bundle. Hence their associated first Chern forms differ by a B-form on W . In view of
(5.9) and (5.4), Mσ

k ∧µ ∼ Mg
k∧µ and thus (iii) follows. Finally, we get (iv) from (5.6),

with h instead of τ , and (2.1). �

With the notation in the proof we have, cf. (5.9),

(5.10) M τ∗σ
k ∧α = [D]∧ω̂k−1∧α.

Moreover, cf. (1.6), by definition

(5.11) Mσ = Mσ∧1X .

Proof of Theorem 1.2. We can assume that X is irreducible. If σ vanishes identically,
then Mσ

0 = 1 and Mσ
k = 0 for k ≥ 1, so Mσ coincides with S(J , X) in this case. Thus

we may assume that J has positive codimension, and that τ : W → X is a modification
such that τ∗σ is principal. It then follows from (1.1), (5.4), and (5.9) with α = 1 that
Mσ
k is a representative for Sk(J , X). Thus Theorem 1.2 follows. �

Example 5.3. If the proper map τ : W → X is surjective and generically m-to-1, then
τ∗1W = m1X and so mMσ = τ∗M

τ∗σ. �

Remark 5.4. Assume that i : V ↪→ X is a subvariety of pure codimension p. By the
projection formula, Theorem 5.2 (iv),

(5.12) Mσ
k ∧[V ] = i∗M

i∗σ
k , k = 0, 1, 2, . . . .

Notice that the Segre class S(i∗J , V ) on V for i∗J → V is represented by the general-
ized cycle M i∗σ, cf. Theorem 1.2. With the identification given by Proposition 4.10 of
elements in B(V ) with elements in B(X) with Zariski support on V , thus the right hand
side of (5.12) is a representative of S(i∗J , V ). Warning: The left hand side of (5.12) is
not a product but an operator acting on [V ]. In general one cannot recover Mσ from
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i∗M
i∗σ, or S(J , X) from S(i∗J , V ) even if Z ⊂ V . For instance, if J defines a regular

embedding and Z = V , then i∗S(i∗J , V ) = [V ] whereas S(J , X) = [V ]∧s(NJX), see
Proposition 1.4. �

In view of (5.12) the following definition is natural.

Definition 5.5. Assume that J → X is defined by the section σ of the Hermitian
vector bundle E → X. Given µ ∈ Bp(X) and a representative µ̂ ∈ GZp(X), we define
the B-Segre class Sk(J , µ) as the class in Bp−k(Z ∩ |µ|) defined by Mσ

k ∧µ̂. We let
S(J , µ) = S0(J , µ) + S1(J , µ) + · · ·+ Sp(J , µ).

Proposition 5.6. If α is a component of a Chern or Segre form, then

(5.13) 1Z(α∧µ) = α∧1Zµ, µ ∈ GZ(X),

and

(5.14) Mσ
k ∧(α∧µ) = α∧Mσ

k ∧µ, k = 0, 1, 2, . . . .

Proof. Assume that µ = τ∗a and W is connected. Let ξ = τ∗α. Now 1τ−1Z(ξ∧a) =
ξ∧1τ−1Za since both sides vanish if τ−1Z is a proper subvariety of W and are equal to
ξ∧a otherwise. Thus (5.13) follows from (2.1) and (2.2), and (5.14) follows from (5.2),
(5.3) and (5.13). �

Sometimes it is convenient with a limit procedure that directly gives Mσ
k ∧µ without

first computing (ddc log |σ|2)k∧µ.

Proposition 5.7. Let σ be a holomorphic section of a Hermitian bundle E → X and
let

Mσ
k,ε =

ε

(|σ|2 + ε)k+1
(ddc|σ|2)k, k = 0, 1, 2, . . . .

If µ ∈ GZ(X), then for k ≥ 0,

(5.15) Mσ
k ∧µ = lim

ε→0
Mσ
k,ε∧µ, k = 0, 1, 2, . . . .

Using a principalization, the proposition is reduced to the following lemma that can
be verified along the same lines as [3, Proposition 4.4], and we omit the details.

Lemma 5.8. Let s be a section of a Hermitian line bundle L→ W with divs = D and
let ω̂ = −ĉ1(L). Then

ε

(|s|2 + ε)k+1
(ddc|s|2)k → [D]∧ω̂k−1, k ≥ 1.

Remark 5.9. One can define Mσ∧µ as the value at λ = 0, via analytic continuation from
Reλ� 0, of the expression

Mσ,λ∧µ =
(

1− |σ|2λ +
∑
k≥1

∂̄|σ|2λ∧ ∂|σ|2

2πi|σ|2
∧(ddc log |σ|2)k−1

)
∧µ,

see [3, Proposition 4.1] and [6, Section 4]. �
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Remark 5.10 (Comparison to Green forms). Recall that a (p − 1, p − 1)-current g is a
Green current of a closed subvariety Z of codimension p of a complex manifold X if
ddcg + [Z] = ω, where ω is a smooth form. If g is smooth outside Z it is called a Green
form. The calculus of Green forms, based on the ∗-product, is an important tool in the
study of height in arithmetic intersection theory, see, e.g., [8, 15]. In particular, Fulton’s
intersection theory is recovered in the proper intersection case.

In the case p = 1, if s is a section of a Hermitian line bundle that defines Z, then
g = − log |s|2 is a Green form in virtue of the Poincaré-Lelong formula (2.15). In fact,
these are the only Green forms in the case p = 1. The existence of Green forms of
so-called logarithmic type for p > 1 is a more delicate matter, see [8]. That g is of
logarithmic type means that g = τ∗g

′ under a proper mapping τ : W → X such that
locally in W there are coordinates z such that g′ =

∑
k ak log |zk|2 + a0, where aj are

smooth and closed. This can be compared to our definition of generalized cycles.
If Z is defined by the section σ of the Hermitian vector bundle E → X, and γ :=

− log |σ|2(ddc log |σ|2)p−1, then, cf. (1.4) and Corollary 1.3,

ddcγ = −(ddc|σ|2)p = −1Z(ddc|σ|2)p − 1X\Z(ddc|σ|2)p = −[Z]− 1X\Z(ddc|σ|2)p,

so that γ is kind of a Green form. Unless p = 1, however, −1X\Z(ddc|σ|2)p is not smooth
but only the push-forward under a modification of a smooth form, cf. (5.8). �

6. Multiplicities of a generalized cycle

In view of (2.11) it is natural to define the multiplicity of µ ∈ GZk(X) at x ∈ X as
the Lelong number at x. However, µ is not necessarily positive so it is not immediately
clear that the Lelong number exists. Here is our formal definition: Let σx be a section of
a Hermitian vector bundle in an open neighborhood U of x such that σx generates the
maximal ideal mx at x. Since Mσx∧µ has support at x it follows from the dimension
principle, Proposition 3.4, that Mσx∧µ = Mσx

k ∧µ. Moreover, in view of the proof of this
proposition, Mσx

k ∧µ = a[x] for some real number a. By Theorem 5.2 (iii), the number
a is independent of the choice of σx. Part (ii) of the same theorem implies that a only
depends on the class of µ in B(U). By an argument as in the beginning of Section 5
we see that it is also independent of the choice of neighborhood U of x. Altogether the
definition

(6.1) multxµ =

∫
Mσx∧µ

is meaningful. If U is small enough we can assume that E is trivial, with a trivial
metric, and then multxµ coincides with the Lelong number `xµ if µ is positive, see, e.g.,
[6, Lemma 2.1] and Remark 5.9.

Proposition 6.1. The multiplicity of µ ∈ GZk(X) at x is an integer and it only depends
on its class in Bk(X).

Proof. Let µ = τ∗α, where τ : W → X is proper and W is connected. First assume that
τ(W ) = {x}. Thus Mσx∧µ = µ. Since τ is proper, W is compact, so by (6.1),

multxµ =

∫
µ =

∫
W
α
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which is an intersection number, cf. Remark 4.11, and hence an integer. Next we assume
that x ∈ τ(W ) and that τ(W ) has positive dimension. As in the proof of Theorem 5.2,
with σ = σx and X = U , cf. (5.9) and (6.1), we can assume that

Mσx∧µ =
∑
k≥1

τ∗
(
[D]∧ω̂k−1∧α

)
.

Only the term with k = dimµ can give a contribution and

multxµ =

∫
Mσx
k ∧µ =

∫
τ∗
(
[D]∧ω̂k−1∧α

)
.

Writing D = a1D1 + a2D2 + · · · , where Dj are irreducible and compact, we therefore
have that

multxµ = a1

∫
D1

ω̂k−1∧α+ · · ·

and hence an integer, since each integral is an intersection number. �

Assume that µ is irreducible. If it has dimension 0 and is moving, i.e., dim |µ| > 0,
then multxµ = 0 at each point. In fact, (multxµ)[x] = 1xµ = 0 by the definition of
irreducibility. However, as is illustrated by Example 3.11, if µ has positive dimension,
multxµ can be nonzero at certain points even if µ is moving.

Proof of Theorem 1.1. It is well-known that the blow-up π : BlJX → X of X along J
only depends on the integral closure class of J . Since S(J , X) is defined just in terms
of the blow-up, cf. (1.1), it only depends on the integral closure class of J .

By definition the distinguished varieties are precisely the sets π(Dj) where Dj are the
irreducible components of the exceptional divisor D of the blow-up, see, e.g., [18] or [6].

The remaining statements of Theorem 1.1 are purely local and can be verified in
the following way: Fix a point x ∈ X. In a suitable neighborhood U of x there is a
section σ of a trivial vector bundle E → U that generates J there. By Proposition 4.5,
multxSk(J , X) = multxSk(J |U , U). If we choose a trivial metric, then Mσ

k coincides
with Mσ

k defined in [6], and from [6, Theorem 1.1] we have that multxM
σ
k = ek(J , x).

Because of the uniqueness of the decomposition (3.10) in fixed and moving components
applied to S(J , X) all the statements now follows from [6, Theorem 1.1]. �

We have the following consequence of Proposition 5.6.

Lemma 6.2. If µ ∈ Bk(X) and γ is a component of a Chern or Segre form of positive
bidegree, then multx(γ∧µ) = 0 for each x.

Proof. Let σx generate the maximal ideal at x, and write γ = ddcg in a neighborhood of
x. By Proposition 5.6 and Stokes’ theorem, noting that Mσx∧µ has support at x,

multx(γ∧µ) =

∫
Mσx∧(γ∧µ) =

∫
γ∧Mσx∧µ =

∫
ddc(g∧Mσx∧µ) = 0.

�

Example 6.3 (Example 3.11 continued). It follows from Lemma 6.2 that multxθ
n−k = 0

for x 6= p. From the geometric interpretation as a mean value of k-planes through p, or
by a direct computation of Mσx∧θn−k, one can verify that multpθ

n−k = 1. �
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In view of Theorem 1.1, multx(Mσ
j ∧ 1X) = multxM

σ
j = ej(J , x). For a general µ in

GZk(X) or Bk(X) we can define the Segre numbers ej(J , µ, x) := multx(Mσ
j ∧µ).

7. Regular embeddings

Assume that J → X defines a regular embedding i : ZJ → X of codimension κ,
cf. the introduction and Remark 5.1. As before Z denotes the associated reduced space,
i.e., the zero set of J . It is well-known that J /J 2 is locally free and thus is the sheaf of
sections of a vector bundle known as the conormal bundle of ZJ in X. We will denote its
dual by NJX, refer to it as the normal bundle of ZJ in X, and view it as a holomorphic
vector bundle over the reduced space Z. We will use the following alternative ad hoc
definition of NJX and its sections: A section ξ of NJX → Z is a choice of holomorphic
κ-tuple ξ(s) locally on Z for each local minimal set s = (s1, . . . , sκ) of generators for J
so that

(7.1) gξ(s) = ξ(gs) on Z

for any locally defined holomorphic matrix g that is invertible in a neighborhood of
Z. This defines a vector bundle over Z since for any two such choices s, s′ there is
an invertible matrix g such that s′ = gs on the overlap in a neighborhood of Z. The
connection between NJX and J /J 2 is the non-degenerate pairing (ξ(s), h + J 2) 7→
ξ(s) · hs, where hs is a tuple, unique mod J 2, such that h = s · hs.

Example 7.1. If Z is smooth and ZJ reduced, then for any s as above, the dsj are
linearly independent on Z and vanish on TZ. Notice that gds = d(gs) on Z. Therefore,
v 7→ ξ(s) := (ds1 · v, . . . , dsκ · v) defines an injective mapping, hence an isomorphism,
TX|Z/TZ → NJX. In this case therefore NJX is the usual normal bundle of complex
differential geometry. �

Remark 7.2. Several results of this section are well-known, at least in the algebraic
context. For completeness and reference we give analytic proofs. �

Lemma 7.3. Assume that F → X is a vector bundle with a holomorphic section ϕ that
defines J . Then there is a canonical embedding

(7.2) iϕ : NJX → F |Z .

Proof. For each minimal set of generators s of J in some open connected U ⊂ X there
is a unique Ã(s) in Hom (U × Cκ, F |U ) such that Ã(s)s = ϕ. Set A(s) = Ã(s)|Z ∈
Hom (Z × Cκ, F |Z). Since ϕ generates J it follows that A(s) is pointwise injective.

Since ϕ = Ã(gs)gs it follows that A(gs)g = A(s). If ξ is a section of NJX therefore

(7.3) A(gs)ξ(gs) = A(gs)gξ(s) = A(s)ξ(s).

Thus we can define iϕ as

(7.4) ξ 7→ iϕξ, ξ(s) 7→ A(s)ξ(s).

Since A(s) is pointwise injective it follows that iϕ is injective. �

In particular, if rankF = κ, then we have an isomorphism

(7.5) iϕ : NJX ' F |Z .
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Proof of Proposition 1.5. We let q : P(F ) → X be the projectivization of F and let
OF (−1)→ P(F ) be the tautological line bundle sitting in q∗F , equipped with the Her-
mitian metric inherited from F . The line bundle ONJX(−1) → P(NJX) is defined in
the same way, with the Hermitian metric inherited from the normal bundle NJX → Z,
which in turn has the metric induced by (7.2). Moreover, we let p : BlJX → X be
the blow-up of X along J and let LD → BlJX be the line bundle associated with the
exceptional divisor. There are injective holomorphic mappings j, j̃, ψ, ψ̃ such that the
diagram

(7.6) ONJX(−1) �
� j̃

//

��

LD
� � ψ̃

//

��

OF (−1)

��

P(NJX) �
� j

//

π

��

BlJX
� � ψ

//

p

��

P(F )

q

��

Z �
� i // X

= // X

commutes and such that furthermore the Hermitian metric on ONJX(−1) coincides with
the metric it inherits from OF (−1) via the first row.

Let us first explain the mapping j. Given a minimal set of local generators s of J as
above in say an open set U ⊂ X we can represent BlJU → U as

(7.7) BlJU = {(x, [t]) ∈ U × Pκ−1; tisj(x)− tjsi(x) = 0}.

If we choose s′ = gs in U ′, then we have a similar representation but with [t′] = [gt] on
the overlap U ∩U ′. Recall that at x ∈ Z the fibre of NJX consists of all ξ(s) ∈ Cκ such
that ξ(s′) = gξ(s), cf. (7.1). We thus have the natural injection

j : P(NJX)→ BlJX, (x, [ξ(s)]) 7→ (x, [t]).

In BlJX \ p−1Z we define ψ by ψ(p−1x) = (x, [ϕ(x)]). If x ∈ U \ p−1Z, then

p−1x = (x, [s(x)]) and Ã(s)s = ϕ, cf. the proof of Lemma 7.3, so we have that

(7.8) ψ(x, [t]) = (x, [Ã(s)t])

since [s(x)] = [t]. Since A = Ã|Z is injective, (7.8) provides an injective extension of ψ
across p−1Z in U . This extension is well-defined on overlaps because if s′ = gs, then
[t′] = [gt] and by (7.3) hence [A(s′)t′] = [A(s)t]. For x ∈ Z thus (x, [ξ(s)]) in P(NJX) is
mapped to (x, [t]) and by ψ in turn to (x, [A(s)ξ(s)]) so the composed mapping ψ ◦ j is
equal to the mapping P(NJX)→ P(F ) induced by the canonical embedding iϕ, cf. (7.4).
Thus the lower “half” of the diagram is defined and commutes.

We now define the mapping ψ̃. Since p∗J is principal we recall from the proof of
Theorem 5.2 (with σ = ϕ and p∗ϕ = ϕ0ϕ′) that LD → BlJX can be identified with
a line subbundle of p∗E → BlJX via the mapping ϕ′. Since by commutativity p∗F is
the restriction of q∗F to ψ(BlJX) we have an injective mapping LD ↪→ q∗F . We must
verify that it actually takes values in OF (−1) ⊂ q∗F . By continuity it is enough to check
that this holds over BlJX \ p−1Z. However, there the section ϕ0 is non-vanishing and
mapped onto ϕ0ϕ′ = p∗ϕ. Thus (p−1x, ϕ0(x)) is mapped onto (x, [ϕ(x)], ϕ(x)) which is
in OF (−1) by definition.
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It remains to explain j̃. Notice that iϕ induces an embedding π∗NJX ↪→ q∗F and

hence also an embedding ĩϕ : ONJX(−1) ↪→ OF (−1). Since ψ̃ is already defined, there

is a unique mapping j̃ so that ψ̃ ◦ j̃ = ĩϕ and the diagram commutes. If ξ is a vector
in ONJX(−1), then by definition |ξ| = |ξ|NJX equals |iϕξ|F . However, the norm of ξ

induced by the top line is |̃iϕξ| which in turn is |iϕξ|F as well. Thus the claims about
(7.6) are proved.

As before, cf. (5.4), we let −ω̂ = ĉ1(LD). By (7.6), −j∗ω̂ is the first Chern form of
ONJX(−1)→ P(NJX) and so, by definition, cf. (2.4),

ŝ(NJX) = π∗
( 1

1− j∗ω̂
)

Each irreducible component Z` of Z corresponds to an irreducible componentD` = p−1Z`
of j(P(NJX)) = |D| and [D] =

∑
` a`[D`] for some integers a`. Since ŝ(NJX) and ω̂

are smooth it follows that

(7.9) 1Z` ŝ(NJX) = π∗1j−1D`

( 1

1− j∗ω̂
)
.

Multiplying by a` and applying i∗ to the left hand side of (7.9) we get

ŝ(NJX)∧a`[Z`].
The same action on the right hand side of (7.9) gives, using that i∗π∗ = p∗j∗,

p∗
(
a`[D`]∧

1

1− ω̂
)
.

Summing up we get

(7.10) ŝ(NJX)∧
∑
`

a`[Z`] = p∗
(
[D]∧ 1

1− ω̂
)

= p∗
(∑

k

[D] ∧ ω̂k
)

= Mϕ,

where the last equality follows from (5.9) (with W = BlJX and α = 1); notice that
Mϕ

0 = 0 here. It remains to see that
∑

` a`[Z`] is the fundamental cycle [ZJ ]: Since
ŝ0(NJX) = 1 we get from (7.10) that Mϕ

κ =
∑

` a`[Z`]. The same argument applied to
the section s = (s1, . . . , sκ) of the trivial rankκ-bundle (with trivial metric) over U gives
that M s

κ =
∑

` a`[Z`]. It follows from [10, Ch. 3.16, Thm 3] that M s = M s
κ is the proper

intersection [divs1]∧ · · · ∧[divsκ], and it follows from [12, Ch. 7] that this product is the
fundamental cycle [ZJ ] in case of a regular embedding. �

Remark 7.4. In the proof above we did not describe j̃ explicitly. With the notation
above, in a set p−1U we can consider LD → BlJU as the line subbundle of BlJU × Cκ
such that the fibre over a point (x, [t]) is the line {λt ∈ Cκ; λ ∈ C}. Thus j̃ maps the
point (x, [ξ(s)], ξ(s)] to (x, [t], t) in LD. �

It is well-known, and indeed follows from the proof above, that BlJX can be seen as
the closure in P(E) of the graph {(x, [ϕ(x)]) ∈ P(E); x ∈ X \Z}; then the mapping ψ is
of course just the natural inclusion.

Corollary 7.5. Let i : V ↪→ X be an irreducible subvariety and assume that i∗ϕ defines
a regular embedding of codimension κ in V . Then

Mϕ ∧ [V ] = ŝ(NJX) ∧ [ZJ ] ∧ [V ].
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Proof. From Proposition 1.5 we have for degree reasons that Mϕ
κ = [ZJ ]. Since Z and

V intersect properly by assumption, [ZJ ] ∧ [V ] makes sense and, moreover, Mϕ
κ ∧[V ] =

[ZJ ]∧[V ], cf. [6, Section 2.4] and (5.15). On the other hand, from Proposition 1.5 applied

to i∗J , cf. (5.12), Mϕ
κ ∧[V ] = i∗M

i∗ϕ
κ = i∗[Zi∗J ]. Thus

(7.11) i∗[Zi∗J ] = [ZJ ]∧[V ].

If the tuple s = (s1, . . . , sκ) generates J , then i∗s generates i∗J and the transition
matrices of Ni∗J V are the restriction to V of the transition matrices of NJX. Thus
Ni∗J V = i∗NJX. Moreover, the Hermitian metric on Ni∗J V is inherited from NJX so
that

(7.12) ŝ
(
Ni∗J V

)
= i∗ŝ

(
NJX

)
.

By Proposition 1.5, (5.12), (7.11) and (7.12) we thus get

Mϕ ∧ [V ] = i∗M
i∗ϕ = i∗

(
ŝ(Ni∗J V ) ∧ [Zi∗J ]

)
= i∗

(
i∗ŝ(NJX) ∧ [Zi∗J ]

)
= ŝ(NJX) ∧ [ZJ ] ∧ [V ].

�

Proof of Proposition 1.4. Notice that the right-hand side of the equation in the formula-
tion of the proposition is well-defined in view of Proposition 4.1. In view of Theorem 1.2
and (4.4) the proposition follows immediately from Proposition 1.5 if there is a vector
bundle with a section defining J . If not we still have, cf. Remark 7.4, the commutative
diagram

(7.13) ONJX(−1) �
� j̃

//

��

LD

��

P(NJX) �
� j

//

π

��

BlJX

p

��

Z �
� i // X.

By definition, cf. (1.1), recalling that κ ≥ 1, S(J , X) = p∗
(
[D] ∧ 1/(1 + c1(LD))

)
and,

by (2.4), s(NJX) = π∗
(
1/(1 + j∗c1(LD))

)
. Thus the result follows as in the proof of

Proposition 1.5, replacing computations in GZ(X) by analogous ones in B(X). �

Proposition 7.6. Let σ be a holomorphic section of a Hermitian bundle E → X defining
the regular embedding J and let ϕ be a holomorphic section of a Hermitian bundle
F → X defining a regular embedding of codimension 1. Suppose that the section σ + ϕ
of the Hermitian bundle E ⊕ F → X defines a regular embedding of codimension κ+ 1.
Then

Mσ+ϕ = Mσ ∧Mϕ = Mϕ ∧Mσ.

Proof. Let us first assume that κ = 1. Then the statement is symmetric in σ and ϕ; σ
and ϕ are sections of line subbundles L1 ⊂ E and L2 ⊂ F defining divisors D1 and D2,
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respectively. By Proposition 1.5, Mϕ = ŝ(L2) ∧ [D2], cf. (7.5), and so, by Corollary 7.5,
since σ||D2| is generically non-vanishing,

Mσ ∧Mϕ = ŝ(L1) ∧ ŝ(L2) ∧ [D1] ∧ [D2].

We have that σ+ϕ is a section of the Hermitian bundle E := L1⊕L2 ⊂ E ⊕F defining
a regular embedding of codimension 2. Denote the corresponding ideal by J ′, its zero
set by Z ′, and notice that NJ ′X = E|Z′ . By Proposition 1.5 we have

Mσ+ϕ = ŝ(E) ∧ [ZJ ′ ] = ŝ(E) ∧ [D1] ∧ [D2],

where the last equality follows as in the end of the proof of Proposition 1.5. It follows
from (2.7) and (2.10) that ŝ(E) = ŝ(L1) ∧ ŝ(L2). This concludes the proof when κ = 1.

Now assume that κ ≥ 2. Let p : BlJX → X be the blow-up of X along J . Then both
p∗σ and p∗ϕ define principal ideals and it is readily verified that p∗σ + p∗ϕ defines a
regular embedding in BlJX of codimension 2. Since p is a modification it is generically
an isomorphism and hence from Example 5.3, Theorem 5.2 (iv), and the case κ = 1
proved above, we get

Mσ+ϕ = p∗M
p∗σ+p∗ϕ = p∗

(
Mp∗σ∧Mp∗ϕ

)
= Mσ∧p∗

(
Mp∗ϕ

)
= Mσ∧Mϕ.

�

Remark 7.7. It is not necessary to assume that σ defines a regular embedding; the proof
only relies on the fact that p∗σ + p∗ϕ defines a regular embedding. One can therefore
formulate a variant of Proposition 7.6 that is a global version of Lemma 9.2 in [6]. �

Example 7.8. Let τ : X ′ → X be a section of a locally trivial fibration π : X → X ′

with one-dimensional fibers, let ϕ be a section of a Hermitian line bundle L → X
defining τ(X ′), and let σ′ be a section of a Hermitian bundle E′ → X ′ defining a regular
embedding. If σ = π∗σ′, then

τ∗M
σ′ = ĉ(L) ∧Mσ+ϕ.

To see this, notice first that it follows from Proposition 1.5 and (2.7) that ĉ(L) ∧Mϕ =

[ϕ = 0] = [τ(X ′)]. Thus by Proposition 7.6, ĉ(L) ∧Mσ+ϕ = Mπ∗σ′ ∧ ĉ(L) ∧Mϕ =

Mπ∗σ′ ∧ [τ(X ′)] = τ∗M
σ′ . �

Let i : ZJ ↪→ X be a regular embedding of codimension κ ≥ 1. We conclude with a
short discussion of the B-Gysin mapping (1.8). It is further studied in [4]. In analogy
with Chow theory, cf. [12, Ch. 6], one can think of (c(NJX)∧S(J , X)∧µ)k−κ as an
intersection of ZJ and µ in B(X). We assume that J is defined by the section ϕ of the
Hermitian bundle F → X so we can also consider the more explicit mapping (1.9).

First, let γ ∈ GZk(X) be a product of components of Chern or Segre forms. We claim
that

(7.14) (ĉ(NJX)∧Mϕ ∧ γ)k−κ = [ZJ ]∧γ = i∗i
∗γ,

so that (1.9) can be seen as a generalization to GZ(X) of i∗i
∗. In fact, by (5.14),

Mϕ∧γ = γ∧Mϕ, and so (7.14) follows from Proposition 1.5 and (2.7). In the same way
(1.8) is a generalization to B(X) of i∗i

∗.
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Example 7.9. If ZJ is a divisor, i.e., κ = 1, then we can assume that ϕ is a section of a line
bundle L→ X. Then NJX = L|Z , cf. (7.5). Assume that µ ∈ GZk(X) is irreducible. If
ϕ vanishes identically on µ, then Mϕ∧µ = µ, and hence (ĉ(L)∧Mϕ∧µ)k−1 = ĉ1(L)∧µ.
Otherwise Mϕ

0 ∧µ = 0 and then

(7.15) (ĉ(L)∧Mϕ∧µ)k−1 = Mϕ
1 ∧µ.

�

8. Variants of the Poincaré-Lelong formula

Let h be a meromorphic section of a Hermitian line bundle L → X. We say the
divh intersects µ ∈ GZk(X) properly if for each irreducible component µj of µ, divh
intersects |µj | properly, cf. Section 2, i.e., h is non-trivial on each |µj |. We have the
following Poincaré-Lelong formula “on µ”:

Proposition 8.1. Assume that h is a meromorphic section of L → X such that divh
intersects µ ∈ GZk(X) properly. Then log |h|2 ·µ, a priori defined where h is holomorphic
and non-zero, extends to a current of order 0 on |µ|. Moreover, there is a generalized
cycle [divh]∧µ in GZk−1(X) with Zariski support on |divh| ∩ |µ| such that

(8.1) ddc
(

log |h|2 · µ
)

= [divh] ∧ µ− ĉ1(L)∧µ.
If µ ∼ 0, then [divh]∧µ ∼ 0.

We say that [divh]∧µ is the proper intersection of divh and µ. Choosing a trivial
metric on L locally, we see that [divh]∧µ only depends on the divisor divh and not
on h (since ddc(u · µ) = 0 if u is pluriharmonic). In view of the last statement of the
proposition, [divh]∧µ is well-defined in Bk−1(X) for µ ∈ Bk(X).

Proof. By assumption, log |h|2 · µ is generically defined on |µ|. Each irreducible compo-
nent µj of µ is a finite sum of non-zero generalized cycles µ′ = τ∗α with τ(W ) = V := |µj |,
see Remark 3.10 and Lemma 3.8. Let us consider such a µ′ and let V ′ ⊂ V be a subset
of positive codimension such that h is holomorphic and non-vanishing on V \ V ′. Then

(8.2) log |h|2 · µ′ = τ∗(log |τ∗h|2 · α)

holds there, and since the right hand side has an extension to V of order 0 so has
the left hand side. Since τ−1V ′ has positive codimension in W , 1V ′τ∗(log |τ∗|2 · α) =
τ∗(1τ−1V ′(log |τ∗|2 · α)) = 0. Summing up the first claim of the proposition follows.

Consider again a µ′ = τ∗α as above. From the usual Poincaré-Lelong formula, cf.
Proposition 2.1, we have

(8.3) ddc
(

log |τ∗h|2 · α
)

= [divτ∗h]∧α− ĉ1(τ∗L)∧α
on W . Summing up we get (8.1) with [divh]∧µ defined as the sum of all τ∗([divτ∗h]∧α).
The last statement of the proposition follows since τ∗([divτ∗h]∧α) ∼ 0 if α is of the form
β∧α′, where β is a component of a B-form. �

If h is holomorphic, Mh
1 ∧µ = τ∗(M

τ∗h
1 ∧α) = τ∗([divτ∗h]∧α) and thus, cf. (7.15),

(8.4) [divh]∧µ = Mh
1 ∧µ.

It follows as in the proof of Theorem 5.2 that log |h|2 · µ = limε log(|h|2 + ε) · µ.
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Now assume that h = (h1, . . . , hm) is a tuple of global sections of L and consider the
section h of ⊕m1 L. In view of (5.2) we have

(8.5) ddc
(

log |h|2 · µ
)

= ddc log |h|2∧µ,
where the right hand side is defined by the limit procedure in (5.2). If e is a local frame
for L, then h = h(e)e, where h(e) is a tuple of holomorphic functions. Clearly log |h(e)|2
depends on the choice of frame but ddc log |h(e)|2 does not. Thus

ddc log |h|2◦∧µ := ddc log |h(e)|2 ∧ µ
is a well-defined global current which in addition is independent of the Hermitian metric
on L.

Remark 8.2. Let U ⊂ X be an open set where we have a local frame e for L. If we choose
the metric on L in U so that |e| = 1 and equip E = ⊕m0 L with the induced metric, then
ddc log |σ|2◦∧µ = ddc log |σ|2∧µ. �

For instance, if h is just one single section, i.e., m = 1, then (8.1) implies that
ddc
(

log |h|2◦ · µ
)

= [divh]∧µ.

Example 8.3. Let θ = ddc log(|z1|2 + |z2|2) be the generalized cycle in P2 of Example 3.11
and let σ be a section of O(1) defining a line through p = [1 : 0 : 0]. Then θ has
dimension 1, it is irreducible and |θ| = P2. Thus divσ intersects θ properly. We claim
that [divσ] ∧ θ = [p]. Let i : V ↪→ P2 be the line divσ. Notice that if we consider zj as
sections of the line bundle O(1)→ P2, then θ = ddc log |h|2◦, where h = (z1, z2). Now

[divσ]∧θ = θ∧[divσ] = ddc
(

log |h|2◦ · [V ]
)

= i∗dd
c log |i∗h|◦,

where the first equality follows from [11, Ch. III Corollary 4.11] and the second one from
(8.5). In the affinization where z0 = 1 we have the frame element e = z0, so in local
coordinates (z1, z2) we have log |h(e)|2 = log(|z1|2 + |z2|2); notice that it is harmonic on
V \ {p} and has a simple pole at p so that ddc log |i∗h|2◦ = [p]. Now the claim follows
since i∗[p] = [p]. Notice that dim |θ| = 2 while dim |[divh] ∧ θ| = 0. �

9. The B-Stückrad-Vogel class

Throughout this section X is a compact (reduced) analytic space and J → X is
generated by a finite number of global sections of the line bundle L→ X, to begin with
without any specified Hermitian metric. For instance, if X is projective, then given
J → X there is a very ample L→ X such that L⊗J is globally finitely generated, see,
e.g., [18, Theorem 1.2.6].

The classical Stückrad-Vogel (SV) algorithm, [20], is a way to produce intersections by
reducing to proper intersections of cycles by divisors. The resulting SV-cycles define an
element, the SV-class v(J , L,X), in A(Z) that only depends on J and the line bundle
L. It is related to the Segre class s(J , X) via van Gastel’s formulas, [14], see below.

We shall define an analogous B-SV class V (J , L, µ) in B(|µ| ∩ Z) for any µ ∈ B(X),
and this class will be related to our Segre class S(J , µ) via analogues of van Gastel’s
formulas. To motivate our definition we first consider the SV-algorithm on a generalized
cycle µ ∈ GZd(X): If µ0 := 1X\Zµ = 0 then J vanishes identically on µ and the

algorithm stops directly. Otherwise, let µ1, . . . , µm be the irreducible components of µ0.
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These are precisely the irreducible components of µ that are not contained in Z. For
each j the set of h ∈ Γ(X,L⊗J ) that vanish identically on µj is a proper subspace V j

of the finite-dimensional vector space Γ(X,L ⊗ J ). Thus each h ∈ Γ(X,L ⊗ J ) in the
complement of ∪jV j intersects µ0 properly, by definition; that is, a generic h will do.
Let us choose such a section and call it h1. Next, we consider µ1 := 1X\Z [divh1]∧µ0. If
µ1 is empty the algorithm stops. If not, a generic h intersects µ1 properly. Let us choose
such a section and call it h2. We proceed in this way until µk = 0 for some k ≤ d and the
algorithm stops. If µd := 1X\Z [divhd]∧µd−1 is nonempty, then since µd has dimension 0,
any proper intersection with a divisor divh will give just 0, and the SV-algorithm stops.

If µk = 0 for some k < d, then we can choose hk+1, . . . , hd in an arbitrary way if
we adopt the convention that any divh intersects the generalized cycle 0 properly and
[divh] · 0 = 0. We have the following definitions:

Definition 9.1. An ordered sequence h = (h1, h2, . . . , hd) of sections of L ⊗ J is a
Stückrad-Vogel (SV) sequence on µ ∈ GZd(X) if divhk intersects

(9.1) 1X\Z [divhk−1] ∧ · · · ∧ 1X\Z [divh1] ∧ 1X\Zµ

properly, k = 1, . . . , d. Given a SV-sequence h on µ, we have the associated9 SV-cycle

(9.2) vh ∧ µ =
d∑

k=0

vhk∧µ,

where

vh0∧µ := 1Zµ, vhk∧µ := 1Z [divhk] ∧ 1X\Z [divhk−1] ∧ · · · ∧ 1X\Z [divh1] ∧ 1X\Zµ, k ≥ 1.

Here we use the convention that 1V acts on the whole current on its right, i.e.,
1V a∧b∧ . . . = 1V (a∧b∧ . . .), cf. [6, Sections 3 and 6].

Example 9.2. If J vanishes identically on µ, then vh = vh0 = µ. �

If divh does not intersect µ properly we can still define [divh] ∧ µ by (8.4). Since
Mh

1 ∧µ′ = 0 if h vanishes identically on |µ′| we have that [divh] ∧ µ =
∑

j [divh] ∧ µ′j ,
where µ′j are the irreducible components of µ that divh intersects properly. By this

convention therefore [divh] ∧ µ = [divh] ∧ 1X\Zµ if the right hand side is a proper
intersection. For any sequence h = (h1, . . . , hd) of sections of L⊗ J we can thus define
(9.2) with

(9.3) vh0∧µ = 1Zµ, vhk ∧ µ = 1Z [divhk]∧µ · · · ∧[divh1] ∧ µ, k = 1, 2, . . . d,

and as long as h is a SV-sequence it is consistent with the previous definition. Let

σ = (σ0, . . . , σm) be a sequence of global sections of L that generate J . Given a ∈ Pm,
a = [a0 : · · · : am], let a · σ = a0σ0 + · · · + amσm which is well-defined up to a nonzero
constant. If a = (a1, . . . , ad) ∈ (Pm)d is a generic tuple, then a·σ = (a1 ·σ, a2 ·σ, . . . , ad ·σ)
is a SV-sequence on µ and, cf. (9.3),

(9.4) va·σ∧µ = 1Zµ+
∑
k≥1

1Z [div(ak · σ)]∧ . . .∧[div(a1 · σ)]∧µ

9It would me more correct but somewhat inconvenient to use the term SV-generalized cycle.
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is the associated SV-cycle. As observed above, however, (9.4) makes sense for any
(a1, . . . , ad) ∈ (Pm)d.

Proposition 9.3. Assume that µ ∈ GZ(X). Then

(9.5)

∫
(Pm)k

[div(ak · σ)]∧ . . .∧[div(a1 · σ)]∧µdV (a) = (ddc log |σ|2◦)k∧µ, k = 1, 2, . . . ,

where dV (a) = ∧kj=1(ddc log |aj |2)m is the natural normalized volume form on (Pm)k.

Proof. We may assume that µ = τ∗α where τ : W → X and W is connected. Then µ is
irreducible. If J vanishes identically on µ, then σ ≡ 0 on µ and by definition both sides of
(9.5) vanish. Thus we can assume that τ∗J is nontrivial on W , τ∗J is principal and that
the exceptional divisor D is defined by the section σ0 of the line bundle LD →W . Then
τ∗σ = σ0σ′ where σ′ = (σ′0, . . . , σ

′
m) is a non-vanishing tuple of sections of L−1

D ⊗ τ∗L.
Notice that

ddc log |aj · τ∗σ|2◦ = ddc log |σ0|2◦ + ddc log |aj · σ′|2◦ = [D] + [div(aj · σ′)].

Since σ′ is non-vanishing on |D|, as in [6, Eq. (6.3)], for generic aj we have

[div(ak · σ)]∧ . . .∧[div(a1 · σ)]∧µ =

τ∗
(
[D]∧[div(ak−1 · σ′)]∧ · · · ∧[div(a1 · σ′)]∧α+ [div(ak · σ′)]∧ · · · ∧[div(a1 · σ′)]∧α

)
,

where all intersections are proper. By [6, Lemma 6.3] the left hand side of (9.5) is
therefore equal to

(9.6) τ∗
(
[D]∧(ddc log |σ′|2◦)k−1∧α+ (ddc log |σ′|2◦)k∧α

)
.

Now assume that we locally have a flat metric on L. With the notation in the proof of
Theorem 5.2 we then have ddc log |σ′|2◦ = ω̂ since σ′ is a tuple of sections of L−1

D and
|σ′| = 1, cf. (9.12) below. From (5.8) we can therefore deduce that (9.6) is equal to the
right hand side of (9.5). �

Remark 9.4. Proposition 9.3 is similar to [6, Theorem 6.2]. The analogues of the identi-
ties (6.8) and (6.9) in that theorem hold in the present situation as well; after adaption
to the present situation the proof in [6] goes through. �

Definition 9.5. Given a line bundle L and a tuple σ = (σ0, . . . , σm) of sections of L
that generate J and µ ∈ GZ(X) we define the generalized cycle

ML,σ∧µ = 1Zµ+
∑
k≥1

1Z(ddc log |σ|2◦)k∧µ.

It follows from (9.4) and (9.5) that ML,σ∧µ is a mean value of SV-cycles on µ.

Notice that in general, the subspace of Γ(X,L) generated by σ0, . . . , σm is proper.
Nevertheless, the class of ML,σ ∧ µ in B(X) is independent of the choice of tuple σ:

Proposition 9.6. If g is another tuple of sections of L that generate J , µ, µ′ ∈ GZ(X)
and µ′ ∼ µ, then ML,σ∧µ ∼ML,g∧µ′.
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Proof. We first consider µ and keep the notation from the proof of Proposition 9.3. If

J vanishes on |µ|, then ML,σ∧µ = ML,σ
0 ∧µ = µ. Thus we assume that τ∗σ = σ0σ′

on W as usual. Since σ′ is a non-vanishing tuple of sections of L−1
D ⊗ τ∗L, 1/|σ′|2◦ is a

metric on L−1
D ⊗ τ∗L and hence ddc log |σ′|2◦ is a representative of the first Chern class

c1(L−1
D ⊗ τ∗L). From (9.6) and (2.2) we have

(9.7) ML,σ
k ∧µ = 1Z(ddc log |σ|2◦)k∧µ = τ∗

(
[D]∧(ddc log |σ′|2◦)k−1∧α

)
, k = 1, 2, . . . .

Now τ∗g = σ0g′, where g′ also is a tuple of sections of L−1
D ⊗ τ∗L, and hence ddc log |g′|2◦

and ddc log |σ′|2◦ differ by a B-form; in fact the difference is ddc of the global function
log(|g′|2◦/|σ′|2◦). Thus the class in B(X) is independent of the choice of tuple. Finally, if
β is a component of a B-form and α = β∧α′, then (9.7) is ∼ 0 in GZ(X). �

In view of Remark 8.2 we have that ML,σ∧µ = Mσ∧µ in U ⊂ X for a suitable metric
on L on U . Therefore local statements that hold for Mσ∧µ must hold for ML,σ∧µ as
well: For instance, if γ is a component of a Chern or Segre form, then by (5.14),

(9.8) ML,σ∧(γ∧µ) = γ∧ML,σ∧µ.
If h : X ′ → X is proper and σ is a tuple of sections of L that generate J → X, then
h∗σ is a tuple of sections of h∗L that generate h∗J → X ′. If µ ∈ GZ(X ′), then by
Theorem 5.2 (iv),

(9.9) h∗
(
Mh∗L,h∗σ∧µ′

)
= ML,σ∧h∗µ′.

In view of Proposition 9.6 the following definition makes sense.

Definition 9.7. Assume that L → X has sections that generate J globally. For µ ∈
B(X) we let V (J , L, µ), the B-SV class, be the class in B(Z ∩ |µ|) defined by ML,σ∧µ̂
for a tuple of generators σ and a representative µ̂ ∈ GZ(X) of µ.

We now relate the B-SV class to the B-Segre class in analogy with van Gastel’s for-
mulas [14], see (9.22) below. To this end we first give a GZ-variant and therefore choose
a Hermitian metric.

Theorem 9.8. Let σ = (σ0, . . . , σm) be a tuple of sections of L that generate J . Assume
that we have a Hermitian metric on L with first Chern form ω̂L and consider σ as a
section of the Hermitian vector bundle E = ⊕m0 L. For µ ∈ GZ(X) we have

(9.10) ML,σ∧µ =
∑
j≥0

( 1

1− ω̂L

)j
∧Mσ

j ∧µ

and

(9.11) Mσ∧µ =
∑
j≥0

( 1

1 + ω̂L

)j
∧ML,σ

j ∧µ.

Proof. Let us assume that µ = τ∗α where τ : W → X and W is connected. If J vanishes

identically on µ then Mσ∧µ = Mσ
0 ∧µ = µ and ML,σ∧µ = ML,σ

0 ∧µ = µ and thus (9.10)
and (9.11) are both trivially true.

We can thus assume that τ∗σ = σ0σ′, where σ′ is a non-vanishing tuple of sections of
L−1
D ⊗τ∗L, or equivalently, a non-vanishing section of τ∗E. As in the proof of Theorem 5.2
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we let ω̂ = −ĉ1(LD). Let e−ψ be the induced metric on L−1
D ⊗ τ∗L. Then, cf. the proof

of Theorem 5.2, 1 = |σ′|2 = |σ′|◦e−ψ so that |σ′|2◦ = eψ and hence

(9.12) ddc log |σ′|2◦ = ddcψ = ω̂ + τ∗ω̂L.

It follows from (9.7) and (9.12) that10

(9.13) ML,σ ∧ µ = τ∗
(
[D]∧ 1

1− ω̂ − τ∗ω̂L
∧ α
)
.

We have, cf. (5.9),∑
j≥0

( 1

1− ω̂L

)j
∧Mσ

j ∧µ =
∑
j≥0

( 1

1− ω̂L

)j+1
∧τ∗
(
[D]∧ω̂j∧α) =

1

1− ω̂L
∧τ∗
(

[D]∧
∑
j≥0

( ω̂

1− τ∗ω̂L

)j
∧α
)

=

1

1− ω̂L
∧τ∗
(

[D]∧ 1− τ∗ω̂L
1− τ∗ω̂L − ω̂

∧α
)

= ML,σ∧µ.

Thus (9.10) follows, and (9.11) is proved in a similar way. �

Corollary 9.9. If µ ∈ Bk(X) and ωL = c1(L) we have

(9.14) V (J , L, µ) =
∑
j≥0

( 1

1− ωL

)j
∧Sj(J , µ), S(J , µ) =

∑
j≥0

( 1

1 + ωL

)j
∧Vj(J , L, µ).

Remark 9.10. Suppose that µ = 1X . Fix k ≥ 0 and consider the decomposition,

cf. (3.10), ML,σ
k = ML,σ

k,fix + ML,σ
k,mov of the component ML,σ

k of codimension k. Since

ML,σ
k is obtained as a mean value of va·σk , which are cycles of pure codimension k, it

is clear that any irreducible k-cycle V of X that occurs in all generic SV-cycles must

appear in ML,σ
k,fix. In the literature, such a cycle V is called a fixed component; any

other component in a generic SV-cycle is called a moving component. Since the Zariski

support of the irreducible components of ML,σ
k,mov have codimension strictly smaller than

k, they must be mean values of moving components of va·σk . It follows from (9.14) that
the fixed components of Vk(J , L,X) and Sk(J , X) are the same, cf. (4.10). �

Example 9.11. Assume that X = Pd+κ
[z0:···:zd:w1:···:wκ], let L := O(1), and let i : Z → X

be the linear subspace {w1 = . . . = wκ = 0}. If J = J (w1, . . . , wκ), then Z = ZJ
is a smooth (hence regular) embedding defined by the section w of E = ⊕κ1L. Thus
E|Z ' NJX, cf. (7.5). We want to compute the B-Gysin mapping (1.8), or more precisely
(1.9), in this case. If we equip L with the Fubini-Study metric ω̂L = ddc log(|z|2 + |w|2)◦,
then ĉ(L) = 1 + ω̂L, and therefore

(9.15) ĉ(NJX) = (1 + ω̂L)κ.

10Notice that ω̂ + τ∗ω̂L is independent of the metric on L.
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Let µ ∈ GZk(X). By (9.11)

(9.16)
(
ĉ(NJX)∧Mw∧µ)k−κ =

(
(1 + ω̂L)κ∧Mw∧µ

)
k−κ =(∑

j≥0

(1 + ω̂L)κ−j∧ML,w
j ∧µ

)
k−κ =

∑
j≥0

ω̂κ−jL ∧ML,w
j ∧µ.

By (9.16) one can thus reduce the computation of (1.9) to find ML,w
j ∧µ, which in turn

can be obtained as mean values of generic SV-cycles. �

From Theorem 9.8 and Lemma 6.2 we have

Proposition 9.12. For each x ∈ X, multx(ML,σ
k ∧ µ) = multx(Mσ

k ∧ µ).

For µ ∈ GZd(X) we let

deg Lµ :=

∫
X
ω̂dL ∧ µ,

where ω̂L is any representative of c1(L); by Stokes’ theorem it is well-defined. Moreover,
in view of (4.2) it only depends on the image of µ in Bd(X) and so deg L is well-defined
on B(X). If µ is a cycle, then deg Lµ is the usual degree of µ with respect to L. The
degree is indeed the mass with respect to L of µ, and we have the following mass formula:

Proposition 9.13. If J → X is generated by the tuple σ = (σ0, . . . , σm) of sections of
L→ X and µ ∈ GZd(X), then

(9.17) deg Lµ = deg L(ML,σ
0 ∧µ) + · · ·+ deg L(ML,σ

d ∧µ) + deg L(1X\Z(ddc log |σ|2◦)d∧µ).

If m+ 1 ≤ d, then the last term on the right hand side vanishes.

Proof. We can assume that µ = τ∗α where τ : W → X and W is connected. If J
vanishes identically on µ, then both sides of (9.17) are equal to deg Lµ. Otherwise we
may assume that τ∗σ = σ0σ′ where σ0 is a section of the line bundle LD defining the
divisor D on W and σ′ is a non-vanishing section of τ∗E⊗L−1

D , where E = ⊕m0 L. Notice
that in view of (2.1),

deg Lµ =

∫
W
τ∗ω̂dL ∧ α.

Let ω̂ = −ĉ1(LD). By (9.12), ωσ := ddc log |σ′|2◦ = ω̂ + τ∗ω̂L. From (5.5) thus

(9.18) τ∗ω̂L = [D] + ωσ + ddcν,

where ν = − log |τ∗σ|, which is a a global integrable form on W . By repeated use of
Stokes’ theorem we get∫

W
τ∗ω̂dL ∧ α =

∫
W
τ∗ω̂d−1

L ∧ [D]∧α+

∫
W
τ∗ω̂d−1

L ∧ ωσ∧α =∫
W
τ∗ω̂d−1

L ∧ [D]∧α+

∫
W
τ∗ω̂d−2

L ∧[D]∧ωσ∧α+

∫
W
τ∗ω̂d−2

L ∧ω2
σ∧α =∫

W
τ∗ω̂d−1

L ∧[D]∧α+

∫
W
τ∗ω̂d−2

L ∧ωσ∧[D]∧α+ · · ·+
∫
W
ωd−1
σ ∧[D]∧α+

∫
W
ωdσ∧α.

Now (9.17) follows from the proof of Proposition 9.3, cf. (9.6) and (9.7), since

1X\Z(ddc log |σ|2◦)d∧µ = τ∗(ω
d
σ∧α).
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The last statement follows since (ddc log |σ′|2◦)m+1 = 0. �

If u is ω̂L-plurisubharmonic with analytic singularities, then one can define (ddcu)k

for any k and an analogous mass formula was proved in [7], see [7, Theorem 1.2].

Remark 9.14. Assume that σ and µ = τ∗α are as in the previous proof. If g is a section
of L ⊗ J , then τ∗g = σ0g′ where g′ is a section of L−1

D ⊗ τ∗L. Let h1, . . . , hd be a

SV-sequence on µ and vh∧µ be the associated SV-cycle. If h is sufficiently generic, then
with essentially the same proof we get

deg Lµ = deg L(vh0∧µ) + · · ·+ deg L(vhd∧µ) + deg L(1X\Z [divhd]∧ . . .∧[divh1]∧µ).

�

Finally let us consider the special case when µ is an ordinary cycle. With no loss of
generality we can assume that µ = 1X . Let h = (h1, h2, . . . , hn) be a sequence of sections
of L⊗ J . One can check that h is an SV-sequence on X if and only if

(9.19) codim
(
(X \ Z) ∩ {h1 = · · · = hk = 0}

)
= k or ∞, k = 1, . . . , n;

this is the condition in [20]. The SV-algorithm in [20] is precisely the same as used above
and the resulting SV-cycle therefore is, in our notation, cf. (9.3),

vh = 1Z + 1Z [divh1] + · · ·+ 1Z [divhn]∧ . . .∧[divh1].

Let us now assume that X is irreducible. If J vanishes identically, then vh = 1X
for any SV-sequence, and we define v(J , L,X) = v0(J , L,X) = 1. Otherwise, let us
assume that τ : X ′ → X is a modification such that τ∗J is principal, and let D and LD
be as before. In particular, let σ0 be a section of LD that defines the divisor D. Then
τ∗hk = σ0h′k where h′k are sections of L−1

D ⊗ τ∗L. As in the proof of Proposition 9.3,
cf. [6, Eq. (6.3)], we then have

vhk = τ∗
(
[D]∧[divh′k−1]∧ . . .∧[divh′1]

)
,

where the case k = 1 shall be interpreted as τ∗[D]. Choosing the sequence hj even more
generic if necessary, we can in addition assume that all the intersections

(9.20) [divh′k−1]∧ . . .∧[divh′1]∧[D]

are proper. As before, let ωL := c1(L) and ω = −c1(LD). Then the first Chern class of
L−1
D ⊗ τ∗L is ω + τ∗ωL. By definition, cf. Section 2, therefore (9.20) is a representative

of the Chow class (ω+ τ∗ωL)k−1 ∩ [D]. We conclude that a generic SV-sequence defines
the Chow class

(9.21) v(J , L,X) :=
∑
k≥1

τ∗
(
(ω + τ∗ωL)k−1 ∩ [D]

)
= τ∗

( 1

1− ω − τ∗ωL
∩ [D]

)
.

It follows that this class only depends on L and J but not on the choice of modification
of X. If X is not irreducible and consists of the irreducible components X1, X2, . . ., then
we define v(J , L,X) = v(J , L,X1) + v(J , L,X2) + · · · . The formulas
(9.22)

v(J , L,X) =
∑
j≥0

( 1

1− ωL

)j
∩ sj(J , X), s(J , X) =

∑
j≥0

( 1

1 + ωL

)j
∩ vj(J , L,X),
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are due to van Gastel, [14, Corollary 3.7], and can be obtained by mimicking the proof
of Theorem 9.8 above.

10. Comparison of A(X) and B(X)

In this section we assume that X is compact and projective. In particular, each line

bundle over X has a nontrivial meromorphic section. Let Ĥk,k(X) be the equivalence
classes of d-closed (k, k)-currents µ on X of order zero such that µ ∼ 0 if there is a
current γ of order zero such that µ = dγ. Notice that if i : X → Y is an embedding into a

smooth manifold Y of dimension N , then there is a natural mapping i∗ : Ĥn−k,n−k(X)→
HN−k,N−k(Y,C) induced by the push-forward of currents. If X is smooth and X = Y ,

then this map gives an isomorphism Ĥn−k,n−k(X) ' Hn−k,n−k(X,C); the surjectivity is
clear and the injectivity follows since a closed current of order zero locally has a potential
of order zero.

Example 10.1. Assume that h is a meromorphic section of a Hermitian line bundle
L→ X such that divh intersects µ ∈ GZk(X) properly. It follows from Proposition 8.1

that [divh]∧µ and ĉ1(L)∧µ coincide in Ĥ1,1(X). �

Let E → X be a Hermitian vector bundle. Since ĉk(E) is smooth and closed on X,

µ 7→ ĉk(E)∧µ is a well-defined mapping on Ĥ(X). Another choice of metric gives rise
to a smooth form that is ĉk(E) + ddcψ for a suitable smooth form ψ (if k ≥ 1). Thus

we get a mapping µ 7→ ck(E)∧µ on Ĥ(X). Let 0 → S → E → Q → 0 be a short exact
sequence of Hermitian vector bundles on X. Then, cf. Section 4, there is a smooth γ on
X such that ddcγ = ĉ(E)− ĉ(S)∧ĉ(Q). Thus

(10.1)
(
c(E)− c(S)∧c(Q)

)
∧µ = 0, µ ∈ Ĥ(X).

In view of (4.2) there is a natural mapping

BX : Bk(X)→ Ĥn−k,n−k(X), k = 0, 1, 2 . . . .

If f : X ′ → X is a proper map, then

(10.2) BXf∗µ = f∗BX′µ.

If E → X is a vector bundle, then

(10.3) BX(c(E)∧µ) = c(E)∧BXµ, µ ∈ B(X).

In view of (2.17) there is a mapping

AX : Ak(X)→ Ĥn−k,n−k(X), k = 0, 1, 2 . . . ,

taking a representative µ̂ of µ to the cohomology class determined by its Lelong current.
Clearly

(10.4) AXµ = BXµ, µ ∈ Z(X);

as a consequence, the image of AX is contained in the image of BX . If f : X ′ → X is
proper as above we have from (2.13) that

(10.5) AXf∗µ = f∗AX′µ, µ ∈ A(X).
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We will use the equalities, see [12, Theorem 3.2],

(10.6) c(E) ∩ f∗µ = f∗(c(f
∗E) ∩ µ),

in A(X) if E → X is a vector bundle, and

(10.7) c(E) ∩ µ = c(L) ∩ (c(Q) ∩ µ)

in A(X) if 0→ L→ E → Q→ 0 is exact. In analogy with (10.3) we have:

(10.8) AX
(
c(E) ∩ µ

)
= c(E) ∧AXµ.

Proof of Eq. (10.8). First assume that E = L has rank 1; it is then sufficient to show
(10.8) for c1(L). By Z-linearity it is enough to look at each irreducible component of
µ separately and so we may assume that µ is represented in A(X) by an irreducible
subvariety V ↪→ X. Let h be a meromorphic section of L that is nontrivial on V . Then
c1(L) ∩ µ is represented in A(X) by the cycle [divh]∧[V ] and so

AX(c1(L) ∩ µ) = [divh]∧[V ] = c1(L) ∧ [V ] = c1(L) ∧AXµ

in Ĥ(X), where the second equality follows from Example 10.1 applied to [V ].
Next, assume that (10.8) holds for vector bundles of rank ≤ r and consider E of rank

r + 1. Let p : X ′ → X, where X ′ = P(E), and let L = O(−1) be the tautological line
subbundle so that we have a short exact sequence 0 → L → p∗E → Q → 0 over X ′.
Take µ′ in A(X ′) such that p∗µ

′ = µ. By (10.6) and (10.7),

(10.9) c(E) ∩ µ = c(E) ∩ p∗µ′ = p∗
(
c(p∗E) ∩ µ′

)
= p∗

(
c(L) ∩ (c(Q) ∩ µ′)

)
.

By (2.1), (2.8), (10.1), (10.5), (10.9), and the induction hypothesis

AX(c(E) ∩ µ) = AXp∗
(
c(L) ∩ (c(Q) ∩ µ′)

)
=

p∗AX′
(
c(L) ∩ (c(Q) ∩ µ′)

)
= p∗

(
c(L)∧AX′(c(Q) ∩ µ′)

)
=

p∗
(
c(L)∧c(Q)∧AX′µ′

)
= p∗

(
c(p∗E)∧AX′µ′

)
= c(E)∧p∗(AX′µ′) = c(E)∧AXµ.

�

Proof of Proposition 1.6. We have already noticed, (10.4), that the image of AX is con-
tained in the image of BX . For the converse inclusion consider µ = τ∗α in GZk(X),
τ : W → X. By (10.5), (10.8), (10.4), (10.3), and (10.2) we have

AXτ∗(α ∩ 1W ) = τ∗AW (α ∩ 1W ) = τ∗(α∧AW1W ) =

τ∗(α∧BW1W ) = τ∗BW (α∧1W ) = BXτ∗(α∧1W ) = BXµ,

and thus BXµ is in the image of AX . �

Proof of Proposition 1.7. Let N = NJX. We may assume that µ is an irreducible
subvariety i : V → X. If J vanishes identically on V , then µ is mapped to µ under both
the Gysin and the B-Gysin mapping. Thus we can assume that we have a modification
π : V ′ → V such that π∗i∗J is principal on V ′. Let D be the exceptional divisor and
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L = LD the associated line bundle. Using (10.4), (10.5), and (10.8), recalling that
s(J , V ) = s(i∗J , V ), see the introduction and Remark 5.1, we have

(10.10) AZ(c(N) ∩ s(J , V )) = AZ(c(N) ∩ s(i∗J , V )) = AZ

(
c(N) ∩ π∗

( 1

c(L)
∩ [D]

))
= c(N)∧AZπ∗

( 1

c(L)
∩ [D]

)
= c(N)∧π∗A|D|

( 1

c(L)
∩ [D]

)
= c(N)∧π∗

( 1

c(L)
∧A|D|[D]

)
= c(N)∧π∗

( 1

c(L)
∧B|D|[D]

)
.

By an analogous computation backwards with B|D| rather than A|D|, using (10.3) and
(10.2), we find that the right hand side of (10.10) is equal to BZ(c(N)∧S(J , V )). �

Notice in particular that AZs(J , X) = BZS(J , X). Summing up we have seen that
the A- and B-objects coincide on cohomology level. However, there are no nontrivial
mappings TX : Ak(X)→ Bk(X) such that

(10.11)
Ak(X)

f∗−→ Ak(Y )
↓TX ↓TY
Bk(X)

f∗−→ Bk(Y )

commutes for each proper mapping mapping f : X → Y . In fact, let X be a one-point set
{0}, and let Y be a manifold with two distinct points p, q that are rationally equivalent.
Take f so that f(0) = p. If TX is nonzero, then f∗TX [0] has support at p and is nonzero.
If (10.11) commutes, then TY [q] = TY [p] must be a nonzero point mass at p. Changing
the roles of p and q we get a contradiction since [p] 6= [q] in B(Y ).

Neither there are non-trivial mappings TX : Bk(X)→ Ak(X) such that

(10.12)
Bk(X)

BX−→ Ĥk,k(X)
↓TX ↓Id
Ak(X)

AX−→ Ĥk,k(X)

commutes and TX(c1(L)∧µ) = c1(L) ∩ TXµ for each line bundle L. Just take X that
has a nontrivial line bundle with flat metric and a meromorphic non-trivial section, as
in the following example.

Example 10.2. Let X be a complex 1-dimensional torus. It is well-known that two
different points p1 and p2 are not rationally equivalent, i.e., there is no meromorphic
function whose divisor is [D] := [p1]− [p2]. But the cohomology class determined by [D]
is zero. Let L be the line bundle O(D) equipped with some Hermitian metric. By the
Poincaré-Lelong formula, ĉ1(L) is a representative of the cohomology class of [D] and is
thus d-exact. Hence, since ĉ1(L) is smooth, the ddc-lemma shows that there is a smooth
global function φ such that ddcφ = ĉ1(L). If we modify the metric on L by exp(−φ) we
have ĉ1(L) = 0. �
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