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ABSTRACT. We show that Coleff-Herrera type products of residue currents can be
defined by analytic continuation of natural functions depending on one complex
variable.

Dedicated to the memory of Mikael Passare

1. INTRODUCTION

Let f be a holomorphic function defined on a domain in C". It is proved in [15]
using Hironaka’s desingularization theorem that if ¢ is a test form then

lim

e—0t |£]2>e So/f
exists and defines the action of a current, denoted 1/f. The O-image, 9(1/f), is
the residue current of f and it has the useful property that it is annihilated by a
holomorphic function g if and only if g is in the ideal generated by f. If fi,..., f4
are holomorphic functions then the Coleff-Herrera product of the currents 9(1/f;)
is defined as follows. For a test form ¢ of bidegree (n,n — q) consider the residue

integral
o=/ 2
! T(e) f1 fq

where T'(e) = N{{|fj|*> = ¢;}. It is proved in [12] that the limit of € — I}D(e) exists
if € = (€1,...,€4) — 0 along a path in RY such that Ej/fé?ﬂ — 0 for all £ € N and
j=1,...,q—1; such a path is said to be admissible. Moreover, the limit defines the
action of a current, the Coleff-Herrera product
=1 =1

1.1 — A —. = “lim " I%
( ) 8fq/\ Aafl ()0 GE)I%] f(e)’
where “lim” means the limit along an admissible path as above. Following Pas-
sare [19], let x be a smooth approximation of the characteristic function 1}1,00) and
consider the smooth form

_ ) - ,
(1.2) Wfal*/ea) .. OXUAF/er)

fq bil

It follows from [16, Theorem 2] or the proof of [19, Proposition 2] that the limit in the

sense of currents of (1.2) as € — 0 along an admissible path equals the Coleff-Herrera
product, and moreover, that one gets the same result if one first lets e — 0, then

Date: April 28, 2017.
2000 Mathematics Subject Classification. 32A26, 32A27, 32B15, 32C30.
First three authors partly supported by the Swedish Research Council.



2 M. ANDERSSON & H. SAMUELSSON KALM & E. WULCAN & A. YGER

lets e — 0 and so on. The Coleff-Herrera product is thus indeed the result of an
iterative procedure. In general there are no obvious commutation properties, e.g.,
O(1/zw) A O(1/z) = 0 whereas 9(1/2) AO(1/zw) = d(1/2%) A O(1/w), where the last
product is simply a tensor product. However, if f = (f1,..., f;) defines a complete
intersection, i.e., codim { f = 0} = ¢, then the Coleff-Herrera product depends in an
anticommutative way of the ordering of the tuple f; in fact by [11] the smooth form
(1.2) then converges unconditionally. Moreover, also in the complete intersection
case, a holomorphic function annihilates the Coleff-Herrera product if and only if it
is in the ideal (fi, ..., f,); this last property is called the duality property and it was
proved independently by Dickenstein-Sessa, [13], and Passare, [18].

In this paper we consider another approach to Coleff-Herrera type products; it is
based on analytic continuation and has been studied in, e.g., [6, 7, 10, 20, 27]. For
A; € C with Re \; > 0, let

OfgPa NN O 1M
INAOVINUND :/ a Ao,
7M1 a) i I ¥
where ¢ is a test form. It is standard to see that \; — Ff(/\l, ..., Aq) has an analytic

continuation to a neighborhood of 0 and that F? (0, A2, ..., Ag) equals

31¢. %M Glf 21
[fol 7 ORI

0—. .
fq f2 fi
From [5, Proposition 2.1] it follows that Ay — F?(O, A2,...,Aq) is analytic at 0, that
Ag Ff((), 0,A3,...,Aq) is too, and so on. Once one knows that the Coleff-Herrera

product is obtained by letting €; — 0 successively in (1.2) it is not that hard to see

that
1

0 T
where the expression on the right hand side means that we first let Ay — 0, then
let Ay — 0 etc; see, e.g., [16, Theorem 2|. However, from an algebraic point of
view, cf. [8, Theorem 3.2], it is often desirable to have a current given as the value
at 0 of a single one-variable analytic function; this is the motivation for this paper.
From Theorem 1.2 below it follows that if pq > --- > ug > 0 are integers, then
A F?()\“l, ..., AMa) a priori defined for SRe A > 0, has an analytic continuation
to a neighborhood of [0,00) C C and that the value at A\ = 0 equals the Coleff-
Herrera product (1.1). Notice that this way of letting (A1,...,A;) — 0 is analogous
to limits along admissible paths in the sense that \; goes to zero much faster than
AN j=1,...,q—1

We remark that if f defines a complete intersection then it is showed in [23] that
F?(A) is analytic in a neighborhood of the half-space {fRe X\; > 0,5 =1,...,q}.

=1
A A@E,gp = F;f()\l,...,)\q)bq:O"' |)\q:0’

Let us now consider a more general setting. Let f be a section of a Hermitian vector
bundle E of rank m over a reduced complex space X of pure dimension n. In [22]
and [1] were introduced currents U and R, generalizing the currents 1/f and d(1/f),
respectively. These currents are based on Bochner-Martinelli type expressions. To
be precise, let f = fie; + -+ + fmem, where {ej}x is a local holomorphic frame for
E with dual frame {e} };, and let s = sie] + -+ + sy,€};, be the section of the dual
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bundle E* with pointwise minimal norm such that f-s = |f \125 For A € C, Re A > 0,
we let

(1.3) B il S G
2 7

where (0,1)-forms anticommute with the ef. It turns out, [1], [22], that A — U?,
considered as a current-valued map, has an analytic continuation to a neighborhood
of 0. The value at A\ = 0 is a current U on X that takes values in AE*; U is the
standard extension of >, s A (0s)*~1/|f|% across {f = 0}. If E has rank 1, then
U = (1/f)e* for any choice of metric. Let

m 3e\k—1
A A S p2) , S (9s)
(1.4) B = 1= |1+ 3 OU1E A = o
k=1 E
Letting Vy = 6y — 0, where d; denotes interior multiplication with f, one can

check that R = 1 — V;U?*, see [1] for details. It follows that A — R* has an
analytic continuation to a neighborhood of 0 and the value at A = 0 is the current
R; it is straightforward to check that R has support on {f = 0}. If E has rank 1
then R = 9(1/f) A e* and more generally, if f defines a complete intersection then
R=0(1/fn)N---NO(1/f1) Nel A---Ael, for any choice of metric, see [1] and [22].

The value at A = 0 of the term 1 —[f[3 of R* is the restriction 1;;_g to the zero
set of f, see [5]. In itself it is zero unless f vanishes identically on some components
of X in which case it simply is 1 there. However, when forming products of R’s the
role of 1;_g) is much more significant, cf. [3] and Example 1.4.

Remark 1.1. For future reference we notice that if 7: X’ — X is a modification
such that the pullback of the ideal sheaf defined by f is principal, then one can write
7 f = fOf’, where f¥ is a section of the line bundle L — X’ corresponding to the
exceptional divisor and f is a non-vanishing section of L~! ®7*E. Equipping L with
some Hermitian metric, for instance by setting |f°|; := |7* f|r«£, We can thus write
™| fle = /0] f'|-1@mE- Locally on X’ we can identify f© and f’ by a holomorphic
function and a non-vanishing holomorphic tuple, respectively, still denoted f° and
f'. Hence, locally on X’ we have 7*|f|z = |f°|u for some smooth positive function
u.

Let f; be a section of a Hermitian vector bundle F; of rank m;, let UJ and R’ be
the associated currents, and let U7* and R?* be the corresponding A-regularizations.
Following, e.g., [3] and [16] we define products of the currents R’ recursively as
follows. Having defined R*=! A --. A R, consider the current-valued function

A= RFAARFIA AR,

a priori defined for e A > 0. It turns out, see, e.g., [5] or [16], that it can be
analytically continued to a neighborhood of 0, and we define R¥ A --- A R! to be the
value at A = 0.

Theorem 1.2. Let p1 > --- > pg be positive integers. Then the current-valued
function

A RO AL R

a priori defined for Re A > 0, has an analytic continuation to a neighborhood of the
half-azis [0,00) C C and the value at A =0 is RIA--- A RL.
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To connect with Coleff-Herrera type products, let x be the characteristic function
1(1,00) Or a smooth regularization thereof and let

: e A s A (9s;)F!
RI% = 1= X, fe) + 3 Oyl fep) 1 50—
k=1 ‘fJ‘EJ
If ¢ is a test form on X, then the limit of
(1.5) / R%€ A ... A RbEL A ©
X

as € — 0 along an admissible path exists and equals the action of R? A --- A R! on
@, see [16].

Let us mention a version of Theorem 1.2 with connection to intersection theory.
Let f be a section of E and let

N
M o= 1= [f[2 + > 0lfIF A Og’f‘EA(ddclog\f\ )

k>1

where dd® = 09/2mi. Tt is showed in [3] that A — M? has an analytic continuation
to a neighborhood of 0 and that the value at A\ = 0 is a positive closed current, which
we denote by M. One can give a meaning to the product (dd®log|f|%)* for arbitrary
k that extends the classical one for k¥ < codim {f = 0}, and from [3] it follows that

M =1z+» 1z(ddlog|f|})",
E>1
where 1 is the restriction to the zero set Z of f. The current M is closely connected
to R. For instance, if X is smooth and D is the Chern connection on F then it follows
from [2] that
My, = Ry - (Df/2mi)* /KL,

where the subscript k£ means the component of bidegree (x, k).

Let fi,..., f; be sections of Hermitian vector bundles E; and let M!,... MY be
the associated currents. One can define products of the M7 recursively as for the R/
and we have the following analogue of Theorem 1.2.

Theorem 1.3. Let p1 > --- > pg be positive integers. Then the current-valued
function

A MO A A A
a priort defined for Re X > 0, has an analytic continuation to a neighborhood of the
half-axis [0,00) C C and the value at A =0 is M9 A --- AN M.

Example 1.4 (Example 5.6 in [3]). Let J, C Ox , be anideal and let hy, ..., hy € Ty
be a generic Vogel sequence of Jy; see, e.g., [3] for the definition. By the Stiickrad-
Vogel procedure, [24], adapted to the local situation, [17], [25], one gets an associated
Vogel cycle V*; the multiplicities of the components of various dimensions of V" are
the Segre numbers, [14], used in excess intersection theory. By Theorem 1.3 we have
that

n
A N\ (= Y™+ 0IR[P A Olog || 2
k=1
is analytic at 0 and by [3] the value there is the Lelong current associated with V"
see [3] for more details.
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Remark 1.5. Assume that codim N; {f; = 0} = my + -+ + my. Then M7 =
(dd°log ]fj|2E]_)mJ' = [fj = 0], where [f; = 0] is the Lelong current of the fundamental
cycle of f;, and more generally,

MIA- - AM" = [f,=0]A---A[f1 = 0],

i.e., the current representing the proper intersection of the cycles [f; = 0.
In this case the current-valued function

(AL,.- s Ag) = R¥A Ao A RIAM

has an analytic continuation to a neighborhood of the origin in CY, [16], and the
value at A = 0 is the R-current associated to @;f;, [26]. Moreover, by [16], (1.5)
depends Holder continuously on € € [0, 00)7 if x is smooth. The smoothness of x is
necessary in view of the example in [21, Section 1].

2. PROOF OF THEOREMS 1.2 AND 1.3

We will actually prove a slightly more general result than Theorem 1.2; we will
allow mixed products of U7 and R*. Let P’ denote either U7 or R’ and let P7V
be the corresponding A-regularization, (1.3) or (1.4). One defines products of the P’
recursively as above.

Theorem 1.2°. Let gy > --- > g be positive integers. Then the current-valued
function

A PO AL A pIAT

a priori defined for Re A > 0, has an analytic continuation to a neighborhood of the
half-axis [0,00) C C and the value at 0 is PLA--- A PL.

Let 7: X’ — X be a smooth modification of X such that {7*f; =0}, j =1,...,q,
and Uj{r*f; = 0} are normal crossings divisors. Then locally in X’ we can write
™ f; = f;J ]’~, where f]Q is a monomial in local coordinates and f]’~ is a non-vanishing

holomorphic tuple. It follows that s; = ]0 s where s;- is a smooth section. A
straightforward computation shows that
. |f°\” )
T RIN =1 — | P 4 Z AV jg,
. mj ’f0|2xju2kj
U = Z 7J( O)k] A,

k=1 j
where u; is a smooth non-vanishing function and ¥, = s A (559)"3_1 / u?k is a smooth

form, cf., Remarkl.1. In the same way,

wMIA =1 = | P ST P ) A dlog(|f71PuF) A,
k>1
where wjy, is smooth, cf. [3, Section 4]. Taking the identity 8log(|f]0]2u?) = dfjo/f]o +
20u;/u; into account, Theorems 1.2” and 1.3 are consequences of the following quite
technical lemma.
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Lemma 2.1. Let ui,...,u, be smooth non-vanishing functions defined in some
neighborhood of the origin in C", with coordinates (1, ...,x,). For A= (A1,...,\) €
C',ReX; >0, a1,...,a, €N", and k1, ...,k €N, let

_ |upz® [P |[up12°7+! |2/\P+15|upl‘ap‘2>\p A A Qluyz P )

L(A) phror L pkion ’
here zheae — gheeer :L‘I:fae’" if g = (ow1,...,qpp). If 0 is a permutation of
{1,..r}, write T7(A, o, Ar) == T(Ag(1)s -5 Aar)) -
Let py, ..., py be positive integers. Then T'7 (kM. ... k") has an analytic continu-

ation to a connected neighborhood of the half-axis [0,00) in C, and if p1 > ... > pp,
then

(21) FJ(IQ’ul,... ,/{“"") |n:0: FU()\l,... 7)\7") |)\1:0 |)\T:0 .

The reason for the permutation o is that we have mixed products of U’s and R’s
in Theorem 1.2’

Proof. To begin with let us assume that all u; = 1. A straightforward computation
shows that

T g |2A dz; A -+ A dT; !
F()‘):Al"'/\PMZAJ Zi, xp::)\l...)\pzlﬂ]’
I

T ki T e
ngA e} 7 Ty T,

where the sum is over all increasing multi-indices I = {i1,...,4,} C {1,...,n} and
Ay is the determinant of the matrix (ay;;)1<e<p,1<i<p-

Pick a non-vanishing summand I';; without loss of generality, assume that I =
{1,...,p} and A; = 1. With the notation bg(\) := >")_; Mgy for 1 < k <mn,

_ Iy 2™ dzy A -~ A day

L'y
pmj=1 ki Ty Tp

3 br (A bi (A
1 Nz Ol D T |a

bi(A) -+ -bp(N) p2i=1 ki ’
Now the current-valued function
i1 0|20 | F— 5225

ko

has an analytic continuation to a neighborhood of the origin in C"; in fact, it is
a tensor product of one-variable currents. In particular, I'y(k#1,... k") |x=0=
Tr(A) =0 - [a.=o- Let

f[:()\l,...,)\r>l—)

PYREEDY

A=l
ERTTEV R eY

and 77 = Y(As(1)s - - s Ao(r)). We claim that if 3 > ... > p,, then

Y7(A) =0 -+ [a=0= 77 (&"", ..., &) |k=0,
where it is a part of the claim that both sides make sense.

Let us prove the claim. Since A; = 1, reordering the factors by, ..., b, and multi-
plying v(A) by a non-zero constant, we may assume that ax, = 1, k = 1,...,p, so
that
— A1 Ap
B AL+ agido+ - oAy .“apl)\l"‘l_"'_’_Ap"i_"'"‘l_arp/\T.

(A
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For j < r set 7j := A;j/Ajq1 and A7(71,...,7—1) = 7°(\); notice that 77 is O-
homogeneous, so that 77 is well-defined. Then \; = 7;--- 7,1\, and therefore 77
consists of p factors of the form

(2.2) Tk"'Tr—l

QpITL Tp—l + T Tp1 o+ Q1T -1+ Oy

Observe that (2.2) is holomorphic in 7 in some neighborhood of the origin. In-
deed, if ag, # 0, then (2.2) is clearly holomorphic, whereas if o, = 0 we can
factor out 7,_1 from the denominator and numerator. In the latter case (2.2)
is clearly holomorphic if aj,—1 # 0 etc; since oy = 1 this procedure eventu-
ally stops. Hence, 47(7) is holomorphic in a neighborhood of 0. It follows that
YO (kMY L kM) = AT (kFTH2 L gMr=17H) is holomorphic in a neighborhood of
0 and since the denominator of 77(kH!,... k") is a polynomial in x with non-
negative coefficients it is in fact holomorphic in a neighborhood of [0, c0). Moreover,
Y7 (A1, ..., Ar) is holomorphic in A = {|A1/A2| < €,..., | \=1/A| < €}. Let us now
fix Ag #0,..., A # 0 in A. Then 7?()) is holomorphic in A; in a neighborhood of
the origin. Next, for A3 # 0,..., A\ # 0 fixed in A, v7(A)|x,=0 is holomorphic in Ay
in a neighborhood of the origin, etc. It follows that

’70()\>‘)\1 T |)\T=0 = ;)70—(7_>‘T:0 = PYU(E/“: SRR HNT)‘H:O?
which proves the claim. Thus (2.1) follows in the case u; =1, j=1,...,r.

Now, consider the general case. Replace each |uj|*Y in T'(\) by |uj|*¥, where
wj € C. Then I' is a sum of terms of the following representative form:

r i p T IR /\p' Bz 2N
) ) = ) i=p’+1 i=1
(2.3) TT sl T b A\ s n ===
j=p+1 j=1 P+l

Fixing all \; and w; except for A\, (1) and w, (1), (2.3) becomes an analytic (current-
valued) function g(As(1),ws(1)) in a neighborhood of 0 € C2. Thus, the value at 0
of g(Ag(1), Ae(1)) is the same as first letting w,(1) = 0 (which corresponds to setting
uy1) = 1) and then letting A\,(1) = 0 in g(Ay(1),Wy(1)). Continuing analogously for
(As(2); Wo(2)) and so on, it follows that the right hand side of (2.1) is independent of
the u;.

To see that the left hand side of (2.1) is independent of u;, replace each \; in
(2.3) by k'@ and denote the resulting expression by §(k,wi,...,w,). Then g is
clearly analytic in the w; and by the first part of the proof it is also analytic in a
neighborhood of [0,00) C C,. Hence, § is analytic in a neighborhood of 0 € C"*1,
The left hand side of (2.1) is obtained by evaluating k +— g(k, kFe@ ... KkHo™)) at
k = 0; this is thus the same as evaluating §(x,0) (which corresponds to setting all
uj = 1) at Kk = 0. Hence also the left hand side of (2.1) is independent of the u; and

the lemma follows.
O
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