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Abstract. We show that Coleff-Herrera type products of residue currents can be
defined by analytic continuation of natural functions depending on one complex
variable.

Dedicated to the memory of Mikael Passare

1. Introduction

Let f be a holomorphic function defined on a domain in Cn. It is proved in [15]
using Hironaka’s desingularization theorem that if ϕ is a test form then

lim
ε→0+

∫
|f |2>ε

ϕ/f

exists and defines the action of a current, denoted 1/f . The ∂̄-image, ∂̄(1/f), is
the residue current of f and it has the useful property that it is annihilated by a
holomorphic function g if and only if g is in the ideal generated by f . If f1, . . . , fq
are holomorphic functions then the Coleff-Herrera product of the currents ∂̄(1/fj)
is defined as follows. For a test form ϕ of bidegree (n, n − q) consider the residue
integral

Iϕf (ε) =

∫
T (ε)

ϕ

f1 · · · fq
,

where T (ε) = ∩q1{|fj |2 = εj}. It is proved in [12] that the limit of ε 7→ Iϕf (ε) exists

if ε = (ε1, . . . , εq) → 0 along a path in Rq+ such that εj/ε
k
j+1 → 0 for all k ∈ N and

j = 1, . . . , q− 1; such a path is said to be admissible. Moreover, the limit defines the
action of a current, the Coleff-Herrera product

(1.1) ∂̄
1

fq
∧ · · · ∧ ∂̄ 1

f1
. ϕ := “ lim

ε→0
”Iϕf (ε),

where “ lim ” means the limit along an admissible path as above. Following Pas-
sare [19], let χ be a smooth approximation of the characteristic function 1[1,∞) and
consider the smooth form

(1.2)
∂̄χ(|fq|2/εq)

fq
∧ · · · ∧ ∂̄χ(|f1|2/ε1)

f1
.

It follows from [16, Theorem 2] or the proof of [19, Proposition 2] that the limit in the
sense of currents of (1.2) as ε→ 0 along an admissible path equals the Coleff-Herrera
product, and moreover, that one gets the same result if one first lets ε1 → 0, then
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lets ε2 → 0 and so on. The Coleff-Herrera product is thus indeed the result of an
iterative procedure. In general there are no obvious commutation properties, e.g.,
∂̄(1/zw) ∧ ∂̄(1/z) = 0 whereas ∂̄(1/z) ∧ ∂̄(1/zw) = ∂̄(1/z2) ∧ ∂̄(1/w), where the last
product is simply a tensor product. However, if f = (f1, . . . , fq) defines a complete
intersection, i.e., codim {f = 0} = q, then the Coleff-Herrera product depends in an
anticommutative way of the ordering of the tuple f ; in fact by [11] the smooth form
(1.2) then converges unconditionally. Moreover, also in the complete intersection
case, a holomorphic function annihilates the Coleff-Herrera product if and only if it
is in the ideal 〈f1, . . . , fq〉; this last property is called the duality property and it was
proved independently by Dickenstein-Sessa, [13], and Passare, [18].

In this paper we consider another approach to Coleff-Herrera type products; it is
based on analytic continuation and has been studied in, e.g., [6, 7, 10, 20, 27]. For
λj ∈ C with Reλj � 0, let

Γϕf (λ1, . . . , λq) =

∫
∂̄|fq|2λq ∧ · · · ∧ ∂̄|f1|2λ1

f1 · · · fq
∧ ϕ,

where ϕ is a test form. It is standard to see that λ1 7→ Γϕf (λ1, . . . , λq) has an analytic

continuation to a neighborhood of 0 and that Γϕf (0, λ2, . . . , λq) equals

∂̄|fq|2λq
fq

∧ · · · ∧ ∂̄|f2|
2λ2

f2
∧ ∂̄ 1

f1
. ϕ.

From [5, Proposition 2.1] it follows that λ2 7→ Γϕf (0, λ2, . . . , λq) is analytic at 0, that

λ3 7→ Γϕf (0, 0, λ3, . . . , λq) is too, and so on. Once one knows that the Coleff-Herrera

product is obtained by letting εj → 0 successively in (1.2) it is not that hard to see
that

∂̄
1

fq
∧ · · · ∧ ∂̄ 1

f1
. ϕ = Γϕf (λ1, . . . , λq)|λ1=0 · · · |λq=0,

where the expression on the right hand side means that we first let λ1 → 0, then
let λ2 → 0 etc; see, e.g., [16, Theorem 2]. However, from an algebraic point of
view, cf. [8, Theorem 3.2], it is often desirable to have a current given as the value
at 0 of a single one-variable analytic function; this is the motivation for this paper.
From Theorem 1.2 below it follows that if µ1 > · · · > µq > 0 are integers, then
λ 7→ Γϕf (λµ1 , . . . , λµq), a priori defined for Reλ � 0, has an analytic continuation

to a neighborhood of [0,∞) ⊂ C and that the value at λ = 0 equals the Coleff-
Herrera product (1.1). Notice that this way of letting (λ1, . . . , λq)→ 0 is analogous
to limits along admissible paths in the sense that λj goes to zero much faster than
λj+1, j = 1, . . . , q − 1.

We remark that if f defines a complete intersection then it is showed in [23] that
Γϕf (λ) is analytic in a neighborhood of the half-space {Reλj ≥ 0, j = 1, . . . , q}.

—

Let us now consider a more general setting. Let f be a section of a Hermitian vector
bundle E of rank m over a reduced complex space X of pure dimension n. In [22]
and [1] were introduced currents U and R, generalizing the currents 1/f and ∂̄(1/f),
respectively. These currents are based on Bochner-Martinelli type expressions. To
be precise, let f = f1e1 + · · · + fmem, where {ek}k is a local holomorphic frame for
E with dual frame {e∗k}k, and let s = s1e

∗
1 + · · · + sme

∗
m be the section of the dual
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bundle E∗ with pointwise minimal norm such that f ·s = |f |2E . For λ ∈ C, Reλ� 0,
we let

(1.3) Uλ :=
m∑
k=1

|f |2λE
s ∧ (∂̄s)k−1

|f |2kE
,

where (0, 1)-forms anticommute with the e∗k. It turns out, [1], [22], that λ 7→ Uλ,
considered as a current-valued map, has an analytic continuation to a neighborhood
of 0. The value at λ = 0 is a current U on X that takes values in ΛE∗; U is the
standard extension of

∑
k s ∧ (∂̄s)k−1/|f |2kE across {f = 0}. If E has rank 1, then

U = (1/f)e∗ for any choice of metric. Let

(1.4) Rλ := 1− |f |2λE +

m∑
k=1

∂̄|f |2λE ∧
s ∧ (∂̄s)k−1

|f |2kE
.

Letting ∇f := δf − ∂̄, where δf denotes interior multiplication with f , one can

check that Rλ = 1 − ∇fUλ, see [1] for details. It follows that λ 7→ Rλ has an
analytic continuation to a neighborhood of 0 and the value at λ = 0 is the current
R; it is straightforward to check that R has support on {f = 0}. If E has rank 1
then R = ∂̄(1/f) ∧ e∗ and more generally, if f defines a complete intersection then
R = ∂̄(1/fm)∧ · · · ∧ ∂̄(1/f1)∧ e∗1 ∧ · · · ∧ e∗m for any choice of metric, see [1] and [22].

The value at λ = 0 of the term 1− |f |2λE of Rλ is the restriction 1{f=0} to the zero
set of f , see [5]. In itself it is zero unless f vanishes identically on some components
of X in which case it simply is 1 there. However, when forming products of R’s the
role of 1{f=0} is much more significant, cf. [3] and Example 1.4.

Remark 1.1. For future reference we notice that if π : X ′ → X is a modification
such that the pullback of the ideal sheaf defined by f is principal, then one can write
π∗f = f0f ′, where f0 is a section of the line bundle L → X ′ corresponding to the
exceptional divisor and f ′ is a non-vanishing section of L−1⊗π∗E. Equipping L with
some Hermitian metric, for instance by setting |f0|L := |π∗f |π∗E , we can thus write
π∗|f |E = |f0|L|f ′|L−1⊗π∗E . Locally on X ′ we can identify f0 and f ′ by a holomorphic
function and a non-vanishing holomorphic tuple, respectively, still denoted f0 and
f ′. Hence, locally on X ′ we have π∗|f |E = |f0|u for some smooth positive function
u.

Let fj be a section of a Hermitian vector bundle Ej of rank mj , let U j and Rj be

the associated currents, and let U j,λ and Rj,λ be the corresponding λ-regularizations.
Following, e.g., [3] and [16] we define products of the currents Rj recursively as
follows. Having defined Rk−1 ∧ · · · ∧R1, consider the current-valued function

λ 7→ Rk,λ ∧Rk−1 ∧ · · · ∧R1,

a priori defined for Reλ � 0. It turns out, see, e.g., [5] or [16], that it can be
analytically continued to a neighborhood of 0, and we define Rk ∧ · · · ∧R1 to be the
value at λ = 0.

Theorem 1.2. Let µ1 > · · · > µq be positive integers. Then the current-valued
function

λ 7→ Rq,λ
µq ∧ · · · ∧R1,λµ1 ,

a priori defined for Reλ� 0, has an analytic continuation to a neighborhood of the
half-axis [0,∞) ⊂ C and the value at λ = 0 is Rq ∧ · · · ∧R1.
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To connect with Coleff-Herrera type products, let χ be the characteristic function
1[1,∞) or a smooth regularization thereof and let

Rj,εj := 1− χ(|fj |2Ej/εj) +

mj∑
k=1

∂̄χ(|fj |2Ej/εj) ∧
sj ∧ (∂̄sj)

k−1

|fj |2kEj
.

If ϕ is a test form on X, then the limit of

(1.5)

∫
X
Rq,εq ∧ · · · ∧R1,ε1 ∧ ϕ

as ε → 0 along an admissible path exists and equals the action of Rq ∧ · · · ∧ R1 on
ϕ, see [16].

Let us mention a version of Theorem 1.2 with connection to intersection theory.
Let f be a section of E and let

Mλ := 1− |f |2λE +
∑
k≥1

∂̄|f |2λE ∧
∂ log |f |2E

2πi
∧ (ddc log |f |2E)k−1,

where ddc = ∂̄∂/2πi. It is showed in [3] that λ 7→ Mλ has an analytic continuation
to a neighborhood of 0 and that the value at λ = 0 is a positive closed current, which
we denote by M . One can give a meaning to the product (ddc log |f |2E)k for arbitrary
k that extends the classical one for k ≤ codim {f = 0}, and from [3] it follows that

M = 1Z +
∑
k≥1

1Z(ddc log |f |2E)k,

where 1Z is the restriction to the zero set Z of f . The current M is closely connected
to R. For instance, if X is smooth and D is the Chern connection on E then it follows
from [2] that

Mk = Rk · (Df/2πi)k/k!,

where the subscript k means the component of bidegree (∗, k).
Let f1, . . . , fq be sections of Hermitian vector bundles Ej and let M1, . . . ,M q be

the associated currents. One can define products of the M j recursively as for the Rj

and we have the following analogue of Theorem 1.2.

Theorem 1.3. Let µ1 > · · · > µq be positive integers. Then the current-valued
function

λ 7→M q,λµq ∧ · · · ∧M1,λµ1 ,

a priori defined for Reλ� 0, has an analytic continuation to a neighborhood of the
half-axis [0,∞) ⊂ C and the value at λ = 0 is M q ∧ · · · ∧M1.

Example 1.4 (Example 5.6 in [3]). Let Jx ⊂ OX,x be an ideal and let h1, . . . , hn ∈ Jx
be a generic Vogel sequence of Jx; see, e.g., [3] for the definition. By the Stückrad-
Vogel procedure, [24], adapted to the local situation, [17], [25], one gets an associated
Vogel cycle V h; the multiplicities of the components of various dimensions of V h are
the Segre numbers, [14], used in excess intersection theory. By Theorem 1.3 we have
that

λ 7→
n∧
k=1

(
1− |hk|2λ

µk + ∂̄|hk|2λ
µk ∧ ∂ log |hk|2/2πi

)
is analytic at 0 and by [3] the value there is the Lelong current associated with V h;
see [3] for more details.
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Remark 1.5. Assume that codim ∩j {fj = 0} = m1 + · · · + mq. Then M j =
(ddc log |fj |2Ej )

mj = [fj = 0], where [fj = 0] is the Lelong current of the fundamental

cycle of fj , and more generally,

M q ∧ · · · ∧M1 = [fq = 0] ∧ · · · ∧ [f1 = 0],

i.e., the current representing the proper intersection of the cycles [fj = 0].
In this case the current-valued function

(λ1, . . . , λq) 7→ Rq,λq ∧ · · · ∧R1,λ1

has an analytic continuation to a neighborhood of the origin in Cq, [16], and the
value at λ = 0 is the R-current associated to ⊕jfj , [26]. Moreover, by [16], (1.5)
depends Hölder continuously on ε ∈ [0,∞)q if χ is smooth. The smoothness of χ is
necessary in view of the example in [21, Section 1].

2. Proof of Theorems 1.2 and 1.3

We will actually prove a slightly more general result than Theorem 1.2; we will
allow mixed products of U j and Rk. Let P j denote either U j or Rj and let P j,λj

be the corresponding λ-regularization, (1.3) or (1.4). One defines products of the P j

recursively as above.

Theorem 1.2’. Let µ1 > · · · > µq be positive integers. Then the current-valued
function

λ 7→ P q,λ
µq ∧ · · · ∧ P 1,λµ1 ,

a priori defined for Reλ� 0, has an analytic continuation to a neighborhood of the
half-axis [0,∞) ⊂ C and the value at 0 is P q ∧ · · · ∧ P 1.

Let π : X ′ → X be a smooth modification of X such that {π∗fj = 0}, j = 1, . . . , q,
and ∪j{π∗fj = 0} are normal crossings divisors. Then locally in X ′ we can write
π∗fj = f0j f

′
j , where f0j is a monomial in local coordinates and f ′j is a non-vanishing

holomorphic tuple. It follows that sj = f̄0j s
′
j , where s′j is a smooth section. A

straightforward computation shows that

π∗Rj,λj = 1− |f0j |2λju
2λj
j +

mj∑
k=1

∂̄(|f0j |2λju
2λj
j )

(f0j )k
∧ ϑjk,

π∗U j,λj =

mj∑
k=1

|f0j |2λju
2λj
j

(f0j )k
∧ ϑjk,

where uj is a smooth non-vanishing function and ϑjk = s′j∧(∂̄s′j)
k−1/u2kj is a smooth

form, cf., Remark1.1. In the same way,

π∗Mfj ,λj = 1− |f0j |2λju
2λj
j +

∑
k≥1

∂̄
(
|f0j |2λju

2λj
j

)
∧ ∂ log(|f0j |2u2j ) ∧ ωjk,

where ωjk is smooth, cf. [3, Section 4]. Taking the identity ∂ log(|f0j |2u2j ) = df0j /f
0
j +

2∂uj/uj into account, Theorems 1.2’ and 1.3 are consequences of the following quite
technical lemma.
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Lemma 2.1. Let u1, . . . , ur be smooth non-vanishing functions defined in some
neighborhood of the origin in Cn, with coordinates (x1, . . . , xn). For λ = (λ1, . . . , λr) ∈
Cr, Reλj � 0, α1, . . . , αr ∈ Nn, and k1, . . . , kr ∈ N, let

Γ(λ) :=
|urxαr |2λr · · · |up+1x

αp+1 |2λp+1 ∂̄|upxαp |2λp ∧ · · · ∧ ∂̄|u1xα1 |2λ1
xkrαr · · ·xk1α1

;

here xk`α` = x
k`α`,1
1 · · ·xk`α`,nn if α` = (α`,1, . . . , α`,n). If σ is a permutation of

{1, . . . , r}, write Γσ(λ1, . . . , λr) := Γ(λσ(1), . . . , λσ(r)) .
Let µ1, . . . , µr be positive integers. Then Γσ(κµ1 , . . . , κµr) has an analytic continu-

ation to a connected neighborhood of the half-axis [0,∞) in C, and if µ1 > . . . > µr,
then

(2.1) Γσ(κµ1 , . . . , κµr) |κ=0= Γσ(λ1, . . . , λr) |λ1=0 · · · |λr=0 .

The reason for the permutation σ is that we have mixed products of U ’s and R’s
in Theorem 1.2’.

Proof. To begin with let us assume that all uj = 1. A straightforward computation
shows that

Γ(λ) = λ1 · · ·λp

∏r
j=1 |xαj |2λj

x
∑r
j=1 kjαj

′∑
I

AI
dx̄i1 ∧ · · · ∧ dx̄ip

x̄i1 · · · x̄ip
=: λ1 · · ·λp

′∑
I

ΓI ,

where the sum is over all increasing multi-indices I = {i1, . . . , ip} ⊂ {1, . . . , n} and
AI is the determinant of the matrix (α`,ij )1≤`≤p,1≤j≤p.

Pick a non-vanishing summand ΓI ; without loss of generality, assume that I =
{1, . . . , p} and AI = 1. With the notation bk(λ) :=

∑r
`=1 λ`α`,k for 1 ≤ k ≤ n,

ΓI =

∏n
k=1 |xk|2bk(λ)

x
∑r
j=1 kjαj

dx̄1 ∧ · · · ∧ dx̄p
x̄1 · · · x̄p

=

1

b1(λ) · · · bp(λ)

∧p
k=1 ∂̄|xk|

2bk(λ)
∏n
k=p+1 |xk|2bk(λ)

x
∑r
j=1 kjαj

.

Now the current-valued function

Γ̃I : (λ1, . . . , λr) 7→
∧p
j=1 ∂̄|xj |2bj(λ)

∏n
j=p+1 |xj |2bj(λ)

x
∑
kjαj

has an analytic continuation to a neighborhood of the origin in Cr; in fact, it is

a tensor product of one-variable currents. In particular, Γ̃I(κ
µ1 , . . . , κµr) |κ=0=

Γ̃I(λ) |λ1=0 · · · |λr=0. Let

γ(λ) =
λ1 · · ·λp

b1(λ) · · · bp(λ)

and γσ = γ(λσ(1), . . . , λσ(r)). We claim that if µ1 > . . . > µr, then

γσ(λ) |λ1=0 · · · |λr=0= γσ(κµ1 , . . . , κµr)|κ=0,

where it is a part of the claim that both sides make sense.
Let us prove the claim. Since AI = 1, reordering the factors b1, . . . , bp and multi-

plying γ(λ) by a non-zero constant, we may assume that αkk = 1, k = 1, . . . , p, so
that

γ(λ) =
λ1

λ1 + α21λ2 + · · ·+ αr1λr
· · · λp

αp1λ1 + · · ·+ λp + · · ·+ αrpλr
.
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For j < r set τj := λj/λj+1 and γ̃σ(τ1, . . . , τr−1) := γσ(λ); notice that γσ is 0-
homogeneous, so that γ̃σ is well-defined. Then λj = τj · · · τr−1λr, and therefore γ̃σ

consists of p factors of the form

(2.2)
τk · · · τr−1

αk1τ1 · · · τr−1 + · · ·+ τk · · · τr−1 + · · ·+ αk,r−1τr−1 + αkr
.

Observe that (2.2) is holomorphic in τ in some neighborhood of the origin. In-
deed, if αkr 6= 0, then (2.2) is clearly holomorphic, whereas if αkr = 0 we can
factor out τr−1 from the denominator and numerator. In the latter case (2.2)
is clearly holomorphic if αk,r−1 6= 0 etc; since αkk = 1 this procedure eventu-
ally stops. Hence, γ̃σ(τ) is holomorphic in a neighborhood of 0. It follows that
γσ(κµ1 , . . . , κµr) = γ̃σ(κµ1−µ2 , . . . , κµr−1−µr) is holomorphic in a neighborhood of
0 and since the denominator of γσ(κµ1 , . . . , κµr) is a polynomial in κ with non-
negative coefficients it is in fact holomorphic in a neighborhood of [0,∞). Moreover,
γσ(λ1, . . . , λr) is holomorphic in ∆ = {|λ1/λ2| < ε, . . . , |λr−1/λr| < ε}. Let us now
fix λ2 6= 0, . . . , λr 6= 0 in ∆. Then γσ(λ) is holomorphic in λ1 in a neighborhood of
the origin. Next, for λ3 6= 0, . . . , λr 6= 0 fixed in ∆, γσ(λ)|λ1=0 is holomorphic in λ2
in a neighborhood of the origin, etc. It follows that

γσ(λ)|λ1 · · · |λr=0 = γ̃σ(τ)|τ=0 = γσ(κµ1 , . . . , κµr)|κ=0,

which proves the claim. Thus (2.1) follows in the case uj = 1, j = 1, . . . , r.

Now, consider the general case. Replace each |uj |2λj in Γ(λ) by |uj |2ωj , where
ωj ∈ C. Then Γ is a sum of terms of the following representative form:

(2.3)

r∏
j=p+1

|uj |2ωj
p′∏
j=1

|uj |2ωj
p∧

p′+1

∂̄|uj |2ωj ∧
∏r
j=p′+1 |xαj |2λj

∧p′

j=1 ∂̄|xαj |2λj

xkrαr · · ·xk1α1

Fixing all λj and ωj except for λσ(1) and ωσ(1), (2.3) becomes an analytic (current-

valued) function g(λσ(1), ωσ(1)) in a neighborhood of 0 ∈ C2. Thus, the value at 0
of g(λσ(1), λσ(1)) is the same as first letting ωσ(1) = 0 (which corresponds to setting
uσ(1) = 1) and then letting λσ(1) = 0 in g(λσ(1), ωσ(1)). Continuing analogously for
(λσ(2), ωσ(2)) and so on, it follows that the right hand side of (2.1) is independent of
the uj .

To see that the left hand side of (2.1) is independent of uj , replace each λj in
(2.3) by κµσ(j) and denote the resulting expression by g̃(κ, ω1, . . . , ωr). Then g̃ is
clearly analytic in the ωj and by the first part of the proof it is also analytic in a
neighborhood of [0,∞) ⊂ Cκ. Hence, g̃ is analytic in a neighborhood of 0 ∈ Cr+1.
The left hand side of (2.1) is obtained by evaluating κ 7→ g̃(κ, κµσ(1) , . . . , κµσ(r)) at
κ = 0; this is thus the same as evaluating g̃(κ, 0) (which corresponds to setting all
uj = 1) at κ = 0. Hence also the left hand side of (2.1) is independent of the uj and
the lemma follows.

�
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