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Abstract. We describe how one can obtain effective versions of the Nullstellensatz and variations by a
combination of residue calculus and a geometric estimate for so-called distinguished varieties.

1. Introduction
In [1] the first author introduced a framework to obtain effective membership results for polynomial ideals
in Cn by means of an interplay between geometry and residue calculus. In this note we describe this
framework and how various classical and more recent such results fit into it, including an almost optimal
version of the effective Nullstellensatz. Most of the results, or closely related ones, can be found (at least
implicitly) in [13], [12], [1], [4], [6], [9], or [11]. The aim is to present the ideas rather than elaborate all
technical details, for which we instead give suitable references. We will use basic facts about line bundles
on complex projective space Pn and a geometric estimate used in [9] and [11]; however no prior knowledge
of multivariable residue calculus will be assumed. Our hope is that this note will serve as an invitation to
residue calculus techniques. We conclude with a discussion about the worst case scenario regarding the
effective Nullstellensatz.

Let F1, . . . , Fm be polynomials in Cn of degree at most d with no common zeros. By the Nullstel-
lensatz there are polynomials Qj such that1

F1Q1 + · · ·+ FmQm = 1. (1.1)

It is proved by Kollár, [13], and Jelonek, [12], that one can find Qj such that

deg (FjQj) ≤ dµ,

where, throughout this paper,
µ := min(m,n).

This degree bound is optimal2. We will see however that one can get sharper degree estimates with extra
hypotheses on the common zero set of the polynomials at infinity.

We first describe the framework. Let F1, . . . , Fm be polynomials of degree≤ d and let Φ be any poly-
nomial. Let z = (z0, . . . , zn), z′ = (z1, . . . , zn), and let fj(z) := zd

0Fj(z′/z0) be the d-homogenizations
of Fj . It is natural to consider the fj as holomorphic sections of the line bundle O(d) over Pn. Let
ψ(z) = zρ

0Φ(z′/z0) be the ρ-homogenization of Φ, ρ ≥ deg Φ. Then there is a representation

F1Q1 + · · ·+ FmQm = Φ (1.2)

in Cn with deg (FjQj) ≤ ρ if and only if there are (ρ− d)-homogeneous forms qj such that

f1q1 + · · ·+ fmqm = ψ. (1.3)

The first author was partially supported by the VR (the Swedish Research Council). The second author was partially supported by the
VR and the NSF.
1For d = 2 and m > n, dµ should be replaced by 2dµ, see [18].
2There is a more precise result where the various degrees of theFj are taken into account; however throughout this note, for simplicity,
we keep the same upper bound d for all the polynomials.
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Thus the question is reduced to an equation for sections of holomorphic line bundles over Pn. We associate
to the fj a (residue) current Rf of Bochner-Martinelli type on Pn with support on the common zero set
Z ⊂ Pn of the fj . The basic result is

Proposition 1.1. With the notation above, if ψRf = 0, and ρ ≥ d(n + 1) − n or m ≤ n, then there is a
representation (1.2) with deg (FjQj) ≤ ρ.

The sections fj generate a coherent ideal sheaf J over Pn, and to such a sheaf there are associated
so-called distinguished varieties Zj in the sense of Fulton-MacPherson, whose union is equal to Z, see
[10]. Let c∞ be the maximal codimension of those Zj that are contained in the hyperplane at infinity
H∞ = Pn \ Cn. The codimension of Zj cannot exceed the number of generators m, see, e.g., [9]. Thus

c∞ ≤ µ.

If Φ is a polynomial and locally in Cn there is a constant C > 0 such that

|Φ| ≤ C|F |µ, (1.4)

then actually Φ belongs to the polynomial ideal (Fj) generated by Fj in Cn; this follows from the Briançon-
Skoda theorem, [7].

Theorem 1.2. Let Fj be polynomials of degree at most d in Cn.
(i) If Φ is a polynomial such that (1.4) holds locally in Cn, then there is a representation (1.2) with

deg (FjQj) ≤ max(deg Φ + µdc∞ , γ), (1.5)

where γ = d(n+ 1)− n if m > n and γ = 0 if m ≤ n.
(ii) If codim {F1 = · · · = Fm = 0} ≥ m in Cn and Φ ∈ (Fj), then there is a representation (1.2) such
that (1.5) holds.

If there are no distinguished varieties contained inH∞ then we interpret dc∞ as 0. Part (i) can be seen
as an effective Briançon-Skoda theorem. It was proved by Hickel, [11], but with the bound min(m,n+1)dµ

rather than µdc∞ . The ideas in [11] are very close to the ones used in [9]. The factor (n + 1) comes from
an application of a global Briançon-Skoda type theorem. In our approach ψ just has to annihilate Rf , i.e.,
ψRf = 0; this is a purely local matter, and therefore it is enough with the local Briançon-Skoda power µ.
This local nature is even more important in the proof of part (ii), where the residue Rf is annihilated for
“different” reasons in Cn and at H∞. The statement (ii) appeared in [4] but with dµ instead of dc∞ . From
(i) we deduce the following version of the Nullstellensatz.

Corollary 1.3. If Fj have no common zeros in Cn, then there are polynomials Qj such that (1.1) holds
and

deg (FjQj) ≤ µdc∞ . (1.6)

This result appeared (in Example 1) in [9], but with the factor (n+ 1) instead of µ. It is weaker than
the optimal result of Kollár and Jelonek because of the presence of the factor µ in front of dc∞ . On the
other hand, if c∞ < µ, i.e., there are no distinguished points, and d > µ, then (1.6) is sharper. Actually, as
soon as there are “many” distinguished varieties one gets a sharper estimate; this is discussed in Section 7
in connection with Kollár’s example in [13].

The second part of Theorem 1.2 implies a Max Noether type result.

Corollary 1.4. If m ≤ n, codimZ = m, no irreducible component of Z is contained in H∞, and Φ is a
polynomial in the ideal (Fj), then there is a representation (1.2) with deg (FjQj) ≤ deg Φ.

Proof. Since the union of all the distinguished varieties is equal to Z, and no distinguished variety has
codimension larger thanm, it follows that no distinguished variety is contained inH∞, and hence dc∞ = 0.
Thus the corollary follows from part (ii) of the theorem. �

This statement appeared already in [2]. Ifm = n, and thusZ is discrete, this is the classicalAF+BG
theorem due to Max Noether, [16].

In case Z is empty, Theorem 1.2 (ii) implies the classical Macaulay theorem, [15]:
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Corollary 1.5. If fj have no common zeros on Pn and Φ is any polynomial, then there is a representation
(1.2) with deg (FjQj) ≤ max(deg Φ, d(n+ 1)− n).

We can just as well consider sections fj of an ample line bundle L → X over a smooth projective
manifold X . With the same arguments we then get, e.g., the following variant of the main result in [9]. To
each distinguished variety Zj there is an associated positive order rj , see Section 5.

Theorem 1.6. Let f1, . . . , fm be global holomorphic sections of an ample line bundle L over a smooth
projective variety X , and let ψ be a holomorphic section of Ls ⊗ A ⊗KX , where A is ample, or big and
nef, and assume that s ≥ min(m,n+ 1).
(i) If

|ψ| ≤ C|f |µ, (1.7)

then there are sections qj of Ls−1 ⊗A⊗KX such that

f1q1 + · · ·+ fmqm = ψ. (1.8)

(ii) If ψ vanishes to order µrj at a generic point on Zj for each j, then there are sections qj of Ls−1⊗A⊗
KX such that (1.8) holds.

We will see below that (i) implies (ii), which is (a slightly improved version of) the main result in [9];
in [9] the hypothesis is that ψ vanishes to order min(m,n+ 1)rj .

2. Product ideals
By a small variation of the set-up we can obtain similar results for products of polynomial ideals. For
j = 1, . . . , r, let F j = (F j

1 , . . . , F
j
mj

) be a tuple of of polynomials of degree (at most) dj . For each j we
then have a number cj∞ defined as before.

Theorem 2.1. Assume that Φ is a polynomial such that

|Φ| ≤ C|F 1|s1 · · · |F r|sr

locally in Cn for s1 + · · · + sr ≤ n + r − 1, 1 ≤ sj ≤ mj . Then Φ belongs to the product ideal
(F 1

j ) · · · (F r
j ) and there is a representation

Φ =
∑

1≤`j≤mj

F 1
`1 · · ·F

r
`r
Q`1···`r

with deg (F 1
`1
· · ·F r

`r
Q`1···`r ) ≤ max(deg Φ + µdc∞ , dµ̂− n), where

µdc∞ := max{
r∑
1

sjd
cj
∞

j ; s1 + · · ·+ sr ≤ n+ r − 1, 1 ≤ sj ≤ mj}

and

dµ̂ := max{
r∑
1

sjdj ; s1 + · · ·+ sr ≤ n+ r, 1 ≤ sj ≤ mj}.

In particular, one can take all F j equal to one single tuple F and get a result for membership in the
ideal (F )r. However, in this case the proof gives a somewhat sharper estimate, cf., [6] and [9].

Theorem 2.2. If F1, . . . , Fm are polynomials of degree at most d and Φ is a polynomial such that |Φ| ≤
C|F |µ+r−1 locally on Cn, then Φ belongs to the ideal (Fj)r and there is a representation

Φ =
∑

I1+···+Im=r

F I1
1 · · ·F Im

m QI

with

deg (F I1
1 · · ·F Im

m QI) ≤ max
(
deg Φ + (µ+ r − 1)dc∞ , d(min(m,n+ 1) + r − 1)− n

)
.
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3. Division problems and residues, the basic set-up
LetX be a smooth projective variety, let fj be holomorphic global sections of a Hermitian line bundle L→
X , and let J be the associated ideal sheaf with zero set Z. The reader who only cares about polynomials
in Cn should take X = Pn and L = O(d). Let Ej be disjoint trivial line bundles with basis elements ej ,
and define the rank m bundle

E = L−1 ⊗ E1 ⊕ · · · ⊕ L−1 ⊗ Em

over X . Then f =
∑
fje

∗
j , where e∗j is the dual basis, is a section of the dual bundle E∗; it induces the

Koszul complex

0 → ΛmE
δf−→ · · · δf−→ Λ2E

δf−→ E → C → 0,

where δf is interior multiplication with f . Notice that

ΛkE = L−k ⊗ Λk(E1 ⊕ · · · ⊕ Em). (3.1)

We will consider (0, q)-forms (or currents) with values in these vector bundles. We therefore form the
exterior algebra over E ⊕ T ∗0,1(X). In this way, e.g., dz̄j∧e` = −e`∧dz̄j . A (0, q)-form ξ with values in
ΛkE can be written

ξ =
′∑

|I|=k

ξI∧eI1∧ . . .∧eIk
,

where ξI are (0, q)-forms with values in L−k and the prime means that the summation is performed over
increasing multi-indices. One can apply both δf and ∂̄ to such forms, and it is easy to check that δf and ∂̄
anti-commute, i.e.,

δf ◦ ∂̄ = −∂̄ ◦ δf . (3.2)

We have the associated sheaf complex

0 → O(ΛmE)
δf−→ · · · δf−→ O(Λ2E)

δf−→ O(E) → O. (3.3)

Given a global holomorphic section ψ of the Hermitian line bundle S → X , we want to find sections
qj of S ⊗ L−1 such that

f1q1 + · · ·+ fmqm = ψ. (3.4)

This precisely means that we look for a holomorphic section q =
∑m

1 qjej such that δfq = ψ. A necessary
condition of course is that this equation is solvable locally; i.e., that ψ belongs to the sheaf J . If this holds,
then it is easy to produce, by means of a partition of unity, a smooth global section v1 such that δfv1 = ψ.
Assume that we have a form (or current)

v = v1 + · · ·+ vn,

where vk has bidegree (0, k − 1) and takes values in S ⊗ ΛkE, such that

δfv1 = ψ, δfvk+1 = ∂̄vk, k ≥ 1. (3.5)

Introducing the symbol ∇f = δf − ∂̄ we can write (3.5) compactly as

∇fv = ψ. (3.6)

One readily checks that

∇f (ξ∧η) = ∇fξ∧η + (−1)deg ξξ∧∇fη, ∇2
f = 0. (3.7)

Notice that ∇f acts on currents as well.

Proposition 3.1. If there is a global current solution to (3.6) and

Hk−1(X,S ⊗ L−k) = 0, 2 ≤ k ≤ min(m,n+ 1), (3.8)

then there is a global holomorphic solution to δfq = ψ.
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Proof. It follows from (3.5) that ∂̄vmin(m,n+1) vanishes. In fact, it is equal to δfvmin(m,n+1)+1, but vmin(m,n+1)+1 =
0 for degree reasons: If m ≤ n then it vanishes since the Koszul complex terminates at level m; if m > n
it vanishes since it is then a (0, n+ 1)-form.

In view of (3.1), S ⊗ ΛkE is a direct sum of line bundles S ⊗ L−k. If Hk−1(X,S ⊗ L−k) =
0 for k = min(m,n + 1) we can thus find a global solution to ∂̄wmin(m,n+1) = vmin(m,n+1). Then
vmin(m,n+1)−1 + δfwmin(m,n+1) is ∂̄-closed and again we can solve a global ∂̄-equation provided that
Hk−1(X,S ⊗ L−k) = 0 for k = min(m,n+ 1)− 1. Proceeding in this way we can successively solve

∂̄wk = vk + δfwk+1, k ≥ 2,

if (3.8) holds. Finally q := v1 + δfw2 is ∂̄-closed, thus a holomorphic section of S ⊗ E, and δfq = ψ as
desired. �

If fj locally defines a complete intersection, i.e., codimZ = m, then the sheaf complex (3.3) is exact,
and if φ is in J , then one can easily find a global smooth solution to (3.6); in general however there is no
global, not even current, solution3. In order to find a global solution to (3.6) we will use residue calculus.
Notice that we have the natural norm

|f |2 =
∑

j

|fj |2.

Let σ be the section over X \ Z with pointwise minimal norm such that f · σ = δfσ = 1. This means that

σ =
∑

j

f∗j ej

|f |2
,

where f∗j is the section of L−1 of minimal norm such that fjf
∗
j = |fj |2. We now consider the smooth

forms uk = σ∧(∂̄σ)k−1 in X \ Z, and put

u = u1 + u2 + · · ·+ un.

It is readily checked that ∇fu = 1 in X \ Z. An elegant way to see this is to observe that u = σ/∇fσ so
that, cf., (3.7), ∇fu = ∇fσ/∇fσ = 1, cf., [1]. If ψ is holomorphic, then ∇f (uψ) = ψ in X \Z. We want
to extend this equality across Z. There is indeed a natural current extension U of u across Z:

Proposition 3.2. The form-valued function

λ 7→ |f |2λu,

a priori defined for Reλ >> 0, has a current-valued analytic continuation to Reλ > −ε and the value at
λ = 0 is a current extension U of u across Z.

The first statement means that for each test form ξ, the function

λ 7→
∫
|f |2λu∧ξ

admits the analytic continuation. We provide a proof in the next section.
Since ∇fu = 1 in X \ Z it follows that

∇f (|f |2λu) = 1− (1− |f |2λ)− ∂̄|f |2λ∧u
if Reλ >> 0, and hence by uniqueness of analytic continuation we get that

∇fU = 1−Rf , (3.9)

where Rf is the value at λ = 0 of Rλ := 1 − |f |2λ + ∂̄|f |2λ∧u. It follows that Rf is a current4 with
support on Z. In view of (3.7) and (3.9) we have that

∇fR
f = 0. (3.10)

If Rfψ = 0, which clearly holds if ψ vanishes enough on Z, then, by (3.9),

∇f (Uψ) = (1−Rf )ψ = ψ,

since ∇fψ = −∂̄ψ = 0. Combining with Proposition 3.1 we thus have

3If there is a solution to (3.6), then ψ is in J ; this follows as above since all the ∂̄-equations are solvable locally.
4The component Rf

0 := (1− |f |2λ)|λ=0 is zero unless f ≡ 0 in which case it is 1.
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Proposition 3.3. Let f1, . . . , fm be holomorphic sections of L→ X and let Rf be the associated residue
current. If ψ is a global holomorphic section of S such that Rfψ = 0 and if in addition (3.8) holds, then
there are holomorphic sections qj of L−1 ⊗ S such that

∑
fjqj = ψ.

Proof of Proposition 1.1. It is well-known that Hk(Pn,O(`)) = 0 if either 1 ≤ k ≤ n − 1, or q = n and
` ≥ −n, see, e.g., [8]. Thus Proposition 1.1 follows from Proposition 3.3 with X = Pn, L = O(d), and
S = O(ρ). �

The global residue current Rf was introduced in [1], very much inspired by a local analogue that was
defined in [17].

4. Residue calculus
If s is a complex variable, then 1/s is locally integrable and thus a distribution. By Cauchy’s formula we
have that ∫

s

∂̄(1/s)∧ξ(s)ds = 2πiξ(0) (4.1)

for test forms ξds. One can define the distributions 1/sm inductively for positive integersm by the formula

−m/sm+1 = (∂/∂s)(1/sm). (4.2)

Assume now that sj are coordinates in Cn, and let sα = sα1
1 · · · sαr

r be a monomial, r ≤ n, and αk positive
integers. If a is a non-vanishing smooth function and ξ is a test form, then∫

|sαa|2λ

sα
∧ξ,

a priori defined for Reλ >> 0, has an analytic continuation to Reλ > −ε and the value at λ = 0 is equal
to the action of 1/sα on ξ, where 1/sα is the tensor product of the one-variable distributions 1/sαj

j . In
particular the value at λ = 0 is independent of a. It is elementary to prove this when n = 1, and the general
case then follows. Observe that the action of ∂̄(1/sα) on a test form ξ is the value at λ = 0 of∫

∂̄|sαa|2λ

sα
∧ξ. (4.3)

Clearly ∂̄(1/sα) has support where sα = 0 and moreover

sα∂̄
1
sα

= 0. (4.4)

In fact, ∫
∂̄|sαa|2λ∧ξ = −

∫
|sαa|2λ∂̄ξ

so the value at λ = 0 is ∫
∂̄ξ =

∫
dξ = 0

since ξ has compact support. Notice also that

s̄1 . . . s̄r∂̄
1
sα

= d(s̄1 . . . s̄r)∧∂̄
1
sα

= 0; (4.5)

this follows from the corresponding one-variable statement, which in turn is quite immediate in view of
(4.2) noting that s̄∂̄(1/s) = 0, cf, (4.1).

Proof of Proposition 3.2. It follows from Hironaka’s theorem that one can find a smooth modification (a
proper mapping that is a biholomorphism outside a hypersurface) π : X̃ → X such that the pullback of the
sheaf J to X̃ is principal, i.e., generated by a section f0 of a line bundle O(−Y ), where Y =

∑
αjYj is

the divisor of f0, Yj are smooth and have normal crossings. Then π∗fj = f0f ′j , where f ′j are sections of
π∗L⊗O(Y ), where O(Y ) = O(−Y )−1, the tuple f ′ = (f ′1, . . . , f

′
m) is non-vanishing, and locally f0 is

a monomial in appropriate local coordinates. More precisely,

f0 =
∏

s
αj

j , (4.6)
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where sj are sections that define Yj , and locally sj (or rather their representations in local frames) are part
of a coordinate system.

Now, π∗σ = (1/f0)σ′, where σ′ is a smooth section of π∗L−1 ⊗O(−Y ). In fact, if we choose any
metric on O(−Y ) and take the induced metric on O(Y ) ⊗ π∗L, then π∗fjπ

∗f∗j = π∗|fj |2 = |f0f ′|2 =
f0(f0)∗f ′j(f

′
j)
∗ so that π∗f∗j = (f0)∗(f ′j)

∗. It follows that

π∗σ = π∗
∑
f∗j ej

|f |2
=

1
f0

∑
j(f

′
j)
∗π∗ej

|f ′|2
.

Thus

π∗uk =
1

(f0)k
σ′ ∧ (∂̄σ′)k−1 =

1
(f0)k

u′k,

where u′k is smooth, and if ξ is a test form we have that∫
X

|f |2λuk∧ξ =
∫

X̃

|f0|2λ|f ′|2λ 1
(f0)k

u′k∧π∗ξ (4.7)

if Reλ >> 0. In view of (4.6) and the discussion above we see that the right hand side of (4.7) admits an
analytic continuation to Reλ > −ε, and so the left hand side does. �

It follows from the proof that U = π∗((1/(f0)k)∧u′k). Notice also that

Rf
k = π∗R̃k, (4.8)

cf., (4.3), where

R̃k = ∂̄
1

(f0)k
∧u′k. (4.9)

For degree reasons, Rf
k = 0 when k > µ.

Theorem 4.1 (Duality theorem). If codimZ = m and ψ is holomorphic, then locally ψ ∈ J if and only
if ψRf = 0.

This statement can be deduced from the analogous classical theorem due to Passare and Dickenstein-
Sessa for the so-called Coleff-Herrera product defined by the fj , but it is easier to give a direct proof.

Proof. The “if”-part is already proved in the previous section, and does not depend on codimZ. For the
converse, we first claim thatRf

k = 0 if k < m. In fact, if h is a holomorphic function that (locally) vanishes
on Z, then π∗h vanishes on Y , and therefore, locally, it must contain each coordinate factor in f0. In view
of (4.5), therefore, π∗dh̄∧R̃k = 0, and by (4.8) it follows that dh̄∧Rf

k = π∗(π∗dh̄∧R̃k) = 0. Consider
now a neighborhood of a point on Zreg and choose a coordinate system w such that w1, . . . , wm vanish on
Z. Then dw̄j∧Rf

k = 0 for j = 1, . . . ,m and hence Rf
k must be of the form αdw̄1∧ . . .∧dw̄m, and so it

vanishes unless k = m. It follows that Rf
k must have support on Zsing .

Assume now that h is holomorphic and vanishes (locally) on the regular part of Zsing . Then |h|2λRf
k

vanishes when λ = 0. From this one can deduce, cf., [5], thatRf
k is unaffected if we redefine it as the direct

image of only those terms in the development of ∂̄(1/(f0)k)∧u′k, where ∂̄ falls on a factor 1/sαj

j such that
the zero set of sj is contained in π−1Zsing . As before thus dh̄∧Rf

k = 0. Arguing as above we find that Rf
k

has support on the singular part of Zsing . By finite induction we conclude that Rf
k = 0.

Thus Rf = Rf
m. If now ψ = δfξ (locally somewhere on Pn) for a holomorphic ξ, then by (3.7) and

(3.10),
ψRf = ∇fξR

f = ∇f (ξ ∧Rf ).

However, for degree (with respect to Λ•E) reasons ξ∧Rf = ξ∧(Rf
m−1 + Rf

m−2 + · · · ) = 0, and thus
ψRf = 0. �

Remark 1. The claim in the proof above is an instance of a general dimension principle (proved basically
in the same way) that a pseudomeromorphic, a notion introduced in [5], current of bidegree (∗, q) that has
support on a subvariety of codimension strictly larger than q must vanish, see [5]. �
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5. Integral closure and distinguished varieties
Let f1, . . . , fm be global holomorphic sections of a Hermitian line bundle L → X , and let J be the
coherent ideal sheaf they generate. Let

π+ : X+ → X

be the normalization of the blow-up of X along J , and let Y + =
∑
rjY

+
j be the exceptional divisor;

here Y +
j are irreducible Cartier divisors. The images Zj = π+Y

+
j are called the Fulton-MacPherson

distinguished varieties associated with J , cf., [10]. As in the case with the smooth modification in the
proof of Proposition 3.2, we have a factorization π∗+f = f0

+f
′
+, where f0

+ is a section that defines the
divisor Y +. However, X+ is not necessarily smooth, and in any case we may not assume that f0

+ is locally
like a monimial, i.e., we do not have normal crossings.

Recall that a (germ of a function) ψ belongs to the integral closure Jx of the ideal Jx in the local
ring Ox at x if π∗+ψ vanishes to order (at least) rj on Y +

j for all j such that x ∈ Zj . This holds if and only
if |π∗+ψ| ≤ C|f0| (in a neighborhood of π−1(x)), which in turn holds if and only if |ψ| ≤ C|f | in some
neighborhood of x. It follows that

|ψ| ≤ C|f |` if and only if ψ ∈ J `
x . (5.1)

We will use the geometric estimate∑
rjdeg LZj ≤ deg LX, (5.2)

from [9] (Proposition 3.1); see also [14], formula (5.20). Here

deg LZj =
∫

Zj

ω
dim Zj

L ,

where ωL is the first Chern form for L.
If X = Pn and L = O(d) with the natural metric, the the first Chern form is dΩ, where Ω =

ddc log |z|2. By (5.2) we therefore have that∑
j

rj

∫
Zj

(dΩ)dim Zj ≤
∫

X

(dΩ)n

which implies, cf., (*) p. 432 in [9], that∑
j

rjd
dim Zj degZj ≤ dn. (5.3)

6. Proofs of the theorems
Proof of Theorem 1.2. Take ρ ≥ deg Φ + µdc∞ , and as before let ψ = zρ−deg Φ

0 φ, where φ is the deg Φ-
homogenization of Φ and thus a holomorphic section of O(deg Φ).

Consider the normalization of the blow-up π+ : X+ → Pn along J and let Y + =
∑

j rjY
+
j be the

exceptional divisor as before. If π+Y
+
j is not fully contained in the hyperplane at infinity H∞, then the

hypothesis (1.4) implies that π∗+φ and hence π∗+ψ vanish to order µrj on Y +
j , cf., the discussion in the

previous section. On the other hand, if π+Y
+
j is contained in H∞, then π∗+z0 vanishes on Y +

j and hence
π∗+ψ must vanish to order ρ− deg Φ on Y +

j . However, ρ− deg Φ ≥ µdc∞ and by (5.3) and the definition
of c∞ it follows that dc∞ ≥ rj . In view of (5.1) we conclude that

|ψ| ≤ C|f |µ (6.1)

on Pn.
We will now use the same notation as in the proof of Proposition 3.2. The hypothesis (6.1) implies that

|π∗ψ| ≤ C|f0|µ in X̃; since locally f0 is (a non-vanishing) holomorphic function times the monomial sα

it follows that π∗ψ must contain the factor sµα ∼ (f0)µ. From (4.9) and (4.4) we have that (π∗ψ)R̃k = 0
since k ≤ µ, and we can conclude that ψRf = π∗

(
π∗ψR̃) = 0 as wanted. Now part (i) of Theorem 1.2

follows from Proposition 1.1.
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The proof of Theorem 1.2 (ii) requires a more delicate argument. Again we have to prove that ψRf =
0 under the stated assumptions. Following [5] we can decompose Rf as

Rf = 1CnRf + 1H∞R
f

where the first term is an extension to Pn of the the natural restriction of Rf to Cn, and the second term
has support on H∞. To see this, notice that

Rf
k =

∑
j

π∗

[
∂̄

1

s
kαj

j

1
Πi 6=js

kαi
i

∧u′k
]

=: π∗
∑

j

R̃kj =:
∑

j

Rf
kj .

Let h be the section z0 of O(1) and define

1CnRf = |h|2λRf |λ=0. (6.2)

The existence of the analytic continuation follows as in the proof of Proposition 3.2, and if we define
1H∞R

f = Rf − 1CnRf it is readily checked that

1H∞R
f =

∑
k

∑
πYj⊂H∞

Rf
kj . (6.3)

Clearly this current has support on H∞. By the duality theorem (Theorem 4.1), ψRf = 0 in Cn, and thus
ψ|h|2λRf vanishes for Reλ >> 0. From (6.2) we conclude that ψ1CnRf = 0.

It is well-known that π factorizes over π+, i.e., we have

X̃
τ→ X+

π+→ X.

Now consider a fixed Yj ⊂ X̃ such that πYj ⊂ H∞. First assume that τ maps Yj onto one of the Y +
i . We

know that π∗+ψ vanishes at least to the same order as (f0
+)µ (i.e., µri) on Y +

i and hence π∗ψ = τ∗π∗+ψ

must vanish to the same order as (f0)µ = τ∗(f0
+)µ on Yj . It follows that π∗ψR̃kj = 0 and thus ψRf

kj = 0.
Now assume that τYj has codimension ≥ 2 in X+. There is a smooth form u′+,k in X+, defined precisely
as u′k is defined in X̃ , see the proof of Proposition 3.2, such that τ∗u′+,k = u′k. Thus

τ∗R̃kj = τ∗

[
∂̄

1

s
kαj

j

1
Πi 6=js

kαi
i

]
∧u′+,k. (6.4)

By the dimension principle5, cf., Remark 1, the first factor on the right hand side of (6.4) must vanish,
since it has bidegree (0, 1) and support on a variety of codimension at least 2. Thus τ∗R̃kj = 0 and hence
π∗R̃kj = (π+)∗τ∗R̃kj = 0. In view of (6.3) it follows that ψ1H∞R

f = 0. Summing up we conclude that
ψRf = 0. �

For a slightly different proof of part (ii), see [6].

Proof of Theorem 1.6. The hypothesis (1.7) implies that |π∗ψ| ≤ C|f0|µ in X̃ . As in the previous proof
we conclude that ψRf = 0. Now let S = Ls⊗A⊗KX with s ≥ min(m,n+1). Then L−k⊗S⊗K−1

X =
Ls−k ⊗ A is ample or at least big and nef when k ≤ min(m,n + 1). It follows from the Kodaira and/or
Kawamata-Viehweg vanishing theorems that the cohomology groups in (3.8) vanish, and so Theorem 1.6 (i)
follows from Proposition 3.3.

If ψ vanishes to order µrj at a generic point on Zj , then it is not hard to see that π∗+ψ vanishes to
order µrj on Yj ; see [14] Section 10.5 for details (e.g., the proof of Lemma 10.5.2). If this holds for each
j we thus have, cf., (5.1), that |ψ| ≤ C|f |µ. Thus part (ii) follows. �

Theorems 2.1 and 2.2 are proved completely analogously, but instead of the Koszul complex we use
a certain product of Koszul complexes, cf., [3], page 368. We omit the details.

5Here we use residue calculus on a possibly non-smoooth variety; this does not offer any substantial new difficulties, see, e.g., [6].
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7. The worst possible situation for the Nullstellensatz
Let us now sum up our proof of the Nullstellensatz, Corollary 1.3, so assume that Φ = 1, Z ⊂ H∞ =
{[z] ∈ Pn; z0 = 0}, and let ψ = zρ

0 . If π∗+ψ vanishes to order µrj on Y +
j for each j, then we have (1.1)

with degFjQj ≤ ρ (provided that ρ ≥ γ).
In view of (5.3), in most cases each rj and also µrj will be much smaller than dn so one gets a degree

bound that is much smaller than dn. The worst case scenario should be when one has just one distinguished
point {p} = π+Y

+
1 where Y +

1 has multiplicity r1 = dn. In addition, π∗+z0 must vanish just to order 1 on
Y +

1 . As we will see now this is precisely the situation in the following example that appeared in Kollár’s
paper [13].

Example 1. Let

F1(z) = 1− z1z
d−1
n , F2(z) = zd

1 − z2z
d−1
n , . . . , Fn−1 = zd

n−2 − zn−1z
d−1
n , Fn(z) = zd

n−1.

It is readily seen that Fj have no common zeros in Cn, and hence by Kollár’s theorem there are Qj such
that

F1Q1 + · · ·+ FnQn = 1, degFjQj ≤ dn. (7.1)

On the curve
t 7→ γ(t) = (td−1, td

2−1, . . . , td
n−1−1, 1/t)

we get the equality

1 = Fn(γ(t))Qn(γ(t)) = td
n−dQn(td−1, td

2−1, . . . , td
n−1−1, 1/t),

which implies that Qn must have degree at least dn − d, and hence degFnQn ≥ dn. Thus the bound in
Kollar’s theorem is optimal. �

It is not hard to find explicit Qk such that (7.1) holds: Let fk be the d-homogenizations of Fk and
take the homogeneous polynomials pk such that

fkpk = zdn−k+1

k−1 − zdn−k

k zdn−k+1−dn−k

n , k = 1, . . . , n− 1, pnfn = zd
n−1.

It is then easy to produce forms qk such that
∑
fkqk = zdn

0 .

Let us consider this example in some more detail. In the affinization of Pn where zn = 1 we have
affine variables z0, . . . , zn−1. The resulting polynomial ideal is

J = (z1 − zd
0 , z2 − zd

1 , . . . , zn−1 − zd
n−2, z

d
n−1),

which has a single zero at the point p = (0, . . . , 0), i.e., [0, . . . , 0, 1] in homogeneous coordinates. It is
readily checked that there are no other zeros on H∞, as expected in view of the discussion above.

We have another proof that if qj are homogeneous forms such that
∑
fjqj = z`

0 then ` ≥ dn. In fact,
if this holds, then in particular z`

0 must belong to the local ideal Jp. Notice that

Jp = (z1 − zd
0 , z2 − zd

1 , . . . , zn−1 − zd
n−2, z

d2

n−2) =

(z1 − zd
0 , z2 − zd

1 , . . . , zn−1 − zd
n−2, z

d3

n−3) = · · · =

(z1 − zd
0 , z2 − zd

1 , . . . , zn−1 − zd
n−2, z

dn

0 ).

By a holomorphic change of variables, we have Jp = (w1, . . . , wn−1, z
dn

0 ) and it is now obvious that
` ≥ dn if z`

0 is in Jp.

A final remark. In this example the forms fj actually define a complete intersection so zdn

0 Rf = 0
by the duality theorem; thus our framework, i.e., Proposition 1.1, actually produces an optimal solution,
i.e., such that (7.1) holds. In the same way, as long as we have n generators f1, . . . , fn and only isolated
distinguished points pi, fj is a complete intersection there and therefore zdn

0 Rf = 0, since by the local
Bezout theorem zdn

0 belongs to each local ideal Jpi . In this case we thus get the optimal Nullstellensatz,
without the annoying factor µ in front of dn. Unfortunately, we do not know how to get rid of this factor in
general.
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