RESIDUE CURRENTS AND CYCLES OF COMPLEXES
OF VECTOR BUNDLES

RICHARD LARKANG & ELIZABETH WULCAN

ABSTRACT. We give a factorization of the cycle of a bounded complex of vector
bundles in terms of certain associated differential forms and residue currents. This
is a generalization of previous results in the case when the complex is a locally
free resolution of the structure sheaf of an analytic space and it can be seen as a
generalization of the classical Poincaré-Lelong formula.

1. INTRODUCTION

Given a holomorphic function f on a complex manifold X, recall that the classical
Poincaré-Lelong formula asserts that 00 log|f|?> = 2mi[Z], where Oz = Ox/J(f),
J(f) is the ideal generated by f, and [Z] is the current of integration along Z, counted
with multiplicities or, more precisely, the (fundamental) cycle of Z. Formally we can
rewrite the Poincaré-Lelong formula as

1 -1

(1.1) 27rz'af Ndf = [Z].
This factorization of [Z] can be made rigorous if we construe d(1/f) as the residue
current of 1/f, where 1/f is the principal value distribution as introduced by Dol-
beault, [9], and Herrera and Lieberman, [14]. The current d(1/f) satisfies that a
holomorphic function g on X is 0 in Oy if and only if gd(1/f) = 0. This is referred
to as the duality principle and it is central to many applications of residue currents; in
away 0(1/f) can be thought of as a current representation of the structure sheaf O.

In this article we give a similar analytic formula for the cycle of any bounded
complex of vector bundles. The cycle of the coherent sheaf 7 on X is the cycle

F= > milz)

where Z; are the irreducible components of supp F, and m; is the geometric multi-
plicity of Z; in F. For generic z € Z;, F can locally be given the structure of a free
Oz,-module of constant rank, and m; is this rank. Alternatively, expressed in an
algebraic manner, m; = lengthozvzi (Fz,), see, e.g., [15, Section 2]. If F = Oy, then
[F] coincides with the cycle of Z, cf., e.g., [13, Chapter 1.5].

Next, let

(1.2) O—)EN@—N>EN_1—>--'—>E1ﬂ>E0—>0
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be a generically exact complex of vector bundles on X. We let the cycle of (E, ) be
the cycle

(1.3) [E]:= Y (=1 [He(B)],

where Hy(FE) is the homology group of (E,¢) at level £. We have not found the
definition of such a cycle in this setting in the literature. However, when all the
homology groups have support at a single point, our cycle simply corresponds to the
Euler characteristic of the complex, and (1.3) appears to be a natural generalization
for general complexes. Note that if (E,¢) is a locally free resolution of a coherent
sheaf F, i.e., it is exact at all levels > 0 and Ho(E) = F, then [E] = [F].

If the E; are equipped with hermitian metrics, we say that (F, ) is a hermitian
complex. Given a hermitian complex (E, ¢) that is exact outside a subvariety Z C X,
in [4] Andersson and the second author introduced an associated residue current
R = R¥ with support on Z, that takes values in End E, where E = @ F}, and that
in some sense measures the exactness of (F, ¢). In particular, if (F, ¢) is a locally free
resolution of F, then the component Ri that takes values in Hom (Ey, E}) vanishes
if £ > 0 and R satisfies a duality principle for F.

If f is a holomorphic function on X and Ey & Ox and E; = Ox are trivial line
bundles, then

0—>0Xﬂ>0x—>0,

where @1 is the 1 x 1-matrix [f], gives a locally free resolution of Oz = O/J(f). In
this case (the coefficient of) R = RY is just 9(1/f), and the Poincaré-Lelong formula
(1.1) can be written as'

1
—dp RY = [E].

(1.4) =

Our main result is the following generalization of (1.4). Recall that a coherent sheaf
F has pure dimension d if supp F has pure dimension d. Given an FEnd Ej-valued
current « let tr o denotes the trace of a.

Theorem 1.1. Let (E, ) be a hermitian complex of vector bundles (1.2) such that
all its homology groups He(E) have pure codimension p > 0 or vanish, and let D
be the connection on EndE induced by arbitrary (1,0)—connections2 on Eo,...,EN.
Then

N-p
1
9 G 2 (D Dot DRy, = 5]
" =0

Note that the endomorphisms D1 -+ Dggy, depend on the choice of connec-
tions on Fjy, ..., Ex and the currents Rﬁ +p in general depend on the choice of her-
mitian metrics on Ey, ..., Ey. There is no assumption of any relation between the
connections and the hermitian metrics.

The proof of Theorem 1.1, which occupies Section 4, is by induction over the
number of nonvanishing homology groups H,(E). The basic case is the special case
when (F, ¢) has nonvanishing homology only at level 0.

IFor an explanation of the relation between the signs in (1.1) and (1.4), see [17, Section 2.5], cf.
Section 2.1.
2See (2.3) for how this connection is defined.



RESIDUE CURRENTS AND CYCLES OF COMPLEXES OF VECTOR BUNDLES 3

Theorem 1.2. Let F be a coherent sheaf of pure codimension p, let (E,p) be a
hermitian locally free resolution of F, and let D be the connection on EndE induced
by arbitrary (1,0)-connections on Ey,...,En. Then

(1.6) tr Dy - - - DcppRg = [F].

(2mi)Pp!

In [17] we gave a proof of Theorem 1.2 when F is the structure sheaf Oz of an
analytic subspace Z C X by comparing (F, ) to a certain universal free resolution
due to Scheja and Storch, [21], and Eisenbud, Riemenschneider, and Schreyer, [12].
That proof should be possible to modify to the setting of a general F. However, we
give a simpler proof using induction over a filtration of F, see Section 3. Note that in
[17], the assumption that the connections on Ey, ..., Ex should be (1,0) is missing,
see the comment before Lemma 2.4 below.

If (E, ) is the Koszul complex of a tuple of holomorphic functions f1, ..., fi,, then
the coefficients of R are the so-called Bochner-Martinelli residue currents introduced
by Passare, Tsikh, and Yger [19], and further developed by Andersson, [1], see Sec-
tion 2.3. In particular, if m = p := codim Z(f), where Z(f) = {fi =--- = fmn = 0},
(the coefficient of) the only nonvanishing component Rg coincides with the classical
Coleff-Herrera product O(1/f,) A --- A (1] f1), introduced by Coleff and Herrera in
[8], see [19, Theorem 4.1] and [3, Corollary 3.2]. In this case (1.5) reads
1 -1 =1
(27Ti)pafp : /\afl
This generalization of the Poincaré-Lelong formula (1.1) was proved by Coleff and
Herrera [8, Section 3.6]. If m > p, then [E] = 0 and we can give an alternative proof
of Theorem 1.1 by explicitly computing the left-hand side of (1.5), see Section 5.
Since both sides in (1.5) are alternating sums, it would be a natural guess that the
terms at respective levels in the sums coincide. However, this in not true in general
and the Koszul complex provides a counterexample, see Example 5.1.

There are various other special cases of Theorem 1.2 and related results in the
literature, see, e.g., the introduction in [17]. There are also related cohomological
results by Lejeune-Jalabert and Lejeune-Jalabert-Angéniol, [6,18]. Given a free reso-
lution (E, ¢) of Oy ., where Z is a Cohen-Macaulay analytic space, Lejeune-Jalabert,
[18], constructed a generalization of the Grothendieck residue pairing, which can be
seen as a cohomological version of R”, and proved that the fundamental class of Z
at z then is represented by D¢ --- De,. In [6] this construction was extended to
a residue pairing associated with a more general complex of free O,-modules and a
cohomological version, [6, Theorem 1.8.2.2.3], of Theorem 1.1 was given.

In Section 6 we discuss possible extensions of our results to the case when the
homology groups H,(E) do not have pure dimension or are not of the same dimension.
In particular, we present a version of Theorem 1.2 for a general, not necessarily pure
dimensional, coherent sheaf F, generalizing [17, Theorem 1.5].

(1.7)

Adfy A -+ Ndfy = [Z).

2. PRELIMINARIES

Throughout this article, (F, ) will be a complex (1.2), where the Ej are either
vector bundles on X or germs of free O-modules, where O = O, = Ox, is the
ring of germs of holomorphic functions at some x € X. We will always assume that
Er =0for k <0and k> N. Since a complex (E, ¢) of O-modules can be extended
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to a vector bundle complex in a neighborhood of = it makes sense to equip it with
hermitian metrics, and thus to talk about a hermitian complex of O-modules.

We let £ and £° be the sheaves of smooth functions and forms, respectively, on
X. Given a vector bundle £ — X we let £*(E) = £°* ® £(F) denote the sheaf of
form-valued sections.

2.1. Signs and superstructure. As in [4], we will consider the complex (E, ¢) to
be equipped with a so-called superstructure, i.e., a Zs-grading, which splits £ = @©FE},
into odd and even elements E+ and E~, where ET = @FEo, and E~ = ©Fg,,1. Also
End F gets a superstructure by letting the even elements be the endomorphisms
preserving the degree, and the odd elements the endomorphisms switching degrees.

This superstructure affects how form- and current-valued endomorphisms act. As-
sume that o = w ® v is a section of £*(End F), where ~ is a holomorphic section
of Hom (Ey, E}), and w is a smooth form of degree m. Then we let degra = m
and deg, « = k — £ denote the form and endomorphism degrees, respectively, of .
The total degree is dega = deg;a + deg, a. The following formulas, which can
be found in [17], will be important to get the signs right in the proofs of the main
results. Assume that @ = w ® v and o/ = W’ ® 4 are sections of £*(End E), where
w,w’ are sections of £° and ~v,7’ are sections of End E. Due to how form-valued
endomorphisms are defined to act on form-valued sections, one obtains the following
composition of form-valued endomorphisms, [17, equation (2.2)],

1) aa = (—1)WE N Er )y Ao/ @ /.
We have the following formula for the trace, see [17, equation (2.14)],
(2.2) tr(ao/) = (_1)(degoa)(deg;o/)—(degE a)(deg, &) tr(o/a)_

If the bundles Ey, ..., En are equipped with connections Dg,, there is an induced
connection Dg := ©Dpg, on E, which in turn induces a connection Dgpq on End F,
that takes the superstructure into account, through

(23) DEnda = DE o — (_1)dego¢a 9] DE
This connection satisfies the following Leibniz rule, [17, equation (2.4)],
(2.4) Dgpa (ao/) = Dgpa aa’ + (_1)degaaDEnd o

To simplify notation, we will drop the subscript End and simply denote this con-
nection by D. All of the above formulas hold also when « and ' are current-valued
instead of form-valued, as long as the involved products of currents are well-defined.

Since ¢ @m+1 = 0 and the ¢; have odd degree, by the Leibniz rule, ¢, Doy, 41 =
D@pom+1, and using this repeatedly, we get that

(2.5) Dy Dog_190r = oDy -+ - Dy,

for all ¢ < k.
The following result is a slight generalization of [17, Lemma 4.4], that follows by
the same arguments.

Lemma 2.1. Let p be fixred. Assume that (E, @) and (G,n) are complexes of vector
bundles and that b : (E,¢) — (G,n) is a morphism of complexes. Let D be the
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connection on End(E & G) induced by arbitrary connections on Ey, ..., E¢p1, and
Gy, Gogp, and let?

l+p—1
=t

ap = Mep10041,  Be = 0¢Petp, and g :=byDppi1 - Dpgyp.
Then
Dngy1Dngya -+ - Dngypbeyp = o + Be + e

Given a complex (F, ), let (E, @) be the complex where the signs are reversed, i.e.,
let Ek be Ej but with opposite sign and let @ be the mapping E‘k — Ek—1 induced
by ¢k. Note that @y is odd. More generally, for any section « of End F or £°(End E),
let & denote the corresponding section of End E or &°*(End E), respectively. Note
that if @« = w ® 7y is a section of £*(End E), then & = w ® 7.

Next, let ¢ : B, — Ek be the map induced by the identity on Fj. Note that ¢ is
an odd mapping. If 7 is a section of Hom (Ey, Fx_1), then

(2.6) £y = Fe.
If « = w® 7 is a section of £*(Hom (Ey, Ej;_1)), then

ea = (—1)(deBeO)degr @) @ oy — (181 %y @ ey = (—1)9%81 %W @ Fe;

here we have used (2.1) for the first equality, that deg, e = 1 for the second equality,
and (2.6) for the third equality. Moreover, by (2.1),

de = (—1)deBe Negr o), @ 3o = o @ Fe,
since degye = 0. To conclude
(2.7) ca = (—1)9%87 2Ge,

2.2. Residue currents and the comparison formula. We will recall some prop-
erties from [4] of the residue current R = RE associated with a hermitian complex
(E,¢), cf. the introduction. The part Rf = (RF){ that takes values in Hom (FE, Ey)
is a (0,k — ¢)-current when ¢ < k and Ri = 0 otherwise. For us, a key property of
the current R is that it is Vpq-closed, which means that

(2.8) Prr1 Ry — Ry o0 — ORp, = 0,

for each ¢, k, see [4, Section 2].

The residue currents R¥ are examples of so-called pseudomeromorphic currents,
introduced in [5]. Another important example is currents of integration along subvari-
eties Z C X, as follows, e.g., from [2, Theorem 1.1]. The sheaf of pseudomeromorphic
currents is closed under multiplication by smooth forms. Moreover pseudomeromor-
phic currents share some properties with normal currents, and in particular they
satisfy the following dimension principle, [5, Corollary 2.4]:

Proposition 2.2. Let T' be a pseudomeromorphic (x,p)-current on X, and assume
that T has support on a subvariety Z C X of codimZ > p. Then T = 0.

3Here Dngq1 -+ Dnj and Dgjqq -+ Dpeqp—1 are to be interpreted as 1if j =f and j =¢+p—1,
respectively.
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If (E, ) is pointwise exact outside a subvariety Z of codimension p and k — ¢ < p,
since R has support on Z, it follows from the dimension principle that Ri = 0. Then
(2.8) becomes

(2.9) er1 R = Ry e
In the special case when ¢ =0 and k = p — 1, since E_1 =0, (2.9) gives that
(2.10) epRR) = 0.

If the sheaf complex (E,¢) is exact except at FEp, then Ri = 0 for £ > 1, see
[4, Theorem 3.1]. We can then write without ambiguity Ry = RE for R) = (RE){.
In this case, for £ =1 and k = p, (2.9) reads

(2.11) Ryp1 = 0.

Given a morphism a : (F,¢) — (E,¢) of complexes of free O-modules or vector
bundles, the comparison formula from [16] relates the associated residue currents RF
and RT. We begin by recalling an important situation when one can construct such a
morphism, see for example [16, Proposition 3.1]. In this result, it is crucial that (F, )
and (F, ) are complexes of free O-modules; the corresponding statement would not
necessarily be true globally if they were instead complexes of vector bundles over X.

Proposition 2.3. Let a: A" — A be a homomorphism of O-modules, let (F, 1)) be a

complex of free O-modules with coker 1 = A, and let (E,p) be a free resolution of
A. Then, there exists a morphism a : (F,¢) — (E, ) of complexes which extends c.

Here, we say that a extends « if the induced map A’ = coker Y1 (M coker 1 5 A
equals . The comparison formula in its most general form, [16, equation (3.4)], states
that for & > ¢, there exist pseudomeromorphic (0, k — ¢ — 1)-currents M, ,ﬁ with values
in Hom (Fy, Ey) and support on the union Z of the sets where (E, ¢) and (F, 1)) are
not pointwise exact, such that

(RE)fae = an(RE)g + opr1 My + M — DMy,

Here, M ,f_l is to be interpreted as 0 if £ = 0. In all the cases we consider in this
article, we have that k — ¢ < codim Z. Then it follows from the dimension principle
that M,f vanishes, since it is a (0,k — ¢ — 1)-current with support on Z and the
comparison formula becomes

(2.12) (REYfar = ap(RY), + o1 My + M1,

Since M]f takes values in Hom (Fy, E}) it follows that if Fy_; = 0, then M,f_l =0
and (2.12) reads

(2.13) (RP)gae = ap(R)j, + prar Migy 1,
and if in addition Fy1; = 0, then
(2.14) (RP)jar = ax(RP)}.

The following result is a corrected version of [17, Lemma 4.1]. In the proof in
[17, Lemma 4.1] it was used that the connections are (1,0)-connections, i.e., that
the (0,1)-part of the connections is 0, but we missed adding this assumption in the
statement of the lemma, and then consequently in all other results relying on this,
i.e., Theorem 1.1, 1.2, 1.5, 6.1 and Lemma 4.2.
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Lemma 2.4. Let M be a finitely generated O-module of codimension p and let (E, )
and (F,1) be hermitian free resolutions of M. Then,

tr Doy -+ D, RY = tr Dipy - - - D RY

where D is the connection on End(E & F') induced by arbitrary (1,0)-connections on
Eo,...,E, and Fy, ..., F,.

2.3. The Koszul complex, Coleff-Herrera products, and Bochner-Martinelli

residue currents. Let f = (f1,..., fin) be a tuple of holomorphic functions on X
and let (E, ¢) be the Koszul complex of f, i.e., consider f as a section f =) fiej of
a trivial rank m bundle F* with a frame e],...,e;,, let E; = /\j F, where F' is the

dual bundle of F*, and let ¢, = d; be contraction with f.

The residue current R associated with the Koszul complex (E, ¢) equipped with
hermitian metrics induced by a hermitian metric on F*, was introduced and stud-
ied by Andersson in [1]. For Ej, we have the frame {e; = e;; A---ANe;, | [ =
(i1, ,08), 1 <idp < -+ <ip < m}, where ej,..., ey, is the dual frame of e7,... e},
and in particular, ey is a frame for Ey. In this frame we can write Rg =Y RrAe 1\eg.
To get the superstructure right, in [1] it is convenient to consider the endomorphism-
valued currents and forms that appear in the construction of R as sections of the
exterior algebra of F* @ 1§y, i.e., with the convention that dz; A ey, = —ej, A dz; ete.
If the metric on F* is trivial, then the coefficients R; coincide with the Bochner-
Martinelli residue currents from [19].

In the case when m = p = codim Z(f), so that the ideal J(f) generated by f
is a complete intersection, then the Koszul complex is a locally free resolution of
Oz = O/J(f). Since Ri = 0 for kK — ¢ < p by the dimension principle, in this
case R = Rg and Rg consists of only one component, Ryy v Aep A---Aep, where
Ry,..py = O(1/fp)A---ANO(1/ f1), cf. the introduction. Moreover, D¢; is contraction
with »df; A e} and it follows that

(2.15) Dy -+ Dop = pldfiN--- Adfp Ney A+ Nei.

Therefore, the generalized Poincaré-Lelong formula (1.7) by Coleff and Herrera can
be rewritten as

1

(2.16) i

Dgi--- DR = [Z].
For an explanation of the signs when going from endomorphism-valued currents to
scalar-valued currents, see [17, Section 2.5] and also Section 2.1 above.

2.4. The mapping cone of a morphism of complexes. Let ¢: (L, \) — (K, k)
be a morphism of complexes. The mapping cone of ¢ is the complex (C, i) given by

Cr =K, ® L4 for k> 1 and Cy = Ky, with

_ -1
[y = [ (’;k Ckikli } for k> 2 and uy = [ —K1 coe ! ]
Here, the bundles and morphisms take into account the signs and superstructure
from Section 2.1. Let

<_1)kIde

(2.17) Or : K. — Cy, 0, = |: 0

}forkZl,OO:[IdKo]
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and
(2.18) Op: Chy1 — L, Oy =[ 0 e 1 | for k>0.

Then 6 : (K,k) — (C,u) and 9 : (C, ) — (L, A) are morphisms of complexes (the
latter of degree —1). From this construction one obtains, cf., e.g., [23, Chapter 1.5],
an induced long exact sequence

(2.19) - = Hy(C) 25 Hy(L) <% Hy(K) 25 By(C) %S By (L) = -

Proposition 2.5. Let
oA %A% 4 o
be a short exact sequence of O-modules. Assume that (E,p) and (F,v) are free

resolutions of A and A’, respectively, and that a : (F,v) — (E, ) is a morphism of
complezxes extending o. Let (G, n) be the mapping cone of a and letb : (E,p) — (G,n)

be the morphism 0 as defined by (2.17). Then there is an isomorphism Hy(QG) 54,
which makes (G,n) a free resolution of A” and such that b extends 3.
Proof. By (2.19), we obtain that H/(G) = 0 for £ # 0,1 and the exact sequence

0 — Hi(G) - Ho(F) — Ho(E) — Ho(G) — 0.
The morphism Hy(F) — Ho(E) equals the morphism A’ % A which is injective,
so Hi(G) = 0. Thus (G,n) is a free resolution of A/(ima). Since § gives an

isomorphism A/(ima) = A/(ker 3) 5 imB = A", (G,n) is a free resolution of A”.
By construction, b extends the morphism A — A/(im «). O

3. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 is by induction. The induction procedure is achieved
through the following filtration of a module, see, e.g., [7, §1.4, Théorémes 1 and 2
and §2.5, Remarque 1] or [22, Tag 00KY], that is sometimes referred to as a prime
filtration.

Proposition 3.1. Let M be a finitely generated O-module. Then there exists a
sequence of submodules

(3.1) O=MyCcMyC---CM,,=M

such that

(3.2) M;/M;—1 = O/P;,

where P; C O is a prime ideal contained in supp M for i =1,...,m. The minimal

prime ideals P; (with respect to inclusion) appearing in (3.2) are exactly the minimal
associated primes of M, and each such minimal prime P occurs ezactly lengthy, , Mp
times.

In general, also primes P; appear in (3.2) that are not minimal primes of M, as in
the following example. If only the minimal primes of M appear, then the filtration
is said to be a clean, cf. [10].

Ezample 3.2. Let J = J(xz,zw,yz,yw) C Oca, which is the ideal generating the
variety {z =y =0} U {z = w = 0}. If we let

ZU = Oa Il = j(ac,y,w), IQ = j(x'z?va)? I3 = j(fm@w’y), I4 :ja
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then M; := O/Z; for j = 1,...,4, is a prime filtration of M := O/J. Indeed,
Mj/Mj—l = Ij—l/Ij = O/F)], where

Plzj(x,y,w), P2:\7(yazaw)7 P3gj($7y)7 P4%j(z,w)

Note that P; and P, are the two (minimal) associated primes of M, which have
codimension 2, while P; and P are of codimension 3 and contained in the support
of M but not associated primes of M. O

21l

Corollary 3.3. Let F be a coherent sheaf of codimension p and let zg € supp F. For
z in a neighborhood of zy, outside a subvariety of positive codimension in supp F, F.
has a clean filtration where all the modules in the filtration have pure codimension p.

Proof. Take a filtration of F,, as in Proposition 3.1 and choose a neighborhood
zp € U C X such that all M; are defined in /. Moreover let W be the union of the
varieties of the P; that have codimension > p+ 1. Take z € & \ W. For each i, at z,
either M, 1 = M; or M;1/M; = O/P; for some j, where P; is an associated prime
of F, of codimension p. Thus if we remove the M; such that M; 1 = M; we are left
with a clean filtration of F,. Since the sequence 0 C My C --- C M}, gives a filtration
of My, by Proposition 3.1, the only minimal primes of M} are P; for i = 1,...,k,
and thus My has pure codimension p for k. =1,...,m. O

Lemma 3.4. Let P C O be a prime ideal of codimension p and let (E,p) be a
hermitian free resolution of O/P. Then

(3.3) ~tr Dy -~ DRy = [O/P).

(27i)Pp!
Proof. Since both sides of (3.3) are pseudomeromorphic (p, p)-currents with support
on the variety Z of P, it is by the dimension principle enough to prove that (3.3)
holds locally on Zyes. We may thus assume that we have local coordinates (z1,. .., z,)
such that Z = {z; = --- = 2, = 0}. Since the left-hand side of (3.3) is independent
of the choice of locally free resolution (E,¢) by Lemma 2.4, we can assume that
(E, @) is the Koszul complex of z1,...,2,. In this case, it follows from (2.16) that
the left-hand side of (3.3) equals [z = -+ = 2, = 0] = [Z] = [O/P]. O

Proposition 3.5. Let
0—-A —-A—-A"—=0

be an exact sequence of O-modules of codimension p, and let (E,p), (F,v), and
(G,n) be hermitian free resolutions of A, A’', and A", respectively. Then

(3.4) tr Dy - - DopRY = tr Dy -+ D RY + tr Dy -+ - D RS

Proof. By the dimension principle it is enough to prove (3.4) outside a subvariety of
codimension p + 1, since all currents in the equation are pseudomeromorphic (p, p)-
currents. Since a module of codimension p is Cohen-Macaulay outside a subvariety
of codimension > p + 1, we may thus assume that A, A’, A” are all Cohen-Macaulay.
By Lemma 2.4 we may assume that (E, ), (F,), and (G,n) are any free resolutions
of A, A’, and A", respectively. In particular, we may assume that (E, @) and (F, )
have length p. Moreover, by Propositions 2.3 and 2.5 we may assume that (G,n)
is the mapping cone of a morphism a : (F,9) — (E, ) that extends the inclusion
A" — A. Note that (G,n) then has length p+ 1. Let b : (E,p) — (G,n) be the
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morphism € as defined in (2.17). Since by is invertible, one gets by the comparison
formula, (2.13), that
(3.5)

Dy -+ DnpRS = Dy -+ - Dby REby Y + Doy -+ Dyt MO, byt =2 Wy + W

By Lemma 2.1, W; = (ag + fo + 'yo)beal, where aq, 5,0 are as in the lemma.
Since, by Lemma 2.4, tr Dy - - - anRg is independent of the choice of connections
on Gy, ..., G)p, we may assume that the connection on G is such that it respects the
direct sum G; = E; @© ﬁj_l for j > 1 and that it coincides with DEJ. on I; C Gj for
J > 0. With this connection Db; = 0, so ag = p = 0, and, using (2.2), we conclude
that

(3.6) tr Wy = tr ’yobeal =trbpDyy - - -Dcpprbal =trDy; -- -D(ppr.

We now consider the term tr Ws. Since A” is Cohen-Macaulay of codimension
p, A has codimension p, and (G,n) is a free resolution of A” of length p + 1, by

16, Lemma 3.3 and equation (3.11)], MY, , = —¢C, b, RY, where %, , is a smooth
pt+1 p+1¥pP~tp p+1

Hom (G, Gp+1)-valued morphism, such that
(3.7) oS mpe1 =1dg, ., -
Therefore, in view of (2.5) and (2.2),
trWy = —trDmny-- 'an+1ag+1prfbalm.

Using that by = Idg,, that n; = [ —p1 age! ], (2.11), and the comparison formula,
(2.14), for a : (F,v) — (E, ), we get that

RUby'm =R [0 aee™! |=[0 apREe? ],
Note that

-1
aps *
= ~ and thus Dny--- D = ~ ~ .
Mp+1 [ 1/1p } 72 Tp+1 [le___pr]

It follows that

*

(38) trWQ:_tr[Dlﬁl‘-'DKZJp

] O'pG+1bp [ 0 apRI?a*l ]
= —tr Dz/?l e DqﬁpapG_i_lbpapRge_l.

Moreover,

e[ G- [ e oo 3

In view of (2.6) and (2.10), note that 1/;,,5R5 = ey R = 0. Therefore

Dy -+ Doy bpa, RE = (1P Dy - - - DyeRE = eDyy - - Dy, RE,
cf. (3.7) and (2.7). Plugging this into (3.8) and using (2.2), we get
(3.9) tr Wy = —treDyy - DyppRh e = —tr Dipy - -- DY RY.

We thus conclude that (3.4) holds by combining (3.5), (3.6), and (3.9). O
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Proof of Theorem 1.2. Tt is enough to prove (1.6) locally and by the dimension prin-
ciple, since both sides of (1.6) are pseudomeromorphic currents of bidegree (p, p), it
is enough to prove (1.6) outside a subvariety of Z := supp F of positive codimension.
By Corollary 3.3 we may thus assume that we are at a point z € Z such that F, has
a clean filtration (3.1), where each M; is of pure codimension p; in particular each
P; is of codimension p.

Since F, = M,,, we may prove the theorem by proving it for M; by induction over
i. The basic case i = 1 follows by Lemma 3.4. Next assume that Theorem 1.2 holds
for M;. Consider the short exact sequence

O—)MZ’ —>M¢+1 —)O/Pprl =0

and assume that (F,v), (E, ), and (G, n) are hermitian free resolutions of M;, M1,
and O/P; 1, respectively. Then

E _
Wtrl)gol DgﬁpR =

1 h 1 .
WtTle--.D@ZJpRp—i-mtquh...anR _
[M;] + [0) Piia] = [Mis1],

where we have used Proposition 3.5 for the first equality, and the induction hypothesis
and Lemma 3.4 for the second. For the last equality, we use the fact that if we have
a short exact sequence of O-modules, 0 -+ A" — A — A” — 0, then

[A] = [A] +[A7].

4. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is by induction over the number of nonvanishing ho-
mology groups. In order to achieve a complex with one less nonvanishing homology
group, we will use the following lemma.

Lemma 4.1. Let (E,p) be a complex of free Ox z-modules of length k + p, where
k > 1, such that Hy(E) =0 for £ > k. Then there exists a neighborhood x € U C X
and a subvariety W C U of codimension > p + 1 such that for y € U\ W one can
find free Ox ,-modules Gy and morphisms 1y and by for £ =k+1,...,k+p—1 such
that the diagram
(4.1)
0*>Gk+p_1—)Gk_;,_p_g*%--%G/H_lHEk*)Ek_lﬁu-*)Eo—)O

I ana| s i | 4 ]l 4

0— FEiyp—Epip1—Epipo——Ep1 —E,— Ep g — - —Ey—0

B R

0— Exyp— Epip1—Frypo—— Fry1 — Gpy1 ——0

is commutative and the rows (G,n) and (F,v) are complexes, and a : (F,v) — (E, ¢)
and b : (E,p) — (G,n) are morphisms of complexes. Here F; = Gyy1 ® Ey for
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b=k+1,....k+p—2 and
ap = [ b,;lnkﬂe_l ], ap = [ 0 Idg, ] fort=k+1,....k+p—2,

ebkyp—1 — k441 Ebkye
1= , = orf=2,...,p—2, and
Yhtp—1 [ Piorpi } Vrte [ 0 Drrt J D

Vkp1 = | —Tks2 €brpr |-

Moreover, the complexes in the rows have the following homology groups:

0 0 Hi \(E) Hys(E) -  Hy(E)
(4.2) o 0 Hy(E)  Hp(E)  Hea(E) -+ Ho(E).
0 Hy(E) 0 0 . 0

The left-most part of the complex (G,n) is a free resolution of coker ¢ and the
complex (F, ) is essentially the mapping cone of b: (E, ) — (G, n).

Proof. Let F = coker p. Given any locally free resolution (K, k) of F, there are

associated (germs of) subvarieties Z,f where kj does not have maximal rank. By

uniqueness of minimal free resolutions, these sets are independent of the choice of

resolution (K, k) and thus associated with F, and we may denote them by Z ,f instead.

Take U to be any neighborhood of x where (E, ¢) is defined and W to be pr+1' By

the Buchsbaum-Eisenbud criterion codim W > p + 1, see [11, Theorem 20.9].
Assume that we are outside W, and take locally a free resolution

0= Kng =8 .o 5 Ky 22 By, 25 By,

of F. Since we are outside W, im k41 is free so if we replace K, by K,/ imr,41, we
can assume that the free resolution is of the form

K
0= K, 5= Ky 2 By 25 By .

We let Gyip-1 = Ky and ngyp—1 = ke for £ = 2,...,p, which then gives the complex
in the top row of (4.1). This complex has the stated homology groups in the first
row of (4.2), since (G, n) by construction is exact at levels > k.

Since the top row of (4.1) is exact at levels > k and the modules in the middle row
are free, one can, locally, by a diagram chase inductively construct byi1, ..., bryp—1
so that the diagram (4.1) commutes in the top two rows, cf., e.g., the proof of
[11, Proposition A3.13].

We now turn to the bottom row of (4.1). Let (C,u) be the mapping cone of the
morphism b : (E,¢) = (G,n) and let ¥ : (C,u) — (FE, ) be the induced morphism
of complexes of degree —1 as defined by (2.18). Recall that

_ | Tne bp_qe1
He [ 0 Pr ] '
On Cy for £ =0,...,k+ 1, we do the change of basis given by the isomorphism

[ Idg, 0
O dg |
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i.e., we replace g by a[_ll,ugag for ¢ =1,...,k+ 1, ugso by a,;il,u,kﬁ, and Y by
Yeapyq for £ =0, ..., k. Note that for these ¢, by_1 is the identity and thus invertible.
In this new basis, using that 6[)2_117]41)(6_1 =@y forl=1,...,k+ 1, we get that

| e brae™? [0 byt _
Pik+2 = 0 0 },,ug—[() 0 for/=1,...,k+1, and

Py = [ b[lngﬂ ! ] for £ =0,...,k.

Hence (C, p) contains as summands the trivial complexes

~ 1
(4.3) 0= By "5 Gpy s 0for1<<k+1.

We let (F,1)) be the complex (C, u) where we use the new basis as described above
and remove the trivial summands (4.3), and where we moreover shift the degree by 1

and change the signs so that Fy = 6’5+1 and the morphisms are adjusted accordingly.
The morphisms p and 9 given by the mapping cone, adjusted accordingly, are then
indeed the morphisms ¢ and a as in the statement of the lemma. Since (by)s :
Hy(E) — Hy(G) is an isomorphism for ¢ = 0,...,k — 1, H/(G) = 0 for £ > k,
and Hy(E) = 0 for ¢ > k + 1, it follows from the long exact sequence (2.19) that

Hy(F) = Hyy1(C) =0 for £ # k and that Hy,(F) = Hyy1(C) = Hy(E). O
For a complex (E, ¢) of length N = k+p, we will introduce the shorthand notation
k
(tr D(pRE)p = Z(—l)z tr Dpggq - D¢g+p(RE)§+p.
=0

Proposition 4.2. Let (E, ), (F,v), and (G,n) be as in Lemma 4.1 and assume
they are generically exact hermitian complexes. Then

(4.4) (tr DpRE), = (tr Dy RY), + (tr DnR%),,.

Proof of Theorem 1.1. We prove by induction over k that for each generically exact
hermitian complex (F,p) of length < k + p such that Hy(E) = 0 for ¢ > k, the
associated residue current satisfies (1.5). Since (E, ) in Theorem 1.1 has length N
and Hy(FE) has pure codimension p, (E, ¢) has this property for k = N, and thus the
theorem follows.

First note that the case k = 0 is Theorem 1.2. Next assume that (1.5) holds for
residue currents associated with complexes (E, ) of length k£ — 1 + p such that that
Hy(E) =0 for £ > k — 1. It is enough to prove (1.5) locally and since both sides in
(1.5) are pseudomeromorphic currents of bidegree (p, p), by the dimension principle,
it is enough to prove it outside a subvariety of codimension p 4+ 1. Therefore we can
assume that we have generically exact hermitian complexes (F,v) and (G,7n) as in
Lemma 4.1. It follows from Theorem 1.2 and (4.2) that

1
Grigpt(F VR ) = (D H(E))
Moreover, by the induction hypothesis and (4.2)
k—1
W(tr DURG)p = Z<_1)£[HZ(E)]~
P =0

Now (1.5) follows from Proposition 4.2. O
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4.1. Proof of Proposition 4.2. We will compute the two terms on the right-hand
side of (4.4) separately.

4.1.1. Computing (tr DnR%),. Let us consider the currents

(4.5) Dngs1 Do -+ D77£+p(RG)2+p
that one takes the trace of in (tr DnRY),. Note that (4.5) vanishes for £ > k since
then G4, = 0. It remains to consider the cases £ = 0,...,k — 1. For these /, by is an

isomorphism and thus it is invertible. By the comparison formula, (2.12), we have

(RG)£+pb5 = bf+P(RE)§+p + M l+p W + 77€+p+1M€+p+1
It follows that (4.5) equals

Dy -+ Doy pbep(RP) g4 by '+
£— — _
Dngyr - - D77€+ng+plS0€bg L+ Dy - 'D77€+p77£+p+1Mf+p+1bg g

We rewrite the trace of the last term as

tr Dngqq - D77£+p77£+p+1Me€+p+1be_1 = trng1Dngyo - - DW+p+1Mf+p+1be_1 =
tr Dngyo - D77£+p+1Mf+p+1bz_177£+1 =tr Dngyo- - D77£+p+1Mf+p+190£+1bZ+11-
Here we have used (2.5) for the first equality and
(4.6) by Mot = perabyy
for the last equality; indeed, since ¢ < k, byy1 is invertible. For the middle equality

we have used (2.2); note that the sign is 1 since both Dnjyyo--- D77€+p+1Mf+p+1bg
and 741 have odd total and endomorphism degrees. It follows that

E
—_

(—1)f ( tr Dngyq - D774+pr;; @eby " +tr Dngyy - D??z+p77£+p+1Mf+p+1bzl> =
0

tr Dy - - - anMp—lwobal + (=) tr Dy - - Dneyp—1Mk+p k+pb 11 =0,

since ¢g = 0 and 74, = 0. Thus

T

k-1
(4.7) (v DnR%)p = > (=1)"tr Dgyy - - Doy (R, =
=0
k-1 k-1
U tr Dngy -+ Digpbeyp(RP) 4,07 =D (1) tr(au+Bet7e) (R4,
=0 =0

where we have used Lemma 2.1 for the last equality and ay, B¢, ¢ are as in the lemma.
From the definitions of oy and By it follows that

(4.8) trap(RF)f, byt = trneadet (RE)g byt = tr 81 (RE)G, by ' mes1 =
— Y _ _
tr o1 (R®)g4 ppe41bi ) = tr8e10npin (RP)gE by = tr B (RP)gH) bk

for ¢ =0,...,k — 1. Here we have used (2.2) for the second equality; indeed, note

that the sign is 1 since o4 (RF )ﬁ +pbz_1 and 7ny+1 have odd total and endomorphism
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degrees. Moreover, we have used (4.6) for the third equality and (2.9) for the fourth
equality. By (2.10), we then get that

(4'9) tr BO(RE)gbal = tr 50g0p(RE)gbal = 0.

Moreover note that

(4.10)  trye(RF)f b, ' = trbeDgir - - Dpyp(RE) by ' =
trby 'beDpry1 - - Dppyp(RP)jyy = tr Dppyy - Dippyp(RP) 4y,
where we have used (2.2) for the second equality; indeed, the sign is 1 since by is of

even total and endomorphism degree. From (4.7), (4.8), (4.9), and (4.10) we conclude

(4.11)
k—1

(tr DnRE), = (=1)* " tr Be(RP)y 00" + Y (=1 tr Deogry -+ Depprp(RP) -
=0

4.1.2. Computing (tr DwRF)p. Since Fy; = 0 for £ < k, the only nonvanishing cur-
rent that one takes the trace of in (tr Dy RE), is (=1)*Dpyyq - - D¢k+p(RF)£+p‘ A

computation yields*
(412) Dtpy1-+ Dopyp1 =

D[ —ilky2 €bptr | D [ Tk Do ] .-D [ “lktp-1 EDktp-2 ]D [ bp4p—1 } —

0 $rt2 0 Phtp—2 Phtp-1
k+p—1
Z (_1)m_k_1Dﬁk+2 <+ Dijn D(€bm) Dprmt1 - - “Dppyp-1.
m=k+1
Recall that by (2.4)
(4.13) D(eby,) = Deby, + (—1)4°8%cDb,,, = —eDb,y,.
Moreover by (2.7) we have
(4.14) Dijee = (—1)38r P Dy, = —e D,

Using (4.13) and then (4.14) repeatedly for k = m,m —1,..., k + 2 we get

(4.15) Dijprz - DiinD(ebn) Doy - - Doyt =
(—1)m_k€D77k+2 T DanmeSOm—H T D@k+p*1-

Now
(4.16) Dfiyr -+ Difry =
k+p—1
- ( Z eDNy 2 DNy Dby Doy 1 - - - D‘Pk-i-p—l)DSOk—kp =
m=k—+1
k4p
— Y eDnpyae DnyDby Dy -+ Dippyy = —6k41,
m=k-+1

4In the sum Diji42 -+ D} and D1 -+ - Dpryp—1 are to be interpreted as 1 if m = k+ 1 and
m =k + p — 1, respectively.
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where J541 is as in Lemma 2.1; here we have used 94, = @g4p, cf. (4.1), (4.12), and
(4.15) for the first equality, and by, = 0 for the second. It follows that

tr Dpyr -+ Dy p(RY)E gy = tr Dy -+ Dipyp (R par =

tr ap D1 - - Digp(RP) 4 = trby 'mp1e ™ Digr -+ Dby (RP)f 4, =

—trby e edp 1 (RE)5y, = — trb tan(RP)f,,

where oy, is in Lemma 2.1. Here we have used the comparison formula (2.14) and
that axyp = Idg,, (2.2), the definition of ay, and (4.16) for the first, second, third,
and fourth equality, respectively. Since ng4, = 0, cf. (4.1), by Lemma 2.1 we get that

—by toge = b (Be + k) = b, B + Dprs1 - Dy,
Thus

(4.17)  (tr DYR"), = (=1)F tr Dippi1 -+ Dipeyp(RF)E ., =
(=1)F by ' Br(RP)ip + (1) tr Dppsr - Dippap(RE) 4
Finally using (2.2) we conclude from (4.11) and (4.17) that

(tr DYRY), + (tr DnRY), = (=1)F tr b ' Bu(RE)j ., + (1) e Bu(RE) b5
k

+ S (D) tr Dgey - Dpeyp(REVE,, = (61 DR,
(=0

5. THE KOSZUL COMPLEX

Let (E,¢) be the Koszul complex of a tuple f of holomorphic functions as in
Section 2.3, and assume that it is equipped with the trivial metric. Recall that if
m = p = codim Z(f), then (1.5) just equals (1.7). In this section we describe the
currents in (1.5) when m > p. Then

[E] =) (~1)[He(B)] =0,

see, e.g., [20, Corollary 5.2.9 (ii)]; in particular the Koszul complex cannot be exact
at all levels £ > 0.

To describe the left-hand side of (1.5), let us recall the construction of R. Let
o =Y fiei/|f|>. Then R is defined as multiplication with the analytic continuation
to A = 0 of the form 9|f|** A o A (90)F~¢~1, see [1]. Since D is just contraction
with > df; A e;, a computation yields that

m— (k—1¥)
L

cf. (2.15). Since (F, ) ends at level m, (27i)Pp! times the left-hand side of (1.5)
equals

tr Dipgi1 -+ Doy RY, = ( >tf Doy -+ Doy_¢R)_y,

m—p m—p

m—p
Z(—l)eterH---Dw+pR§+p:Z(—l)f( , )trDso1~--DsopR2:0.
{=0 /=0

To conclude, (1.5) holds since both sides vanish, so we get an explicit proof of The-
orem 1.1 in this case.
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Next, let us consider the individual terms in the left-hand side of (1.5) and in
[E]. First note that since the image of ¢1 equals J(f), [Ho(E)] is just the cycle of
Oz = Ox/J(f). In [2], Andersson proved that

1 0 P
WUD%“'D%R;) = a2},

where Zf are the irreducible components of Z of codimension p and «; is the geo-

(5.1)

metric or Hilbert-Samuel multiplicity of J(f) along Zf . For a complete intersec-
tion ideal, the geometric multiplicities coincide with the algebraic multiplicities and
so (5.1) generalizes (1.7). In general, however, the multiplicities are different, cf.
Example 5.1 below, and thus it is not true in general that the individual terms
tr Dpgyq - Dgpg+pr+p and [H,(E)] at level ¢ coincide.

Ezample 5.1. If J(f) is generated by monomials and Z(f) = {0}, then the algebraic
multiplicity equals n! times the volume of R} \ I', where the I' is the convex hull
in R™ of the exponents of the monomials in J(f), see, e.g., [20, exercise 2.8]. If
J(f) is not a complete intersection ideal, this does not coincide with the geometric
multiplicity, which is just the number of monomials that are not in J(f).

For example, if f = (22,2129, 23) in C2, then the algebraic multiplicity of J(f)
is 4, while the geometric multiplicity is 3. Thus in this case the first term in (1.5)

equals
1

(27)22!
whereas [Ho(E)] = 3[0]. O

tr Dcpngpg(RE)g = 4[0]

6. NON-PURE DIMENSIONAL HOMOLOGY

In [17] we get a version [17, Theorem 1.5] of Theorem 1.2 when F = Oy for a
general, not necessarily pure dimensional, analytic space Z. By the same arguments
we get a version for general coherent sheaves F.

Corollary 6.1. Let F be a coherent sheaf, let (E,p) be a hermitian locally free
resolution of F, and let D be the connection on EndE induced by arbitrary (1,0)-

connections on Ey, ..., En. Moreover, let Wy be the union of all irreducible compo-
nents of supp F of codimension k. Then
1 0

Pseudomeromorphic currents allow for multiplication by characteristic functions
of varieties or, more generally, constructible sets, see [5, Theorem 3.1], and thus
1w, Rg is a well-defined pseudomeromorphic current.

It is natural to ask whether we also obtain a version of Theorem 1.1 when the
homology groups do not have pure dimension or are not of the same dimension.
However, this does not seem to follow as easily. Since [E] is an alternating sum of
cycles of sheaves, there are in general components m;[Z;] and m;[Z;] of [E] such that
Z; is a proper subvariety of Z;. If we remove these “embedded components” of [E]
we can get a formula like (1.5): Let W = Usupp H/(E) and let

[Elw =) (=) [He(BE)w,

where [Hq(E)]lw is the cycle of Hy(E) but where we only include the irreducible
components Z; that are minimal primes of W. Moreover, let W} be the union of the
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irreducible components of W of codimension k. Then by the same arguments as in
the proof of [17, Theorem 1.5] we get

1
(6.2) > (2R tr D1 -+ Dpgyidw, Riyy, = [Elw.

)

Maybe one could get a similar formula for [E] by considering characteristic functions
of different sets at different levels. For example if W,f is the union of the irreducible
components of supp Hy(FE) of codimension k, one could hope that

1 ¢
Zz (@) tr Doy -+ Doy Llyye Ry = [E].

)

However, this does not seem to follow as immediately from the dimension principle
as (6.2).
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