RESIDUE CURRENTS AND FUNDAMENTAL CYCLES

RICHARD LARKANG & ELIZABETH WULCAN

ABSTRACT. We give a factorization of the fundamental cycle of an analytic space
in terms of certain differential forms and residue currents associated with a locally
free resolution of its structure sheaf. Our result can be seen as a generalization
of the classical Poincaré-Lelong formula. It is also a current version of a result
by Lejeune-Jalabert, who similarly expressed the fundamental class of a Cohen-
Macaulay analytic space in terms of differential forms and cohomological residues.

1. INTRODUCTION

Given a holomorphic function f on a complex manifold X, recall that the classical
Poincaré-Lelong formula asserts that 901og | f|? = 27i[Z], where [Z] is the current of
integration (or Lelong current) of the divisor Z of f counted with multiplicities, or,
more precisely, (the current of integration of) the fundamental cycle of Z. Formally
we can rewrite the Poincaré-Lelong formula as

1 -1
1.1 — 0= Ndf = |Z].
(11) 505 M = 12]
This factorization of [Z] can be made rigorous if we construe d(1/f) as the residue
current of 1/ f, introduced by Dolbeault, [D], and Herrera and Lieberman, [HL], and
defined, e.g., as

(12) sy (17 /) 7,

where x(t) is (a smooth approximand of) the characteristic function of the interval
[1,00). The current 9(1/f) satisfies that a holomorphic function g on X is in the
ideal (sheaf) J(f) generated by f if and only if gd(1/f) = 0. This is referred to as
the duality principle and it is central to many applications of residue currents; in a
way O(1/f) can be thought of as a current representation of the ideal 7 (f). In this
paper we prove that (the current of integration along) the fundamental cycle of any
analytic space admits a natural factorization as a smooth “Jacobian” factor times a
residue current, analogous to (1.1).

Let Z C X be a (not necessarily reduced) analytic space. The fundamental cycle
of Z, seen as a current on X, is the current

(1.3) 12) =) milZi,

where Z; are the irreducible components of Z,.q4, [Z;] are the currents of integration
of the (reduced) subspaces Z;, and m; are the geometric multiplicities of Z; in Z.
For a generic z € Z;, Oz, is a free Oz, ,-module of constant rank. One way of
defining the geometric multiplicity m; of Z; in Z is as this rank. Equivalently m; can
be defined as the length of the Artinian ring Oz z,, see, e.g., [F, Chapter 1.5]. The
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equivalence of the two definitions can be proved with the help of [F, Lemma 1.7.2].
If Zieq = {2} is a point, and Z is defined by an ideal sheaf 7, i.e., Oz = Ox/J,
then the geometric multiplicity of (Zyeq in) Z is dimc Ox,./J.. If dimZ; > 0,
then for generic z € Z; and H C X a complex manifold transversal to (Z;, z),
m; = dimc Ox . /(T +Tw)-, where Jg is the ideal of holomorphic functions vanishing
on H.

We will consider Z such that Oz has a global locally free resolution over Ox. Such
a resolution exists for any Z for example when X is projective. If X is Stein, then
any Z has a semi-global resolution, i.e., it has a free resolution on every compact in
X. Assume that

(1.4) 0= B, 2 B,y 255 . 25 B 25 By,
is this locally free resolution, i.e., (1.4) is an exact complex of locally free Ox-
modules such that coker ¢ =2 Oz. If the corresponding vector bundles are equipped
with Hermitian metrics we say that (E, ) is a Hermitian locally free resolution of
Oz over Ox. Given such an (E, ), in [AW1] Andersson and the second author
constructed an EndE-valued residue current R = 3" RE where E = @ Ej, and
RE takes values in Hom (Ey, E;). This current satisfies a duality principle and it
has found many applications; e.g., it has been used to obtain new results on the
J-equation on singular varieties, [AS], and a global effective Briancon-Skoda-Huneke
theorem, [AW3].

If f is a holomorphic function on X and Ey = Ox and E; = Ox are trivial line
bundles, then

0—)0)(&)0)(,

where 1 is the 1 x 1-matrix [f], gives a locally free resolution of Oz := O/J(f).
In this case (the coefficient of) R¥ = R¥ is just 9(1/f), and the Poincaré-Lelong
formula (1.1) can be written as’

1
(1.5) —dp1 Ry = [Z].
2me
Our main result is the following generalization of (1.5).

Theorem 1.1. Let Z C X be an analytic space of pure codimension p, let (E, ) be
a Hermitian locally free resolution of Oz over Ox, where rank Ey = 1, and let D be
the connection? on EndE induced by arbitrary connections on Ey, ... ,E,. Then

1

(16) (2mi)Pp!

Doy -+ Do RY = [Z].

Note that the endomorphism D¢; - - - D¢, depends on the choice of connections on
Ey, ..., E, and the current Rf in general depends on the choice of Hermitian metrics
on Fy,...,E,. There is no assumption of any relation between the connections and
the Hermitian metrics.

Various special cases of Theorem 1.1 and related results have been proved earlier:
Assume that Z is a complete intersection of codimension p, i.e., Oy = Ox/J,
where J is a complete intersection ideal, generated by, say, f = (fi,..., fp). Then

IThe relation between the signs in (1.1) and (1.5) is explained in Section 2.5.
2The connection D is defined by (2.3).
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Coleff and Herrera proved in [CH] the following generalization of the Poincaré-Lelong
formula (1.1):

1 -1 =1
Griy 5, R
where O(1/f,) A --- A 9(1/f1) is the so-called Coleff-Herrera product of f. In this
situation, one may choose the resolution (F,¢) such that (1.6) becomes precisely
(1.7), see (2.13).

In [DP] Demailly and Passare extended (1.7) to the case when Z is a locally
complete intersection, cf. Remark 4.3. The result of Demailly-Passare was fur-
ther extended by Andersson in [A1], where he proved that if one considers so-called
Bochner-Martinelli residue currents associated to generators of the defining ideal of
an analytic space Z of pure dimension, and form a current similar to the left-hand
side of (1.6), then a similar formula holds. This is a variant of the so-called King’s
formula, where the right-hand side of (1.6) is a current of integration like (1.3),
but where the multiplicities m; are the corresponding algebraic (or Hilbert-Samuel)
multiplicities, see, e.g., [F, Chapter 4.3].

If Z and (F, ) are as in Theorem 1.1, then by [A3, Example 1], there exists some
holomorphic Hom (E,, Ep)-valued form £ such that {Rf = [Z]. Our Theorem 1.1
thus states that (1/(2mi)Pp!) Dy - - - Dy is an explicit such &.

In previous works, [LW] and [W], we proved Theorem 1.1 for certain resolutions of
monomial ideals by explicitly computing the residue currents R¥ and the Jacobian
factors Doy - - - Dy, respectively.

(L.7) Ndfy A A dfy = (2],

Another result that is closely related to ours, although not formulated in terms of
residue currents, is a cohomological version of Theorem 1.1 in the Cohen-Macaulay
case due to Lejeune-Jalabert, [LJ1]. Given a free resolution (E, ¢) of Oy . of minimal
length, where Z is a Cohen-Macaulay analytic space, she constructed a generalization
of the Grothendieck residue pairing, which in a sense is a cohomological version of
the current in [AW1], and proved that the fundamental class of Z at z is represented
by D¢1 -+ Dep,. In Section 6 we describe this in more details and also discuss the
relation to our results. The relationship between Lejeune-Jalabert’s residue pairing
and the residue currents in [AW1] is elaborated in [L&3], see also [Lul, Lu2].

To be precise, the current in the left-hand side of (1.6) takes values in EndEj.
However, since Ey has rank 1, it is naturally identified with a scalar-valued current.
In fact, it is possible to drop the assumption that rank Fy = 1, but to make sense of
(1.6) we then need to turn the EndEy-valued current

1 E
0 := WDgpl - DppR,
into a scalar-valued current. We will describe two natural ways of doing this. The
first one is to take the trace tr© of ©. Secondly, let 7 be the natural surjection
T : Fy — coker p; = Ogz. Since R;,Egol = 0, see (2.6) below, one gets a well-defined
Hom (Oz, E,)-valued current RfT‘l by (locally) letting RfT‘lf = Rgfo for any
section fy of Eg such that 7fo = f. It follows that 707! is a well-defined End(Oy)-
valued current, which can be identified with a scalar-valued current (annihilated by
J, where J C Ox is the ideal defining Z). Note that if rank Ey = 1, then tr © and
707! coincide with © (regarded as scalar currents).

Theorem 1.2. Let Z C X be an analytic space of pure codimension p, let (E,p) be
a Hermitian locally free resolution of Oz over Ox, and let D be the connection on



4 RICHARD LARKANG & ELIZABETH WULCAN

EndFE induced by arbitrary connections on Ey, ..., E,. Then

1 E
and
1 E_—-1 __

where T is the natural surjection T : Ey — coker ¢ = Oy.

In view of the discussion above, note that Theorem 1.1 is just a special case of
Theorem 1.2.

The proof of Theorem 1.2 is given in Section 4. The first key ingredient is two
lemmas, Lemmas 4.1 and 4.2, which assert that the left-hand sides of (1.8) and (1.9),
respectively, only depend on Z and not on the choice of (E, ¢) or D. In particular, it
follows that the left-hand side of (1.8) coincides with the left-hand side of (1.9), cf.
(4.15). Thus, to prove Theorem 1.2 it is enough to prove (1.8) for a specific choice of
resolution and connection. The proofs of Lemmas 4.1 and 4.2 rely on a comparison
formula for residue currents due to the first author, [L42], see Section 2.4.

By the dimension principle, Proposition 2.1, for so-called pseudomeromorphic cur-
rents, see Section 2.1, it suffices to prove (1.8) generically on Z.q (i.e., outside a
hypersurface of Z..q). For z generically on Z,.q we can use a certain universal free
resolution of Oy ., based on a construction by Scheja and Storch, [SS], and Eisenbud,
Riemenschneider and Schreyer, [ERS]; this is described in Section 3. The inspiration
to use this universal free resolution comes from [LJ1]. The resolution is in general far
from being minimal, in particular, rank Fy > 1 in general, but it is explicit enough
so that we can explicitly compute (1.8), see Lemma 4.5.

In Theorems 1.1 and 1.2 we assume that Z has pure codimension, or, equivalently,
pure dimension. In fact, for the proofs we only need that Z has pure dimension in
the weak sense that all irreducible components of Z,.q have the same dimension, in
other words, all minimal primes of J have the same dimension. In particular, we
allow J to have embedded primes.

Ezample 1.3. Let Z C C? be defined by J = J(y*,2'y™) C Ogz, where m < k.
Then Z has pure dimension, since Z,.q equals {y = 0}, which is irreducible. However,
note that J has an embedded prime J(z,y) of dimension 0.

Example 1.4. Let Z C C3? be defined by J = J(z2,yz) C Ogs. Then Z does not
have pure dimension, since its irreducible components {z = 0} and {x = y = 0} have
dimension 2 and 1, respectively.

We get a version of Theorem 1.1 also when Z does not have pure dimension,
without much extra work. However, the formulation becomes slightly more involved.
Since the residue currents RE are pseudomeromorphic, see Section 2.1, it follows that
one can give a natural meaning to the restrictions 1WRkE if W is a subvariety of X.

Theorem 1.5. Let Z C X be an analytic space. Assume that dimX = N and
codim Z = p. Let (E, ) be a Hermitian locally free resolution of Oz over Ox, where
rank Fg = 1, and let D be the connection on EndE induced by arbitrary connections
on Ey,...,En. Let Wy be the union of the components of Z..q of codimension k,
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and define Ry = 1WkRE. Then

N
(1.10) Y o kk' o1+ Dop Ry = [Z].
k=p

Remark 1.6. As in Theorem 1.2 we could drop the assumption that rank Ey = 1.
Using the notation from above, we get

N

N
1 Z —1
k=p k:p

see Remark 4.7.

It is natural to also consider the “full” currents Dy --- Dy Ry, and it would be
interesting to investigate whether they may capture geometric or algebraic informa-
tion (in addition to the fundamental cycle). In Section 5 we compute the current
D1 Do RY for a Hermitian resolution of Z from Example 1.3. We also illustrate
Theorem 1.5 by explicitly computing the currents in (1.10) in the situation of Ex-
ample 1.4.

Acknowledgement: We would like to thank Mats Andersson and Hakan Samuels-
son Kalm for valuable discussions on the topic of this paper.

2. PRELIMINARIES

Throughout this paper X will be a complex manifold of dimension N, and x(¢)
will be (a smooth approximand of) the characteristic function of the interval 1, c0).
Let f be a holomorphic function on X or, more generally, a holomorphic section of a
line bundle over X. Then there is an associated principal value current 1/f, [D,HL],
defined, e.g., as the limit

1
. 2 1
T x(1f7/€)%
The associated residue current is defined as 9(1/f), cf. (1.2).

2.1. Pseudomeromorphic currents. Following [AW2] we say that a current of
the form

1 1 - 1
ZTI...Z%(’) T AN---ANO =
1 ko Pkl
where z1,..., 2y is a local coordinate system and £ is a smooth form with compact

support, is an elementary current. Moreover a current on X is said to be pseudomero-
morphic if it can be written as a locally finite sum of push-forwards of elementary
currents under compositions of modifications, open inclusions, or projections.3 Note
that if 7 is pseudomeromorphic, then so is 0T'.

The sheaf of pseudomeromorphic currents, denoted PM, was introduced to obtain
a coherent approach to questions concerning principal value and residue currents; in
fact, all principal value and residue currents in this paper are pseudomeromorphic.
It follows from, e.g., [Al] that currents of integration along analytic subvarieties
W C X are pseudomeromorphic.

3In [AW2] only modifications were allowed. This more general class of pseudomeromorphic cur-
rents appeared in [AS].
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In many ways pseudomeromorphic currents behave like normal currents, i.e., cur-
rents T' such that T" and dT" are of order 0. In particular, they satisfy the following
dimension principle, [AW2, Corollary 2.4].

Proposition 2.1. If T € PM(X) is a (p,q)-current with support on a subvariety
W cC X, and codim W > q, then T = 0.

Moreover, pseudomeromorphic currents admit natural restrictions to analytic sub-
varieties, see [AW2, Section 3] and also [AS, Proposition 2.3]. If T € PM(X),
W C X is a subvariety of X, and h is a tuple of holomorphic functions such that
W = {h = 0}, the restriction 1T can be defined, e.g., as

N _ 2
1wT = t11_12% (1= x(|h|*/e)) T.

This definition is independent of the choice of x and the tuple h, and 1wT is a
pseudomeromorphic current with support on W. If 1yT = 0 for all subvarieties
W C X of positive codimension, then T is said to have the standard extension
property, SEP.

2.2. Superstructure. Let

0= FE, 2 B, 2% ... 2 B Y F,

be a complex of locally free Ox-modules. Then E := @ Ej, has a natural superstruc-
ture, i.e., a Zo-grading, which splits F into odd and even elements E™ and E—, where
Et =@ Fy, and E~ = @ Fay1. Also EndFE gets a superstructure by letting the
even elements be the endomorphisms preserving the degree, and the odd elements
the endomorphisms switching degrees.

We let £ and £° denote the sheaves of smooth functions and forms, respectively, on
X and we let £*(E) = £*®@¢E(F) and £*(EndE) = £°* ®¢ £(EndE) be the sheaves of
form-valued sections of E and EndF, respectively. Given a section v = w ® 1, where
w is a smooth form and 7 is a smooth section of E or EndE, we let deg ;v := degw
and deg .y := degn. Then £°(F) and £°(EndFE) inherit superstructures by letting
deg~y := deg sy + deg.y. Both £°(F) and £°(EndE) are naturally left £°-modules.
We make them into right £*-modules by letting

(2.1) w = (—1)(des)(degw)

where w is a smooth form, and 7 is a section of £°(E) or £°(EndE). Moreover,
if=a®fand vy = w®ny = @n are sections of £*(E) and £*(EndFE),
respectively, we let

v(B) = (~1)eeNeesBly A a (),
(2.2) vy = (=1)degendee )y AW @y

Note that if v = a ® Id then 78 = af, v¢ = o/, and vy = Ya, cf. (2.1).

Thus we can regard a form « as a (form-valued) endomorphism. Moreover, we have
10

the following associativity: (vv)8 = v(7/8) and (77 )y" = v(v'y") if 7" is a sec-
tion of £*(EndFE). Analogously the sheaves C*(F) = C* ®¢ E(F) and C*(EndFE) =
C* ®¢ E(EndFE) of current-valued sections of E and EndFE, respectively, inherit su-
perstructures.

If Ey, ..., E, (considered as vector bundles) are equipped with connections Dg,, ..., Dg,,
and Dg is the connection @ Dg, on E, we equip EndFE with the induced connection
Dgpnq defined by

(2.3) Dg((€)) = Dena (7)€ + (—1)%87y(Dgé),
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where £ is a section of £°(E) and v is a section of £*(EndE). It is then straightforward
to verify that for arbitrary sections 7,7’ of £*(EndFE),

(2.4) Drna(7Y) = Denayy’ + (=1)%8 7y Dgpay'.

Moreover, note that if v = a®Id, then Dgnqy = da, so, again, we can regard a form
« as a (form-valued) endomorphism.

Throughout this paper we will use the sign conventions associated with this su-
perstructure, cf. Section 2.5.

Ezample 2.2. We consider the situation when (E, ¢) is the Koszul complex (K, ¢) =
(A O?@p, d¢) associated to a tuple (f1,..., fp) of holomorphic functions, and e1, ..., e,
is the standard basis of Og'?p so that 07 is contraction with f = fie] + -+ fpe,, see
Section 3.2. If we assume that D is trivial with respect to the induced bases e; of
(K, ), then Déy is contraction with dfy Aej + -+ +dfy Ae,. As dfi Ae] is even, we
thus get that D¢y --- D¢, is contraction with

(dfi Nel+---+dfp Nep)P =pldfs Nel A Adfy, A ey = p! dfl/\---/\dfp/\ejfl’wp},
where eg; ) and ey are frames of Ej, and Ej, see Section 3.2 for notation. Thus
(2.5) D¢y --- Doy =pldfi A--- Ndfp Neg A e’{‘lw.’p}.

2.3. Residue currents associated with Hermitian locally free resolutions.
Let G be a coherent sheaf on X of codim p > 0 with a Hermitian locally free resolution
(E, ), cf. the introduction. In [AW1] Andersson and the second author defined a
(Hom (Ey, E)-valued) current RE associated with (E,¢). We will write RF = Y~ RE,
where RE is the part of RF which takes values in Hom (Ey, Ej). The current RY is
a (0, k)-current with support on suppG and thus R” = 0 if k < p by the dimension
principle, Proposition 2.1. The current RY satisfies that if o is a holomorphic section
of Ey, then RFa = 0 if and only if a belongs to im ¢, [AW1, Theorem 1.1]; this can
be seen as a duality principle. In particular,

(2.6) R o1 =0.

The current R” is V-closed, where V = ¢ — 0, i.e., ckakE — ng,Ef1 =0 for all £. In
particular,

(2.7) epRY = 0.

For details about the construction of these residue currents, we refer to [AW1]. For
further reference, we mention that the construction is related to certain singularity
subvarieties associated to a coherent analytic sheaf, see [ST|. The singularity subva-
riety Z ,f is defined as the set where ¢;, does not have optimal rank*. By uniqueness
of minimal free resolutions, these sets are in fact independent of the choice of (E, ¢),
and indeed only depend on G.

Ezample 2.3. Assume that Z is a complete intersection of codimension p, i.e., Oz =
Ox/J, where J is a complete intersection ideal, generated by, say, f = (fi,..., fp).
Let (E, ) be the Koszul complex of f. Then the corresponding sheaf complex is a
free resolution of Oz and

_1 _1
2.8 RE=90=—nN---NO—
( ) b fp fl

A [ST], the singularity subvariety S¢(G) is defined as the set of = such that depth, G, < ¢, and
by the Auslander-Buchsbaum formula, Z,;E = Sn—k(9).

/\ 6{17"'7p} /\ 66’
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where egq 1 and ey are frames of Ej, and Ejp, see Section 3.2 for notation. This was
proven in [PTY, Theorem 4.1]° and [A2, Corollary 3.5].

2.4. A comparison formula for residue currents. Let « : H — G be a ho-
momorphism of finitely generated Ox c-modules, and let (F,) and (E,¢) be free
resolutions of H and G respectively. We say that a morphism of complexes a :
(F,v) — (E,p) extends « if the map cokert; = H — G = coker ¢ induced by ag
equals a.

Proposition 2.4. Let o : H — G be a homomorphism of finitely generated Ox -
modules, and let (F,v) and (E, ) be free resolutions of H and G respectively. Then,
there exists a morphism a : (F,¢) — (E, ) of complexes which extends c.

Ifa: (F,v) — (E, ) is any other such morphism, then there exists a morphism
so : Fop — E1 such that ag — ag = ¢150-

The existence of a follows from defining it inductively by a relatively straightfor-
ward diagram chase, see [E, Proposition A3.13], and the existence of sq follows by a
similar argument.

The residue currents associated with (E, ¢) and (F, 1) are related by the following
comparison formula, see [L42, Theorem 3.2].

Theorem 2.5. Assume that H and G are two finitely generated Ox ¢-modules with
Hermitian free resolutions (F,1) and (E,p), respectively. If a : (F,vy) — (E,p) is a
morphism of complexes, then

(2.9) RPay —aRF = VM

where M is a pseudomeromorphic Hom (Fy, E)-valued current with support on supp HU
supp G.

If we write M = > My, where M, is the part of M with values in Hom (Fy, Ey),
and if H and G have codimension > k, then M} = 0 by [La2, Corollary 3.6]. In
particular, if H and G have codimension p, then (2.9) implies that (by taking the
Hom (Fy, E)-valued part)

(2.10) Rl ag = apR] + opi1 Mpi1.
If, in addition, G is Cohen-Macaulay, i.e., it has a free resolution of length p, and

(E, ¢) is such a resolution, then

(2.11) Rlag = apR}.
Finally, we will also need to consider the situation when G is Cohen-Macaulay, but
when the free resolution does not have minimal length p. The following Lemma

follows from [L&2, Lemma 3.3 and Corollary 3.6].

Lemma 2.6. We use the notation from Theorem 2.5. Assume that H and G have
codimension p and moreover that G is Cohen-Macaulay. Then

_ E F
Mpy1 = _Up+1apRp )

E .
where 0,4 is smooth.

%In fact, in [PTY] it was proved that 9(1/f,)A- - -Ad(1/f1) equals the so-called Bochner-Martinelli
residue current of f, which by [A2, Corollary 3.5] is the coefficient of R” (i.e., the current in front
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2.5. Matrix notation. For a section v of £*(EndE) (or C*(EndE)), let {~} denote
the matrix representing v in a local frame of F.
From (2.2) it follows that if  and v are sections of £*(EndFE), then

(2.12) {By} = (—1)(degeh)(deg 1) f 31141

If we consider the main formula (1.6) as a product of matrices in a local frame, then
by repeatedly using (2.12), the formula becomes

2] = - (—1pPe D/ (D} - (D, }{RE).

(27i)Pp!
In [LW], we explicitly computed the current D¢y - - - D(ppr , when (E, ) is a certain
free resolution of a 2-dimensional Artinian monomial ideal, by multiplying matrices,
and this is the reason for why the constant C), = (—1)pP=D/240* — (_1)[P/2] gp-
peared in [LW, (7.4)].
When (E, ¢) is the Koszul complex of a tuple (f1,..., fp) of holomorphic functions
defining a complete intersection ideal J(f) of codimension p, then

1 1 ;
W{Dﬁﬁﬁ iy Dsopr} = (27”.)13])!(—1)? {Dy; - "DQOp}{Rf} _
1 9 1 4
(2.13) = (2m,)p(—1)1’ dfi A -+ N df, Aaf; Ao A 3E —
= (2712,)1)8;])/\---/\8;/\dfl/\-../\dfp: 7],

where Oz = Ox /J(f) and where we have used (2.5) and (2.8) in the second equality
and the Poincaré-Lelong formula, (1.7), in the last equality.

Assume that 5 and v are Hom (Ey, Ey)- and Hom (Ej, Ey)-valued forms, respec-
tively. Using that for scalar-valued (i x j)- and (j x i)-matrices B and C, tr(BC) =
tr(C'B), together with (2.12), one gets that

{7} = (~1) D CE ) e ({5}{}) =
= (—1)(degeB)(deg y7)+(deg s B)(deg 1) g ({(vHBY) =

_ (_1)(degeﬁ)(deg #Y)+(deg ¢B)(deg sv)+(degey)(deg £ 3) tr{,-)/ﬁ}.

Hence,
(2.14) tr (By) = (—1)(degB)(deg)—(degef)(degen) ¢ (v8).
Note that both (2.12) and (2.14) hold also when either § or 7 is a section of C*(EndE).

3. UNIVERSAL FREE RESOLUTIONS

A key ingredient in the proof of Theorem 1.2 is a specific universal free resolution
of Oz for ¢ where Z is Cohen-Macaulay. It is in general far from minimal, but
on the other hand the construction is explicit. The universal free resolution, which
is a Koszul complex over a certain ring A that we describe below, is a special case
of a universal free resolution of Cohen-Macaulay ideals due to Scheja and Storch,
[SS, p. 87-88], and Eisenbud, Riemenschneider and Schreyer, [ERS, Theorem 1.1
and Example 1.1], who however do this in an algebraic setting.

In order to prove Theorem 1.2, it will be enough to have a free resolution generically
on Z. Generically on Z, a Noether normalization 7w : Z — W is given by a projection
to W := Z,eq, and one can there describe Oz as a free Oy, ¢-module in an explicit
way, see Lemma 3.1. In Lemma 4.5, which we use to prove Theorem 1.2, we will
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use this description of Oz as a free Oy ¢-module. In this case, we can give a direct
proof that the construction of [ERS] and [SS] indeed gives a free resolution of Og;
this is Theorem 3.4.

3.1. The ring A. For a tuple o = (a1,...,0p) € NP, where N = {0,1,2...}, we use
the multi-index notation 2 := 2" - - 2,”, and, in addition, we let |a| := a1+ - - +ayp.

Lemma 3.1. Let X be a complex manifold of dimension N, and assume that J C
Ox is the defining ideal of an analytic subspace Z of X, of pure codimension p, and
let n = N —p. Let W = Z,oq and assume that § € Wies. Assume that we near §
have coordinates (z,w) € CP x C" on X, such that (z,w)(§) = 0 and that in these
coordinates, W = {z1 = --- = 2z, = 0}. Let m denote the geometric multiplicity of
W in Z near €.

Then there exist a neighbourhood U C W of €, a hypersurface Y C U, and tuples
al,...,a™ € NP such that for ( € U\ Y, Oz is a free Ow,c-module with a basis

1

(e

m
2% 020

Moreover, the tuples o' satisfy |a'| > |o?] > --- > || and if we
express any monomial 27 in terms of the 22 20 =3 fi(w)z® + T, then for all i
such that f; Z 0, we have that |a’| > |7|.

Note that if one considers a tuple 8 € NP, then, by the last statement of the
lemma, we have for each j,

(3.1) 2P = Zfi(w)zai +J,

i<j
and if § # 0, then the sum can be taken just over ¢ < j.

Proof. By the Nullstellensatz in Ox ¢, we can choose 3; such that zfi € J fori =
1,...,p. In particular, the finite set of monomials z% such that o; < §8; fori =1,...,p
must generate Oz ¢ as an Oy ¢-module. By coherence, these monomials also generate
Oz as an Oy ¢-module for ¢ in some neighbourhood U C W of &.

We let a’ be an enumeration of the tuples a with ay, < B for k =1,...,p, ordered
so that |a?| > |a?| if i < j. We now choose al,...,a™ inductively among the a

1
so that z%,..., 2%

a' = @', where i; is the first index i such that f; (w)zai = 0 in Oz, implies that
fi = 0. Then, if we have already chosen a',..., o, of = a%, we define inductively
ok +l = girt1 ag the next o’ such that if fi(w)z® + -+ fk(w)zo‘k + frp(w)2? =0,
then fyy1 = 0. Clearly, |a!| > --- > [aM].

ak:

Note that if a* is not among the of, then there exists a relation fi(w)z? =

are independent over Oy ¢ in the following way: First, we let

Zj:i]_ <k Ik.j (w)zaj in Oz¢, where f, # 0. By possibly shrinking U, we can assume

that all the fi’s are defined on U. Let Y := Uygg;, ;4 {fw =0} Thelr.l7 outside the

hypersurface Y, any such 27" can be expressed uniquely in terms of 2’ with 1j < k.

Thus, for ( e U\Y, Oz, is a free Oy ¢-module with basis zo‘l, . 22 Therefore
" .

M = m. In addition, since each 2* not among the 2% can be written in terms of
2% with i; < k, by the ordering of the a’, those o will satisfy that |af| > [a*|. O

Definition 3.2. We consider the situation in Lemma 3.1. Given ¢ € U\Y, we define
the Oy ¢-module

A=A¢:=0x¢ ®oy, Oz
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Note that by Lemma 3.1, Oz is a free Oy ¢c-module of rank m, so A is a free
Ox ¢-module of rank m, i.e., A = Og’??g. We will denote an element f ® g € A by
flg]l.- We will also sometimes use the short-hand notation f := f[1] and [g] := 1[g].
Note that since Ox ¢ and Oz are Oy ¢-algebras, so is A, and the multiplication is

defined by (f1 [91])(f2[92]) = f1f2 [9192]-

Remark 3.3. Using the notation from above, for ( € U\Y, we have a basis zo‘l, e, Z

a7n

of Oz as a free Oy ¢-module. This gives a basis [zal} ey [zo‘m] of A as afree Ox -
module. If 27 is a monomial, then we can consider (multiplication with) [27] as an ele-
ment in Endpy . (A), and the matrix of [27] with respect to the basis {zo‘l} b 227

from Lemma 3.1 is upper triangular by (3.1), and it has zeros along the diagonal
unless v = 0, in which case [27] is the identity matrix.

3.2. Universal free resolutions. Let R be a commutative ring, and let z1,...,x,
be elements of R. To fix notation, we remind that the Koszul complex of x =
(21,...,xp) is the complex (A* R*P,§,), where the differential §, is defined by inner
multiplication with x, i.e., if we choose as a standard basis ey, ..., e, of R®P then

k
0p 1 €1 > Z(*l)l_lxlief\lp
i=1

where I = (I3,..., 1)), and we use the short-hand notation e; = ey, A---Aey,. In
particular, we use the notation ey for the basis of /\0 R®P >~ R. If the sequence
x is a regular sequence, then it is well-known that (A® R?P,4,) is a free resolution
of R/(x1,...,xp), see for example [E, Corollary 17.5]. When R = Ox, then f =
(fi,..., fp) is aregular sequence if and only if codim {f; = --- = f, = 0} = p. Hence,
for complete intersection ideals, we have an explicitly defined free resolution. The
universal free resolution gives an explicit free resolution for more general ideals in
Ox ¢, but then one considers a Koszul complex over the ring A instead of over Ox .

Theorem 3.4. Assume that we are in the situation of Lemma 3.1, and that we fix
some ¢ € U\Y. Let A be as in Definition 3.2, and let z; == z; — [z] € A for
i=1,...,p. Then, the Koszul complex (K,¢) := (\* A®P,6,) of z := (z1,...,2p) is
a free resolution of Oz ¢ over A and Ox .

For tuples v,n € NP we use the partial ordering that v < n if and only if ; < n;
fori=1,...,p. We also use the short-hand notation 1 = (1,...,1) € NP.

For the convenience of the reader, we provide a proof of Theorem 3.4 in our
situation. In [SS] and [ERS], the corresponding theorem is in an algebraic setting,
and does not immediately apply to our setting, although it should be possible to adapt
the proof to our setting using analytic tensor products (cf., Section 2 in [ABM]).

Proof. By construction, K consists of free A-modules, and since, as explained above,
A is a free Ox ¢-module, K is also a complex of free Ox -modules. Exactness is
independent of whether we consider the complex as Ox ¢-modules or A-modules, so
it is sufficient to prove that (K, ¢) is a free resolution as Ox ¢-modules.

We first prove that coker ¢1 = Oz . We get a surjective mapping 7 : Ko — Oz
by letting 7(f[g]) := fg. Note that m(z;) = 0 for ¢ = 1,...,p, so we get a well-
defined induced mapping 7 : Ko/(im¢1) — Oz¢. Clearly, 7 is surjective since 7 is
surjective. Next, we claim that

(3:2) flg) = ol + > zimi,
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for some n; € A,i=1,...,p. To prove the claim, we first choose [3; such that zf’ =0
in Oz¢ for i = 1,...,p, which is possible by the Nullstellensatz. We then make a
finite Taylor expansion of f,

P
f= Z fa(w)za—f—z,ziﬁifi(z,w).
1=1

a<pf—-1

Using this Taylor expansion, in combination with the formula
o = o]+ A a4 [ = ),

and the fact that [zfﬂ =0 and fu(w)[g] = [fa(w)g], we get that f[g] is of the form
(3.2). If w(>_ filgilep) = 0, then ) fi9; = 0in Oz, and by (3.2),

> filgleo = zmjep = én,

for some n = (n1,...,m) € K, i.e., > filg:] = 0 in coker ¢y, so 7 is injective. We
thus get that coker ¢1 = Oz.

It remains to see that (K, ¢) is exact at levels £ > 1. In order to prove this, we
first prove that ¢ is pointwise surjective outside of W = {23 = --- = 2z, = 0}. If
(z,w) ¢ W, we can assume that, say, z; # 0. Then z; is invertible, with inverse

1
: k
Vi - E :Zk+1 [ZZ] ’

k=0 71

where the series is in fact a finite sum, since zf = 0 in Oz¢ for k > 1 by the
Nullstellensatz. Then, ¢1(f[g]vies) = flglep, so ¢1 is surjective as a morphism of
sheaves. Since the image is K|y, which is a vector bundle, it is also pointwise surjective.
To conclude, ¢; is pointwise surjective outside of W, i.e., Z& C W, where Z¥ is the
first singularity subvariety associated to (K, ¢).

We next prove that the complex is exact as a complex of sheaves at level £ > 1
outside of W. As above, if (z,w) is outside of W, and, say, z; # 0, and o € K, is
such that ¢ra = 0, then ¢ri1(vie; A o) = (dz7i€i) A @ = @, so the complex is exact
as a complex of sheaves outside of W. For a free resolution (E,¢), Z,i_l C ZkE , for
k > 1, see [E, Corollary 20.12]. Hence, ZE\W C ZE\W =0, ie.,, ZK Cc W for
k> 1.

To conclude, the complex (K, ¢) of length p is pointwise exact outside of W, which
has codimension p. Thus, it is exact as a complex of sheaves by the Buchsbaum-
Eisenbud criterion, [E, Theorem 20.9], because codim Z ,f > p > k and the pointwise
exactness of (K, ¢) outside of W implies that rank K} = rank ¢y, + rank ¢p1. O

In general, for ( € U \ 'Y, the universal free resolution of Oz is not minimal
as a free resolution of Ox ¢-modules. To see this, note that Ko = A, so if Z has
geometric multiplicity m > 1 near (, then ranko, Ko = m > 1, while a minimal

free resolution (F, ) of Oz would have rankp, . Eo = 1.

4. PROOFS OF THEOREM 1.2 AND THEOREM 1.5

A key part in the proof of Theorem 1.2 is to prove that the currents on the left-
hand sides of (1.8) and (1.9) are independent of the choice of locally free resolution
(E,¢) of Oz and the choice of connections on Ey, ..., E,.
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Lemma 4.1. Let G be a finitely generated Ox ¢-module of codimension p, and let
(E,¢) and (F,v) be Hermitian free resolutions of G. Then,

(4.1) tr(Depy -+ DppRY) = tr(Dypy - - D RY),

where D is the connection on End(E @ F) induced by arbitrary connections on
Eo,...,Ep andFo,...,Fp.

Lemma 4.2. Let G, (E, ), (F,v) and D be as in Lemma 4.1, and let n and T be
the natural surjections n: Fy — cokeriy = G and 7 : Ey — coker p1 = G. Then

(4.2) nDy - DRI~ = Dy -+ Do, R
Here Rg n~! and Rfol are defined as in the text preceding Theorem 1.2.

Remark 4.3. In case rank Ey = rank Fy = 1 these lemmas coincide. When G =
Ox,¢/Z, where T is a complete intersection ideal of codimension p, and (E, ¢) and
(F,v) are Koszul complexes of two minimal sets of generators of Z, then (4.1)
and (4.2) follows rather easily from the transformation law and duality principle
for Coleff-Herrera products. This was a key observation which allowed for global
versions of the Poincaré-Lelong formula (1.7) for locally complete intersections in
[DP]. In order to prove Lemma 4.1 and Lemma 4.2, we use the comparison formula,
Theorem 2.5, which is a generalization of the transformation law.

The proofs of both of these lemmas use the following lemma.

Lemma 4.4. Let (E,¢) and (F,v) be complexes of free Ox ¢-modules, and let b :
(E,p) = (F,) be a morphism of complexes. Let D be the connection on End(E® F')
induced by connections on Ey, ..., E, and Fy, ..., F,. Then,

(43) Dy --- D’Lﬂpbp =byDypy ... Dgop + o+ 6()01)
for a smooth Hom (E,, Fy)-valued (p,0)-form o and a smooth Hom (E,_1, Fy)-valued
(p, 0)-form 3.
Proof. We claim that for any 1 < k < p,
Dip1 - - Dpibp Dpiot1 - - - Depp =
Dy -+ DY _1bp 1Dy, - - - Dipp + 1o, + Bripp
for a smooth Hom (E,, F1)-valued (p, 0)-form aj, and a smooth Hom (E,_1, Fp)-valued
(p,0)-form Bj. By using this repeatedly for k = p,..., 1, we get (4.3).

To prove the claim, we note first that since b is a morphism of complexes, 1ibr =
br—1¢k, and thus,

Dipby, = D(Yrby) + i Dby, = D(br—1%) + i Dby, =
Dby_1pk + bp—1Dpy, + 1 Dby,

(4.4)

(4.5)

where the signs depend on that b is an even mapping, while v is odd.

We now replace Dby in the first line of (4.4) by the expression in the second
line of (4.5). Note first that the term coming from the term by_; Dyy, in the second
line of (4.5) equals the first term of the second line of (4.4).

We consider next the term

(4.6) Dipy - D1 Db 103 D1 - - - Doy,
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coming from the term Dby_1p) in the second line of (4.5). Since yppppi1 = 0, we
get by the Leibniz rule (2.4) and the fact that ¢, has odd degree that @yDysi1 =
Dyyppyq. Using this repeatedly for £ =k, ..., p — 1, we get that (4.6) equals

Dy -+ D1 Db 1Dpp Dppy1 - - - Dpp_10p =: Brop.

Finally, we consider the term coming from the term ;Db in the second line
of (4.5). By using that tp11 = 0 and the Leibniz rule, we get that Dy 1 =
e Dyy1, and using this repeatedly we get that this term equals

1 D3 - - Dy Db Dppi - - - Dpp =: Pra,.

To conclude, when replacing Dby in the first line of (4.4) by the last line of
(4.5), we obtain three terms of the form as in the second line of (4.4), and we have
thus proved (4.4). O

Proof of Lemma 4.1. Since G has codimension p, it is Cohen-Macaulay outside of a
subvariety of codimension p + 1. Since both sides of (4.1) are pseudomeromorphic
(p, p)-currents, it is by the dimension principle, Proposition 2.1, enough to prove
(4.1) where G is Cohen-Macaulay. We will thus assume for the remainder of the
proof that G is Cohen-Macaulay.

Let (H,n) by any free resolution of G. Using (2.14) and (2.6), we get that if
¢ : H, — H, is any smooth morphism, then
(4.7) tr(m&R,) = £ tr(ERm) = 0.

We let a : (F,¢) — (E,p) and b : (E,p) — (F,1) be morphisms of complexes
extending the identity morphism on G, see Section 2.4. Then, boa : (F,1) — (F, )
extends the identity morphism on G. Since the identity morphism on (F, 1)) trivially

also extends the identity morphism on G, we get by Proposition 2.4 that there exists
so : Fy — F1 such that

(4.8) Idg, = boao + Y1 0.
We let W = tr(Dir - -- Dy, R]). We then get by (2.6) and (4.8) that
(4.9) W = tr(Dipy - DppR]) = tr(Dipy - - - Dipp R} boao),

and by (2.14),
W = tr(agDiy - - - Dy REby).
By the comparison formula (2.10), applied to b : (E, ¢) — (F, 1), and Lemma 2.6,
RIbo = bpRY — thpy10) bR,

where UII;H is smooth. Since D - - - DYptppi1 = 1 Do - - - Dipy, 11, see the previous
proof, we get that

W = tr(agDty - - - Dz/prpRg) — tr(aowlo/Rf),
where o/ is smooth. Thus, by Lemma 4.4,
(4.10) W = tr(apbp Dy - - - Dgopr) + tr(agyr (o — O/)Rf) + tr(aoﬁgopr).

The last term in the right-hand side of (4.10) vanishes by (2.7). In addition, since a
is a morphism of complexes, agy1 = p1a1, so the middle term in the right-hand side
of (4.10) vanishes by (4.7). Thus, only the first term in the right-hand side of (4.10)
remains, i.e.,

W = tr(agboDe1 - - - Dy RY).
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From (2.14) and (4.9) (with the roles of (E, ) and (F, ) reversed), we finally con-
clude that
W = tr(Degy - Do, RY).
O

Proof of Lemma 4.2. Since the currents in (4.2) are pseudomeromorphic (p, p)-currents,
we may as in the previous proof assume that G is Cohen-Macaulay. In addition, it
is enough to prove (4.2) under the assumption that one of the free resolutions, say,
(F,1), has minimal length, p. We let a : (F,9) — (E,¢) and b: (E, ) — (F, ) be
morphisms of complexes extending the identity morphism on G.

We claim that

(4.11) RIn~" =b,RyT .
To see this, let g € Oz ¢, and let gg be such that 7g9 = g. Then, by definition,
(4.12) bpRY T g = bpyRY g0,

cf. the text right before Theorem 1.2. By (2.11), the right-hand side of (4.12) equals
Rf bogo. Since b extends the identity morphism, nbggy = 790 = g. Thus, Rf bogo
equals by definition Rf n~'g, which proves the claim.

By (4.11),
(4.13) nDyy - DY, REn™ = nDyy - Db, RET .
By Lemma 4.4, the right-hand side of (4.13) equals
(4.14) nboD1 - Dpp Ry T~ + miaRy T~ + nBe, Ry

Since n1p1 = 0, the second term in the right-hand side of (4.14) vanishes, and the last
term also vanishes by (2.7). To conclude, using that nby = 7, we thus get (4.2). O

By Lemma 4.1 and Lemma 4.2,
tr(Dey -+ DppRY) and 7Dy - - Do, RV 7!

only depend on G and not on the choice of free resolution (F, ¢) of G and connection
D. When rank Fy = 1, these currents coincide. If G = Oy, then there always exists
a free resolution (F,v) of Oz with rank Fy = 1, and thus, we get that for any free
resolution (E, ¢) of Oz,

(4.15) tr(Depq - - -D(ppr) =71Dy; -- -DgoprT_l.
Proof of Theorem 1.2. Note that by (4.15), it is enough to prove (1.8).

Let W = Z,eq. We first consider a point { € Wi, and apply Lemma 3.1. We
fix a neighbourhood V' C X of ¢ contained in the coordinate chart from Lemma 3.1

such that W ={z1=---=2,=0}on V,and VNW = U. We first prove that (1.8)
holds on V. Note that on V, [Z] = m[z; = --- = 2z, = 0], so we thus want to prove
that

1 E
(416) Wtr(leDcppRp) :m[21 = :Zp:()].

Lemma 4.5. Let ( € U\Y, and let (K, ¢) be the universal free resolution of Oz
from Theorem 3.4. Then

_
(2mi)Pp!
in a neighbourhood of (.

(4.17) tr(Dg1 - DopRE) =mlz1 = -+ = 2, = (]
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Taking this lemma for granted, using Lemma 4.1 and Theorem 3.4, we get first
that (4.16) holds in a neighbourhood of each ( € U \ Y. Thus, (4.16) holds in
a neighbourhood of U \ Y, and since both sides of (4.16) have their support on
VNW =U, (4.16) holds in fact on V' \ Y. Since Y is a hypersurface of W, and W
has codimension p in V, Y has codimension p+ 1 in V. As both sides of (4.16) are
pseudomeromorphic (p, p)-currents on V' which coincide outside of Y, (4.16) holds
on all of V' by the dimension principle, Proposition 2.1.

We have thus proven that any point { € Wi has a neighbourhood such that
(1.8) holds, and since both sides of (1.8) have support on W, (1.8) holds on X \
Wiing. Both sides of (1.8) are pseudomeromorphic (p, p)-currents on X, and Wiing
has codimension > p+ 1 in X, so we get by the dimension principle that (1.8) holds
on all of X. O

Proof of Lemma 4.5. We here use the notation from Section 3, and we let eq, ..., ¢,
be the standard basis for A®P over A. Note that over Oy, A" A®P has the basis
[zo‘i] er, where i = 1,...,mand I C {1,...,p}, |I| = k. Since by Lemma 4.1, the

left-hand side of (4.17) is independent of the choice of connection, we may assume
that D is trivial with respect to these bases.
In order to prove (4.17), we first write out the left-hand side as

m
(418)  tr(Dér---Dg,RE) =3 [za} c0)*Dé1 - - Do, RE [zai] e,
i=1
where ({zo‘l] ep)*, ..., ([z*"] ep)* is the dual basis of the basis [zo‘l} eps---, [2% ] e
of K.

We will use the comparison formula, Theorem 2.5, to compute the currents Rff [zal} g
appearing in the sum in the right-hand side of (4.18). First of all, by the Nullstellen-
satz, there exist 3; such that zfi € J fori=1,...,p. Throughout this proof, we will
let 31,..., 8, denote such a choice. We let €1,...,¢, be the standard basis of O%}C

1 ﬂp)

over Ox ¢. Welet (L,1)) be the Koszul complex over Ox ¢ of the tuple (zlﬁ cey 2

and we let Z be the ideal generated by this tuple.
Since 7 is contained in J, there exists a morphism ¢ : (L,%) — (K, ¢) extending
the natural surjection Ox ¢/Z — Oz, see Proposition 2.4. We construct explicitly

such a morphism c¢. We let ¢, be the map Ly, = A" Og’?pc — A" A% = K, induced
by the map c; : (’)g’?pc — A®P,

Bi—1
cL:€— E ziﬁl T2 e,
=0

i.e., ¢ is defined by
Ck €y N NEj 01(6i1) VANV cl(fik)-
Here, ¢g : Lo — Ky is to be interpreted as ey — [1] eg. It is straightforward to check

that c is a morphism of complexes extending the natural surjection Ox ¢/Z — Oz
by using the formula

Bi—1
(=) | Yo 2 ] | =P =[] =2,
0

vi=
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where the last equality comes from that zf 7=01in Og.
We now fix some ¢ € {1,...,m}, and let ¢ := ([zal] c): (L,Y) — (K, 9¢) (ie., ¢
equals ¢ composed with multiplication with [zal} ). This is clearly a morphism of

complexes, with ¢(ey) = [zal} eg. Thus, using the comparison formula, (2.11), for ¢,

Rf [zal} epey = [zai} ch£ .

Applying this to each term in the sum in (4.18), we get that
tr(Dey - - 'quprf) = Z ey [zai] D¢y - 'quprf {zai} epegep =

= 266 [zai} D¢y -+ D, [zal} chge@.
We write the map ¢, as
Cp : 6{1),17} }_) B /\ 6{11“')}7}7

B= Z Pl P2l

v<B-1

where

Since [zo‘z} and B commute, being elements of A, we get that

tr(Dey - - - quprf) = Z ey {zo‘z} D¢y - qupé [zal} 6{1,~~~,P}€?1,...,p}R}€16®'
We let B be the form-valued Ox ¢-linear map A — A given by
B :=eyD¢y - 'ngpBe{L“"p}.

.7 ok .
Using that ej and [za] commute, and that ef; ,y and [za} commute, we then
get that

tr(De¢y - - - DquRff) = Z {zal} B [zal] 6?1’.“’])}R£6@ = (tr B)e?l’m’p}Rgeg).
Note that by (2.8) and (2.2),

1 _1
6?17"'7P}R£6@ = (_1)1;287 VANRRRIVAY 87

Moreover, in view of the Poincaré-Lelong formula (1.7), note that

1 1
_1\ .
D" G A

Thus, from Lemma 4.6 below, we conclude that (4.17) holds. O

Lemma 4.6. Let B be as in the proof of Lemma 4.5. Then
(4.19) tr B = plmz®~tdz A - Adz,.

1 _
zﬁfldzl/\---/\dzp/\87/\---/\8 =[zn=-=2=0|.
zp"

Proof. As ¢y, is contraction with zie; + --- 4 z,e,, and D is assumed to be trivial

with respect to the bases [zaz} er, we get in the same way as in Example 2.2 that
egDé1 -+ Dopeqy,. py = p'Dzy - - - Dz

Since z; = z; — [z;], we thus get that B is a sum of terms of the form

(4.20) pldzr A (D [z4]) -+ (D [2)) 2771 7],
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where |I| 4+ |J| =p, and TUJ ={1,...,p}.

We claim that the traces of all such terms are zero, unless |J| = 0 and v = 0.
Recall from Remark 3.3 that, in the basis of A given by [20‘1] ey [zam} , the matrix
for multiplication with any monomial [25] is upper triangular, and in addition, it will

have zeros on the diagonal if and only if 6 # 0. Thus, the matrix of each D [z,] is a
(form-valued) upper triangular matrix with zeros on the diagonal, since D is assumed

to be trivial with respect to the bases [zo‘i} er. Since [27] is also upper-triangular,
the full product (4.20) is upper-triangular, and with zeros on the diagonal if |J| > 0

or v # 0. Thus, the trace is zero in case |J| > 0 or v # 0, which proves the claim.
To conclude,

trB=pldzy A--- A dzpzﬁ_l tr[1],

and since tr [1] = ranko, . A = m, we obtain (4.19). O

Proof of Theorem 1.5. We let [Z]j; be the part of the fundamental cycle [Z] of codi-
mension k, i.e., [Z]x) = >_m;[Z;], where the sum is over the irreducible components
Z; of Zyeq of codimension k, and m; is the geometric multiplicity of Z; in Z. Thus,

and it is enough to prove that

b
(2mi)kE!

for k =codim Z,...,N. Let V}, = W}, N (UgxWy); then Vi, has codimension > k + 1.
Note that both sides of (4.21) have support on Wy, and that Z has pure codimension
k on Wi\ Vi. Thus, (4.21) holds on X\ V), by Theorem 1.1. Since codim V}, > k+1 and
both sides of (4.21) are pseudomeromorphic (k, k)-currents, (4.21) holds everywhere
by the dimension principle, Proposition 2.1. O

(4.21) D1 - Dog Ry = [Z]

Remark 4.7. By analogous arguments we can prove (1.11). First

1 1 .
WtT(D% - Dy Ryy) = (QT)’%!TD% Do Ryt = [Z] ),

holds on X \ Vi by Theorem 1.2 and thus it holds everywhere by the dimension

principle.

5. EXAMPLES OF HIGHER DEGREE CURRENTS

We will start by illustrating Theorem 1.5 by explicitly computing the left-hand
side of (1.10) in the situation of Example 1.4.

Ezample 5.1. Let Z be as in Example 1.4. Then Oy has a (minimal) free resolution
0= Ocs 3 08 5 Ocs,
where

{@2}:[;‘74} and {1} =[ 2z yz |.
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Let D be (induced by) the trivial connections on Ey = O¢s, Ey = Ogg, and Ey =
Ocs. In [Lal, Example 5], the current RE = R{E + Rf was computed explicitly:
1 T | 51
Ri}=—5—+ | |0-
ey T Kk
~j @] 1 2] sl
R —78 /\6 +0 [ []/\8:: —+ pa.
\ar} (!xP ¥ |y12> aP P [ g N0 T

Note that the irreducible components Z; := {z =0} and Zs :={z =y =0} of Z
are of codimension 1 and 2, respectively; thus R[% =1 ZkR,? for Kk =1,2. Since R{E
has support on Zp it follows that Rﬁ’} = R¥. Since suppuz C {z = 0}, 1,12 has
support on Zs N{z = 0} = {z = y = z = 0}, which has codimension 3, and thus it
vanishes by the dimension principle. Since supp u1 C {x =y = 0} = Zs, we get that
17,11 = p1. Thus, to conclude,

{Rﬁ]} - 1 [

1-1 -1

Q8

By a straightforward calculation, one can then verify (1.10) in this case.

It would be interesting to consider the full currents
(5.1) Dy -~ Do Ry,

(and not only D¢y - - - Dgka[Ek]) and investigate whether these capture algebraic or
geometric information (in addition to the fundamental cycle). If (E, ¢) is the Koszul
complex of a holomorphic tuple f it was shown in [ASWY] that the currents (5.1)
satisfy a generalized King’s formula, generalizing [A1]; in particular, the Lelong num-
bers are the so-called Segre numbers of the ideal generated by f.

We remark that in the above example we do not know how to interpret the current
DgochpgRQE or rather the part DpiDgpous. Below, however, we will consider an
example where Dgpngong is a current of integration along the (only) associated
prime of codimension 2. For an ideal J over a local ring R, there is a notion of
the length along an associated prime p, defined as the length of the largest ideal in
R,/JR, of finite length, see for example [EH, Sect. IL3, p. 68]. The length of
J along p coincides with the geometric multiplicity of J(p) in J if p is a minimal
associated prime of J. It would be interesting to see whether these numbers could
be recovered from the currents (5.1). However, in view of the example below this is
not clear how to do.

Ezample 5.2. Let Z be as in Example 1.3. Then
0 Ocz 22 05 25 Oc2 — Oy,
where
Z k 4
{902}—{ k— m:| and {¢1} = [ y* =™ |,
is a free resolution of @y. Note that, since Z,..q only has one irreducible component
{y = 0} of codimension 1, Rg] =0.

Let D be (induced by) the trivial connections on Ey = O¢2, E1 = 0322, and
= O¢2. Then a direct computation yields

{Dp1Dps} = —(2k — m)xt1y* Yo A dy =: —Cz'Ly* Ldx A dy,
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where, as above, we have used the notation from Section 2.5. Next, let (F,) be
the Koszul complex of (y,z) and let ag : Fy — Eo be given by {ao} = [ 2/~ 1y*~1 |.
Then {RL'} = 9(1/z) A 9(1/y) and ag can be extended to a morphism of complexes
a: (F,¢) — (E,¢), where

A 0
)= 1] ) = | 70 0]
If we apply the comparison formula, (2.9), and identify the components that takes
values in Hom (Fpy, F3) we get that

R2Ea0 — agRg = QO3M3 — 8M2.

Note that M3 = 0 since (E, ) has length 2. Moreover, since Z&* = ZF = {z = y = 0}
has codimension > 2, My = 0 by [L42, Proposition 3.5]. Hence R¥ag = aaRL. Thus,
we get that

{Dp1 DRy} = —Ca'~'y*'dw A dy{R5} = —Cdw A dy{R5 a0} =

— Cdx Ady{asREY = —Cda A dy A 5% A 5; — (2mi)2C[0),

cf. (2.12).
We conclude that

(5.2) D1 Do Ry = (2mi)*4(2k — m)[0],

i.e., Dp1DpsRE is the current of integration along the (only) associated prime
me2g = J(z,y) of J with mass (2mi)%((2k — m). However, a computation yields
that the length of Jy along me2 g equals £(k —m); it it not clear to us how to relate
these numbers.

6. RELATION TO THE RESULTS OF LEJEUNE-JALABERT

Our results are closely related to results by Lejeune-Jalabert, [LJ1,LJ2], and we
will in this section compare our results with hers.

Throughout this section, we let Z be a (not necessarily reduced) analytic space
of pure dimension n. Assume that Z is a subspace of codimension p of the complex
manifold X of dimension N = n+p, and let Z be defined by the ideal sheaf 7 C Ox.

6.1. The Grothendieck dualizing sheaf and residue currents. If Z is Cohen-
Macaulay, then the Grothendieck dualizing sheaf wyz is

wy = Exty, (07, 08),

where Q% is the sheaf of holomorphic N-forms on X. If Z is smooth, then wy
coincides with €.

One way of realizing wy is as HP (Hom (F, Q%)), where (E, ) is a locally free
resolution of O, and another is as H? (Hom (Oz,C*)), where (CV'*,9) is the Dol-
beault complex of (NN, e)-currents on X. There is a canonical isomorphism between
these representations of wy,

(6.1) res : Hp(”}-[om (E.,Q%)) = Hp(’Hom (OZ,CN")),
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and by [A3, Theorem 1.5 and Example 1], this isomorphism can be realized concretely
by the residue current® Rf :

(6.2 res: 160> | i

where 7 is the natural surjection 7 : Fy — coker ¢; =& Oz and we consider §R5 71
as a scalar current in a similar way as in the introduction.

6.2. Coleff-Herrera currents. A (q,p)-current p on X is a Coleff-Herrera current
on Zyq, denoted pu € CH 7o’ if Ou = 0, Yu = 0 for all holomorphic functions v
vanishing on Z,q, and u has the SEP with respect to Zeq, i.e., for any hypersurface
V of Zieq, the limit 1yp = limo(1 — x(|f|/€))p exists and 1ypu = 0, where f
is a tuple of holomorphic functions defining V. This description of Coleff-Herrera
currents is due to Bjork, see [B1, Chapter 3|, and [B2, Section 6.2].

Let G be a coherent sheaf of codimension p, with a locally free resolution (E, ¢) of
length p (so that in particular, G is Cohen-Macaulay). Then RpE is a Hom (E(), E,)-
valued Coleff-Herrera current on V := suppG. To see this, note first that, by the
V-closedness of RY and the fact that E has length p, éRf = <pp+1Rf+1 = 0. The
fact that Rf has the SEP follows from the dimension principle, Proposition 2.1.
Moreover that ER;,E = 0 for any holomorphic function ¢ vanishing on V follows
from the fact that Rf is a pseudomeromorphic current with support on V, see
[AW2, Proposition 2.3].

We let (C[Z’r:d],é) denote the Dolbeault complex of (NN, e)-currents on X with
support on Zyeq. It was proven in [DS1] (for Z,q a complete intersection) and
[DS2, Proposition 5.2] (for Z,q arbitrary of pure dimension) that Coleff-Herrera
currents are canonical representatives in moderate cohomology in the sense that

(kerd:chyr —chrit) =eny ook !,
i.e., each cohomology class in H? (C[];;Cd]) has a unique representative which is a
Coleff-Herrera current. In particular,

(6.3) cHY N (una chrt ey ) — {0}

6.3. Relation to the results in [LJ1]. In this section, we discuss how the results

of Lejeune-Jalabert give our results and vice versa. The main point is to describe
how the result of [LJ1] give the following special case of Theorem 1.2.

Theorem 6.1. Let Z C X be an analytic space of pure codimension p which is
Cohen-Macaulay. Assume that Oz has a locally free resolution (E,¢) over Ox of
length p, and let D be the connection on EndE induced by connections on Ey, ..., E,.
Then,

1
(6.4) m tr(Depy -+ DppRY) = [Z],
and
(6.5) WTD% - DppRYT™! = [Z],

where T s the natural surjection T : Eg — coker ¢1 =2 Og.

6We have introduced the factor 1/(2mi)? for normalization reasons.
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In order to prove Theorem 1.2 in full generality, without assuming that Z is Cohen-
Macaulay or that (E, ¢) has length p, one can then argue in the same way as in our
proof of Theorem 1.2, but using Theorem 6.1 instead of Lemma 4.5. Indeed, first
of all, by (4.15), it is sufficient to prove just (1.8). By combining Lemma 4.1 and
Theorem 6.1, we first obtain (1.8) in a neighbourhood of each Cohen-Macaulay point.
By the dimension principle, (1.8) then holds on all of X.

In [LJ1], the fundamental class of Z is considered as a map cz : Q% — wz, where
17 is the sheaf of holomorphic n-forms on Z. If a is a section of €, and & is
a section of Q% which is a representative of o, then v := & A 7Dy --- Dy, is a
section of Hom (E,, Q¥ ® Oy). Since (E, ) has length p, v induces a section [v] of
ExtP (07,08 ® Oz). We now consider the isomorphism

(6.6) wyz = ExtP(O7,0F) = ExtP(07, 08 ® O7)

induced by the surjection Q% — Q% ® Oy, see [ALJ, Proposition 4.6]. Since Ej, is
locally free, v can locally be lifted to sections v; of Hom (E,, QY). Since (E, ¢) has
length p, these local liftings of v define sections [v;] of wy locally. On overlaps, the
~i’s differ by sections of Hom (E,, OY) ® J, and since Jwz = 0, the sections [v;]
patch together to a global section of wz, which we denote by [& ATDy1 - - - Dg,). By
construction, [&@ ATD; - - - Dipp| maps to [y] using the isomorphism (6.6). The main
theorem in [LJ1] asserts that this gives the fundamental class of « (times p!), i.e.,

(6.7) cz(a) = ;![d ANTD@y -+ Dyy).

Note that where the local lifting ; of [k ATD1 - - - Dyp] is defined, %RI;E coincides
with va =aANTDpp--- Dgopr (if we consider the currents as scalar currents).
Thus combining (6.7) with the realization (6.2) of the isomorphism (6.1), we get that

(6.8) rescy(a) = a&NTDgpy -+ - DgopRI;ET_l + OHom (04, NP1,

(2mi)Pp!

It is not entirely clear to us how the fundamental class is defined in [LJ1], but it
is reasonable to assume that if one uses the isomorphism (6.1) to represent cz(«) as
a current, then one should have

(6.9) rescz(a) = aN|Z],

where we by [Z] mean the fundamental cycle (seen as a current on X) as defined
in (1.3). Since we have an independent proof of Theorem 6.1 this assumption must
indeed be correct, cf. the last paragraph below. Note that since the right-hand
side of (6.9) is a pseudomeromorphic (p, p)-current, by the dimension principle, it is
uniquely determined by its restriction to Zes, and hence, it is independent of the
precise definition of {17, as long as the forms in {27, coincide with regular holomorphic
n-forms on Z,e; and can be lifted to holomorphic n-forms on X.

If we assume (6.9), then (6.8) implies that

pi=anZ) - &ANTDp1- Do, RET™! € (img .t e ) :

(27T2)pp' [Zred] [Zred]

By Lemma 4.2, 7Dy - -- DgoprT_l is independent of the connection D, and we
can thus assume that D is the trivial connection d in a trivialization of E. Then
D1 - - - Dy, is a holomorphic Hom (E,, Ey)-valued morphism, and thus, since Rf isa
Hom (Ey, Ep)-valued Coleff-Herrera current, 7Dy - - - DgoprTfl € CH’%red. Hence,

ue C?—[gmd, so by (6.3), u = 0. Since u = 0 for any choice of the holomorphic p-form
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& on X, we get that (6.5) holds. Finally, using (4.15), we get that (6.4) holds. To
conclude, assuming (6.9), Theorem 6.1 follows from the theorem in [LJ1].

On the other hand, Theorem 6.1 together with (6.9) implies (6.8), which in turn
implies (6.7) since (6.2) is an isomorphism. Thus, Lejeune-Jalabert’s result follows
from Theorem 6.1 and (6.9). Finally, taking Theorem 6.1 and Lejeune-Jalabert’s
result for granted, it follows that (6.9) must be a correct assumption.

[ABM]
A1)
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[ASWY]
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