
COMPUTING RESIDUE CURRENTS OF MONOMIALIDEALS USING COMPARISON FORMULASRICHARD LÄRKÄNG & ELIZABETH WULCANAbstrat. Given a free resolution of an ideal a of holomorphifuntions, one an onstrut a vetor-valued residue urrent R,whih oinides with the lassial Cole�-Herrera produt if a isa omplete intersetion ideal and whose annihilator ideal is pre-isely a.We give a omplete desription of R in the ase when a is anArtinian monomial ideal and the resolution is the hull resolution(or a more general ellular resolution). The main ingredient in theproof is a omparison formula for residue urrents due to the �rstauthor.By means of this desription, we obtain in the monomial ase aurrent version of a fatorization of the fundamental yle of a dueto Lejeune-Jalabert. 1. IntrodutionWith a regular sequene f1, . . . , fp of holomorphi funtions at theorigin in C
n, there is a anonial assoiated residue urrent, the Cole�-Herrera produt Rf

CH = ∂̄[1/fp]∧· · ·∧∂̄[1/f1], introdued in [10℄. It hassupport on {f1 = . . . = fp = 0} and satis�es the duality priniple ([11,20℄): A holomorphi funtion ξ is loally in the ideal (f) generated by
f1, . . . , fp if and only if ξ annihilates Rf

CH , i.e., ξRf
CH = 0. Given a freeresolution of an ideal (sheaf) a of holomorphi funtions, Andersson andthe seond author onstruted in [5℄ a vetor-valued residue urrent Rthat satis�es the duality priniple and that oinides with Rf

CH if a is aomplete intersetion ideal, generated by a regular sequene f1, . . . , fp,see Setion 2. This onstrution has reently been used, e.g., to obtainnew results for the ∂̄-equation and e�etive solutions to polynomialideal membership problems on singular varieties, see, e.g., [2, 3, 4, 7,24℄.In this paper we ompute the urrent R for the hull resolution (andmore general ellular resolutions), introdued by Bayer-Sturmfels [8℄,of Artinian, i.e., 0-dimensional, monomial ideals, extending previousresults by the seond author. The hull resolution of a monomial ideal
M is enoded in the hull omplex hull(M), whih is a labeled polyhe-dral ell omplex in R

n of dimension n − 1 with one vertex for eahDate: June 26, 2013.1991 Mathematis Subjet Classi�ation. 32A27, 13D02.1



2 RICHARD LÄRKÄNG & ELIZABETH WULCANminimal generator of M . The fae σ ∈ hull(M) is labeled by the leastommon multiple of the monomials orresponding to the verties of σ,see Setion 4.Theorem 1.1. Let M be an Artinian monomial ideal in C
n and let Rbe the residue urrent onstruted from the hull resolution of M . Then

R has one entry Rσ for eah (n − 1)-dimensional fae σ of hull(M),and
Rσ = ∂̄

[
1

zαn
n

]
∧ · · · ∧ ∂̄

[
1

zα1
1

]
,where zα1

1 · · · zαn
n is the label of σ.If M is a omplete intersetion ideal, hull(M) is an (n− 1)-simplexand the hull resolution is the Koszul omplex. In general, hull(M) is apolyhedral subdivision of an (n−1)-simplex. In fat, Theorem 1.1 holdsfor more general ellular resolutions, where the underlying polyhedralell omplex is a polyhedral subdivision of the (n − 1)-simplex, seeTheorem 5.1.It was proved in [10℄ that if f1, . . . , fp is a regular sequene, then

RfCH ∧
df1 ∧ · · · ∧ dfp

(2πi)p
= [(f)], (1.1)where [(f)] is the fundamental yle of the ideal (f). Our main mo-tivation to ompute R expliitly was to understand a similar fator-ization of the fundamental yle of an arbitrary ideal. By omputing

dϕ := dϕ0 ◦ · · · ◦ dϕn−1, where ϕk are the maps in the (hull) resolutionof a (generi) Artinian monomial ideal a, and using Theorem 1.1, weget
dϕ

n!(2πi)n
◦R = [a], (1.2)see Setion 7. Sine a is Artinian, [a] = m[0], where m is the geometrimultipliity dimC On

0 /a of a, see [14, Setion 1.5℄. Moreover, sine a ismonomial, m equals the volume of the stairase R
n
+ \

⋃
zα∈a

{α + R
n
+}of a. If a is a omplete intersetion ideal generated by f1, . . . , fn, then

dϕ = n!df1 ∧ · · · ∧ dfn, and thus (1.2) an be seen as a generalizationof (1.1). We reently managed to prove a generalized version of (1.2)for arbitrary ideals of pure dimension; this is a urrent version of (ageneralization of) a result due to Lejeune-Jalabert [17℄ and will be thesubjet of the forthoming paper [16℄.In [27℄ the urrent R was omputed as the push-forward of a ertainurrent in a tori resolution of the ideal M . The main result in thatpaper asserts that eah Rσ is of the formRσ = cσ∂̄[1/zαn
n ]∧· · ·∧∂̄[1/zα1

1 ]for some cσ ∈ C. The oe�ients cσ appear as integrals that seem to behard to ompute in general, see Setion 6. The proof of Theorem 1.1given here is di�erent and more diret. A key tool is a omparison



COMPUTING RESIDUE CURRENTS USING COMPARISON FORMULAS 3formula for residue urrents due to the �rst author. If
0 → O(En−1)

ϕn−1
−→ · · ·

ϕ1
−→ O(E0)

ϕ0
−→ O(E−1)is a resolution of an Artinian ideal a and . . .→ O(Fk) → O(Fk−1) → . . .is a resolution of b ⊂ a, then there are (loally) maps ak : O(Fk) →

O(Ek), so that the diagram
0 // O(En−1)

ϕn−1
// . . . ϕ1

// O(E0)
ϕ0

// O(E−1)

0 // O(Fn−1)
ψn−1

//

an−1

OO

. . . ψ1
// O(F0)

ψ0
//

a0

OO

O(F−1)

a−1

OOommutes. Theorem 1.3 in [15℄ asserts that REa−1 = an−1R
F if RE and

RF are the urrents assoiated with O(E•) and O(F•), respetively, seeSetion 2.1.The main ingredient in the proof of Theorem 1.1 is Proposition 5.2,whih gives an expliit desription of mappings ak when O(E•) and
O(F•) are ellular resolutions suh that the underlying polyhedral ellomplex of O(E•) re�nes the polyhedral ell omplex of O(F•), andwhih we have not managed to �nd in the literature. Letting O(E•) bethe hull resolution of M and O(F•) the Koszul omplex of a sequene
zb11 , . . . , z

bn
n ontained in M , so that RF is the simple Cole�-Herreraprodut ∂̄[1/zbnn ] ∧ · · · ∧ ∂̄[1/zb11 ], we an then easily ompute RE .The paper is organized as follows. In Setions 2 and 4 we providesome bakground on residue urrents and ellular resolutions, respe-tively. In Setion 3 we prove some basi results onerning orientedpolyhedral omplexes, whih are needed for the proof of Theorem 1.1(and the slightly more general Theorem 5.1). The proof oupies Se-tion 5. In Setion 6 we ompare Theorems 1.1 and 5.1 to previousresults and also illustrate them by some examples. In Setion 6.1 weonsider residue urrents of non-Artinian monomial ideals, and, �nally,in Setion 7 we disuss the relation to fundamental yles.Aknowledgment. We would like to thank Mats Andersson, MattiasJonsson, and Mirea Mustaµ  for helpful disussions. We would alsolike to thank the referee for valuable omments and suggestions. Theseond author was supported by the Swedish Researh Counil.2. Residue urrentsGiven a holomorphi funtion f we will write [1/f ] (or sometimes just

1/f) for the prinipal value distribution of 1/f , whih an be realized,e.g., as the limit of the smooth approximands f̄

|f |2+ǫ
. If f is a regularsequene of (germs of) holomorphi funtions f1, . . . , fp one an givemeaning to produts of prinipal values [1/fj] and residue urrents

∂̄[1/fk], as was �rst done in [10℄, see also [21℄. The produts an bede�ned, e.g., by taking the limit of produts of the orresponding forms



4 RICHARD LÄRKÄNG & ELIZABETH WULCAN
f̄j

|fj |2+ǫ
and ∂̄ f̄k

|fk|2+ǫ
. They are (anti-)ommutative in the fators andsatisfy Leibniz' rule: If fk = g1 · · · gs, then

∂̄

[
1

fk

]
∧· · ·∧∂̄

[
1

f1

]
=

∑

j

[
1

g1 · · · ĝj · · · gs

]
∂̄

[
1

gj

]
∧∂̄

[
1

fk−1

]
∧· · ·∧∂̄

[
1

f1

]
.(2.1)We will denote the Cole�-Herrera produt ∂̄[1/fp] ∧ · · · ∧ ∂̄[1/f1] of fby Rf

CH . If fj = z
bj
j for j = 1, . . . , n, then the ation of Rf

CH on thetest form ξ(z)dz1 ∧ · · · ∧ dzn equals
(2πi)n

(b1 − 1)! · · · (bn − 1)!

∂b1+···+bn−n

∂zb1−1
1 · · ·∂zbn−1

n

ξ(0).Consider a omplex of Hermitian holomorphi vetor bundles over aomplex manifold X of dimension n,
0 → EN

ϕN−→ . . .
ϕ2
−→ E1

ϕ1
−→ E0

ϕ0
−→ E−1, (2.2)that is exat outside an analyti variety Z ⊂ X of positive odimension

p. Suppose that the rank of E−1 is 1. In [5℄ Andersson and the seondauthor onstruted an End(
⊕

Ek)-valued urrent R = RE that in aertain sense measures the lak of exatness of the assoiated sheafomplex of holomorphi setions
0 → O(EN)

ϕN−→ · · ·
ϕ1
−→ O(E0)

ϕ0
−→ O(E−1). (2.3)The urrent R has support on Z and if ξ ∈ O(E−1) satis�es Rξ = 0then ξ ∈ Imϕ0. If (2.3) is exat, i.e., if it is a loally free resolutionof the sheaf O(E−1)/Imϕ0, then Rξ = 0 if and only if ξ ∈ Imϕ0. Thegrading in (2.2) is somewhat unorthodox; in [5℄ the omplex ends at

E0. In this paper the grading is shifted by one step, in order to makeit �t the grading of the hull omplex better.LetRℓ
k denote the omponent ofR that takes values inHom (Eℓ−1, Ek−1)and let Rℓ =

∑
k R

ℓ
k. The shifting of the indies here is motivated bythe shifting of the grading of (2.2) ompared to [5℄. If (2.3) is exat,then Rℓ = 0 for ℓ ≥ 1. We then write Rk = R0

k without any risk ofonfusion. The urrent Rk has bidegree (0, k), and thus, by the dimen-sion priniple for residue urrents (see [6℄, Corollary 2.4), Rk = 0 for
k < p, and for degree reasons, Rk = 0 for k > n. In partiular, if(2.3) is a resolution of length p of a Cohen-Maaulay ideal sheaf, i.e.,at eah x ∈ X, there is a resolution of length p (so that (2.3) endsat level p − 1), then R = Rp. In this ase, R is independent of theHermitian metris on the bundles Ek. By Hilbert's syzygy theorem,eah 0-dimensional ideal sheaf is Cohen-Maaulay.The degree of expliitness of the urrent R of ourse depends on thedegree of expliitness of the omplex (2.2). In general it is hard to �ndexpliit free resolutions. In Setion 4 we will desribe a method for on-struting free resolutions of monomial ideals due to Bayer-Sturmfels [8℄.



COMPUTING RESIDUE CURRENTS USING COMPARISON FORMULAS 5Example 2.1. Let f be a sequene of holomorphi funtions f1, . . . , fp ina domain Ω in C
n, and let (2.2) be the Koszul omplex of f : Identify

f with a setion f =
∑
fjej of a trivial vetor bundle Ẽ of rank pover Ω with frame ej. Let Ek−1 be the kth exterior produt ΛkẼ∗ ofthe dual bundle Ẽ∗, equipped with the trivial metri, and let ϕk−1 beontration δf with f , i.e.,

δf : e∗i1 ∧ · · · ∧ e∗ik 7→
∑

j

(−1)j−1fije
∗
i1
∧ · · · ∧ e∗ij−1

∧ e∗ij+1
∧ · · · ∧ e∗ik ,where e∗j is the dual frame to ej . Then the entries of RE are theBohner-Martinelli residue urrents of f in the sense of Passare-Tsikh-Yger [22℄, see [1℄. If f de�nes a omplete intersetion ideal a, then theKoszul omplex of f is a resolution of a and the urrent RE = RE

pthen equals the Cole�-Herrera produt Rf
CH (times e∗1 ∧ · · · ∧ e∗p), see[22, Theorem 4.1℄ or [1, Theorem 1.7℄. The urrents RE an thus beseen as generalizations of the Cole�-Herrera produts and the fat that

REξ = 0 if and only if ξ ∈ Imϕ0 when (2.3) is exat an be seen as anextension of the duality priniple for Cole�-Herrera produts.
�2.1. A omparison formula for residue urrents. Assume that

E•, ϕ• and F•, ψ• are Hermitian omplexes of vetor bundles and thatthere are holomorphi mappings ak : O(Fk) → O(Ek) so that thediagram
0 // O(EN )

ϕN
// . . . ϕ1

// O(E0)
ϕ0

// O(E−1)

0 // O(FN)
ψN

//

aN

OO

. . . ψ1
// O(F0)

ψ0
//

a0

OO

O(F−1)

a−1

OO

(2.4)
ommutes. For example, if the sheaf omplex (2.3) is exat and Imψ0 ⊂
Imϕ0 one an always �nd maps ak : Ox(Fk) → Ox(Ek) for eah
x ∈ X, so that the orresponding diagram ommutes, see [12, Propo-sition A3.13℄.In [15℄ the residue urrents assoiated with E•, ϕ• and F•, ψ• arerelated in terms of the morphisms ak. Assume that O(E•), ϕ• and
O(F•), ψ• are loally free resolutions of minimal length of O(E−1)/aand O(F−1)/b, respetively, where a and b are Cohen-Maaulay idealsof odimension p. Then Theorem 1.3 in [15℄ asserts that

REa−1 = ap−1R
F . (2.5)We will apply (2.5) to the situation where a and b are ideals ofO(E−1) =

O(F−1) suh that b ⊂ a (and a−1 is the isomorphism O(F−1) ∼=
O(E−1)).IfE•, ϕ• and F•, ψ• are Koszul omplexes of regular sequenes f1, . . . , fpand g1, . . . , gp, respetively, suh that [gp . . . g1]

T = A[fp . . . f1]
T for



6 RICHARD LÄRKÄNG & ELIZABETH WULCANsome holomorphi matrix A, then (2.5) is just the transformation lawfor Cole�-Herrera produts:
Rf
CH = det(A)Rg

CH , (2.6)see [15, Remark 2℄.3. Oriented polyhedral ell omplexesReall that a fae of a polytope σ is the intersetion of σ and asupporting hyperplane of σ. A polyhedral ell omplex X is a �niteolletion of onvex polytopes in R
n for some n, the faes of X, thatsatisfy that if σ ∈ X and τ is a fae of σ, then τ ∈ X, and moreover if σand σ′ are inX, then σ∩σ′ is a fae of both σ and σ′. For a referene onpolytopes and polyhedral ell omplexes, see, e.g., [30℄. The dimensionof a fae σ, dim σ, is de�ned as the dimension of its a�ne hull (in R

n)and the dimension of X, dimX, is de�ned as maxσ∈X dim σ. Let Xkdenote the set of faes of X of dimension k; X−1 should be interpretedas {∅}. If dim σ = k, then a fae of σ of dimension k − 1 is said tobe a faet of σ. Faes of dimension 0 are alled verties and faes ofdimension 1 are alled edges. A fae σ is a simplex if the number ofverties is equal to dim σ + 1. A polyhedral ell omplex X ′ ⊂ X issaid to be a subomplex of X.We will write |X| for the union of all faes in X. A polyhedral subdi-vision of a polytope σ ⊂ R
n is a polyhedral ell omplex X, suh that

|X| = σ. If Y is a polyhedral ell omplex suh that |X| = |Y | andeah fae in Y is a union of faes in X; we say that X re�nes Y .The following lemma an be proved by standard arguments, f., e.g.,[30℄. Note that the assumption that |X| is onvex is ruial. Forexample, the lemma fails to hold if X onsists of three edges meetingat a single vertex.Lemma 3.1. Let X be a polyhedral ell omplex of dimension k ≥ 1,suh that |X| is a onvex polytope. Consider τ ∈ Xk−1. If τ is ontainedin the boundary of |X|, there is a unique σ ∈ Xk suh that τ is a faetof σ. Otherwise there are preisely two faes σ1, σ2 ∈ Xk suh that τ isa faet of σ1 and σ2.3.1. Orientation. For a onvex set S ⊂ R
n we let spanS be theunderlying vetor spae of the a�ne hull of S. In other words, spanSis the subspae of R

n generated by vetors of the form ρ1 − ρ2, where
ρ1, ρ2 ∈ S. By an oriented polytope in R

n we will mean a polytope
σ ⊂ R

n together with an orientation of the subspae span σ. Withinthis setion will write σ for the polytope and reserve σ for the orientedpolytope. Reall that an orientation of span σ is determined by a linearform, whih we denote by ωσ, on Λk(span σ) if dim σ = k ≥ 1; a basis
w1, . . . , wk of span σ is positively oriented if and only if ωσ(w1 ∧ · · · ∧
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wk) > 0. There is only one way of orienting polytopes of dimension 0as well as the empty set.Remark 3.2. An oriented simplex an equivalently be seen as a sim-plex together with an equivalene lass of the total ordering of theverties, where two orderings are equivalent if and only if they di�erby an even permutation. We write [v1, . . . , vk+1] for the simplex withverties v1, . . . , vk+1 together with the equivalene lass of the ordering
v1 < . . . < vk+1, and −[v1, . . . , vk+1] for the simplex with the oppositeorientation, f. for instane, [23, Chap. 4℄. If σ is a simplex with ver-ties v1, . . . , vk+1, we identify σ = [v1, . . . , vk+1] with σ oriented so thatthe basis v1 − vk+1, · · · , vk − vk+1 of span σ is positively oriented. �An oriented polytope σ of dimension k ≥ 2 indues orientations ofthe faets of σ in the following way: Let τ be a faet of σ, and let η bea normal vetor to the a�ne hull of τ in the a�ne hull of σ pointing inthe diretion of σ. We will say that suh a vetor η is a normal vetorto τ pointing inwards to σ. Then, the orientation of span τ indued by
σ is de�ned by that a basis w1, . . . , wk−1 of span τ is positively orientedif and only if η, w1, . . . , wk−1 is a positively oriented basis of span σ.If σ is a simplex [v1, . . . , vk+1] and τ is obtained from σ by removingthe vertex vj , then it is easily veri�ed that σ indues the orientation
(−1)j−1[v1, . . . , vj−1, vj+1, . . . , vk+1] of τ .We say that a polyhedral ell omplex is oriented if eah fae isequipped with an orientation. More preisely, an oriented polyhedralell omplex is a �nite olletion of oriented polytopes σ, suh that theunderlying polytopes σ form a polyhedral ell omplex; we say that τis a fae of σ if τ is a fae of σ et.If X is an oriented polyhedral ell omplex, σ ∈ Xk, and τ ∈ Xk−1is a faet of σ, let sgn(τ, σ) = 1 if the orientation of τ indued by theorientation of σ oinides with the orientation of τ , and let sgn(τ, σ) =
−1 otherwise. If w1, . . . , wk−1 is a basis of span τ , and η is a normalvetor of τ pointing inwards to σ, then
sgn(τ, σ) = sgn

(
ωσ(η ∧ w1 ∧ · · · ∧ wk−1)

)
/ sgn

(
ωτ (w1 ∧ · · · ∧ wk−1)

)
.(3.1)If k = 1, we interpret sgn(τ, σ) as 1 if the normal η pointing inwardsto σ is positively oriented, and −1 otherwise, and if k = 0 we interpret

sgn(τ, σ) as 1. This is onsistent with (3.1) if we interpret ωσ as 1 if
dim σ ≤ 0.Similarly if σ ∈ Xk and σ′ is any oriented polytope of dimension kthat is ontained in σ (i.e., σ′ ⊂ σ), let sgn(σ′, σ) = 1 if the orientationof span σ′ = span σ given by σ′ oinides with the orientation given by
σ and let sgn(σ′, σ) = −1 otherwise. If w1, . . . , wk is a basis of span σ,then

sgn(σ′, σ) = sgn
(
ωσ(w1 ∧ · · · ∧ wk)

)
/ sgn

(
ωσ′(w1 ∧ · · · ∧ wk)

)
. (3.2)
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σ

τ

σ
′

τ
′

σ1
σ2τ

Figure 3.1. Examples of faes σ, τ , σ′, and τ ′ inLemma 3.3 (in the left and middle �gure) and faes σ1,
σ2 and τ in Lemma 3.4 (in the right �gure).If k ≤ 0, sgn(σ′, σ) should be interpreted as 1.Lemma 3.3. Let X and X ′ be oriented polyhedral ell omplexes suhthat X ′ re�nes X. Assume that σ′ ⊂ σ, where σ ∈ Xk and σ′ ∈ X ′

k.Moreover assume that τ ∈ Xk−1 and τ ′ ∈ X ′
k−1 are faets of σ and σ′,respetively, and that τ ′ ⊂ τ . Then

sgn(σ′, σ) sgn(τ ′, σ′) = sgn(τ, σ) sgn(τ ′, τ). (3.3)Proof. Let η be a normal vetor of τ ′ pointing inwards to σ′. Then, ηis also a normal vetor of τ pointing inwards to σ. Let w1, . . . , wk−1be a basis of span τ ′ = span τ . Then by (3.1) and (3.2), both sides of(3.3) are equal to
sgn

(
ωσ(η ∧ w1 ∧ · · · ∧ wk−1)

)
/ sgn

(
ωτ ′(w1 ∧ · · · ∧ wk−1)

)
.

�Lemma 3.4. Let σ be an oriented polytope of dimension k ≥ 1, andlet X be a polyhedral subdivision of σ. Assume that τ ∈ Xk−1 is a faetof two faes σ1, σ2 ∈ Xk. Then
sgn(σ1, σ) sgn(τ, σ1) + sgn(σ2, σ) sgn(τ, σ2) = 0. (3.4)Proof. Being in the same situation as in the seond ase in Lemma 3.1,it is easily veri�ed that we may assume that |X| = σ ⊂ R

k
x1,...,xk

,
τ ⊂ {xk = 0}, and σj ⊂ Hj, j = 1, 2, where H1 = {xk ≥ 0} and
H2 = {xk ≤ 0}. Then the vetor η := (0, . . . , 0, 1) is a normal vetorto τ pointing inwards to σ1 and −η is a normal vetor to τ pointinginwards to σ2. Letting w1, . . . , wk−1 be a basis of span τ , by (3.1) and(3.2) the �rst term in the left-hand side of (3.4) equals

sgn
(
ωσ(η ∧ w1 ∧ · · · ∧ wk−1)

)
/ sgn

(
ωτ (w1 ∧ · · · ∧ wk−1)

) (3.5)and the seond term equals (3.5) with the opposite sign.
�



COMPUTING RESIDUE CURRENTS USING COMPARISON FORMULAS 94. Cellular resolutions of monomial idealsLet us reall the onstrution of ellular resolutions due to Bayer-Sturmfels [8℄. Let S be the polynomial ring C[z1, . . . , zn]. We say thatan (oriented) polyhedral ell omplexX is labeled if there is a monomial
mi in S assoiated with eah vertex vi. An arbitrary fae σ of X isthen labeled by the least ommon multiple of the labels of the vertiesof σ, i.e., by mσ = lm{mi|i ∈ σ}; m∅ should be interpreted as 1. Wewill sometimes be sloppy and not di�er between the faes of a labeledomplex and their labels.De�nition 4.1. If X and Y are two labeled polyhedral ell omplexes,we say that X re�nes Y if X re�nes Y as polyhedral ell omplexes,i.e., |X| = |Y |, and eah fae of Y is a union of faes in X, and inaddition, we require that if σ′ ∈ X, σ ∈ Y , and σ′ ⊂ σ, then mσ′ |mσ.Note that this implies that the ideal generated by the labels of theverties of Y must be ontained in the ideal generated by the labels ofthe verties of X.Let M be a monomial ideal in S, i.e., M an be generated bymonomials. We will use the shorthand notation zα for the mono-mial zα1

1 · · · zαn
n in S. It is easy to hek that a monomial ideal hasa unique minimal set of generators that are monomials; assume that

{m1, . . . , mr} is a minimal set of monomial generators of M . Next,let X be an oriented polyhedral ell omplex with verties {1, . . . , r}labeled by {m1, . . . , mr}. We will assoiate with X a graded omplexof free S-modules: For k = −1, . . . , dimX, let Ak be the free S-modulewith basis {eσ}σ∈Xk
and let the di�erential ϕk : Ak → Ak−1 be de�nedby

ϕk : eσ 7→
∑faets τ⊂σ sgn(τ, σ)

mσ

mτ

eτ . (4.1)Note that mσ/mτ is a monomial when τ is a fae of σ. The omplex
FX : 0 → AdimX

ϕdimX−→ · · ·
ϕ1
−→ A0

ϕ0
−→ A−1is the ellular omplex supported on X. Note that, with the identi�-ation A−1 = S, the okernel of ϕ0 equals S/M . The omplex FX isexat if the labeled omplex X satis�es a ertain ayliity ondition.More preisely, for β ∈ N

n, where N = {0, 1, . . .}, let X�β denote thesubomplex of X onsisting of all faes σ for whih zβ is divisible by
mσ. Then FX is exat if and only if X�β is ayli, whih means that itis empty or has zero redued homology, for all β ∈ N

n, see [18, Propo-sition 4.5℄. Note, in partiular, that the ayliity does not depend onthe orientation of X. When FX is exat we say that it is a ellularresolution of S/M .To put the ellular resolutions into the ontext of [5℄, let us onsiderthe vetor bundle omplex (2.2), where Ek for k = −1, . . . , N = dimXis a trivial bundle over C
n of rank equal to the number of faes in
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Xk, with a global frame {eσ}σ∈Xk

, endowed with the trivial metri,and where the di�erential ϕk is given by (4.1). We will say that theorresponding residue urrent R is assoiated with X and denote it by
RX , and we will use Rσ to denote the oe�ient of eσ⊗e∗∅. The induedsheaf omplex (2.3) is exat if and only if FX is. This follows from thestandard fat that the ring O0 of germs of holomorphi funtions at
0 ∈ C

n is �at over S, see for example [25, Theorem 13.3.5℄. We willthink of monomial ideals sometimes as ideals in the polynomial ring S,sometimes as ideals in the ring of entire funtions in C
n, and sometimesas ideals in the loal ring On

0 .4.1. The hull resolution. Given a monomial idealM in S and t ∈ R,let Pt = Pt(M) be the onvex hull in R
n of {(tα1 , . . . , tαn) =: tα | zα ∈

M}. Then Pt is a unbounded polyhedron in R
n of dimension n andthe fae poset (i.e., the set of faes partially ordered by inlusion) ofbounded faes of Pt is independent of t if t ≫ 0. The hull omplex

hull(M) of M , introdued in [8℄, is the polyhedral ell omplex of allbounded faes of Pt for t ≫ 0. The verties of hull(M) are preiselythe points tα, where zα is a minimal generator of M , and thus hull(M)admits a natural labeling. The orresponding omplex Fhull(M) is aresolution of S/M ; it is alled the hull resolution.Example 4.2. Let N be the omplete intersetion ideal (zb11 , . . . , z
bn
n ).Then, hull(N) is the polyhedral ell omplex onsisting of the (n− 1)-simplex∆ = [v1, . . . , vn] inR

n and its faes, where v1 = (tb1 , 1, . . . , 1), v2 =
(1, tb2, 1, . . . , 1), . . . , vn = (1, . . . , 1, tbn). The verties v1, . . . , vn of hull(N)are labeled by zb11 , . . . , zbnn , respetively, and we assume the faes are ori-ented so that the simplex σ with verties vi1 , . . . , viℓ equals [vi1 , . . . , viℓ ]if i1 < . . . < iℓ. Then the orresponding ellular omplex Fhull(N) is theKoszul omplex of (zb11 , . . . , z

bn
n ), and

Rhull(N) = ∂̄

[
1

zbnn

]
∧ · · · ∧ ∂̄

[
1

zb11

]
e∆ ⊗ e∗∅, (4.2)f. Setion 3.1 and Example 2.1. Note that a di�erent orientation of thetop-dimensional simplex ∆ = [v1, . . . , vn] would permute the residuefators in (4.2). �The example shows that the hull omplex of the omplete inter-setion ideal is the ellular omplex onsisting of an (n − 1)-simplextogether with its faes. In general, if M is Artinian, hull(M) is apolyhedral subdivision of suh an (n− 1)-simplex or, rather, it an beembedded as one, see, e.g., (the proof of) Theorem 4.31 in [18℄. Wewill need the following more preise desription of this embedding. Tobegin with, we note that an Artinian monomial ideal has monomialsof the form zβ1

1 , . . . , z
βn
n among its minimal monomial generators. Notealso that every other minimal generator has degree smaller than βiin zi.



COMPUTING RESIDUE CURRENTS USING COMPARISON FORMULAS 11Proposition 4.3. LetM be an Artinian monomial ideal with (zb11 , . . . , z
bn
n )among its minimal monomial generators. Let N be the omplete inter-setion ideal (zb11 , . . . , z

bn
n ). Then hull(M) an be embedded as a re�ne-ment of hull(N) as labeled polyhedral ell omplexes.We will be sloppy and not always distinguish between the hull om-plex of M and its embedding.Proof. That hull(M) re�nes hull(N) as polyhedral ell omplexes isTheorem 4.31 in [18℄. In fat, it follows from the proof in [18℄ of thattheorem that it is a re�nement also as labeled polyhedral ell omplexes.To see this, we begin by realling (slightly di�erently desribed) theonstrution of the embedding in that proof.We know from Example 4.2 that hull(N) onsists of the faes of thesimplex ∆ with verties v1 = (tb1 , 1, . . . , 1), . . . , vn = (1, . . . , 1, tbn). Fora point p 6= 1 := (1, . . . , 1), with pi ≥ 1, onsider the line ℓ through

1 and p. Sine pi ≥ 1, ℓ intersets ∆ in a unique point, whih wedenote π(p). Moreover, sine | hull(M)| is ontained in the set where
pi ≥ 1, we get a map π : | hull(M)| → ∆, whih indues an embeddingof hull(M) into ∆ by letting the faes of the embedded omplex be theimages π(σ), where σ ∈ hull(M) (with the same labeling).Consider a fae σ′ of hull(M) suh that π(σ′) ⊆ σ = [vi1 , . . . , vik ].Then the verties of π(σ′) must be ontained in the set {x ∈ R

n |
xi = 1, i 6= i1, . . . , ik}, sine the vij are. A vertex v of hull(M) withlabel mv = zα has oordinates (tα1 , . . . , tαn), so if π(v) is ontainedin {xi = 1}, then we must have αi = 0 in mv. It follows that mσ′is of the form mσ′ = z

αi1
i1

. . . z
αik

ik
, and sine eah label of a minimalmonomial generator is of degree at most bi in zi, the same must holdformσ′ sine it is the ommon multiple of suh labels. Hene, mσ′ |mσ =

z
bi1
i1
. . . z

bik
ik
. �Reall that a graded free resolution A•, ϕ• is minimal if and only iffor eah k, ϕk maps a basis of Ak to a minimal set of generators of Imϕk,see, e.g., [13, Corollary 1.5℄. The hull resolution is not minimal in gen-eral, f. Example 6.1. However, ifM is a generi monomial ideal in thesense of [9, 19℄, the hull omplex is simpliial, i.e., all faes are simplies,and it oinides with the Sarf omplex of M , whih is a minimal reso-lution of S/M , see [9℄. The ideal M is generi if whenever two distintminimal generators mi and mj have the same positive degree in somevariable, then there exists a third generator mk that stritly dividesthe least ommon multiple zα of mi and mj , meaning that mk divides

zα1−1
1 · · · zαn−1

n . Note that when n ≤ 2 all monomial ideals are generi.The Sarf omplex of M is the olletion of subsets I ⊂ {1, . . . , r}whose orresponding least ommon multiplemI := lm i∈Imi is unique.



12 RICHARD LÄRKÄNG & ELIZABETH WULCAN5. Proof of Theorem 1.1We will prove a slightly more general version of Theorem 1.1. If Nis a omplete intersetion ideal (zb11 , . . . , z
bn
n ), by Example 4.2, hull(N)is the polyhedral ell omplex onsisting of the faes of an oriented

(n− 1)-simplex ∆, with verties labeled by zb11 , . . . , zbnn . In partiular,
hull(N)n−1 onsists of only the simplex ∆.Theorem 5.1. LetM be an Artinian monomial ideal in S = C[z1, . . . , zn].Assume that FX is a ellular resolution of S/M suh that the under-lying labeled polyhedral ell omplex X re�nes the hull omplex of aomplete intersetion ideal N = (zb11 , . . . , z

bn
n ), i.e., the (n− 1)-simplex

∆ with verties labeled by zb11 , . . . , zbnn . Then the assoiated residue ur-rent RX has one entry Rσ for eah (n − 1)-dimensional fae σ of X,and
Rσ = sgn(σ,∆)∂̄

[
1

zαn
n

]
∧ · · · ∧ ∂̄

[
1

zα1
1

]
,where zα1

1 · · · zαn
n is the label of σ.Theorem 1.1 orresponds to the ase when X equals hull(M); there�nement is given by Proposition 4.3, and the orientation of hull(M)is impliitly assumed to be suh that sgn(σ,∆) = 1 for eah σ ∈

hull(M)n−1.Proposition 5.2. Let X and Y be oriented labeled polyhedral ell om-plexes suh that X re�nes Y , and let E•, ϕ• and F•, ψ• be the orre-sponding vetor bundle omplexes. For k ≥ −1 let ak : Fk → Ek be themapping
ak : eσ 7→

∑

σ′⊂σ

sgn(σ′, σ)
mσ

mσ′
eσ′ , (5.1)where the sum is over all σ′ ∈ Xk that satisfy σ′ ⊂ σ ∈ Yk. Then the

ak are holomorphi and the diagram (2.4) ommutes.We let X and N be as in Theorem 5.1, and Y = hull(N). Sine
dimX = dim Y = n − 1, the omplexes E•, ϕ• and F•, ψ• end at level
n − 1. Thus, identifying E−1 and F−1 and taking Proposition 5.2 forgranted, (2.5) yields
RX = RE = an−1R

F =
∑

σ⊂∆

sgn(σ,∆)
m∆

mσ

∂̄

[
1

zbnn

]
∧· · ·∧ ∂̄

[
1

zb11

]
eσ⊗e

∗
∅;here we have used (4.2) for the last equality. Sine |X| = |Y | = ∆,the sum is over all σ ∈ Xk, and sine m∆ = zb11 · · · zbnn the oe�ient of

eσ ⊗ e∗∅ is just
sgn(σ,∆)∂̄

[
1

zαn
n

]
∧ · · · ∧ ∂̄

[
1

zα1
1

]
,where zα1

1 · · · zαn
n = mσ. This onludes the proof of Theorem 5.1.



COMPUTING RESIDUE CURRENTS USING COMPARISON FORMULAS 13Proof of Proposition 5.2. Sine X re�nes Y as a labeled polyhedral ellomplex, eah mσ/mσ′ in (5.1) is holomorphi and thus the ak areholomorphi.To show that (2.4) ommutes, we �rst onsider the ase k ≥ 1. Pik
σ ∈ Yk. Then

eσ
ψk7−→

∑

τ⊂σ

sgn(τ, σ)
mσ

mτ

eτ
ak−1
7−→

∑

τ⊂σ

∑

τ ′⊂τ

sgn(τ, σ) sgn(τ ′, τ)
mσ

mτ ′
eτ ′ .(5.2)Here the �rst sum is over the faets τ ∈ Yk−1 of σ, and the seond sumis over the faes τ ′ ∈ Xk−1 that are ontained in τ . Moreover

eσ
ak7−→

∑

σ′⊂σ

sgn(σ′, σ)
mσ

mσ′
eσ′

ϕk7−→
∑

σ′⊂σ

∑

τ ′⊂σ′

sgn(σ′, σ) sgn(τ ′, σ′)
mσ

mτ ′
eτ ′ .(5.3)Now the �rst sum is over the faes σ′ ∈ Xk that are ontained in σ,whereas the seond sum is over the faets τ ′ ∈ Xk−1 of σ′.Let Xσ be the k-dimensional subomplex of faes of X that are on-tained in σ and onsider τ ′ ∈ Xσ

k−1. Note that X being a re�nementof Y means that Xσ is a polyhedral subdivision of σ. Assume that τ ′is ontained in a faet τ of σ. Sine dim τ ′ = k − 1 = dim τ , there is aunique suh τ , and thus the oe�ient of eτ ′ (in the rightmost expres-sion) in (5.2) equals sgn(τ, σ) sgn(τ ′, τ) mσ

mτ ′
. Moreover, τ ′ is ontainedin the boundary of |Xσ| and thus by Lemma 3.1 there is a unique

σ′ ∈ Xσ
k suh that τ ′ ⊂ σ′. Therefore the oe�ient of eτ ′ (in the right-most expression) in (5.3) is sgn(σ′, σ) sgn(τ ′, σ′) mσ

mτ ′
. By Lemma 3.3these oe�ients oinide.If τ ′ is not ontained in any faet τ of σ, then learly the oe�ient of

eτ ′ in (5.2) is zero. Also, then τ ′ is not ontained in the boundary ofXσ,and thus by Lemma 3.1, τ ′ is a faet of exatly two faes σ′
1, σ

′
2 ∈ Xσ

k .Hene the oe�ient of eτ ′ in (5.3) is
(
sgn(σ′

1, σ) sgn(τ ′, σ′
1) + sgn(σ′

2, σ) sgn(τ ′, σ′
2)

)mσ

mτ ′
,whih by Lemma 3.4 vanishes. Sine the sums in (5.2) and (5.3) are onlyover τ ′, σ′ ∈ X that are inXσ, it follows that ak−1◦ψk(eσ) = ϕk◦ak(eσ).For k = 0, pik a vertex σ ∈ Y0. Sine X is a polyhedral subdivisionof Y and σ is a vertex, the only σ′ ∈ X0 with σ′ ⊂ σ is σ′ = σ. Thus

ϕ0 ◦ a0(eσ) = ϕ0(mσ/mσ′eσ′) = mσe∅. Note that a−1 maps e∅ to e∅.Thus a−1 ◦ ψ0(eσ) = mσe∅.We onlude that ak−1 ◦ ψk = ϕk ◦ ak for k ≥ 0; in other words, thediagram (2.4) ommutes. �6. Comparison to previous resultsIn [27℄ the urrent R = RX onstruted from a ellular resolution FXof an Artinian monomial ideal M was omputed up to multipliative



14 RICHARD LÄRKÄNG & ELIZABETH WULCANonstants; Proposition 3.1 in [27℄ asserts that R has one entry Rσ foreah fae σ ∈ Xn−1, whih is of the form
Rσ = cσ∂̄

[
1

zαn
n

]
∧ · · · ∧ ∂̄

[
1

zα1
1

] (6.1)for some cσ ∈ C, where zα1
1 · · · zαn

n is the label of σ. The main noveltyin this paper, exept for the new proof, is that we show that cσ = 1(or −1, depending on the orientation of X) and thus give a ompletedesription of R.Let annR ⊂ On
0 denote the annihilator ideal of R, i.e., the idealof germs of holomorphi funtions ξ at 0 ∈ C

n that satisfy Rξ = 0.Note that annRσ = (zα1
1 , . . . , zαn

n ) =: m
α. A monomial ideal of thisform is said to be irreduible. Eah monomial ideal M an be writtenas �nite intersetion of irreduible ideals; this is alled an irreduibledeomposition of M . Sine one has to annihilate eah Rσ in order toannihilate R, Theorem 5.1 implies that, provided X is a polyhedralsubdivision of ∆, annR =

⋂

σ∈Xn−1

m
ασ ,whih gives an irreduible deomposition of annR = M . Here ασ is themultidegree of the label of σ. If FX is a minimal resolution of M thisdeomposition is irredundant in the sense that no intersetand an beomitted. Eah monomial ideal has a unique (monomial) irredundantirreduible deomposition.Using that R satis�es the duality priniple and results [9, Theo-rem 3.7℄ and [18, Theorem 5.42℄ about irreduible deompositions, in[27℄, we ould in some ases determine whih cσ are nonzero. If Mis a generi monomial ideal, Theorem 3.3 in that paper says that cσis nonzero if and only if σ is in the Sarf omplex ∆M (whih is asubomplex of any ellular resolution of M), and if FX is a minimalresolution of M eah cσ is nonzero by Theorem 3.5 in [27℄. Let us lookat an example where these theorems do not apply.Example 6.1. Consider the idealM = (z2

1 , z1z2, z1z3, z
2
2 , z2z3, z

2
3) ⊂ S =

C[z1, z2, z3], i.e., the square of the maximal ideal at 0 in S. The hullomplex of M is a re�nement of the 2-simplex ∆ with the vertieslabeled by z2
1 , z

2
2 , z

2
3 , see Figure 6.1.There are four faes σ1, . . . , σ4 in hull2(M) with labels mσ1 = z2

1z2z3,
mσ2 = z1z

2
2z3, mσ3 = z1z2z

3
3 , and mσ4 = z1z2z3. By Theorem 5.1,the urrent R therefore has four entries: three entries of the form

Rσℓ
= ±∂̄[1/z2

k] ∧ ∂̄[1/zj] ∧ ∂̄[1/zi] for ℓ = 1, 2, 3, orresponding to thethree orner triangles in hull(M), and one omponent Rσ4 = ∂̄[1/z3] ∧
∂̄[1/z2] ∧ ∂̄[1/z1].The hull resolution is not a minimal resolution of S/M . In parti-ular, M is not generi. By arguing as in the proofs of Theorems 3.3and 3.5 in [27℄, using that R satis�es the duality priniple and that
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Figure 6.1. The hull omplex of the idealM in Exam-ple 6.1 (labels on verties and 2-faes) (left) and the ellomplex of a minimal free resolution of M (right).
M = (z2

1 , z2, z3)∩ (z1, z
2
2 , z3)∩ (z1, z2, z

2
3) is the irredundant irreduibledeomposition of M , one an onlude that �rst three cσj

in (6.1) arenon-zero, but not that cσ4 is.A minimal resolution of S/M is obtained by removing one of theedges of the inner triangle in hull(M), see, e.g., [18, Example 3.19℄.The ell omplex X of one suh resolution is depited in Figure 6.1.Note that X is a re�nement of ∆ (although di�erent from hull(M)) sothat Theorem 5.1 applies; the orresponding residue urrent onsistsof the three entries Rσ1 , Rσ2 , and Rσ3 above. �In [27℄ the urrent R is omputed as the push-forward of a ur-rent on a tori log-resolution of M . The omputations are inspired by[26℄, where Bohner-Martinelli residue urrents, f. Example 2.1, ofmonomial ideals are omputed, and they beome quite involved. Theoe�ients cσ appear as ertain integrals in the log-resolution and seemto be hard to ompute in general. The proof of Theorem 5.1 given hereis more diret and muh less tehnial than in [27℄.It would be interesting to investigate whether the omparison for-mula for residue urrents ould be used also to ompute Bohner-Martinelli residue urrents. In [26℄ it was shown that ifM is an Artinianmonomial ideal, the Bohner-Martinelli urrent RM
BM of (a monomialsequene of generators of) M is a vetor-valued urrent with entries ofthe form (6.1), for ertain exponents α. In some ases we an omputethe oe�ients cσ, e.g., if n = 2 and eah minimal generator of themonomial ideal M is a vertex of the so-alled Newton polytope of M ;the oe�ients are then equal to ±1, see [28, Setion 4.2℄.If E•, ϕ• is the Koszul omplex ofM and F•, ψ• is the Koszul omplexof a omplete intersetion ideal (zβ1

1 , . . . , z
βn
n ) ontained in M , it is nothard to expliitly �nd mappings ak so that the diagram (2.4) ommutes.Indeed, let m1, . . . , mr be a minimal set of generators of M , ordered sothatmj = z

αj

j for j = 1, . . . , n; note that there are suh generators sine
M is Artinian. Identify the set of generators with a setion ∑

mjej of a



16 RICHARD LÄRKÄNG & ELIZABETH WULCAN(trivial) rank r bundle Ẽ. Similarly identify zβ1
1 , . . . , z

βn
n with a setion∑

z
βj

j ǫj of a rank n bundle F̃ and onstrut the Koszul omplexes
E•, ϕ• and F•, ψ• as in Example 2.1. Now we an hoose ak−1 : ΛkF̃ ∗ →

ΛkẼ∗ as the mapping ak−1 : ǫ∗i1 ∧ · · · ∧ ǫ∗ik 7→ z
βi1

−αi1
i1

· · · z
βik

−αik

ik
e∗i1 ∧

· · ·∧e∗ik . Theorem 3.2 in [15℄ then gives a formula relating the urrents
RE = RM

BM and RF , the latter given by (4.2). However, when M isnot a omplete intersetion and thus E does not end at level n − 1,the formula relating the urrents is more involved than (2.5); thereappears an extra term, whih seems hard to ompute in general, see[15, Equation (3.2)℄.6.1. Non-Artinian monomial ideals. In [27℄ we also omputed residueurrents (up to nonvanishing fators) assoiated with ellular resolu-tions of non-Artinian monomial ideals.The method in this paper is not as well adapted to resolutions ofnon-Artinian ideals. First, to be able to use the simple form (2.5) ofthe omparison formula for residue urrents it is important that M isCohen-Maaulay. Seond, even if M is Cohen-Maaulay, there is ingeneral no suh natural (resolution of an) ideal to ompare with as themonomial omplete intersetion idealN = (zb11 , . . . , z
bn
n ) in the Artinianase.Example 6.2. LetM be the idealM = (z1z2, z1z3, z2z3) in S = C[z1, z2, z3].Then

0 −→ S⊕2

2

6

6

4

−z3 0
z2 −z2
0 z1

3

7

7

5

−−−−−−−−−−→ S⊕3

h

z1z2 z1z3 z2z3
i

−−−−−−−−−−−−−−−→ S (6.2)is a free resolution ofM . Let E•, ϕ• be the orresponding vetor bundleomplex. Next, let f be the regular sequene f1 = z1z2, f2 = (z1+z2)z3,and let F•, ψ• be the Koszul omplex of f . Then it is not hard toexpliitly �nd the morphisms a1, a0, and a−1. Sine the ideals M and
(f1, f2) are Cohen-Maaulay we may apply the omparison formula(2.5). A omputation gives
RE =

1

z1
∂̄

1

z3
∧ ∂̄

1

z2

[
1
0

]
+

1

z2
∂̄

1

z3
∧ ∂̄

1

z1

[
1
1

]
+

1

z3
∂̄

1

z2
∧ ∂̄

1

z1

[
0
1

]
.Observe that R is not symmetri in z1 and z2, although the ideal Mis. This is, however, not too surprising, sine the resolution (6.2) is notsymmetri in z1 and z2. �A general strategy for omputing the residue urrent assoiated withthe resolution E•, ϕ• of a (monomial) Cohen-Maaulay idealM of odi-mension p is to look for a regular sequene f1, . . . , fp ontained in Mand then apply the omparison formula (2.5) to E•, ϕ• and the Koszul



COMPUTING RESIDUE CURRENTS USING COMPARISON FORMULAS 17omplex F•, ψ• of f . One way of �nding suh a regular sequene is toonsider p su�iently generi linear ombinations f1, . . . , fp of the gen-erators of M , as was done in Example 6.2. However, when the fj arenot monomials the omputation of the urrent RF = Rf
CH an beomemuh more involved. Also, although the omplex F•, ψ• is simple, itmay be hard to �nd the morphism ak in general.If E•, ϕ is a resolution of a non-Cohen-Maaulay ideal, the ompar-ison formula in [15℄ is more involved than (2.5). For omputations ofresidue urrents in this ase, see [15, Setion 5℄.7. Relations to fundamental ylesOur original motivation for omputing the oe�ients cσ of the en-tries (6.1) of RX was that we wanted to understand the urrent

Dϕ ◦R := Dϕ0 ◦ · · · ◦Dϕp−1 ◦R, (7.1)when R = RE is the residue urrent assoiated with a resolution (2.3)of an ideal sheaf a of odimension p and D is the onnetion on EndEindued by onnetions on E =
⊕

Ek.Let a be a omplete intersetion ideal, de�ned by a regular sequene
f1, . . . , fp and let (2.2) be the Koszul omplex of fj , see Example 2.1,equipped with the trivial metris so that D is the trivial onnetion d.Then (7.1) equals p! times the urrent

Rf
CH ∧ df1 ∧ · · · ∧ dfp = (2πi)p[a], (7.2)where [a] is the urrent of integration along the fundamental yleof a. The equality (7.2) was proved in [10℄. Reall that for an Ar-tinian ideal a ⊆ On

0 , the fundamental yle of a is [a] = m[0], where
m = dimC On

0 /a is the geometri multipliity of a. For an arbitraryideal a, with irreduible omponents Zi (i.e., irreduible omponentsof the radial ideal of a), the fundamental yle of a is [a] =
∑
mi[Zi]where mi are the geometri multipliities of a along Zi. The geometrimultipliitymi of a along Zi an be de�ned as the geometri multipli-ity of the Artinian ideal a + b, where b is the ideal of a generi smoothvariety transversal to Zi. For more details regarding fundamental y-les, see [14, Setion 1.5℄.Using the omparison formula for residue urrents from [15℄, we re-ently managed to prove that

Dϕ ◦R = p!(2πi)p[a] (7.3)for any resolution (2.3) of any equidimensional ideal (i.e., all minimalprimes are of the same dimension) a ⊂ On
0 , thus generalizing (7.2).This fatorization of the fundamental yle is losely related to a resultby Lejeune-Jalabert, [17℄, who proved a ohomologial version of (7.3)for Cohen-Maaulay ideals, and it will be the subjet of the forthomingpaper [16℄.
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a1

(ai, bi)

(ai, bi+1)

(ai+1, bi+1)

br

TM

exp(M)

Figure 7.1. The stairase TM of an Artinian monomialideal in C
2. The lattie points above TM are the expo-nents exp(M) of monomials in M .For the residue urrent assoiated with the hull resolution of a generiArtinian monomial ideal we an give an alternative proof of (7.3) (withthe trivial onnetion d) using Theorem 1.1. In fat, we get a re�nementof (7.3): For eah permutation s1, . . . , sn of 1, . . . , n,

∂f1

∂zs1
dzs1 ◦ · · · ◦

∂fn
∂zsn

dzsn
◦R = cn(2πi)

n[a], (7.4)where cn = (−1)n
2
· (−1)

n(n−1)
2 . For an explanation of why the onstant

cn appears in the right hand side of (7.4), but not in (7.3), see [16℄.We will show how this works when n = 2. For n ≥ 3, the omputationof dϕ gets more involved; the general ase will therefore be treated inthe separate paper [29℄.First, let us desribe the geometri multipliity dimC On
0 /M of amonomial idealM ⊂ On

0 . Let R+ denote the nonnegative real numbersand let TM be the stairase R
n
+ \

⋃
zα∈M{α + R

n
+} of M . If M isArtinian, then TM is a bounded set in R

n
+. The name stairase ismotivated by the shape of TM . If n = 2 eah Artinian monomialideal M is of the form M = (za1wb1, . . . , zarwbr) for some integers

a1 > . . . > ar = 0 and 0 = b1 < . . . < br. Then TM looks like astairase with inner orners (aj, bj) and outer orners (aj, bj+1), seeFigure 7.1. In general there is an �inner orner� α for eah minimalgenerator zα of M and one �outer orner� α for eah intersetand m
αin the irredundant irreduible deomposition. If M is generi, thereis a one-to-one orrespondene between faes σ ∈ hull(M)n−1, withlabels mσ = zασ , and outer orners α in TM . The points in Z

n∩TM arepreisely the exponents of monomials that are not inM . In other words,
On

0 /M = spanC{z
α | α /∈ TM}. It follows that dimC On

0 /M = Vol(TM),where Vol is the usual Eulidean volume in R
n.Now assume that n = 2, and that M is an Artinian ideal, minimallygenerated by zaiwbi , a1 > . . . > ar = 0 and 0 = b1 < . . . < br. Then

hull(M) is one-dimensional, with one vertex vi for eah generator zaiwbi
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P1

Pi

Pr−1

Q1

Qi

Qr−1

Figure 7.2. Partitions of TM as retangles Pi and ret-angles Qi.and one edge σi, with label zaiwbi+1, for eah outer orner (ai, bi+1) in
TM . The mappings in Fhull(M) are given by ϕ0 : evi

7→ zaiwbie∅ and
ϕ1 : eσi

7→ zai−ai+1evi+1
− wbi+1−bievi

and by Theorem 1.1,
R = Rhull(M) =

r−1∑

i=1

∂̄

[
1

wbi+1

]
∧ ∂̄

[
1

zai

]
eσi

⊗ e∗∅.Let us ompute ∂ϕ0

∂z
dz ◦ ∂ϕ1

∂w
dw ◦R. Note that

∂ϕ0

∂z
dz =

r∑

i=1

aiz
aiwbi

dz

z
e∗vi

⊗ e∅and
∂ϕ1

∂w
dw = −

r−1∑

i=1

(bi+1 − bi)w
bi+1−bi

dw

w
e∗σi

⊗ evi
,so that

−
∂ϕ0

∂z
dz ◦

∂ϕ1

∂w
dw =

r−1∑

i=1

ai(bi+1 − bi)z
aiwbi+1

dz

z
∧
dw

w
e∗σi

⊗ e∅.Let Pi = {x ∈ TM | 0 ≤ x1 < ai, bi ≤ x2 < bi+1} for i = 1, . . . , r − 1.Then the Pi form a partition of TM , f. Figure 7.2 and, in partiu-lar, Vol(TM) =
∑

Vol(Pi). Note that Vol(Pi) = ai(bi+1 − bi). Hene(identifying e∗∅ ⊗ e∅ with 1)
−
∂ϕ0

∂z
dz◦

∂ϕ1

∂w
dw◦R =

r−1∑

i=1

Vol(Pi)z
aiwbi+1

dz

z
∧
dw

w
∧∂̄

[
1

wbi+1

]
∧∂̄

[
1

zai

]
=

r−1∑

i=1

Vol(Pi) ∂̄

[
1

w

]
∧ ∂̄

[
1

z

]
∧ dz ∧ dw = (2πi)2 Vol(TM)[0],so we have proved (7.4) (for zs1 = z and zs2 = w).By similar arguments we get that−∂ϕ0

∂w
dw◦∂ϕ1

∂z
dz◦R =

∑r−1
i=1 Vol(Qi)(2πi)

2[0],where Qi = {x ∈ TM | ai+1 ≤ x1 < ai, 0 ≤ x2 < bi+1} for i =
1, . . . , r − 1, see Figure 7.2. Again, the retangles Qi form a partition



20 RICHARD LÄRKÄNG & ELIZABETH WULCANof TM and thus (7.4) holds also for this permutation (zs1 = w and
zs2 = z) of the variables. To onlude, we have proved (7.3) for hullresolutions of monomial ideals in dimension 2 with D = d.For a generi Artinian monomial ideal M ⊂ On

0 , n ≥ 3 one ananalogously de�ne uboids Pα,s, where α is an outer orner of TM and
s is a permutation s1, . . . , sn of 1, . . . , n, suh that for a �xed s, {Pα,s}αde�nes a partition of TM and moreover
∂ϕ0

∂zs1
dzs1◦· · ·◦

∂ϕn−1

∂zsn

dzsn
=

∑

σ∈hull(M)n−1

Vol(Pασ,s)z
ασ
dz1
z1

∧· · ·∧
dzn
zn

e∗σ⊗e∅.Together with Theorem 1.1 this proves (7.4) and thus (7.3) in this ase.However, for n ≥ 3, the onstrution of the Pα,s is more deliate thanthat of Pi and Qi, see [29℄. Referenes[1℄ M. Andersson: Residue urrents and ideals of holomorphi funtions, Bull.Si. Math. 128 (2004) no. 6, 481�512.[2℄ M. Andersson & H. Samuelsson: A Dolbeault-Grothendiek lemma onomplex spaes via Koppelman formulas, Invent. Math. 190 (2012), no. 2,261�297.[3℄ M. Andersson & H. Samuelsson:Weighted Koppelman formulas and the
∂-equation on an analyti spae, J. Funt. Anal. 261 (2011), 777�802.[4℄ M. Andersson & H. Samuelsson & J. Sznajdman: On the Briançon-Skoda theorem on a singular variety, Ann. Inst. Fourier 60 (2010), 417�432.[5℄ M. Andersson & E. Wulan: Residue urrents with presribed annihila-tor ideals, Ann. Si. Éole Norm. Sup. 40 (2007) no. 6, 985�1007.[6℄ M. Andersson & E. Wulan: Deomposition of residue urrents, J. ReineAngew. Math. 638 (2010), 103�118.[7℄ M. Andersson & E. Wulan: On the e�etive membership problem onsingular varieties, Preprint, arXiv:1107.0388.[8℄ D. Bayer & B. Sturmfels: Cellular resolutions of monomial modules, J.Reine Angew. Math. 502 (1998) 123�140.[9℄ D. Bayer & I. Peeva & B. Sturmfels: Monomial resolutions, Math.Res. Lett. 5 (1998), no. 1-2, 31�46.[10℄ N.r. Coleff & M.e. Herrera: Les ourants résiduels assoiés à une formeméromorphe, Let. Notes in Math. 633, Berlin-Heidelberg-New York (1978).[11℄ A. Dikenstein & C. Sessa: Canonial representatives in moderate oho-mology, Invent. Math. 80 (1985), 417�434.[12℄ D. Eisenbud: Commutative algebra. With a view toward algebrai geometry,Graduate Texts in Mathematis, 160. Springer-Verlag, New York, 1995.[13℄ D. Eisenbud: The geometry of syzygies. A seond ourse in ommuta-tive algebra and algebrai geometry, Graduate Texts in Mathematis, 229.Springer-Verlag, New York, 2005.[14℄ W. Fulton: Intersetion theory. Ergebnisse der Mathematik und ihrerGrenzgebiete, Springer-Verlag, Berlin, 1984.[15℄ R. Lärkäng: A omparison formula for residue urrents, Preprint,arXiv:1207.1279.[16℄ R. Lärkäng & E. Wulan: Residue urrents and fundamental yles, Inpreparation.
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