
COMPUTING RESIDUE CURRENTS OF MONOMIALIDEALS USING COMPARISON FORMULASRICHARD LÄRKÄNG & ELIZABETH WULCANAbstra
t. Given a free resolution of an ideal a of holomorphi
fun
tions, one 
an 
onstru
t a ve
tor-valued residue 
urrent R,whi
h 
oin
ides with the 
lassi
al Cole�-Herrera produ
t if a isa 
omplete interse
tion ideal and whose annihilator ideal is pre-
isely a.We give a 
omplete des
ription of R in the 
ase when a is anArtinian monomial ideal and the resolution is the hull resolution(or a more general 
ellular resolution). The main ingredient in theproof is a 
omparison formula for residue 
urrents due to the �rstauthor.By means of this des
ription, we obtain in the monomial 
ase a
urrent version of a fa
torization of the fundamental 
y
le of a dueto Lejeune-Jalabert. 1. Introdu
tionWith a regular sequen
e f1, . . . , fp of holomorphi
 fun
tions at theorigin in C
n, there is a 
anoni
al asso
iated residue 
urrent, the Cole�-Herrera produ
t Rf

CH = ∂̄[1/fp]∧· · ·∧∂̄[1/f1], introdu
ed in [10℄. It hassupport on {f1 = . . . = fp = 0} and satis�es the duality prin
iple ([11,20℄): A holomorphi
 fun
tion ξ is lo
ally in the ideal (f) generated by
f1, . . . , fp if and only if ξ annihilates Rf

CH , i.e., ξRf
CH = 0. Given a freeresolution of an ideal (sheaf) a of holomorphi
 fun
tions, Andersson andthe se
ond author 
onstru
ted in [5℄ a ve
tor-valued residue 
urrent Rthat satis�es the duality prin
iple and that 
oin
ides with Rf

CH if a is a
omplete interse
tion ideal, generated by a regular sequen
e f1, . . . , fp,see Se
tion 2. This 
onstru
tion has re
ently been used, e.g., to obtainnew results for the ∂̄-equation and e�e
tive solutions to polynomialideal membership problems on singular varieties, see, e.g., [2, 3, 4, 7,24℄.In this paper we 
ompute the 
urrent R for the hull resolution (andmore general 
ellular resolutions), introdu
ed by Bayer-Sturmfels [8℄,of Artinian, i.e., 0-dimensional, monomial ideals, extending previousresults by the se
ond author. The hull resolution of a monomial ideal
M is en
oded in the hull 
omplex hull(M), whi
h is a labeled polyhe-dral 
ell 
omplex in R

n of dimension n − 1 with one vertex for ea
hDate: June 26, 2013.1991 Mathemati
s Subje
t Classi�
ation. 32A27, 13D02.1



2 RICHARD LÄRKÄNG & ELIZABETH WULCANminimal generator of M . The fa
e σ ∈ hull(M) is labeled by the least
ommon multiple of the monomials 
orresponding to the verti
es of σ,see Se
tion 4.Theorem 1.1. Let M be an Artinian monomial ideal in C
n and let Rbe the residue 
urrent 
onstru
ted from the hull resolution of M . Then

R has one entry Rσ for ea
h (n − 1)-dimensional fa
e σ of hull(M),and
Rσ = ∂̄

[
1

zαn
n

]
∧ · · · ∧ ∂̄

[
1

zα1
1

]
,where zα1

1 · · · zαn
n is the label of σ.If M is a 
omplete interse
tion ideal, hull(M) is an (n− 1)-simplexand the hull resolution is the Koszul 
omplex. In general, hull(M) is apolyhedral subdivision of an (n−1)-simplex. In fa
t, Theorem 1.1 holdsfor more general 
ellular resolutions, where the underlying polyhedral
ell 
omplex is a polyhedral subdivision of the (n − 1)-simplex, seeTheorem 5.1.It was proved in [10℄ that if f1, . . . , fp is a regular sequen
e, then

RfCH ∧
df1 ∧ · · · ∧ dfp

(2πi)p
= [(f)], (1.1)where [(f)] is the fundamental 
y
le of the ideal (f). Our main mo-tivation to 
ompute R expli
itly was to understand a similar fa
tor-ization of the fundamental 
y
le of an arbitrary ideal. By 
omputing

dϕ := dϕ0 ◦ · · · ◦ dϕn−1, where ϕk are the maps in the (hull) resolutionof a (generi
) Artinian monomial ideal a, and using Theorem 1.1, weget
dϕ

n!(2πi)n
◦R = [a], (1.2)see Se
tion 7. Sin
e a is Artinian, [a] = m[0], where m is the geometri
multipli
ity dimC On

0 /a of a, see [14, Se
tion 1.5℄. Moreover, sin
e a ismonomial, m equals the volume of the stair
ase R
n
+ \

⋃
zα∈a

{α + R
n
+}of a. If a is a 
omplete interse
tion ideal generated by f1, . . . , fn, then

dϕ = n!df1 ∧ · · · ∧ dfn, and thus (1.2) 
an be seen as a generalizationof (1.1). We re
ently managed to prove a generalized version of (1.2)for arbitrary ideals of pure dimension; this is a 
urrent version of (ageneralization of) a result due to Lejeune-Jalabert [17℄ and will be thesubje
t of the forth
oming paper [16℄.In [27℄ the 
urrent R was 
omputed as the push-forward of a 
ertain
urrent in a tori
 resolution of the ideal M . The main result in thatpaper asserts that ea
h Rσ is of the formRσ = cσ∂̄[1/zαn
n ]∧· · ·∧∂̄[1/zα1

1 ]for some cσ ∈ C. The 
oe�
ients cσ appear as integrals that seem to behard to 
ompute in general, see Se
tion 6. The proof of Theorem 1.1given here is di�erent and more dire
t. A key tool is a 
omparison



COMPUTING RESIDUE CURRENTS USING COMPARISON FORMULAS 3formula for residue 
urrents due to the �rst author. If
0 → O(En−1)

ϕn−1
−→ · · ·

ϕ1
−→ O(E0)

ϕ0
−→ O(E−1)is a resolution of an Artinian ideal a and . . .→ O(Fk) → O(Fk−1) → . . .is a resolution of b ⊂ a, then there are (lo
ally) maps ak : O(Fk) →

O(Ek), so that the diagram
0 // O(En−1)

ϕn−1
// . . . ϕ1

// O(E0)
ϕ0

// O(E−1)

0 // O(Fn−1)
ψn−1

//

an−1

OO

. . . ψ1
// O(F0)

ψ0
//

a0

OO

O(F−1)

a−1

OO
ommutes. Theorem 1.3 in [15℄ asserts that REa−1 = an−1R
F if RE and

RF are the 
urrents asso
iated with O(E•) and O(F•), respe
tively, seeSe
tion 2.1.The main ingredient in the proof of Theorem 1.1 is Proposition 5.2,whi
h gives an expli
it des
ription of mappings ak when O(E•) and
O(F•) are 
ellular resolutions su
h that the underlying polyhedral 
ell
omplex of O(E•) re�nes the polyhedral 
ell 
omplex of O(F•), andwhi
h we have not managed to �nd in the literature. Letting O(E•) bethe hull resolution of M and O(F•) the Koszul 
omplex of a sequen
e
zb11 , . . . , z

bn
n 
ontained in M , so that RF is the simple Cole�-Herreraprodu
t ∂̄[1/zbnn ] ∧ · · · ∧ ∂̄[1/zb11 ], we 
an then easily 
ompute RE .The paper is organized as follows. In Se
tions 2 and 4 we providesome ba
kground on residue 
urrents and 
ellular resolutions, respe
-tively. In Se
tion 3 we prove some basi
 results 
on
erning orientedpolyhedral 
omplexes, whi
h are needed for the proof of Theorem 1.1(and the slightly more general Theorem 5.1). The proof o

upies Se
-tion 5. In Se
tion 6 we 
ompare Theorems 1.1 and 5.1 to previousresults and also illustrate them by some examples. In Se
tion 6.1 we
onsider residue 
urrents of non-Artinian monomial ideals, and, �nally,in Se
tion 7 we dis
uss the relation to fundamental 
y
les.A
knowledgment. We would like to thank Mats Andersson, MattiasJonsson, and Mir
ea Mustaµ  for helpful dis
ussions. We would alsolike to thank the referee for valuable 
omments and suggestions. These
ond author was supported by the Swedish Resear
h Coun
il.2. Residue 
urrentsGiven a holomorphi
 fun
tion f we will write [1/f ] (or sometimes just

1/f) for the prin
ipal value distribution of 1/f , whi
h 
an be realized,e.g., as the limit of the smooth approximands f̄

|f |2+ǫ
. If f is a regularsequen
e of (germs of) holomorphi
 fun
tions f1, . . . , fp one 
an givemeaning to produ
ts of prin
ipal values [1/fj] and residue 
urrents

∂̄[1/fk], as was �rst done in [10℄, see also [21℄. The produ
ts 
an bede�ned, e.g., by taking the limit of produ
ts of the 
orresponding forms



4 RICHARD LÄRKÄNG & ELIZABETH WULCAN
f̄j

|fj |2+ǫ
and ∂̄ f̄k

|fk|2+ǫ
. They are (anti-)
ommutative in the fa
tors andsatisfy Leibniz' rule: If fk = g1 · · · gs, then

∂̄

[
1

fk

]
∧· · ·∧∂̄

[
1

f1

]
=

∑

j

[
1

g1 · · · ĝj · · · gs

]
∂̄

[
1

gj

]
∧∂̄

[
1

fk−1

]
∧· · ·∧∂̄

[
1

f1

]
.(2.1)We will denote the Cole�-Herrera produ
t ∂̄[1/fp] ∧ · · · ∧ ∂̄[1/f1] of fby Rf

CH . If fj = z
bj
j for j = 1, . . . , n, then the a
tion of Rf

CH on thetest form ξ(z)dz1 ∧ · · · ∧ dzn equals
(2πi)n

(b1 − 1)! · · · (bn − 1)!

∂b1+···+bn−n

∂zb1−1
1 · · ·∂zbn−1

n

ξ(0).Consider a 
omplex of Hermitian holomorphi
 ve
tor bundles over a
omplex manifold X of dimension n,
0 → EN

ϕN−→ . . .
ϕ2
−→ E1

ϕ1
−→ E0

ϕ0
−→ E−1, (2.2)that is exa
t outside an analyti
 variety Z ⊂ X of positive 
odimension

p. Suppose that the rank of E−1 is 1. In [5℄ Andersson and the se
ondauthor 
onstru
ted an End(
⊕

Ek)-valued 
urrent R = RE that in a
ertain sense measures the la
k of exa
tness of the asso
iated sheaf
omplex of holomorphi
 se
tions
0 → O(EN)

ϕN−→ · · ·
ϕ1
−→ O(E0)

ϕ0
−→ O(E−1). (2.3)The 
urrent R has support on Z and if ξ ∈ O(E−1) satis�es Rξ = 0then ξ ∈ Imϕ0. If (2.3) is exa
t, i.e., if it is a lo
ally free resolutionof the sheaf O(E−1)/Imϕ0, then Rξ = 0 if and only if ξ ∈ Imϕ0. Thegrading in (2.2) is somewhat unorthodox; in [5℄ the 
omplex ends at

E0. In this paper the grading is shifted by one step, in order to makeit �t the grading of the hull 
omplex better.LetRℓ
k denote the 
omponent ofR that takes values inHom (Eℓ−1, Ek−1)and let Rℓ =

∑
k R

ℓ
k. The shifting of the indi
es here is motivated bythe shifting of the grading of (2.2) 
ompared to [5℄. If (2.3) is exa
t,then Rℓ = 0 for ℓ ≥ 1. We then write Rk = R0

k without any risk of
onfusion. The 
urrent Rk has bidegree (0, k), and thus, by the dimen-sion prin
iple for residue 
urrents (see [6℄, Corollary 2.4), Rk = 0 for
k < p, and for degree reasons, Rk = 0 for k > n. In parti
ular, if(2.3) is a resolution of length p of a Cohen-Ma
aulay ideal sheaf, i.e.,at ea
h x ∈ X, there is a resolution of length p (so that (2.3) endsat level p − 1), then R = Rp. In this 
ase, R is independent of theHermitian metri
s on the bundles Ek. By Hilbert's syzygy theorem,ea
h 0-dimensional ideal sheaf is Cohen-Ma
aulay.The degree of expli
itness of the 
urrent R of 
ourse depends on thedegree of expli
itness of the 
omplex (2.2). In general it is hard to �ndexpli
it free resolutions. In Se
tion 4 we will des
ribe a method for 
on-stru
ting free resolutions of monomial ideals due to Bayer-Sturmfels [8℄.



COMPUTING RESIDUE CURRENTS USING COMPARISON FORMULAS 5Example 2.1. Let f be a sequen
e of holomorphi
 fun
tions f1, . . . , fp ina domain Ω in C
n, and let (2.2) be the Koszul 
omplex of f : Identify

f with a se
tion f =
∑
fjej of a trivial ve
tor bundle Ẽ of rank pover Ω with frame ej. Let Ek−1 be the kth exterior produ
t ΛkẼ∗ ofthe dual bundle Ẽ∗, equipped with the trivial metri
, and let ϕk−1 be
ontra
tion δf with f , i.e.,

δf : e∗i1 ∧ · · · ∧ e∗ik 7→
∑

j

(−1)j−1fije
∗
i1
∧ · · · ∧ e∗ij−1

∧ e∗ij+1
∧ · · · ∧ e∗ik ,where e∗j is the dual frame to ej . Then the entries of RE are theBo
hner-Martinelli residue 
urrents of f in the sense of Passare-Tsikh-Yger [22℄, see [1℄. If f de�nes a 
omplete interse
tion ideal a, then theKoszul 
omplex of f is a resolution of a and the 
urrent RE = RE

pthen equals the Cole�-Herrera produ
t Rf
CH (times e∗1 ∧ · · · ∧ e∗p), see[22, Theorem 4.1℄ or [1, Theorem 1.7℄. The 
urrents RE 
an thus beseen as generalizations of the Cole�-Herrera produ
ts and the fa
t that

REξ = 0 if and only if ξ ∈ Imϕ0 when (2.3) is exa
t 
an be seen as anextension of the duality prin
iple for Cole�-Herrera produ
ts.
�2.1. A 
omparison formula for residue 
urrents. Assume that

E•, ϕ• and F•, ψ• are Hermitian 
omplexes of ve
tor bundles and thatthere are holomorphi
 mappings ak : O(Fk) → O(Ek) so that thediagram
0 // O(EN )

ϕN
// . . . ϕ1

// O(E0)
ϕ0

// O(E−1)

0 // O(FN)
ψN

//

aN

OO

. . . ψ1
// O(F0)

ψ0
//

a0

OO

O(F−1)

a−1

OO

(2.4)

ommutes. For example, if the sheaf 
omplex (2.3) is exa
t and Imψ0 ⊂
Imϕ0 one 
an always �nd maps ak : Ox(Fk) → Ox(Ek) for ea
h
x ∈ X, so that the 
orresponding diagram 
ommutes, see [12, Propo-sition A3.13℄.In [15℄ the residue 
urrents asso
iated with E•, ϕ• and F•, ψ• arerelated in terms of the morphisms ak. Assume that O(E•), ϕ• and
O(F•), ψ• are lo
ally free resolutions of minimal length of O(E−1)/aand O(F−1)/b, respe
tively, where a and b are Cohen-Ma
aulay idealsof 
odimension p. Then Theorem 1.3 in [15℄ asserts that

REa−1 = ap−1R
F . (2.5)We will apply (2.5) to the situation where a and b are ideals ofO(E−1) =

O(F−1) su
h that b ⊂ a (and a−1 is the isomorphism O(F−1) ∼=
O(E−1)).IfE•, ϕ• and F•, ψ• are Koszul 
omplexes of regular sequen
es f1, . . . , fpand g1, . . . , gp, respe
tively, su
h that [gp . . . g1]

T = A[fp . . . f1]
T for



6 RICHARD LÄRKÄNG & ELIZABETH WULCANsome holomorphi
 matrix A, then (2.5) is just the transformation lawfor Cole�-Herrera produ
ts:
Rf
CH = det(A)Rg

CH , (2.6)see [15, Remark 2℄.3. Oriented polyhedral 
ell 
omplexesRe
all that a fa
e of a polytope σ is the interse
tion of σ and asupporting hyperplane of σ. A polyhedral 
ell 
omplex X is a �nite
olle
tion of 
onvex polytopes in R
n for some n, the fa
es of X, thatsatisfy that if σ ∈ X and τ is a fa
e of σ, then τ ∈ X, and moreover if σand σ′ are inX, then σ∩σ′ is a fa
e of both σ and σ′. For a referen
e onpolytopes and polyhedral 
ell 
omplexes, see, e.g., [30℄. The dimensionof a fa
e σ, dim σ, is de�ned as the dimension of its a�ne hull (in R

n)and the dimension of X, dimX, is de�ned as maxσ∈X dim σ. Let Xkdenote the set of fa
es of X of dimension k; X−1 should be interpretedas {∅}. If dim σ = k, then a fa
e of σ of dimension k − 1 is said tobe a fa
et of σ. Fa
es of dimension 0 are 
alled verti
es and fa
es ofdimension 1 are 
alled edges. A fa
e σ is a simplex if the number ofverti
es is equal to dim σ + 1. A polyhedral 
ell 
omplex X ′ ⊂ X issaid to be a sub
omplex of X.We will write |X| for the union of all fa
es in X. A polyhedral subdi-vision of a polytope σ ⊂ R
n is a polyhedral 
ell 
omplex X, su
h that

|X| = σ. If Y is a polyhedral 
ell 
omplex su
h that |X| = |Y | andea
h fa
e in Y is a union of fa
es in X; we say that X re�nes Y .The following lemma 
an be proved by standard arguments, 
f., e.g.,[30℄. Note that the assumption that |X| is 
onvex is 
ru
ial. Forexample, the lemma fails to hold if X 
onsists of three edges meetingat a single vertex.Lemma 3.1. Let X be a polyhedral 
ell 
omplex of dimension k ≥ 1,su
h that |X| is a 
onvex polytope. Consider τ ∈ Xk−1. If τ is 
ontainedin the boundary of |X|, there is a unique σ ∈ Xk su
h that τ is a fa
etof σ. Otherwise there are pre
isely two fa
es σ1, σ2 ∈ Xk su
h that τ isa fa
et of σ1 and σ2.3.1. Orientation. For a 
onvex set S ⊂ R
n we let spanS be theunderlying ve
tor spa
e of the a�ne hull of S. In other words, spanSis the subspa
e of R

n generated by ve
tors of the form ρ1 − ρ2, where
ρ1, ρ2 ∈ S. By an oriented polytope in R

n we will mean a polytope
σ ⊂ R

n together with an orientation of the subspa
e span σ. Withinthis se
tion will write σ for the polytope and reserve σ for the orientedpolytope. Re
all that an orientation of span σ is determined by a linearform, whi
h we denote by ωσ, on Λk(span σ) if dim σ = k ≥ 1; a basis
w1, . . . , wk of span σ is positively oriented if and only if ωσ(w1 ∧ · · · ∧
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wk) > 0. There is only one way of orienting polytopes of dimension 0as well as the empty set.Remark 3.2. An oriented simplex 
an equivalently be seen as a sim-plex together with an equivalen
e 
lass of the total ordering of theverti
es, where two orderings are equivalent if and only if they di�erby an even permutation. We write [v1, . . . , vk+1] for the simplex withverti
es v1, . . . , vk+1 together with the equivalen
e 
lass of the ordering
v1 < . . . < vk+1, and −[v1, . . . , vk+1] for the simplex with the oppositeorientation, 
f. for instan
e, [23, Chap. 4℄. If σ is a simplex with ver-ti
es v1, . . . , vk+1, we identify σ = [v1, . . . , vk+1] with σ oriented so thatthe basis v1 − vk+1, · · · , vk − vk+1 of span σ is positively oriented. �An oriented polytope σ of dimension k ≥ 2 indu
es orientations ofthe fa
ets of σ in the following way: Let τ be a fa
et of σ, and let η bea normal ve
tor to the a�ne hull of τ in the a�ne hull of σ pointing inthe dire
tion of σ. We will say that su
h a ve
tor η is a normal ve
torto τ pointing inwards to σ. Then, the orientation of span τ indu
ed by
σ is de�ned by that a basis w1, . . . , wk−1 of span τ is positively orientedif and only if η, w1, . . . , wk−1 is a positively oriented basis of span σ.If σ is a simplex [v1, . . . , vk+1] and τ is obtained from σ by removingthe vertex vj , then it is easily veri�ed that σ indu
es the orientation
(−1)j−1[v1, . . . , vj−1, vj+1, . . . , vk+1] of τ .We say that a polyhedral 
ell 
omplex is oriented if ea
h fa
e isequipped with an orientation. More pre
isely, an oriented polyhedral
ell 
omplex is a �nite 
olle
tion of oriented polytopes σ, su
h that theunderlying polytopes σ form a polyhedral 
ell 
omplex; we say that τis a fa
e of σ if τ is a fa
e of σ et
.If X is an oriented polyhedral 
ell 
omplex, σ ∈ Xk, and τ ∈ Xk−1is a fa
et of σ, let sgn(τ, σ) = 1 if the orientation of τ indu
ed by theorientation of σ 
oin
ides with the orientation of τ , and let sgn(τ, σ) =
−1 otherwise. If w1, . . . , wk−1 is a basis of span τ , and η is a normalve
tor of τ pointing inwards to σ, then
sgn(τ, σ) = sgn

(
ωσ(η ∧ w1 ∧ · · · ∧ wk−1)

)
/ sgn

(
ωτ (w1 ∧ · · · ∧ wk−1)

)
.(3.1)If k = 1, we interpret sgn(τ, σ) as 1 if the normal η pointing inwardsto σ is positively oriented, and −1 otherwise, and if k = 0 we interpret

sgn(τ, σ) as 1. This is 
onsistent with (3.1) if we interpret ωσ as 1 if
dim σ ≤ 0.Similarly if σ ∈ Xk and σ′ is any oriented polytope of dimension kthat is 
ontained in σ (i.e., σ′ ⊂ σ), let sgn(σ′, σ) = 1 if the orientationof span σ′ = span σ given by σ′ 
oin
ides with the orientation given by
σ and let sgn(σ′, σ) = −1 otherwise. If w1, . . . , wk is a basis of span σ,then

sgn(σ′, σ) = sgn
(
ωσ(w1 ∧ · · · ∧ wk)

)
/ sgn

(
ωσ′(w1 ∧ · · · ∧ wk)

)
. (3.2)
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σ

τ

σ
′

τ
′

σ1
σ2τ

Figure 3.1. Examples of fa
es σ, τ , σ′, and τ ′ inLemma 3.3 (in the left and middle �gure) and fa
es σ1,
σ2 and τ in Lemma 3.4 (in the right �gure).If k ≤ 0, sgn(σ′, σ) should be interpreted as 1.Lemma 3.3. Let X and X ′ be oriented polyhedral 
ell 
omplexes su
hthat X ′ re�nes X. Assume that σ′ ⊂ σ, where σ ∈ Xk and σ′ ∈ X ′

k.Moreover assume that τ ∈ Xk−1 and τ ′ ∈ X ′
k−1 are fa
ets of σ and σ′,respe
tively, and that τ ′ ⊂ τ . Then

sgn(σ′, σ) sgn(τ ′, σ′) = sgn(τ, σ) sgn(τ ′, τ). (3.3)Proof. Let η be a normal ve
tor of τ ′ pointing inwards to σ′. Then, ηis also a normal ve
tor of τ pointing inwards to σ. Let w1, . . . , wk−1be a basis of span τ ′ = span τ . Then by (3.1) and (3.2), both sides of(3.3) are equal to
sgn

(
ωσ(η ∧ w1 ∧ · · · ∧ wk−1)

)
/ sgn

(
ωτ ′(w1 ∧ · · · ∧ wk−1)

)
.

�Lemma 3.4. Let σ be an oriented polytope of dimension k ≥ 1, andlet X be a polyhedral subdivision of σ. Assume that τ ∈ Xk−1 is a fa
etof two fa
es σ1, σ2 ∈ Xk. Then
sgn(σ1, σ) sgn(τ, σ1) + sgn(σ2, σ) sgn(τ, σ2) = 0. (3.4)Proof. Being in the same situation as in the se
ond 
ase in Lemma 3.1,it is easily veri�ed that we may assume that |X| = σ ⊂ R

k
x1,...,xk

,
τ ⊂ {xk = 0}, and σj ⊂ Hj, j = 1, 2, where H1 = {xk ≥ 0} and
H2 = {xk ≤ 0}. Then the ve
tor η := (0, . . . , 0, 1) is a normal ve
torto τ pointing inwards to σ1 and −η is a normal ve
tor to τ pointinginwards to σ2. Letting w1, . . . , wk−1 be a basis of span τ , by (3.1) and(3.2) the �rst term in the left-hand side of (3.4) equals

sgn
(
ωσ(η ∧ w1 ∧ · · · ∧ wk−1)

)
/ sgn

(
ωτ (w1 ∧ · · · ∧ wk−1)

) (3.5)and the se
ond term equals (3.5) with the opposite sign.
�



COMPUTING RESIDUE CURRENTS USING COMPARISON FORMULAS 94. Cellular resolutions of monomial idealsLet us re
all the 
onstru
tion of 
ellular resolutions due to Bayer-Sturmfels [8℄. Let S be the polynomial ring C[z1, . . . , zn]. We say thatan (oriented) polyhedral 
ell 
omplexX is labeled if there is a monomial
mi in S asso
iated with ea
h vertex vi. An arbitrary fa
e σ of X isthen labeled by the least 
ommon multiple of the labels of the verti
esof σ, i.e., by mσ = l
m{mi|i ∈ σ}; m∅ should be interpreted as 1. Wewill sometimes be sloppy and not di�er between the fa
es of a labeled
omplex and their labels.De�nition 4.1. If X and Y are two labeled polyhedral 
ell 
omplexes,we say that X re�nes Y if X re�nes Y as polyhedral 
ell 
omplexes,i.e., |X| = |Y |, and ea
h fa
e of Y is a union of fa
es in X, and inaddition, we require that if σ′ ∈ X, σ ∈ Y , and σ′ ⊂ σ, then mσ′ |mσ.Note that this implies that the ideal generated by the labels of theverti
es of Y must be 
ontained in the ideal generated by the labels ofthe verti
es of X.Let M be a monomial ideal in S, i.e., M 
an be generated bymonomials. We will use the shorthand notation zα for the mono-mial zα1

1 · · · zαn
n in S. It is easy to 
he
k that a monomial ideal hasa unique minimal set of generators that are monomials; assume that

{m1, . . . , mr} is a minimal set of monomial generators of M . Next,let X be an oriented polyhedral 
ell 
omplex with verti
es {1, . . . , r}labeled by {m1, . . . , mr}. We will asso
iate with X a graded 
omplexof free S-modules: For k = −1, . . . , dimX, let Ak be the free S-modulewith basis {eσ}σ∈Xk
and let the di�erential ϕk : Ak → Ak−1 be de�nedby

ϕk : eσ 7→
∑fa
ets τ⊂σ sgn(τ, σ)

mσ

mτ

eτ . (4.1)Note that mσ/mτ is a monomial when τ is a fa
e of σ. The 
omplex
FX : 0 → AdimX

ϕdimX−→ · · ·
ϕ1
−→ A0

ϕ0
−→ A−1is the 
ellular 
omplex supported on X. Note that, with the identi�-
ation A−1 = S, the 
okernel of ϕ0 equals S/M . The 
omplex FX isexa
t if the labeled 
omplex X satis�es a 
ertain a
y
li
ity 
ondition.More pre
isely, for β ∈ N

n, where N = {0, 1, . . .}, let X�β denote thesub
omplex of X 
onsisting of all fa
es σ for whi
h zβ is divisible by
mσ. Then FX is exa
t if and only if X�β is a
y
li
, whi
h means that itis empty or has zero redu
ed homology, for all β ∈ N

n, see [18, Propo-sition 4.5℄. Note, in parti
ular, that the a
y
li
ity does not depend onthe orientation of X. When FX is exa
t we say that it is a 
ellularresolution of S/M .To put the 
ellular resolutions into the 
ontext of [5℄, let us 
onsiderthe ve
tor bundle 
omplex (2.2), where Ek for k = −1, . . . , N = dimXis a trivial bundle over C
n of rank equal to the number of fa
es in
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Xk, with a global frame {eσ}σ∈Xk

, endowed with the trivial metri
,and where the di�erential ϕk is given by (4.1). We will say that the
orresponding residue 
urrent R is asso
iated with X and denote it by
RX , and we will use Rσ to denote the 
oe�
ient of eσ⊗e∗∅. The indu
edsheaf 
omplex (2.3) is exa
t if and only if FX is. This follows from thestandard fa
t that the ring O0 of germs of holomorphi
 fun
tions at
0 ∈ C

n is �at over S, see for example [25, Theorem 13.3.5℄. We willthink of monomial ideals sometimes as ideals in the polynomial ring S,sometimes as ideals in the ring of entire fun
tions in C
n, and sometimesas ideals in the lo
al ring On

0 .4.1. The hull resolution. Given a monomial idealM in S and t ∈ R,let Pt = Pt(M) be the 
onvex hull in R
n of {(tα1 , . . . , tαn) =: tα | zα ∈

M}. Then Pt is a unbounded polyhedron in R
n of dimension n andthe fa
e poset (i.e., the set of fa
es partially ordered by in
lusion) ofbounded fa
es of Pt is independent of t if t ≫ 0. The hull 
omplex

hull(M) of M , introdu
ed in [8℄, is the polyhedral 
ell 
omplex of allbounded fa
es of Pt for t ≫ 0. The verti
es of hull(M) are pre
iselythe points tα, where zα is a minimal generator of M , and thus hull(M)admits a natural labeling. The 
orresponding 
omplex Fhull(M) is aresolution of S/M ; it is 
alled the hull resolution.Example 4.2. Let N be the 
omplete interse
tion ideal (zb11 , . . . , z
bn
n ).Then, hull(N) is the polyhedral 
ell 
omplex 
onsisting of the (n− 1)-simplex∆ = [v1, . . . , vn] inR

n and its fa
es, where v1 = (tb1 , 1, . . . , 1), v2 =
(1, tb2, 1, . . . , 1), . . . , vn = (1, . . . , 1, tbn). The verti
es v1, . . . , vn of hull(N)are labeled by zb11 , . . . , zbnn , respe
tively, and we assume the fa
es are ori-ented so that the simplex σ with verti
es vi1 , . . . , viℓ equals [vi1 , . . . , viℓ ]if i1 < . . . < iℓ. Then the 
orresponding 
ellular 
omplex Fhull(N) is theKoszul 
omplex of (zb11 , . . . , z

bn
n ), and

Rhull(N) = ∂̄

[
1

zbnn

]
∧ · · · ∧ ∂̄

[
1

zb11

]
e∆ ⊗ e∗∅, (4.2)
f. Se
tion 3.1 and Example 2.1. Note that a di�erent orientation of thetop-dimensional simplex ∆ = [v1, . . . , vn] would permute the residuefa
tors in (4.2). �The example shows that the hull 
omplex of the 
omplete inter-se
tion ideal is the 
ellular 
omplex 
onsisting of an (n − 1)-simplextogether with its fa
es. In general, if M is Artinian, hull(M) is apolyhedral subdivision of su
h an (n− 1)-simplex or, rather, it 
an beembedded as one, see, e.g., (the proof of) Theorem 4.31 in [18℄. Wewill need the following more pre
ise des
ription of this embedding. Tobegin with, we note that an Artinian monomial ideal has monomialsof the form zβ1

1 , . . . , z
βn
n among its minimal monomial generators. Notealso that every other minimal generator has degree smaller than βiin zi.



COMPUTING RESIDUE CURRENTS USING COMPARISON FORMULAS 11Proposition 4.3. LetM be an Artinian monomial ideal with (zb11 , . . . , z
bn
n )among its minimal monomial generators. Let N be the 
omplete inter-se
tion ideal (zb11 , . . . , z

bn
n ). Then hull(M) 
an be embedded as a re�ne-ment of hull(N) as labeled polyhedral 
ell 
omplexes.We will be sloppy and not always distinguish between the hull 
om-plex of M and its embedding.Proof. That hull(M) re�nes hull(N) as polyhedral 
ell 
omplexes isTheorem 4.31 in [18℄. In fa
t, it follows from the proof in [18℄ of thattheorem that it is a re�nement also as labeled polyhedral 
ell 
omplexes.To see this, we begin by re
alling (slightly di�erently des
ribed) the
onstru
tion of the embedding in that proof.We know from Example 4.2 that hull(N) 
onsists of the fa
es of thesimplex ∆ with verti
es v1 = (tb1 , 1, . . . , 1), . . . , vn = (1, . . . , 1, tbn). Fora point p 6= 1 := (1, . . . , 1), with pi ≥ 1, 
onsider the line ℓ through

1 and p. Sin
e pi ≥ 1, ℓ interse
ts ∆ in a unique point, whi
h wedenote π(p). Moreover, sin
e | hull(M)| is 
ontained in the set where
pi ≥ 1, we get a map π : | hull(M)| → ∆, whi
h indu
es an embeddingof hull(M) into ∆ by letting the fa
es of the embedded 
omplex be theimages π(σ), where σ ∈ hull(M) (with the same labeling).Consider a fa
e σ′ of hull(M) su
h that π(σ′) ⊆ σ = [vi1 , . . . , vik ].Then the verti
es of π(σ′) must be 
ontained in the set {x ∈ R

n |
xi = 1, i 6= i1, . . . , ik}, sin
e the vij are. A vertex v of hull(M) withlabel mv = zα has 
oordinates (tα1 , . . . , tαn), so if π(v) is 
ontainedin {xi = 1}, then we must have αi = 0 in mv. It follows that mσ′is of the form mσ′ = z

αi1
i1

. . . z
αik

ik
, and sin
e ea
h label of a minimalmonomial generator is of degree at most bi in zi, the same must holdformσ′ sin
e it is the 
ommon multiple of su
h labels. Hen
e, mσ′ |mσ =

z
bi1
i1
. . . z

bik
ik
. �Re
all that a graded free resolution A•, ϕ• is minimal if and only iffor ea
h k, ϕk maps a basis of Ak to a minimal set of generators of Imϕk,see, e.g., [13, Corollary 1.5℄. The hull resolution is not minimal in gen-eral, 
f. Example 6.1. However, ifM is a generi
 monomial ideal in thesense of [9, 19℄, the hull 
omplex is simpli
ial, i.e., all fa
es are simpli
es,and it 
oin
ides with the S
arf 
omplex of M , whi
h is a minimal reso-lution of S/M , see [9℄. The ideal M is generi
 if whenever two distin
tminimal generators mi and mj have the same positive degree in somevariable, then there exists a third generator mk that stri
tly dividesthe least 
ommon multiple zα of mi and mj , meaning that mk divides

zα1−1
1 · · · zαn−1

n . Note that when n ≤ 2 all monomial ideals are generi
.The S
arf 
omplex of M is the 
olle
tion of subsets I ⊂ {1, . . . , r}whose 
orresponding least 
ommon multiplemI := l
m i∈Imi is unique.



12 RICHARD LÄRKÄNG & ELIZABETH WULCAN5. Proof of Theorem 1.1We will prove a slightly more general version of Theorem 1.1. If Nis a 
omplete interse
tion ideal (zb11 , . . . , z
bn
n ), by Example 4.2, hull(N)is the polyhedral 
ell 
omplex 
onsisting of the fa
es of an oriented

(n− 1)-simplex ∆, with verti
es labeled by zb11 , . . . , zbnn . In parti
ular,
hull(N)n−1 
onsists of only the simplex ∆.Theorem 5.1. LetM be an Artinian monomial ideal in S = C[z1, . . . , zn].Assume that FX is a 
ellular resolution of S/M su
h that the under-lying labeled polyhedral 
ell 
omplex X re�nes the hull 
omplex of a
omplete interse
tion ideal N = (zb11 , . . . , z

bn
n ), i.e., the (n− 1)-simplex

∆ with verti
es labeled by zb11 , . . . , zbnn . Then the asso
iated residue 
ur-rent RX has one entry Rσ for ea
h (n − 1)-dimensional fa
e σ of X,and
Rσ = sgn(σ,∆)∂̄

[
1

zαn
n

]
∧ · · · ∧ ∂̄

[
1

zα1
1

]
,where zα1

1 · · · zαn
n is the label of σ.Theorem 1.1 
orresponds to the 
ase when X equals hull(M); there�nement is given by Proposition 4.3, and the orientation of hull(M)is impli
itly assumed to be su
h that sgn(σ,∆) = 1 for ea
h σ ∈

hull(M)n−1.Proposition 5.2. Let X and Y be oriented labeled polyhedral 
ell 
om-plexes su
h that X re�nes Y , and let E•, ϕ• and F•, ψ• be the 
orre-sponding ve
tor bundle 
omplexes. For k ≥ −1 let ak : Fk → Ek be themapping
ak : eσ 7→

∑

σ′⊂σ

sgn(σ′, σ)
mσ

mσ′
eσ′ , (5.1)where the sum is over all σ′ ∈ Xk that satisfy σ′ ⊂ σ ∈ Yk. Then the

ak are holomorphi
 and the diagram (2.4) 
ommutes.We let X and N be as in Theorem 5.1, and Y = hull(N). Sin
e
dimX = dim Y = n − 1, the 
omplexes E•, ϕ• and F•, ψ• end at level
n − 1. Thus, identifying E−1 and F−1 and taking Proposition 5.2 forgranted, (2.5) yields
RX = RE = an−1R

F =
∑

σ⊂∆

sgn(σ,∆)
m∆

mσ

∂̄

[
1

zbnn

]
∧· · ·∧ ∂̄

[
1

zb11

]
eσ⊗e

∗
∅;here we have used (4.2) for the last equality. Sin
e |X| = |Y | = ∆,the sum is over all σ ∈ Xk, and sin
e m∆ = zb11 · · · zbnn the 
oe�
ient of

eσ ⊗ e∗∅ is just
sgn(σ,∆)∂̄

[
1

zαn
n

]
∧ · · · ∧ ∂̄

[
1

zα1
1

]
,where zα1

1 · · · zαn
n = mσ. This 
on
ludes the proof of Theorem 5.1.
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e X re�nes Y as a labeled polyhedral 
ell
omplex, ea
h mσ/mσ′ in (5.1) is holomorphi
 and thus the ak areholomorphi
.To show that (2.4) 
ommutes, we �rst 
onsider the 
ase k ≥ 1. Pi
k
σ ∈ Yk. Then

eσ
ψk7−→

∑

τ⊂σ

sgn(τ, σ)
mσ

mτ

eτ
ak−1
7−→

∑

τ⊂σ

∑

τ ′⊂τ

sgn(τ, σ) sgn(τ ′, τ)
mσ

mτ ′
eτ ′ .(5.2)Here the �rst sum is over the fa
ets τ ∈ Yk−1 of σ, and the se
ond sumis over the fa
es τ ′ ∈ Xk−1 that are 
ontained in τ . Moreover

eσ
ak7−→

∑

σ′⊂σ

sgn(σ′, σ)
mσ

mσ′
eσ′

ϕk7−→
∑

σ′⊂σ

∑

τ ′⊂σ′

sgn(σ′, σ) sgn(τ ′, σ′)
mσ

mτ ′
eτ ′ .(5.3)Now the �rst sum is over the fa
es σ′ ∈ Xk that are 
ontained in σ,whereas the se
ond sum is over the fa
ets τ ′ ∈ Xk−1 of σ′.Let Xσ be the k-dimensional sub
omplex of fa
es of X that are 
on-tained in σ and 
onsider τ ′ ∈ Xσ

k−1. Note that X being a re�nementof Y means that Xσ is a polyhedral subdivision of σ. Assume that τ ′is 
ontained in a fa
et τ of σ. Sin
e dim τ ′ = k − 1 = dim τ , there is aunique su
h τ , and thus the 
oe�
ient of eτ ′ (in the rightmost expres-sion) in (5.2) equals sgn(τ, σ) sgn(τ ′, τ) mσ

mτ ′
. Moreover, τ ′ is 
ontainedin the boundary of |Xσ| and thus by Lemma 3.1 there is a unique

σ′ ∈ Xσ
k su
h that τ ′ ⊂ σ′. Therefore the 
oe�
ient of eτ ′ (in the right-most expression) in (5.3) is sgn(σ′, σ) sgn(τ ′, σ′) mσ

mτ ′
. By Lemma 3.3these 
oe�
ients 
oin
ide.If τ ′ is not 
ontained in any fa
et τ of σ, then 
learly the 
oe�
ient of

eτ ′ in (5.2) is zero. Also, then τ ′ is not 
ontained in the boundary ofXσ,and thus by Lemma 3.1, τ ′ is a fa
et of exa
tly two fa
es σ′
1, σ

′
2 ∈ Xσ

k .Hen
e the 
oe�
ient of eτ ′ in (5.3) is
(
sgn(σ′

1, σ) sgn(τ ′, σ′
1) + sgn(σ′

2, σ) sgn(τ ′, σ′
2)

)mσ

mτ ′
,whi
h by Lemma 3.4 vanishes. Sin
e the sums in (5.2) and (5.3) are onlyover τ ′, σ′ ∈ X that are inXσ, it follows that ak−1◦ψk(eσ) = ϕk◦ak(eσ).For k = 0, pi
k a vertex σ ∈ Y0. Sin
e X is a polyhedral subdivisionof Y and σ is a vertex, the only σ′ ∈ X0 with σ′ ⊂ σ is σ′ = σ. Thus

ϕ0 ◦ a0(eσ) = ϕ0(mσ/mσ′eσ′) = mσe∅. Note that a−1 maps e∅ to e∅.Thus a−1 ◦ ψ0(eσ) = mσe∅.We 
on
lude that ak−1 ◦ ψk = ϕk ◦ ak for k ≥ 0; in other words, thediagram (2.4) 
ommutes. �6. Comparison to previous resultsIn [27℄ the 
urrent R = RX 
onstru
ted from a 
ellular resolution FXof an Artinian monomial ideal M was 
omputed up to multipli
ative
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onstants; Proposition 3.1 in [27℄ asserts that R has one entry Rσ forea
h fa
e σ ∈ Xn−1, whi
h is of the form
Rσ = cσ∂̄

[
1

zαn
n

]
∧ · · · ∧ ∂̄

[
1

zα1
1

] (6.1)for some cσ ∈ C, where zα1
1 · · · zαn

n is the label of σ. The main noveltyin this paper, ex
ept for the new proof, is that we show that cσ = 1(or −1, depending on the orientation of X) and thus give a 
ompletedes
ription of R.Let annR ⊂ On
0 denote the annihilator ideal of R, i.e., the idealof germs of holomorphi
 fun
tions ξ at 0 ∈ C

n that satisfy Rξ = 0.Note that annRσ = (zα1
1 , . . . , zαn

n ) =: m
α. A monomial ideal of thisform is said to be irredu
ible. Ea
h monomial ideal M 
an be writtenas �nite interse
tion of irredu
ible ideals; this is 
alled an irredu
iblede
omposition of M . Sin
e one has to annihilate ea
h Rσ in order toannihilate R, Theorem 5.1 implies that, provided X is a polyhedralsubdivision of ∆, annR =

⋂

σ∈Xn−1

m
ασ ,whi
h gives an irredu
ible de
omposition of annR = M . Here ασ is themultidegree of the label of σ. If FX is a minimal resolution of M thisde
omposition is irredundant in the sense that no interse
tand 
an beomitted. Ea
h monomial ideal has a unique (monomial) irredundantirredu
ible de
omposition.Using that R satis�es the duality prin
iple and results [9, Theo-rem 3.7℄ and [18, Theorem 5.42℄ about irredu
ible de
ompositions, in[27℄, we 
ould in some 
ases determine whi
h cσ are nonzero. If Mis a generi
 monomial ideal, Theorem 3.3 in that paper says that cσis nonzero if and only if σ is in the S
arf 
omplex ∆M (whi
h is asub
omplex of any 
ellular resolution of M), and if FX is a minimalresolution of M ea
h cσ is nonzero by Theorem 3.5 in [27℄. Let us lookat an example where these theorems do not apply.Example 6.1. Consider the idealM = (z2

1 , z1z2, z1z3, z
2
2 , z2z3, z

2
3) ⊂ S =

C[z1, z2, z3], i.e., the square of the maximal ideal at 0 in S. The hull
omplex of M is a re�nement of the 2-simplex ∆ with the verti
eslabeled by z2
1 , z

2
2 , z

2
3 , see Figure 6.1.There are four fa
es σ1, . . . , σ4 in hull2(M) with labels mσ1 = z2

1z2z3,
mσ2 = z1z

2
2z3, mσ3 = z1z2z

3
3 , and mσ4 = z1z2z3. By Theorem 5.1,the 
urrent R therefore has four entries: three entries of the form

Rσℓ
= ±∂̄[1/z2

k] ∧ ∂̄[1/zj] ∧ ∂̄[1/zi] for ℓ = 1, 2, 3, 
orresponding to thethree 
orner triangles in hull(M), and one 
omponent Rσ4 = ∂̄[1/z3] ∧
∂̄[1/z2] ∧ ∂̄[1/z1].The hull resolution is not a minimal resolution of S/M . In parti
-ular, M is not generi
. By arguing as in the proofs of Theorems 3.3and 3.5 in [27℄, using that R satis�es the duality prin
iple and that
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Figure 6.1. The hull 
omplex of the idealM in Exam-ple 6.1 (labels on verti
es and 2-fa
es) (left) and the 
ell
omplex of a minimal free resolution of M (right).
M = (z2

1 , z2, z3)∩ (z1, z
2
2 , z3)∩ (z1, z2, z

2
3) is the irredundant irredu
iblede
omposition of M , one 
an 
on
lude that �rst three cσj

in (6.1) arenon-zero, but not that cσ4 is.A minimal resolution of S/M is obtained by removing one of theedges of the inner triangle in hull(M), see, e.g., [18, Example 3.19℄.The 
ell 
omplex X of one su
h resolution is depi
ted in Figure 6.1.Note that X is a re�nement of ∆ (although di�erent from hull(M)) sothat Theorem 5.1 applies; the 
orresponding residue 
urrent 
onsistsof the three entries Rσ1 , Rσ2 , and Rσ3 above. �In [27℄ the 
urrent R is 
omputed as the push-forward of a 
ur-rent on a tori
 log-resolution of M . The 
omputations are inspired by[26℄, where Bo
hner-Martinelli residue 
urrents, 
f. Example 2.1, ofmonomial ideals are 
omputed, and they be
ome quite involved. The
oe�
ients cσ appear as 
ertain integrals in the log-resolution and seemto be hard to 
ompute in general. The proof of Theorem 5.1 given hereis more dire
t and mu
h less te
hni
al than in [27℄.It would be interesting to investigate whether the 
omparison for-mula for residue 
urrents 
ould be used also to 
ompute Bo
hner-Martinelli residue 
urrents. In [26℄ it was shown that ifM is an Artinianmonomial ideal, the Bo
hner-Martinelli 
urrent RM
BM of (a monomialsequen
e of generators of) M is a ve
tor-valued 
urrent with entries ofthe form (6.1), for 
ertain exponents α. In some 
ases we 
an 
omputethe 
oe�
ients cσ, e.g., if n = 2 and ea
h minimal generator of themonomial ideal M is a vertex of the so-
alled Newton polytope of M ;the 
oe�
ients are then equal to ±1, see [28, Se
tion 4.2℄.If E•, ϕ• is the Koszul 
omplex ofM and F•, ψ• is the Koszul 
omplexof a 
omplete interse
tion ideal (zβ1

1 , . . . , z
βn
n ) 
ontained in M , it is nothard to expli
itly �nd mappings ak so that the diagram (2.4) 
ommutes.Indeed, let m1, . . . , mr be a minimal set of generators of M , ordered sothatmj = z

αj

j for j = 1, . . . , n; note that there are su
h generators sin
e
M is Artinian. Identify the set of generators with a se
tion ∑

mjej of a



16 RICHARD LÄRKÄNG & ELIZABETH WULCAN(trivial) rank r bundle Ẽ. Similarly identify zβ1
1 , . . . , z

βn
n with a se
tion∑

z
βj

j ǫj of a rank n bundle F̃ and 
onstru
t the Koszul 
omplexes
E•, ϕ• and F•, ψ• as in Example 2.1. Now we 
an 
hoose ak−1 : ΛkF̃ ∗ →

ΛkẼ∗ as the mapping ak−1 : ǫ∗i1 ∧ · · · ∧ ǫ∗ik 7→ z
βi1

−αi1
i1

· · · z
βik

−αik

ik
e∗i1 ∧

· · ·∧e∗ik . Theorem 3.2 in [15℄ then gives a formula relating the 
urrents
RE = RM

BM and RF , the latter given by (4.2). However, when M isnot a 
omplete interse
tion and thus E does not end at level n − 1,the formula relating the 
urrents is more involved than (2.5); thereappears an extra term, whi
h seems hard to 
ompute in general, see[15, Equation (3.2)℄.6.1. Non-Artinian monomial ideals. In [27℄ we also 
omputed residue
urrents (up to nonvanishing fa
tors) asso
iated with 
ellular resolu-tions of non-Artinian monomial ideals.The method in this paper is not as well adapted to resolutions ofnon-Artinian ideals. First, to be able to use the simple form (2.5) ofthe 
omparison formula for residue 
urrents it is important that M isCohen-Ma
aulay. Se
ond, even if M is Cohen-Ma
aulay, there is ingeneral no su
h natural (resolution of an) ideal to 
ompare with as themonomial 
omplete interse
tion idealN = (zb11 , . . . , z
bn
n ) in the Artinian
ase.Example 6.2. LetM be the idealM = (z1z2, z1z3, z2z3) in S = C[z1, z2, z3].Then

0 −→ S⊕2

2

6

6

4

−z3 0
z2 −z2
0 z1

3

7

7

5

−−−−−−−−−−→ S⊕3

h

z1z2 z1z3 z2z3
i

−−−−−−−−−−−−−−−→ S (6.2)is a free resolution ofM . Let E•, ϕ• be the 
orresponding ve
tor bundle
omplex. Next, let f be the regular sequen
e f1 = z1z2, f2 = (z1+z2)z3,and let F•, ψ• be the Koszul 
omplex of f . Then it is not hard toexpli
itly �nd the morphisms a1, a0, and a−1. Sin
e the ideals M and
(f1, f2) are Cohen-Ma
aulay we may apply the 
omparison formula(2.5). A 
omputation gives
RE =

1

z1
∂̄

1

z3
∧ ∂̄

1

z2

[
1
0

]
+

1

z2
∂̄

1

z3
∧ ∂̄

1

z1

[
1
1

]
+

1

z3
∂̄

1

z2
∧ ∂̄

1

z1

[
0
1

]
.Observe that R is not symmetri
 in z1 and z2, although the ideal Mis. This is, however, not too surprising, sin
e the resolution (6.2) is notsymmetri
 in z1 and z2. �A general strategy for 
omputing the residue 
urrent asso
iated withthe resolution E•, ϕ• of a (monomial) Cohen-Ma
aulay idealM of 
odi-mension p is to look for a regular sequen
e f1, . . . , fp 
ontained in Mand then apply the 
omparison formula (2.5) to E•, ϕ• and the Koszul
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omplex F•, ψ• of f . One way of �nding su
h a regular sequen
e is to
onsider p su�
iently generi
 linear 
ombinations f1, . . . , fp of the gen-erators of M , as was done in Example 6.2. However, when the fj arenot monomials the 
omputation of the 
urrent RF = Rf
CH 
an be
omemu
h more involved. Also, although the 
omplex F•, ψ• is simple, itmay be hard to �nd the morphism ak in general.If E•, ϕ is a resolution of a non-Cohen-Ma
aulay ideal, the 
ompar-ison formula in [15℄ is more involved than (2.5). For 
omputations ofresidue 
urrents in this 
ase, see [15, Se
tion 5℄.7. Relations to fundamental 
y
lesOur original motivation for 
omputing the 
oe�
ients cσ of the en-tries (6.1) of RX was that we wanted to understand the 
urrent

Dϕ ◦R := Dϕ0 ◦ · · · ◦Dϕp−1 ◦R, (7.1)when R = RE is the residue 
urrent asso
iated with a resolution (2.3)of an ideal sheaf a of 
odimension p and D is the 
onne
tion on EndEindu
ed by 
onne
tions on E =
⊕

Ek.Let a be a 
omplete interse
tion ideal, de�ned by a regular sequen
e
f1, . . . , fp and let (2.2) be the Koszul 
omplex of fj , see Example 2.1,equipped with the trivial metri
s so that D is the trivial 
onne
tion d.Then (7.1) equals p! times the 
urrent

Rf
CH ∧ df1 ∧ · · · ∧ dfp = (2πi)p[a], (7.2)where [a] is the 
urrent of integration along the fundamental 
y
leof a. The equality (7.2) was proved in [10℄. Re
all that for an Ar-tinian ideal a ⊆ On

0 , the fundamental 
y
le of a is [a] = m[0], where
m = dimC On

0 /a is the geometri
 multipli
ity of a. For an arbitraryideal a, with irredu
ible 
omponents Zi (i.e., irredu
ible 
omponentsof the radi
al ideal of a), the fundamental 
y
le of a is [a] =
∑
mi[Zi]where mi are the geometri
 multipli
ities of a along Zi. The geometri
multipli
itymi of a along Zi 
an be de�ned as the geometri
 multipli
-ity of the Artinian ideal a + b, where b is the ideal of a generi
 smoothvariety transversal to Zi. For more details regarding fundamental 
y-
les, see [14, Se
tion 1.5℄.Using the 
omparison formula for residue 
urrents from [15℄, we re-
ently managed to prove that

Dϕ ◦R = p!(2πi)p[a] (7.3)for any resolution (2.3) of any equidimensional ideal (i.e., all minimalprimes are of the same dimension) a ⊂ On
0 , thus generalizing (7.2).This fa
torization of the fundamental 
y
le is 
losely related to a resultby Lejeune-Jalabert, [17℄, who proved a 
ohomologi
al version of (7.3)for Cohen-Ma
aulay ideals, and it will be the subje
t of the forth
omingpaper [16℄.
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a1

(ai, bi)

(ai, bi+1)

(ai+1, bi+1)

br

TM

exp(M)

Figure 7.1. The stair
ase TM of an Artinian monomialideal in C
2. The latti
e points above TM are the expo-nents exp(M) of monomials in M .For the residue 
urrent asso
iated with the hull resolution of a generi
Artinian monomial ideal we 
an give an alternative proof of (7.3) (withthe trivial 
onne
tion d) using Theorem 1.1. In fa
t, we get a re�nementof (7.3): For ea
h permutation s1, . . . , sn of 1, . . . , n,

∂f1

∂zs1
dzs1 ◦ · · · ◦

∂fn
∂zsn

dzsn
◦R = cn(2πi)

n[a], (7.4)where cn = (−1)n
2
· (−1)

n(n−1)
2 . For an explanation of why the 
onstant

cn appears in the right hand side of (7.4), but not in (7.3), see [16℄.We will show how this works when n = 2. For n ≥ 3, the 
omputationof dϕ gets more involved; the general 
ase will therefore be treated inthe separate paper [29℄.First, let us des
ribe the geometri
 multipli
ity dimC On
0 /M of amonomial idealM ⊂ On

0 . Let R+ denote the nonnegative real numbersand let TM be the stair
ase R
n
+ \

⋃
zα∈M{α + R

n
+} of M . If M isArtinian, then TM is a bounded set in R

n
+. The name stair
ase ismotivated by the shape of TM . If n = 2 ea
h Artinian monomialideal M is of the form M = (za1wb1, . . . , zarwbr) for some integers

a1 > . . . > ar = 0 and 0 = b1 < . . . < br. Then TM looks like astair
ase with inner 
orners (aj, bj) and outer 
orners (aj, bj+1), seeFigure 7.1. In general there is an �inner 
orner� α for ea
h minimalgenerator zα of M and one �outer 
orner� α for ea
h interse
tand m
αin the irredundant irredu
ible de
omposition. If M is generi
, thereis a one-to-one 
orresponden
e between fa
es σ ∈ hull(M)n−1, withlabels mσ = zασ , and outer 
orners α in TM . The points in Z

n∩TM arepre
isely the exponents of monomials that are not inM . In other words,
On

0 /M = spanC{z
α | α /∈ TM}. It follows that dimC On

0 /M = Vol(TM),where Vol is the usual Eu
lidean volume in R
n.Now assume that n = 2, and that M is an Artinian ideal, minimallygenerated by zaiwbi , a1 > . . . > ar = 0 and 0 = b1 < . . . < br. Then

hull(M) is one-dimensional, with one vertex vi for ea
h generator zaiwbi
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P1

Pi

Pr−1

Q1

Qi

Qr−1

Figure 7.2. Partitions of TM as re
tangles Pi and re
t-angles Qi.and one edge σi, with label zaiwbi+1, for ea
h outer 
orner (ai, bi+1) in
TM . The mappings in Fhull(M) are given by ϕ0 : evi

7→ zaiwbie∅ and
ϕ1 : eσi

7→ zai−ai+1evi+1
− wbi+1−bievi

and by Theorem 1.1,
R = Rhull(M) =

r−1∑

i=1

∂̄

[
1

wbi+1

]
∧ ∂̄

[
1

zai

]
eσi

⊗ e∗∅.Let us 
ompute ∂ϕ0

∂z
dz ◦ ∂ϕ1

∂w
dw ◦R. Note that

∂ϕ0

∂z
dz =

r∑

i=1

aiz
aiwbi

dz

z
e∗vi

⊗ e∅and
∂ϕ1

∂w
dw = −

r−1∑

i=1

(bi+1 − bi)w
bi+1−bi

dw

w
e∗σi

⊗ evi
,so that

−
∂ϕ0

∂z
dz ◦

∂ϕ1

∂w
dw =

r−1∑

i=1

ai(bi+1 − bi)z
aiwbi+1

dz

z
∧
dw

w
e∗σi

⊗ e∅.Let Pi = {x ∈ TM | 0 ≤ x1 < ai, bi ≤ x2 < bi+1} for i = 1, . . . , r − 1.Then the Pi form a partition of TM , 
f. Figure 7.2 and, in parti
u-lar, Vol(TM) =
∑

Vol(Pi). Note that Vol(Pi) = ai(bi+1 − bi). Hen
e(identifying e∗∅ ⊗ e∅ with 1)
−
∂ϕ0

∂z
dz◦

∂ϕ1

∂w
dw◦R =

r−1∑

i=1

Vol(Pi)z
aiwbi+1

dz

z
∧
dw

w
∧∂̄

[
1

wbi+1

]
∧∂̄

[
1

zai

]
=

r−1∑

i=1

Vol(Pi) ∂̄

[
1

w

]
∧ ∂̄

[
1

z

]
∧ dz ∧ dw = (2πi)2 Vol(TM)[0],so we have proved (7.4) (for zs1 = z and zs2 = w).By similar arguments we get that−∂ϕ0

∂w
dw◦∂ϕ1

∂z
dz◦R =

∑r−1
i=1 Vol(Qi)(2πi)

2[0],where Qi = {x ∈ TM | ai+1 ≤ x1 < ai, 0 ≤ x2 < bi+1} for i =
1, . . . , r − 1, see Figure 7.2. Again, the re
tangles Qi form a partition



20 RICHARD LÄRKÄNG & ELIZABETH WULCANof TM and thus (7.4) holds also for this permutation (zs1 = w and
zs2 = z) of the variables. To 
on
lude, we have proved (7.3) for hullresolutions of monomial ideals in dimension 2 with D = d.For a generi
 Artinian monomial ideal M ⊂ On

0 , n ≥ 3 one 
ananalogously de�ne 
uboids Pα,s, where α is an outer 
orner of TM and
s is a permutation s1, . . . , sn of 1, . . . , n, su
h that for a �xed s, {Pα,s}αde�nes a partition of TM and moreover
∂ϕ0

∂zs1
dzs1◦· · ·◦

∂ϕn−1

∂zsn

dzsn
=

∑

σ∈hull(M)n−1

Vol(Pασ,s)z
ασ
dz1
z1

∧· · ·∧
dzn
zn

e∗σ⊗e∅.Together with Theorem 1.1 this proves (7.4) and thus (7.3) in this 
ase.However, for n ≥ 3, the 
onstru
tion of the Pα,s is more deli
ate thanthat of Pi and Qi, see [29℄. Referen
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