THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Products of Residue Currents of
Cauchy-Fantappie-Leray Type

Elizabeth Wulcan

CHALMERS ‘ GOTEBORG UNIVERSITY

Department of Mathematics
Chalmers University of Technology and Géteborg University
Goteborg, Sweden 2004



Products of Residue Currents of Cauchy-Fantappié-Leray Type
ELIZABETH WULCAN

(©Elizabeth Wulcan, 2004

NO 2004:26
ISSN 0347-2809

Department of Mathematics

Chalmers University of Technology and Goteborg University
SE-412 96 Goteborg

Sweden

Telephone +46 (0)31 772 1000

Printed in Géteborg, Sweden 2004



PRODUCTS OF RESIDUE CURRENTS OF
CAUCHY-FANTAPPIE-LERAY TYPE

ELIZABETH WULCAN

ABSTRACT

To a given holomorphic section of a Hermitian vector bundle, one can asso-
ciate a residue current by means of Cauchy-Fantappie-Leray type formulas.
In this thesis we define products of such residue currents. We prove that, in
the case of a complete intersection, the product of the residue currents of a
tuple of sections coincides with the residue current of the direct sum of the
sections.
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1. INTRODUCTION AND BACKGROUND

Let f be a holomorphic function at 0 in C. One can prove that there exists
a distribution U7 such that fU/ = 1, as was first done by Schwartz [13]. One
way of defining such a U7, sometimes denoted by [1/f], is as the principal
value distribution of 1/ f, given by

@ — lim Ly

e—0 |f|>e f

Applying the 9 operator to U7, we obtain a (0,1)-current, which we call
the residue current of f and which we denote by 9[1/f] or Rf. Clearly, R
has support on Y = f1(0) and it is easy to see that a function ¢ that is
holomorphic in a neighborhood of Y belongs to the ideal generated by f
precisely when it annihilates R/, that is when @R/ = 0. Observe that these
last properties do not depend on the exact definition of U7, but only on the
fact that fUf = 1. By Stokes’ theorem, the action of R/ is given by

_ . 14 1 14 i d
1.1) ol =1 2 0p=1 d(%) =1 f
( ) [ /f]((P) EI—I>I(1) |fI>e f 4 51_I>I(1) |f|>€ (f) El_rf(l) |fl=e f’

where the limit is taken over the regular values of | f|.

Given a tuple f of holomorphic functions fi,..., f;; defined in some do-
main 2 in C", it is natural to ask whether there are analogues to the currents
U7/ and R/, that can be used to characterize the ideal (f). In general, def-
initions of such residue currents lead to integration over singular varieties,
and thus the theory of multidimensional residue currents relies heavily on
Hironaka’s theorem of resolution of singularities from 1964, see [2].

In 1978, Coleff and Herrera [6] used the desingularization to construct
a residue current of the tuple f as a product of residue currents of the
functions f;. For a test form ¢ € Dy, ,_,(£2), consider the residue integral

1 ¢
I¢ g) = . ’
1= @ Jup oo T
where T{" = {|fi| = €1,...,|fm| = €m} is oriented as the distinguished

boundary of the corresponding polyhedron. To see how lim,_, ij(e), if it

exists, can be interpreted as the action of a current 9[1/f1]A...AO[1/ fn], let
us consider the case of two functions f; and fy. Assuming f to be regular,
that is dfi Adfs # 0, on Y = f~1(0), we can locally choose f; and fy as
coordinates, and for ¢ € Dy ,_2)(2) we get by Stokes’ theorem (compare
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to (1.1)) that

¢ ¢ 1. ¢

_r = d (== — _a (=
/f1—51=f2—52 fif /f1_515f2>52 g (flfQ) /|f1|—617|f2>52 fi d (f2)
1. ¢ R

- d (407, (2)) = 3 (L, ().
/|f1|>5ls|f2>52 fl(fl & (fQ)) /f1|>€1,|f2|>62 fl(fl S (f2))

In general I?(e) does not have a limit as ¢ tends to 0 and it is easy to find
examples that illustrate this, see for instance Example 7.1.3 in [8]. However,
Coleff and Herrera showed that lim._,g ij(e) does exist if one lets € tend to
zero along a certain path, a so called admissible trajectory, for which each ¢;
tends to zero faster than any power of ;1. In the case of a complete
intersection, that is, when the variety Y has codimension m, the limit is
independent of the ordering of the functions and therefore, in this case, it is
reasonable to expect the limit of I?(e) to exist unconditionally. There are
however counterexamples by Passare and Tsikh [11] and Bjork [5] that show
that this is not the case.

One way to circumvent the problem of such “bad” trajectories is to con-
sider the residue current as certain averages of ij(s), as first done by Pas-
sare in [9]. In order to avoid integration over the possibly singular varieties
{|f] = €} he modifies the definition of residue currents of Coleff and Her-

rera [6] somewhat. Regarding the currents as limits of smooth forms he
defines [1/f] and O[1/f] as

1 12
tim <x(1f1/¢) and Tim Zax(fl/<).

respectively, where x(z) is a smooth nondecreasing function, equal to 0 in
a neighborhood of the origin and equal to 1 for z > ¢ for some ¢ > 0. One
can show that the currents are independent of the particular choice of y.
Further, products of principal value and residue currents are constructed,
based on those definitions. Let

’ nrl 1 1 - _
R f (S) 61—1)1(1] fl fm 8X1 /\ /\ 8Xm Xm +1 Xma
where x; = x(|f;|/€%). Here, R™ P(™ ™) should be interpreted as the
product of the residue currents of f1,..., f} and the principal value currents

of frnr41,---, fm- In particular, R™[1/f](s) corresponds to I}z’(e“"l, ce, €5
Finally, the product Rm'P(m*m')[%] is defined as the mean value of
R™ P(m=m)[1/f](s) over the simplex

Ym={s €R™,s; >OZsj =1},
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that is,
R pm—m)[1/f] = /E R™ PO (1) £]()dSim(s),

where S, is the Lebesgue measure, normalized with respect to %,,. In
case f defines a complete intersection, the current R™[1/f](s) is shown to
agree with the Coleff-Herrera residue current, as expected since lim._,¢ I(¢)
is then independent of the path along which ¢ tends to 0 as long as it is an
admissible trajectory.

Another way of averaging ij(s), is to take the Mellin transform of I}z’(g),

I“Jf(/\) :/ If(s)s)‘*lds,
RP
+

where A = (A1,...,A\p) € C™ and e*~lde = 8?171 cegdm=lder AL Adep,.
A computation shows that

1 Of1IPM Ao A D frn|Pm
T\ = / A .
f() AL A fi fm ¢

Now, I‘?(A) is meromorphic in C™, and the polar structure at the origin is

related to the limit behaviour of the residue integral, see [10]. In fact, if f
is a complete intersection, it holds that

¢ _ 1 ¢
/\mrf()" a)‘)|)\:0 - gl_{%‘[f(e)a

where the limit is taken along an admissible trajectory. Thus, this yields
an alternative definition of the Coleff-Herrera current. In the particular
case when f consists of only two functions, the mapping A — Al)\gff()\) is
holomorphic at the origin as first shown by Berenstein and Yger, see the
proof of Theorem 3.18 in [3]. Although not yet satisfactorily proven, this
result is believed to extend to any finite number of functions.

The residue currents we have studied so far are based on the Cauchy
kernel K = 1/(2mi) d¢/¢. From the definition of the one-dimensional
residue current, one sees that RS times d( can be expressed as 0K, and so
R Adf = 0f*K. Tt follows that the Coleff-Herrera current can be regarded
as the pull-back under f of the multiple Cauchy kernel

1/(27Ti)de1/C1 VAYAN de/Cm,

and by that as the formal product of one-dimensional residue currents. An-
other approach to the multidimensional residue current would be to use other
generalizations of the one-dimensional Cauchy kernel. In [12], Passare, Tsikh
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and Yger define a residue current based on the Bochner-Martinelli kernel.
Let _
A
b(¢) = 2%
273|C|?
The Bochner-Martinelli kernel in C™ \ {0} is given by
5 _ 217G
(2md)™|C[>m

where d/Ej denotes the form d(i A...Ad(j—1 Ad(j+1 A...Adp,. Clearly, B(C)
is in LllOC and it is easy to show that

A 1 -1 =1
(1.2) 0B(¢) = [0] (27Ti)maCm A A 6C1
where the right hand expression should be recognized as the Coleff-Herrera
current times d(; A ... A d(y. If we let B(f) = f*B then B(f) is clearly
smooth outside Y. If f is regular on Y, it is easy to see that B(f) is in LL

loc
and that B(f) coincides with the Coleff-Herrera current RéH. Indeed,
after a coordinate change we are back to the case (1.2). Thus, it is natural
to expect the current 0B(f) to have meaning also for a more general f. Let

RéM €)= B ,
@=[, BUns

AdG AL AN,

where |f|> = 3 |f;]|?. In [12] it is shown that the limit of Rﬂ;M(E) as ¢ tends
to zero, always exists. This is done by proving the existence of the mero-
morphic continuation of the corresponding Mellin transform. We denote the
limit by Ré - Moreover we have

Theorem 1.1 (Passare, Tsikh, Yger [12]). Assume that f is a complete
intersection. Then ; ;
Ryy = Roy-

The Bochner-Martinelli residue current has been used for investigations
in the noncomplete intersection case. For example, in [4], Berenstein and
Yger use the Bochner-Martinelli current to construct Green currents.

In [1], Andersson introduces an alternative approach to RQM, based
on the Koszul complex. Considering sections of holomorphic vector bun-
dles rather than tuples of functions yields globally defined currents. For
further reference, we give a presentation of the construction. As in the
one-dimensional case we start out by looking for holomorphic solutions to
fU =1, now read as Z;”Zl f;U; = 1. We adopt an invariant point of view
and assume that f is a holomorphic section of the dual bundle £* of a holo-
morphic m-bundle £ — X over a complex manifold X. If e;,...,¢e, is a
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local holomorphic frame for F and €], ..., ey, is the dual frame, we can write
f=> fie;. On the exterior algebra over £ we have mappings

§;: AYTIE - A'E,

where § is the interior multiplication by f. In particular, 6 acts on a section
Y=Y je; of E=A'E as dpp = > fj;, and thus we can formulate the
original problem as finding holomorphic solutions to

(1.3) opp = 1.

This kind of division problem can be solved by means of the Koszul complex.
We start by looking for smooth solutions to (1.3). Outside Y = f1(0) we
can easily find one; u; = Y. f;/|f|?. However, in general u; is not holomor-
phic, so we need to compensate for that. Now, let us introduce the spaces
Eok(X,A‘E) and ’D(),k(X, AE) of (0,k) forms and currents, respectively,
that take values in AYE. Note that 0 ¢ and 0 extend to the exterior alge-
bra over T, @ E, where they anticommute. Thus, (5f5u1 = —55fu1 =0,
and since the Koszul complex of f is exact outside Y we can find a us €
&0,1(X, A%E) such that dpus = Oui. We proceed by successively solving

(1.4) (5fuk = 5uk_1,
where u, € & - 1(X, A¥E). This procedure will terminate after a finite

number of steps. In fact, Ou,, = 0, and so, if X is Stein, by successively
solving equations

(1.5) Ovg_1 = up_1 + dfug
for k < m, we finally arrive at the desired holomorphic solution
=1 + dpvg
to (1.3). Now, letting
L'(X,E)= P DX, A E),
k+L=r
we introduce
széf—('_):ﬁr—>£”'1.
Note that V is an antiderivation on the exterior algebra over T, ® E. With
this notation, the system of equations (1.3) and (1.4) can now be written as

(1.6) Viu=1,

where v € L71(X, E). To find a solution to (1.6) in X \ Y, let us assume
that E is equipped with some Hermitian metric and let s be the section of £
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with pointwise minimal norm such that ;s = [f[%. Outside Y = f~1(0),
the Cauchy-Fantappié-Leray form

s s = sA08) ~sA(09) !
“= Vs  0ps—0s Ze: (675)° _%: | £]2¢

is well-defined (observe that Js is of even degree), and Vu = 1. In the trivial
metric the term of top degree corresponds to the Bochner-Martinelli form.
Indeed, s =}, fjej, so that

-> GBS

We wish to extend u to the entire X. If we could find an extension
such that (1.6) still holds, by solving equations (1.5), this would imply
that 1 belongs to the ideal generated by f, which is clearly not possible
in general. Thus, there will appear residues. In [1], the existence of an
analytic continuation of A — |f|**u to ReA > —e¢ is proven. The value
at A = 0, denoted by U, yields the desired extension of u. (By analogy
with the one-dimensional case, we will sometimes refer to U as the princi-
pal value current.) Moreover, VU = 1 — Rf, where R/ = 9|f|** A u|y—o
now defines the residue current of f. If f is a complete intersection, then
Rf = R}; u Neir A... A ep, where Ré u 18 the Bochner-Martinelli current.
Furthermore, from the construction it is easily verified that a holomorphic
function that annihilates R/ belongs to the ideal generated by f locally.

To sum up, given a tuple f of functions fi,..., fr, we have discussed
essentially two different ways of associating a residue current to f. Either
we can consider the product of the residue currents corresponding to each
function f; of the tuple, that is the Coleff-Herrera current, or we can de-
fine R/ by means of the Cauchy-Fantappié-Leray (or Bochner-Martinelli)
form of f. Counsidering this, we are led to ask whether it is possible to de-
fine products not only of one function currents but also of the multifunction
currents. That is, given two tuples of functions f and g, is there a way to
give meaning to the expression Rf A R9? Let us recall that, by the Mellin
transform, the Coleff-Herrera current of f is equal to the value at A = 0 of

1
fr

Now, if we assume that each f; is a section of a line bundle L] with frame e},
the Cauchy-Fantappie-Leray form is just u/i = e;/f;, so in fact this product
times the frame elements e; A ... A e, can be expressed as

(1.7) ANfiPA Ault AL AB|f P Al

_ 1 _
6|f1|”E A NO|fr |
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In light of this, it is most tempting to extend this definition to include not
only sections of line bundles but sections f; of bundles of arbitrary rank.
To be more accurate, we assume that f; is a section of the dual bundle of a
holomorphic m;-bundle E; — X. Further, assuming that each F; is equipped
with a Hermitian metric, let s; be the section of E; of minimal norm such
that d07,s; = | fi|?, and let uli be the Cauchy-Fantappié-Leray form defined
as above. Since a section f of a bundle £ has a natural interpretation as
a section of a bundle F @& E’, that is as f & 0, we have given meaning to
the expression (1.7) as a form taking values in the exterior algebra over
E =FE|&---® E,. Thus, in accordance with the line bundle case, we can
take the value at A = 0 of (1.7) as a definition of R/*A... AR, provided that
the analytic continuation exists. However, this is assured by Proposition 1.2,
where products are defined also of principal value currents.

Proposition 1.2. Let f; be a holomorphic section of the Hermitian
m;-bundle EY — X. Let uli be the corresponding Cauchy-Fantappié-Leray
form and let Y; = f7(0). Then

(1.8) A= || ulm A A foqp1[Pulst AB| o) Auls AL AB|f1PA Ault

has an analytic continuation as a current to A > —e.

We define T = Ulr A.. . ANUFs+ AR A . .ART" as the value at A = 0. Then
T has support on ();_, Y; and it is alternating with respect to the principal
value factors U and commutative with respect to the residue factors R.

Of course there is nothing special about the ordering that we have chosen,
that is first the principal value factors and then the residue factors. We can
just as well mix U’s and R’s.

Since the term of top degree of ufi corresponds to the classical Bochner-
Martinelli kernel, the term of top degree of R" A...A Rt can be interpreted
as a product of Bochner-Martinelli currents in the sense of [12]. In general,
however, there will also occur terms of lower degree. More precisely we have

Proposition 1.3. Let
T=U"AN...ANU*'"ARFs A...ANRN

be defined as above. Let m = mi +...+m,. ThenT =Ty + ... +T,, where
T, € D()’z(A'E), p=codimY;N...NY; and ¢ = min(m,n). In particular, if
f is a complete intersection, then RI" A ... N R consists of only one term
of top degree m.

Notice, that in the particular case when the bundles F; are all line bundles
and thus the sections f; correspond to single functions, the current

RIUA... AR
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is just the Coleff-Herrera current of f times e; A ... Ae,. Hence, we can
formulate the equality in Theorem 1.1 as

(1.9) RN®-®fr = RNV A AR

Now, the obvious question is, does this equality extend to hold for sections of
vector bundles of arbitrary rank. Our main result states that this is indeed
the case.

Theorem 1.4. Let f; be a holomorphic section of the Hermitian m;-bundle
E? and let f denote the section fi1®--- @ fr of E*=E] @---@E;. If f is
a complete intersection, that is codim f 1(0) = my + ... + m,, then

R =R A...ARF.

That is, in a local perspective, given a tuple of functions split into sub-
tuples, the product of the Bochner-Martinelli currents of each subtuple is
equal to the Bochner-Martinelli current of the whole tuple of functions. We
give an explicit proof of Theorem 1.4, involving finding a potential to the
current 1 — R" A ... A R'. Indeed we prove

Theorem 1.5. Let f = f1 @ --- @ f, be a section of E* = Ef @ --- @ E;.
Assume that f is a complete intersection. Then there exists a current V
such that

(1.10) V;V=1-R"A...ARP,
and furthermore a current U AV such that
(1.11) ViU AV)=V U/

At first it might seem a bit peculiar to denote the second potential by
Ul A V. However, notice that on a formal level, if we were allowed to
multiply currents so that V; acted as an antiderivation on the products,
then

ViU AV)=(1—-R)AV -U/(1 - R A...ARF),
since U/ is of odd degree. From Proposition 1.3 we know that R/ and
R A ... AR are of top degree, m, in dz;, since f is a complete inter-
section, and thus it is reasonable to expect also the products Rf A V and
Uf AR A ... ARF to be of degree m in dzj. However, since Uf and V are
both in £7!(X, E), this is not possible unless the products vanish. Thus we
are left with V — U/, and the notation is motivated.

Proof of Theorem 1.4. Recall that Vfo = 1 — R/. Hence, applying V¢
twice to U/ AV yields

0=VHU/AV)=V,;Uf V) =RI'A... AR — R,

and thus we are done. |
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The disposition of this paper is as follows. In Section 2 we give proofs of
Proposition 1.2 and Proposition 1.3. In Section 3 we prove Theorem 1.5. Fi-
nally, in Section 4 we give some examples of products of Cauchy-Fantappie-
Leray currents.

2. PRODUCTS OF RESIDUE CURRENTS OF
CAUCHY-FANTAPPIE-LERAY TYPE

We start with the proof of Proposition 1.2. For further use a slightly
more general formulation is appropriate. Namely, the proof of Theorem 1.5
requires a broader definition of products of currents. We need to allow also
products of currents of sections of the bundle F, that are not necessarily or-
thogonal, at least in certain cases. Thus we give a new, somewhat unwieldy,
version of Proposition 1.2 that however covers all the currents that we will
be concerned with.

Proposition 2.1. Let f = f1 & ... ® fr be a holomorphic section of the
bundle E* = E{ @ ... ® E;, where E} is a Hermitian m;-bundle. For a
subset I = {Ir,...,Ip} of {1,...,7}, let fr denote the section fr, ®...® fr,
of Ef = ET @®.. .EBE’I"p, let u/T be the corresponding Cauchy-Fantappié-Leray

form, let Y = fl_l(O), and let my = mp, +...+my,. If1',... 1" are subsets
of {1,...,r}, then

(2.1)

A | fre| Pt A A fren PPudrert A frs P2 Au AL AD| f [P Al

has an analytic continuation to A > —e.

We define T = Uft A ... AU+t A RI1s A ... A RITY as the value at
A= 0. Then T has support on (\;_, Yy and it is alternating with respect
to the principal value factors U and commutative with respect to the residue
factors R.

Note that Proposition 1.2 corresponds to the particular case when each I’
is just a singleton. The proof of Proposition 2.1 is very much inspired by
the proof of Lemma 2.2 in [12] and Theorem 1.1 in [1]. It is based on the
possibility to resolve singularities by Hironaka’s theorem and the following
lemma, which is proven essentially by integration by parts.

Lemma 2.2. Let v be a strictly positive smooth function in C, ¢ a test
function in C, and p a positive integer. Then

ds N\ ds
A [ s 0

and
ds

P

A /5(UA\3|2A) A o(s)
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both have meromorphic continuations to the entire plane with poles at ra-
tional points on the negative real axis. At X\ = 0 they are both independent
of v, and the second one is a distribution of ¢ supported at the origin and
they only depend on powers of 0/0s of the test function ¢. Moreover, if
o(s) = s¢(s) or ¢ = ds A1, then the value of the second integral at A = 0
18 zero.

Proof of Proposition 2.1. We may assume that the bundle F = F1®---© E,

is trivial since the statement is clearly local. Note that f; = ) fi jer S
where e; ; is the trivial frame. The proof is based on the possibility to
resolve singularities locally using Hironaka’s theorem. Given a small enough
neighborhood U of a given point in X there exist a n-dimensional manifold ¢/

and a proper analytic map I, : Y — U such that if Z = {[],; fi; = 0}
and Z = I, (Z), then II : U\ Z — U\ Z is biholomorphic and such that

moreover Z has normal crossings in U. This implies that locally in U we have
that II} f; ; = a; s, where a; j are non-vanishing and p; ; are monomials
in some local coordinates 7. Further, given a finite number of monomials
1 - - - s i In some coordinates 7 defined in an n-dimensional manifold U,
there exists a toric manifold I4; and a proper analytic map II;: Uy — Uy such
that II; is biholomorphic outside the coordinate axes and moreover, locally
it holds that, for some 4, IIjy; divides all ITjz;, see [3] and [7]. Clearly,
if p; divides p; in U then IIj p; divides IIjp; in U;. Thus after a number,
say g, of such toric resolutions II;, we can locally consider each section f;:
as a monomial times a non-vanishing section. More precisely we have that
IT* fri = pif}s, where IT = II;, o --- o I3, o ITp, p; is a monomial and f7; is a
non-vanishing section of E7;.

Let ¢ be a test form with compact support. After a partition of unity
we may assume that it has support in a neighborhood U as above. Then,
since Il is proper, the support of II} ¢ can be covered by a finite number of
neighborhoods in which it holds that I} ¢ = a; jpij - I 9 is a test form with
support in such a neighborhood, then the support of IIf 7 can be covered
by finitely many neighborhoods in which we have the desired property that
the pull-back of one monomial divides some of the other ones, and so on.
Thus, for Re A > 2max; mp, (2.1) is in L{ _, and since II is biholomorphic
outside a zero-set we have that

/|f1t\2’\uf1t Ao N froen|Pudistr A D frs PP Al A AB| P2 Aud A g

loc»

is equal to a finite number of integrals of the form
(2.2)

I (| fre [Pt A A froen [Pultstr AD| fro |PAAufe AL AB|fra |22 Ault) A 6.
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Here B

¢ = pt, 117 (- oy 1T, (pnI14(9))),
where the p,’s are functions from some partitions of unity, so that the test
form ¢ has support in a neighborhood where it holds that IT*f;; = p; fri-
In such a coordinate neighborhood the pullback of sy is ji; times a smooth
form, so that ITI*(s;i A (0s;i)¢!) is ¢ times a smooth form. Moreover
IT*| f1i|> = |pil?as, where a; is a strictly positive smooth function. Thus

P4
X 7% [e7W/}
H*usz e HZ () e 2
7 lwil* Zg pt’

where «; ¢ are smooth forms (taking values in A*E) and so (2.2) is equal to
a finite sum of integrals

Qe QXs+1,4s
ey | P} T A Py st
t

Loy
s+1
5 O 0, 3 (S5 ~
O(|ps*a3) A ﬁ A ANO(pa]Par) A #—gf N ¢.
s 1

Expanding each factor 0(| uj|2)‘a3\) by Leibniz’ rule results in a finite sum of
terms. Letting O fall only on the monomials y; yields integrals of the form

(2.4) /Mm”% ABI0% [P A A BB A A G,

where o; is one of the coordinate functions 7; that divide u;, a = a¢--- a1
is a strictly positive smooth function, 4’ and ) are monomials in 7; not
divisible by any o; and ay, = Cayp, A ... A a1y, is a smooth form, where C
is just a constant that depends on the relation between ¢; and the number
of 0;’s in p;. The remaining integrals, that arise when O falls on any of
the a;, vanish in accordance with Lemma 2.2. Indeed, consider one of the
integrals obtained when 0 falls on ay,

A /aA\M'PAa—L ABlo® P AL ABlo® P A Bay A G
m

This is just A times an integral of the form (2.4), so provided that we can
prove the existence of an analytic continuation of (2.4), it must clearly vanish
at A =0.

Now an application of Lemma 2.2 for each 7 that divides any of the u;’s
gives the desired analytic continuation of (2.4) to A > —e. Note that for
o1,...,0s we get integrals of the second type, for the remaining 7; integrals
of the first type, so that the value at A = 0 is a current with support on
{os =0} N...N{o1 = 0}. Thus the value of (2.3) at A = 0 has support on

{ps=0rN...N{g =0} =Y N...NYp,
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where Y, = I1-'Y,, and accordingly U/t A ... AU+t ARf1* A.. AR is
a current with support on Yzs N...N Y.

Since the form (2.1) is alternating with respect to the factors |fyi|**u/ri
and commutative with respect to the factors 0|f;i|** A u/ri, it follows that
Ul A. . .AUTrs+1 AR AL . AR/ is alternating with respect to the principal
value factors and commutative with respect to the residue factors. O

We continue with the proof of Proposition 1.3.

Proof of Proposition 1.3. Notice that Ty is the analytic continuation to
A = 0 of the terms
25) | fePufr A A e Pl ABIFPA Al AL AP Al

1
where ~
A (0
i | fz |2£¢

and the total degree in dz; (that is ¢; + ...+ ¢, —r +s) is £. By the notion
that a form (or current) is of degree k in dZ;, we just mean that it is a
(e, k)-form. In the same manner, we will say that a form is of degree £ in e;
when it takes values in A‘E.

Following the proof of Proposition 2.1, a term of the form (2.5), integrated
against a test form ¢, is equal to a sum of terms like

Qr.e Qst1,0
(2.6) /Iu,«IQ’\ai‘TTT“A.../\|ﬂs+1|2>‘a§‘+1ﬂ/\

£s
Hor lusJ:_l1
— [0 1£S — al, ~
s Pa) A 25 A N B ad) A 2 0,
s 1

where the o;y,’s are smooth forms of degree /; in ej;, the a;’s are non-
vanishing functions, the p;’s are monomials in some local coordinates T;
and ¢ is as in the previous proof. We can find a toric resolution such that
locally one of 1, ..., us divides the other ones, so without loss of generality
we may assume that p; divides uo, ..., phs-

We expand 0(|p1]?*a?) by Leibniz’ rule. Observe that when 9 falls on a?
the integral vanishes as in the proof of Proposition 2.1, and thus it suffices to
consider the case when 9 falls on one of the 7; that divide y1, say on |o|?*.
If £ < p, we claim that this part of (2.6) vanishes when integrating with
respect to 0. In fact, we may assume that ¢ = ¢; A dzy, where ¢y is an
(n,0)-form and dZr = dZr, A ... AdZ;,_,. Now dZr vanishes on the variety
Y1 N...NY; of codimension p for degree reasons. Consequently IT*(dZ;)
vanishes on ¥; N...NY;, and in particular on {¢ = 0}. However, this is a
form in d7; with antiholomorphic coefficients since II is holomorphic, and
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therefore each of its terms contains a factor da or a factor . Indeed, if ¥(7)
is a form in d7; with antiholomorphic coefficients we can write

V(1) = V(1) Ada + ¥"'(1),
where ¥”(7) does not contain dg. The first term clearly vanishes on {o = 0}
since do does. If ¥(7) vanishes on {o = 0}, then ¥”(7) does, and hence it

contains a factor & due to antiholomorphicity. In both cases the o-integral,
and thereby (2.6), vanishes according to Lemma 2.2. O

3. THE COMPLETE INTERSECTION CASE

Recall from Section 1 that if f = f1, fo defines a complete intersection,
then

AA2l'(A1, Ao) = /<§|f1|2A1l A ((_9\f2|2’\2i Ao
fi f2

is holomorphic in A, and that the result is believed to extend to any finite
number of functions f;.

Thus, taking a closer look at the definition of the currents in Proposi-
tion 1.2 (and Proposition 2.1) a natural question is whether

(3.1) t(A) == 3| fr|** Aulr AL AD|f1]|P Al

is holomorphic in A.

In general, letting A tend to 0 along different paths yields different currents
as shown by the following example. Let fi1 = z1 and fo = 2129 in C? and
consider () acting on a test form ¢ = (21, 22) dz1 A dzo

/5|f1|2)‘1 A 8| fo|** Ad— 021 A 8|z129|*2

fifa ¢ 22z ho-
As X tends to zero the integral approaches the value A1/(A1 + A2)@,, (0,0).
Thus the value at 0 depends on the ratio between A; and Aso.
In case we have two functions defining a complete intersection though, this
phenomenon does not occur. By an integration by parts, we can write £()\)
integrated against a test form ¢ as

/\f2|2)‘2uf2 AO|f1[P Ault A B

After a resolution of singularities this is equal to a sum of integrals of the
form

a9y a a1y 5 7

[ a0 22 A S P a) £ 2 6 G,

Mo My
(see the proof of Proposition 2.1). Let o be one of the coordinate functions
that divides p1. If po does not contain o, then the o-integral is clearly
independent of A. If uo does contain o, at first we seem to end up in a
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situation similar to the one above, where the result at A = 0 depends on the
relation between A; and Ag. However, the o-integral vanishes for the same
reason as Ty vanishes when £ < p in the proof of Proposition 1.3. Thus, in
this case, the definition of the current 7' = t(\)|y—o is robust in the sense
that it does not depend on the particular path along which A tends to zero.

Provided that the Mellin transform of the residue integral is holomorphic
in X in a neighborhood of 0 € C", it is reasonable to believe that also #(\)
is. Presuming this to be true, we can give a soft proof of Theorem 1.4 based
on Theorem 1.1. Indeed, if f =) 7" fj€] is a section of a bundle E* we let

thpn(N) = 8| f1 A/,

and

1
fm
where CF L and C'H of course stand for Cauchy-Fantappie-Leray and Coleff-
Herrera, respectively. With this notation the equality in Theorem 1.1 can
be expressed as

(3.2) thier Nlazo = thir(Vhazo-
Now let f and g be sections of the bundles E] and E3, respectively, and
assume that f @ g is a complete intersection. By definition,

RIARI =tl, () A, (V) azo,

_ 1 _
thy(\) = 8|f1|2*ﬁ Ao A O fnl?

and
RI®9 = 135 (V) a-o,
so we want to prove that
thpp () A tpr(Nazo = £ (M) ro-
If Re A, is large enough, %5, (A2) is in £, and so by (3.2)
téFL()‘l) A t%FL()‘2)|>\1:0 = téHO‘l) A t%FL(AZ)‘/\lz(b
and analogously, if Re \; is large enough
téH()‘l) A t%’FL()‘Q)b\z:O = téH(’\l) A t%’H(AQ)‘)Q:O-
Now, by assumption
(A1, A2) = (A1) At (A2),

where e stands for either CFL or CH, is holomorphic at the origin, and
thus it follows that

té‘FL(A) AtEpr(AN)|a=o = téH(A) AL (N)a=o,

but the right hand side is, by (3.2), equal to tée%gL()\)b\:O, and so we obtain
Theorem 1.4 for r = 2. However, the argument easily extends to arbitrary 7.
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The way we actually prove Theorem 1.4, that is, as already announced,
by Theorem 1.5, is more direct and relies neither on the holomorphicity of
the Mellin transform nor on Theorem 1.1. The proof is inspired by Proposi-
tion 4.2 in [1], in which potentials were used to prove Theorem 1.1. Our hope
is that this construction of potentials will be of use for further investigations
in the case of a noncomplete intersection.

Proof of Theorem 1.5. We let

V=Ul+UPAR" +UBANRP AR + ...+ U ARF-1 AL AR
To motivate this choice of V, note that on a formal level
(33) VUi ARi-*A... ARV =Ri-*A...AR"—Rin...ART,

(observe that V = V; acts on U/i just as V,, so that VU/i = 1 — Rfi) so
that
VV =1-RI"A...ARN.

Thus, to prove the first claim of the theorem we have to make this compu-
tation legitimate.

First, notice that if a form A()), depending on a parameter A, has an
analytic continuation as a current to A = 0, then clearly VA()) has one.
The action on a test form ¢ is given by

+ / AN AV

However, by integration by parts with respect to V and due to the uniqueness
of analytic continuations, this is equal to

/ VA A ¢.

To be able to perform the integration by parts in a stringent way we have to
regard the currents T' € D{),k (A’E) as functionals on Dpn—k (A"tEANATE™).
So far we have been a little sloppy about this.

Thus, to compute VV we consider the form

v = |f1|2)‘uf1 + |fz|2)‘uf2 A 5|f1|2)‘ Auft ..
o fe P A O frt| P AT AL A B AU,

since, by definition, v*|y—o = V, and accordingly VV = (Vv)|5x=o. More
precisely, to verify (3.3), let us consider (recall that Vufi = 1)

V(|filPufi A B|fis | Aufimt AL A f1)P Auft) =
B[P Al A B fia [P Aufit AL ABIf AUl
1£: 20| fic | Auli-t AL AD| 1P Ault + R,



20 ELIZABETH WULCAN

where R is a sum of terms of the form
\filPrufi A fi 1P Al A LB FPA A B f P A L A B 1P Al

that arise when V falls on any ufi, j < i. The value at A = 0 of the first
term is just —R%i ARfi-1 A.. ARt and it follows from Lemma, 3.1 that the
second term has an analytic continuation to A = 0 equal to Rfi-1 A... AR/,
The remaining terms, R, vanish according to Lemma 3.2. Thus (1.10) is
proved, and thereby the first part of the theorem.

Furthermore, let

UIANV =U/ AU+ U AU ARI+
U'ANUBARERARN + ...+ U AU AR A ... AR,

We compute V of each term. To do this we use a form as above whose
analytic continuation to A = 0 is equal to this particular current. Now, we
actually need the extended version of Proposition 1.2, that is Proposition 2.1.
Indeed, consider

V(I£1Pud A filPr i AP Aufimt AL AP At =
— 0|12 Aud A fi| P A B P AT A LA B A ult+
[P il ul A DI fica P2 A wFimt AL A O AP Al
1£122ul A D) fi|*A Auli AB|fiii | Auli=t AL ABIf1)PA A ult
— 1P uf AL AN fica P Aufimt AL A B f1| P A w4
|f1Puf AR.
The first term corresponds to —Rf A Ui A Rfi-t A ... A R1. Since f is a
complete intersection and R/ therefore is of top degree in dz; according to
Proposition 1.3, it is most reasonable to expect also this product to be of top
degree in dZ;, but because of the factor Ufi ¢ L71(E;) that is apparently not
possible unless the product vanishes. This is indeed the case, as follows from
Lemma 3.3. The second, third and fourth terms have analytic continuations
as Ui ARt ALLARN, U AR A...ARM and —U/ ARFi-1 AL A
R/t respectively, by Lemma 3.1. The remaining terms vanish according to
Lemma 3.2. Hence
ViUAV)=) Ul ARt A AR
> (UIARF AL AR U AR A AR =
VU +U AR A...ARI,
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Finally, the term Uf A R A ... A Rt vanishes by Lemma 3.4, and thus
taking the lemmas 3.1 to 3.4 for granted, the theorem is proved. O

What remains is the technical part; to prove the lemmas. We have tried
to put them as simply as possible. Still the formulations may seem a bit
strained though. Hopefully, the remarks will shed some light on what mat-
ters.

Lemma 3.1. Let f = f1 @ -+ ® f, be a section of E* = E{ & --- @ E;.
Assume that f is a complete intersection, let s <t and r' <r. Ifh=f, or
if h = f; for some i > s, then

(3.4) B[P fr P ulr A A fopr|Pul A fo|PA AT AL AD| 1| Aut

has an analytic continuation to Re X > —e, which for X = 0 is equal to the
current UF" A .. .ANUfs+t ANRFs A ... AR
Moreover,
(3.5)
R F 120 A frr|Pudr A A foit|PPuls AD oA Auls AL AD|f1 [P Aut

has an analytic continuation to Re A\ > —e, which for A = 0 is equal to the
current UF AU N ... AU+ ARFs AL ARFL

Remark 1. The crucial point is that inserting a factor |h|?} has no effect on
the value at A =0, as long as

codim{h=0}NY;N...NY; >codim¥;N...NY7,

since then all possibly “dangerous” contributions to the current will vanish
for degree reasons as in the proof of Proposition 1.3. There might be a
more general formulation of the lemma that catches this behaviour better.
Nevertheless, for the proof of Theorem 1.5 it suffices with the cases above.

O

Proof. We give a proof of the first claim of the lemma. The second one,
concerning (3.5), can be proved along the same lines.
For a compactly supported test form ¢, we consider

/|h|2’\\f,,,\2)‘ufr’ AN for1|Pulst NI fo| P2 Auls AL AB|f11P Ault A g

After a resolution of singularities as described in the proof of Proposition 2.1,
for Re A large enough, this integral is equal to a sum of

Qrl g, Q541,45
(3.6) / PPty [P =5 A A s [P ad = A
fhy Hst1
— « ,és — 041,4 ~
O A S A\ s Pa) A = 1,
1

s
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where the a;’s are strictly positive functions, the p;’s are polynomials in
some local coordinates 7;, the j ¢,’s are smooth forms and ¢ is as in the proof
of Proposition 2.1. The existence of the analytic continuation to Re A > —e¢
follows from Lemma 2.2 as before.

Our aim is to prove that the factor |k|?* does not affect the value at A = 0.
Let o be one of the coordinate functions 7 that divides yp. When expanding
each factor 0| ,uj|2)‘a§‘) by Leibniz’ rule we get two different types of terms,

integrals with one occurrence of a factor 9|c®|?* for some «, and integrals
with no such factors. In the second case the extra factor |o|>* does no harm,
since, in fact, the value at A = 0 is independent of the number of |o|?*’s in
the numerator as long as there is no & in the denominator. Furthermore,
we claim that each integral of the first kind actually vanishes at A = 0. The
argument is analogous to the one in the proof of Proposition 1.3. Let us first
consider the case when h = f. Observe that the terms in (3.4) are of degree
at most my +...+my — 1’ +s <m —1in dz;, where m = mq + ... + m,.
The crucial term -1 appears because of the (at least for the proof) necessary
condition that r < s, that is that we have at least one factor U. Thus,
it is enough to consider test forms of codegree in dz at most m — 1; by
codegree we mean the difference between the dimension n of X and the
degree. We assume that ¢ = ¢y A dZzy, where ¢y is a smooth (n, 0)-form and
dz; = dzp, A...Ndzg, where p > n— (my +...4+m;)+ 1. Now, dZ; vanishes
on the variety Y = f1(0), since it has codimension m, and accordingly
I1*(dz;) vanishes on ¥ = II"'Y, and in particular on {0 = 0}. Since it is
a form in d7; with antiholomorphic coefficients, each of its terms contains a
factor & or d& (see the proof of Proposition 1.3), and so in both cases the
o-integrals vanish according to Lemma 2.2.

In the second case, when h = f;, the proof becomes slightly more compli-
cated. We want to prove that the o-integral vanishes due to the occurrence
of a factor ¢ or do as above, but now the desired factors o and do do not
necessarily divide the test form ¢. We need to look at a “larger” form than ¢,
in fact at the “largest” possible “o-free” form. Without loss of generality
we may assume that, for some numbers s’ and 7', 1 < s’ < s <7’ <r, o di-
vides pigr i1, -, pbs and pipryq, ..., gy but neither pq, ..., pl nor psi1,. .., pu.
Recall that ufi =Y, vZ/|fi|2e, where v,! = s; A (0s;)%~1. Let the smooth
form

off Ao AP NBI P Al AL A B A ]!
be denoted by Fy, and let

YI:{fs’—H:---:fs:fr’+1+---fr:h:0}-
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As above we may assume that ¢ consists of only one term ¢; A dzy. Then,
by inspection, the form Fy A dzy is of codegree at most

Mgyl + ... +Msg+mpp1+ ...+ my —r+r
in dzj, which is strictly less than
codimY' =mg1+...+ms+mpy + ... +m +my,

because of the assumptions of complete intersection. Consequently Fy A dzy
vanishes on Y, and thus IT*(Fy A dZ;) vanishes on I 'Y”, and in particular
on {o = 0}. Since it is a form in d7; with antiholomorphic coefficients,
each of its terms contains a factor & or a factor dg. Using that 0|f|** =
M fZAD3|£|2, we can write (3.6) as

o ae aT”+1,£
+ / |/v4h|2)\|/v4r|2)\ai\ﬁ ARTRRA |Nr'+1|2)‘a,).‘,+1T’“l'“/\
" r’'4+1
3 a 1Z a as’+1,£
OlusPa) A lj—e Ao A (g A == A
° s'+1
A-1 A-1
= 2’\a7),‘,---|,u1|2’\a{‘ y |l$s’|2)‘agl )"'|u1|2’\ag ) H*(F)/\(z
|t |27 - - - g [2s 1 gt [2Esr D) < g [2(+D) ) )

where the sign depends on the relation between 7,7/, s and s’. Now the only
way a factor & in the numerator (more precisely in II*(Fy) A ¢) could be
cancelled out when A is small, is by the occurrence of a factor & in one of
W1, ---, s, but that would obviously contradict the assumption made above.
Hence each term in the integral must contain a factor ¢ or do independently

of the value of A and thus the o-integral vanishes according to Lemma 2.2.
O

Lemma 3.2. Let f = f1 ®--- D f, be a section of E* = Ef ®--- @ E.
Assume that f is a complete intersection. Then

(3.7

[FelPul™ A A Fep P ulst AD|fo| PP AuTs AL AD|fP AL A D f1P At

has an analytic continuation to Re A > —e that vanishes at A = 0.

Remark 2. Morally, what this lemma says is that when applying Leibniz’
rule to V acting on a product of principal value and residue currents, there
will be no contributions from V falling on a residue factor. Of course this is
expected, since the residue currents are V-closed. O

Proof. The result follows from Lemma, 3.1 after an integration by parts with
respect to V. (Recall that ¢ is a form taking values in A" ¢EAA"E*.) Note
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that 9| f;|** = —V|f;|**. By Stokes’ theorem,

[ 150 A APt B At A
AV AL AB AP AU A=

+ /(|ft\2)‘ OV P A A Pt A

A|fs| Auls A ABf1PA Ault A @),

so it is enough to prove that this expression vanishes at A = 0. However,
the form

V(£ Pl A A fort|Pulstt AB|f[P Aue AL AB|f1)PA A uT)

is precisely as in the hypothesis of Lemma 3.1 and f; is an h of the second
kind, so according to the lemma the factor |f;|** does not have any effect
on the value at A = 0. Thus we are done. O

Lemma 3.3. Let f = f1®--- ® fr be a section of E* = E} & --- ® E}
of rank m and let h = f @ f', where f' is a section of the dual bundle of
a holomorphic m'-bundle E'. Assume that h is a complete intersection. If
r > s, then

(3.8)

AN Aul AP ud™ AL A fora |2 ulst AD|fs)A Auds AL ADf1|PA Al

has an analytic continuation to Re A > —e that vanishes at A = 0.

Remark 3. Notice that the value at A = 0 corresponds to the current
RMANUF A ANUSs+ ARFs A ... AR, Since h is a complete intersection,
R" is of degree m + m’ in dzj according to Proposition 1.3, and therefore
it is reasonable to expect also the product to be of degree m + m' in dz;.
However, since the product contains at least one principal value factor, the
degree in e; must be strictly larger than the degree in dz;, and so, the prod-
uct must vanish. We will see that the assumption that r > s is crucial also
for the proof. O

Proof. After a resolution of singularities as described in the proof of Propo-
sition 2.1, we can write (3.8) integrated against a test form ¢ as a sum of
terms of the type

_ Qpy Qp g Qs 11,0
(3.9) /8(\uh|2)‘a2)—ehh A |ur\2’\a;\—ThT AN lss1 2’\(1?4_1 S et 153+i+1 A
Ky, Hor Hsi1
1.0

120
My

= Qs 0, = ~
Blus|Pad) A 22 AL A (s Pad) A TEE A,

s
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where the «;y,’s are smooth forms of degree /; in e;, the a;’s are non-
vanishing functions and the y;’s are monomials in some local coordinates 7
and ¢ is as in the previous proofs.

We expand the factor d(|us|**a}) by Leibniz’ rule and consider the term
obtained when 0 falls on |o|?*, where o is one of the 7;’s that divide p. We
prove that this term vanishes when integrating with respect to o. The term
that arises when 0 falls on a) clearly vanishes as before (see the proof of
Proposition 2.1). Since the rank of E® E' is m + m/, the terms in (3.8) are
of degree at most m+m'—1 in dz, since we have at least one U-factor. Thus
it is enough to consider test forms of codegree in dz at most m +m/ — 1. As
in the previous proofs we may assume that ¢ = ¢r Adz;. It follows that dzy
vanishes on Y = h~!(0) for degree reasons, and thus II*(dZ;) vanishes
on II"'Y. Since this is a form in d7; with antiholomorphic coefficients,
each of its terms contains a factor & or do and consequently the o-integral
vanishes according to Lemma 2.2. O

Lemma 3.4. Let f = f1 @ -+ ® f, be a section of E* = E{ & --- @ E;.
Assume that f is a complete intersection. Let h = fr, @ --- @ fr,, where
I={L,....,I,} c{1,...,r}. Then

(3.10) |2l A 8| f |22 Aulm AL ABfLPA A ud
has an analytic continuation to Re A > —e that vanishes at A = 0.

Remark 4. The value at A = 0 corresponds to the current UM AR A. . .ARS".
Since the R-part is of top degree according to Proposition 1.3 this product
should formally vanish by arguments similar to those in Remark 3. O

Proof. As in the proofs of the previous lemmas we start by a resolution of
singularities. Thus, the form (3.10) integrated against a test form ¢ is equal
to a sum of terms of the type
(3.11)

[ PG A 3l Pad) A A8 B Pad) A S A G,

Ky K Ky

where o; 4,, a;, p; and QNS are as above. Further, we can find a resolution to a
certain toric variety so that locally one of the monomials p1, ..., 4, divides
the other ones. Without loss of generality we may assume that py divides
all 4;’s. We expand 9(|u1|**a?) by Leibniz’ rule. The term obtained when 9
falls on a} vanishes as in the proof of Proposition 2.1, so it is enough to
consider the terms that arise when 0 falls on |0|?*, where o is one of the
coordinates in p.

We claim that the o-integral vanishes at A = 0. As usual, we observe that
the terms of (3.10) are of degree at most m — 1 in dz;, where the -1 in this
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case is due to the factor U”, so it suffices to consider test forms of codegree
at most m — 1. We assume that ¢ = ¢; A dzy, where ¢ is an (n,0)-form
and dz; = dz;; A ... ANdzp,, where p < n —m + 1. Then dz; vanishes on
the variety Y = f~1(0) for degree reasons, and accordingly I1*(dz) vanishes
on II7'Y, and in particular on {7 = 0}. By arguments as in the proof of
Proposition 1.3 it follows that II*(dz) must contain a factor ¢ or do since it
is a form in d7 with antiholomorphic coefficients, and hence the o-integral
vanishes as before. O

4. SOME EXAMPLES

We conclude this thesis by giving some examples of our residue currents.
Although the sections we have chosen to work with are relatively simple,
in fact we have just considered monomials, the computations become quite
intricate, including repeated blow-ups. Yet we give a fairly detailed account
of the calculations, since they make a nice complement to the proofs above.
We are shown the toric resolutions in action and provided an illustration of
the rather nontrivial argument about vanishing for degree reasons due to a
factor o or do (for some o), which was first used in the proof of Proposi-
tion 1.3. Also, we see how combinatorics comes into play in a not always
obvious way.

Ezample 1. We start by illustrating Theorem 1.4 in a very simple case of
complete intersection. Let fi = 27, fo = 25 and f3 = 2}, where p is some in-
teger (> 1 to make the example somewhat interesting), in a neighborhood U
of the origin in C3. Then Y = f~1(0) is simply the origin so f is a complete
intersection.

We want to compute and compare the currents R192 AR and RN1©,20fs,
However, to warm up and to make the investigation complete we start by
computing R" A R? A Rf3. Since each f; depends only on z;, the f;’s
are separated and thus the current can be regarded as the tensor product
R" @ R2 @ R's, where

Ri = B[fl] Ne; = 5[%1,] A e;.

2

Here 0[1/f] is merely a short-hand notation for the value at A = 0 of
0|f|*}/ f, which will be used in the sequel. By [1/f] we will mean |f|?*| -0,
that is just the principal value of 1/f. Let ¢ = ¢(z)dz. By iterated integra-
tion by parts we have that

(4.1) /za[zlp] A= %%ﬂww)-
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Thus, if ¢ = p(z1, 29, 23) dz1 A dza A dzs, it follows that

—2mi )3 or—t gr—l ot
— — — ¢(0,0,0) Aey Aea Aes.
(=1 52f lazg 18z§ 1 #(0.0.0
We continue with the current R = R/1®f2 A Rf3_ that can be considered
as R = RN®f2 @ R/ as above. Thus, we need to compute RN1®f2. In the
trivial metric

R @R" @ RP.¢ = (

s = fie1 + faea = Ze1 + Zhes,
so that
s sNOs Zler+Zhes FO(Z) — 0(Z)Z

-4 — + 2 ANep N es
If2 0 f |2|2P |2[*P ’

where |z|? = |21]? + |22|2. To find the extension of uy across Y we consider

the proper mapping II: & — U, where U is the blow-up at the origin of U.
We can cover U by two coordinate neighborhoods

U

O =A{7; (11,1172) =z €U} and Qg = {0} (0109,01) =z € U}.
Let us start by computing @ = II*u in ;. Notice that
§=M*s=7rer + P 7hes = 7 (e1 + Thea).
Recall that due to homogeneity, if s = us’, where u is a smooth function,
then
s A (53)£—1 — Mksl(asl)é—l,
so it follows that
er + ey pP el AdTy A ey
7 (1 + || ) 7P (1 4 | |2P)2

=

The extension of @ across Y is simply

[1]614—7’562 [ 1 ]p?g_lel/\dfg/\eg

it n Ll A P2

and therefore

RH*fl@fZ _ é[i] /\ €1 +T§)e2 +5|:ii| /\ p'fé)ilel /\d'T-Q /\62

1y 2P (1 +[m?)?
in Q;. To compute the action of R119%2 let ¢ be a test form in /. Then
(4.2) / RI®F A ¢ = / RW(18F2) A T1* g,
u u

Recall that, since f is a complete intersection, the part of degree 1 should
vanish according to Proposition 1.3. To see how this happens, assume that
¢ = ¢rdz1 A dzp, where ¢; = @' (21, 22) dzy + ¢*(21, 22) dz. Now, II*¢; =
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o (11, T112) dTy + 9% (11, T1T2) d(T172), s0 each term of IT*¢ contains a factor 7
or d7; as predicted in the proof of Proposition 1.3, and consequently the
R (1®12)_bart of the integral vanishes.

Further, for the action of Rg*f 192 it is enough to consider a (2,0)-form
¢ = ¢(z1,22)dz1 A dzg. Then

"¢ = ¢(11,7172) dri Ad(T172) = T19p(T1, T1T2) dT1 A dTo
in Q, so the right hand side integral of (4.2) is equal to
/5[ 1 ] pfffflel/\dffg/\eg
T A imPr)y?
From (4.1) we know that this is equal to

2 pler NdTy Ney 92 p
-2 )y Ot " gt Tmmlno dr
Observe that

A (11, T172) dT1 A dTo.

/A
%‘P(n,nm) = Z (;) X 01 —kok (T1, T1T2),
1 k
where ¢;jor means j derivatives with respect to the first variable and k
derivatives with respect to the second one. Now, only the term with a
factor 74 ~! will contribute. The other terms vanish due to antisymmetry,
as is easily verified. Thus we get

2mi  ((2%p=2) / P22 P Vey Adiy A ey
T (99 _ o\1 —19p-1(0,0 A dro —
(21’—2)’((19—1))%" w00 T 2 &
271 '
- % ©1r-199-1(0,0)(—273) e1 Aeg =

(e =1

((—27ri )2 or—1 or—1

1 1 ©(0,0,0) e1 Aea.
p—1V 0071 028

Hence

975 \3 oL gr-1 pp-l
m ) (0,0,0) Aep Aes Aes

= - -1 ¥
p—1 92271 987 98t

in ;. Since the current R /19/2 hag support only when 71 = 0 we can
compute the integral over the entire &/ by extending the integration to
7o € P!, so this is indeed the total action of the current.

It remains to calculate the current RN1©/20f3  In the trivial metric we
have

RI®P @ Rfs ¢ = ((

s = fie1 + foea + fyeg = 2{’61 + dez + deg.
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To find the extension across Y we need a resolution of the singularity at the
origin. Consider the proper mapping II: U — U, where U is the blow- up of
the origin. We can cover U by three coordinate neighborhoods

O ={r; (r,nim,mim3) =2 €U}, Qo = {03 (0102,01,0103) =z €U}
and Q3 = {p; (p1p2,p1p3,p1) =z EU}.
Let us compute @3 = II*us3, that is the part of v of top degree, in one of
the neighborhoods; 1. We leave it to the reader to verify that the terms of
lower degree vanish. First, notice that
§=1II"s =7 (e; + Thes + Thes),
so that

. P2 ey AdTy Neg NdT3 A ey
3 _=
TP (L4 |ra|2 + |m5[2P)3 ’

and thus

R (h8Ref) _ 5[L] A P2 70 ey AdTy Aeg AdT3 A es
’ o (1 [l + [rsf?)?

in Q4. Now, if ¢ = ¢(21, 22, 23)dz1 A dza A 23 is a test form in U we get
(4_3) / Rfl@fz@f:s Ag= / *(f1®f2@f3) AH*¢,

and since
IT*¢ = @(11, 7170) dmy A d(Ty70) A d(T173) = TE0(T1, T170) dTy A dToy A diT3
in €4, the right hand side integral of (4.3) is equal to
1 P 7 ey NdTy Aeg A dT3 A es
(4.4) a[ 3p72] A il
robr (1 + 72| + [73]*)

90(71,7172,7173) dri Ndmy Ndry =

2mi / P2 7P ey Ady Aeg AdTs A es
Bp =3 Vo m (1 + |72|?P + |73]%P)3
a3p 3
3p— 3()0(7—1’ T172, 7-17-3)"7'1 =0 d7'2 A d7'3

or;

Moreover, we have that

o" ™\ (r—k ;
5.7 P71, 7172, T1T3) = > (k) ( j )Tf’fg%r—k—jzkgj(T1,T1Tz,7173)-
1

k.j
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The only term of ﬁ%(p(ﬁ,'fﬂg,ﬁ'fg)hPO in (4.4) that does not vanish
1
P

due to antisymmetry is the one with the factor 75 7173 1 50 the last integral
is equal to

“me () (g Jerm 000

/ p2‘7'2|2(p_1)‘7'3‘2(p_1)61/\dfg/\62/\d713/\63
727 (1 +[m2|? + [73]%)?

ANdmo ANdTmg =

271 )
— ﬁ(plp—lgp—lfw—l(o, 0, O)(—ZWZ)Zel A €92 A €3 =
( — 275 )3 or-1t gr—l grl
(=1 927" 987" Bzg_l(p

Since the current R11®/2®fs hag support at the origin, and thus RH*(ﬁ@f?@fl:)
has support where 71 = 0, we can compute the integral over the entire I/
simply by extending the integration to 79,73 € P2, so we have actually
computed the total action of the current.

Hence we have shown that the three currents R A R"> ARfs, Rh®F2 A RS

and R1®12®fs in this case, are the same in accordance with Theorem 1.4.
O

(0,0,0) e1 Nez Aes.

When generalizing Theorem 1.1, or rather its line bundle formulation (1.9),
to sections of bundles of arbitrary rank, it is not obvious how one should
interpret the assumption of f being a complete intersection. In the formu-
lation of Theorem 1.4 we require the codimension of f~1(0) to be equal to
the rank of the bundle E. A less strong hypothesis would be to just demand
the f;’s to intersect properly, that is that codim f~1(0) = p; + ... + p, if
p; = codim f;. However, the following example shows that Theorem 1.4 does
not extend to this case.

Ezample 2. Let fi = 22, fo = 2122 and g = 2923 be defined in a neighborhood
of the origin in C3. Then

Yy ={f1 = f2=0} = {z =0},

Yy={9=0} ={n=0}U{z =0},
and
Y=YNYy;={z1 =2 =0} U{zn =23 =0},
that is the union of the z3-axis and the z;-axis. Evidently, Y; and Y, have

codimension 1, and Y has codimension 2, so f and g intersect properly,
although they do not define a complete intersection.
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We want to compute and compare the currents R A R9 and R/®9. How-
ever, we confine ourselves to computing the parts of the currents of degree 2,
since we find them the most interesting. The top degree parts do not differ
very much from the ones in Example 1. Therefore it suffices to consider test
forms of bidegree (3,1). Throughout this example we let ¢ = ¢r Adz, where
dz = dz NdZy Ndzz and ¢; = ©'(2)dZ1 + ©*(2)dZs + ©3(2)dZ3.

We start with the current R/ A R9. Adopting the trivial metric we get

s/ = fie1 + faea = Z1(Z1€1 + Z2e2)
and
IfIP = |21 (|22]? + |22),

so that _ _
f_ zZ1e1 + z9e9

T w(aP + 1P)
(for the part of Rf A RY of degree 2 we only need to care about u;). If
we restrict ourselves to test forms with support outside {22 = 0}, where
|z1|% + |22|? is non-vanishing, the action on ¢ is given by

= z + Zoeo = es
Az (|21 > + |z2H)? el /\E)zz”‘—/\ —0 =
J P2+ 2212)) AR A B2 g

—/6[%” 2]/\8[ ]/\62/\63/\(}5

In particular, this is a current with support on the z9-axis, which is to be
expected, since Y is the union of the z9- and z3-axes and ¢ now has support
outside the z3-axis. More explicitly we can write this expression as

1
/ —%(0,22,0) e2 A e3 A dzy A dzo.
29 *2

To include also test forms with support over {z2 = 0} we need to resolve
the singularity of f at the z3-axis. By the blow-up of the origin in the
z172-plane, using the notation of Example 1, we get

§7 =1*s) = 72(e1 + Tae)

in Q4, so that
~f e1 + Toeg
U1 = 27-
(14 [72[?)
The action of R/ A R™"9 on ¢ is given by

e1 + me =
45 /a|7'1|4)‘ 1+ Tae2 A 8|7'1T223|2>‘/\

A Glr—o =
1—|—|7‘ |2) T1T2Z3 qﬁb\ 0

61 + Toe9 = es ~
/a|n|6A RO Bl A - A Bl
71 + [72[?) T223
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Note that we have omitted the non-vanishing factor (1 + |m2|2)} from the
numerator. This is allowed since it has no effect on the value at A = 0
according to Lemma 2.2. Before proceeding, let us take a closer look at
¢ = II*¢r A II*dz. Observing that

I*dz = dm A d(Tsz) ANdzs = Tidm ANdmy A dzs,
and that
"¢ = @' (11, 172, 23) d71 + @2 (11, 7179, 23) d(T172) + @3 (71, T172, 23) dZ3,

we notice that if the second 0 in the right hand side integral of (4.5) falls
on |z3|?*, the only part of ¢ that survives is the @?-part. However, this con-
tains a factor d(7;72), which implies that the 71 integral vanishes according
to Lemma 2.2. Thus, this  must fall on |75|** and therefore the integral is
equal to

g/a[:]/\q/\a[ 2][%3]/\63/\(;5:

1

;/8[7_11] N e /\8[7_2] I:zl?)] /\63/\(,03(7'1,7'17'2,23)d23 ANdri ANdmo Ndzg =

2 1
(27ri)2§/<p‘;’(0,0,z3)z—61 ANes Ndzz Ndzz =
3

2 411 s[1r1 ~
2[R na[2][2] nernesnd
3 2] 29l lzg
For the last two equalities we have used (4.1) from Example 1.
Next, we compute the action of RS A RT"9 in Qy. Now,

~ _9_
g = aiaa(o2e1 + e2),
and so

~f oe; + ez
U] = 55+
oioa(l 4+ |og?)’

Thus, the action on (,Z is given by

21\ 092€1 + €2 = 22 e3 ~
/6|0102| 10_2(1 o | ) N 8\01z3| A o123 A ¢|)\:0.
If the first 0 falls on |o7|*}, the second 0 must fall on |23]**, and then the
only part of qz 7 that comes into play is 61¢p?doo, so the o;-integral will vanish
due to the factor 1. Thus the first 0 must fall on |o2|?*. The term that
appears when the second 0 falls on |z3|?* is exactly the current we obtained
when we assumed that z9 # 0, as can be easily checked. Therefore, what
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remains is

o9€1 + e2 - es ~
dlas|?* A A Blot|PA A = A dlr_g =
3 [ Bioaln T A Bl A 5 A b

%/8[012]/\62/\8[1

1 1
(27m')2§ /(,0%(0, 0,23)— ANes ANes Adzg Adzg =
23

1 [411 =rlyr1 ~
Lo na[2][ L) nernesnd
3 21 254 lz3
To sum up so far, the action of R{ A RY consists of two parts, one of which
is an integration of the test form along the z3-axis, and another of which is

an integration along the z3-axis of derivatives of the test form.
We continue with R/®9. Now

L] neani=

s =sI99 = 2%61 + z1292€9 + Z92z3€3.

To be able to compute the current we need a resolution of singularities.
Recall the blow-up of the origin in C® from Example 1. In the coordinate
neighborhood 1 we get

§=1I"s = 72s', where s' = e; + Toey + ToT3e3,

and thus the action of RH*(f ®9) on q; there is given by

"'A Qs ~
4.6 &l | 5 .
(4.6 [P e A

However, all terms of

"¢ = ¢'dr + ¢°d(117) + ¢°d(7173)
contain a factor 7; or d7; and thus (4.6) vanishes at A = 0 according to
Lemma 2.2.

Morally, this can be explained by the fact that the image of 2; under II
is U minus the plane {z; = 0} (plus the origin). However we know that
R/ A RY should have support in this plane (more precisely on the axes), and
thus it is not very surprising that we get no contribution from 2.

We go on to the second coordinate neighborhood €. According to
the intuitive argument above, since the image of ()9 is &/ minus the plane
{#z2 = 0}, we expect to obtain something with support on the zp-axis. First,
note that

§= 5’%(5’%61 + o9e9 + 5’363).
To calculate the current close to the zo-axis, that is, where o9 and o3 are
both zero, we need to refine the resolution by a blow-up along the axis. For
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a neighborhood U, of the origin in the 303-plane we consider the proper
mapping I, : U, — Uy, where U, is the blow-up of the origin in the o903-
plane. We cover U, by two coordinate neighborhoods

{z; (z1,2132) = (02,03) €Uy} and {y; (y1y2,91) = (02,03) € Us}-

In the second one we have

§= 5%@13', where s’ = glgj%el + yoes + e3,
so that the action on ¢ here is given by
~ s' A Os' -
Oloty: | A A $lr=0-
/ o1yt (1 + 3y + [yo[?)?

Now 0 must fall on the factor y;, since otherwise the integral will vanish by
the usual arguments, so we get

=71 1 es Adya N ey ~
85| [=] A A d.
/ yidlotl ™ oty (1 + |ydynl? + |y2[?)?

Now let us take a closer look at ¢. The pull-back of dz is equal to o 21 dya A
doy Ay; and the only part of ¢; that matters is ¢?(o191y2,01,01y1) do1. By
an integration in ys we get

1
— (2mi)? / ?<p2(0,01,0) e2 Neg ANdoy ANdoy =
i

—/é[zil][ ]/\8[ ]/\¢/\e2/\e3

%5
Some remarks are in order. First note that the integration in y; might be
extended to P! so that we have actually calculated the action in Uy. Also,
let us just notice that this part of R/®9 coincides with the corresponding
part of R A RY.

Finally we compute the contribution from €23. One realizes that a further
resolution along the z;-axis is necessary. For a neighborhood U of the origin
in the psps-plane, we consider I1,, Z/{ — U,, where U, is the blow-up of the
origin. We cover this by two coordlnate nelghborhoods

{z; (z1,3122) = (p2,p3) € Up} and {y; (y172,y1) = (p2,p3) € Up}.
It is easily verified that there will be no contribution from the second neigh-
borhood. As usual, the pull-back of the test form will contain factors that
kill the current. So what remains is the first neighborhood. It turns out that
we actually need a third resolution, now of the origin in the z;z9-plane. The
blow-up ﬁm of a neighborhood U, of this point is covered by two coordinate
neighborhoods

1§ (61,6182) = (w1, 72) €Uz} and {n; (mm2,m) = (71,72) € Uy}
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In the first one,
s = ﬁff_%s', where s' = e; + &1€geg + Eaes,

so that the action on a is given by
- s' A Os' ~
A|pr &P A A Bla=o-
/ PE Tl (4 [l + 16f?)?

By the usual degree arguments, the 0 must fall on |£1]“*, and since e; AdésNes

is the only part of s’ A 0s’ that does not contain & or d¢;, the integral is
y

equal to
=r1 1 e1 N dé_-Q N es ~
8] [=] A A @
/ EHLptl (14 |6l + 1€2[?)?
The pull-back of dz is equal to p2€2 dé1 A dés A dpy, and the only surviving
part of ¢; is ¢*(p1&1, p1€1€2, p1) dp1, so by an integration in &, we get

|2A

. 1 _
(2mi)? / p ©3(0,0,p1) e1 Aes Adpy Adpy =
1

JA5In{EE] e

1 2 3
Here we have used that the &;-derivative must fall on the first variable,
since otherwise we get something that vanishes due to antisymmetry. By
extending the integration to & € P!, we can compute the integral over the
entire Z]m, and therefore we have actually computed the action in Q3.

Knowing the result of these computations, we could have skipped the
first blow-up of the origin in C?. It would have been sufficient to resolve the
singularities along the axes. However to be sure about what happens at the
origin, the resolutions we made were necessary.

To conclude, the parts of the currents with support on the z,-axis coincide,
while the parts with support on the z3-axis differ in the way they differentiate
the test form. Hence Theorem 1.4 does not generalize to the case of proper
intersections. O
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