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Abstract. We discuss the possibility of representing elements in polynomial
ideals in CN with optimal degree bounds. Classical theorems due to Macaulay
and Max Noether say that such a representation is possible under certain condi-
tions on the variety of the associated homogeneous ideal. We present some variants
of these results, as well as generalizations to subvarieties of CN .

Dedicated to the memory of Mikael Passare

1. Introduction

Let V be an algebraic subvariety of CN of pure dimension n and let F1, . . . , Fm be
polynomials in CN . We are interested in finding solutions to the polynomial division
problem

(1.1) F1Q1 + · · ·+ FmQm = Φ

on V with degree estimates, provided Φ is in the ideal (Fj) on V . By a result of
Hermann, [18], if degFj ≤ d, there are polynomials Qj such that deg (FjQj) ≤
deg Φ + C(d,N), where C(d,N) is like 2(2d)2N−1 for large d and thus doubly expo-
nential. It is shown in [24] (see also [10, Example 3.9]) that in general this estimate
cannot be substantially improved.

If one imposes conditions on V and Fj one can, however, obtain much sharper
estimates. The following two results in Cn are classical.

If F1, . . . , Fm are polynomials in Cn of degrees d1 ≥ . . . ≥ dm with no common zeros
even at infinity and Φ is any polynomial, then one can solve (1.1) with deg (FjQj) ≤
max(deg Φ, d1 + . . .+ dn+1 − n).

If F1, . . . , Fn are polynomials in Cn such that their common zero set is discrete and
does not intersect the hyperplane at infinity, and Φ belongs to the ideal (Fj), then
one can find polynomials Qj such that (1.1) holds and deg (FjQj) ≤ deg Φ.

The first theorem is due to Macaulay, [23], and the second one is Max Noether’s
AF+BG theorem, [25], originally stated for n = 2. Noether’s result is clearly optimal.

In this paper we present extensions of these results to the case of more general
varieties V ⊂ CN , and also generalizations in which we relax the condition on (the
zero set of) the Fj . It grew out of our paper [9], in which we extended to the singular
setting a framework for solving polynomial ideal membership problems with residue
techniques introduced in [3] and further developed in [5, 30, 31], see below. The
proofs in this paper follow the same setup. However, at least some of the results also
admit algebraic proofs, see Remark 6.2.
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Throughout we will let X denote the closure of V in PN , and regX the regularity
of X, see Section 4 for the definition. For each Fj we let fj denote the induced
section of O(degFj)|X .

We begin with an extension of Macaulay’ theorem to singular varieties; this can
easily be proved by standard arguments, cf. Remark 6.2.

Theorem 1.1. Let V be an algebraic subvariety of CN , with closure X in PN , and
let F1, . . . , Fm be polynomials in CN of degrees d1 ≥ . . . ≥ dm. Assume that fj have
no common zeros on X. Then for each polynomial Φ in CN there are polynomials
Qj such that (1.1) holds and

deg (FjQj) ≤ max(deg Φ, d1 + · · ·+ dn+1 − (n+ 1) + regX).

If X is smooth, then regX ≤ (n+1)(degX−1)+1; this is Mumford’s bound, see,
e.g., [22, Example 1.8.48]. If X is Cohen-Macaulay in PN (and N is minimal) then
regX ≤ degX − (N − n), see, [17, Corollary 4.15]. In particular, if V = Cn so that
X = Pn, then regX = 1; thus we get back Macaulay’s theorem. For a discussion of
bounds on regX for a general X, see, e.g., [10, Section 3].

Let Zf denote the common zero set of f1, . . . , fm in X. Moreover, let X∞ := X\V .
For smooth varieties we have the following version of Max Noether’s theorem.

Theorem 1.2. Let V be an algebraic subvariety of CN of dimension n such that
its closure X in PN is smooth, and let F1, . . . , Fm be polynomials in CN of degrees
d1 ≥ . . . ≥ dm. Assume that m ≤ n, that

(1.2) codim (Zf ∩ V ) ≥ m,

and that Zf has no irreducible component contained in X∞. If Φ is a polynomial
that belongs to the ideal (Fj) on V , then there is a representation (1.1) with

(1.3) deg (FjQj) ≤ max(deg Φ, d1 + · · ·+ dm −m+ regX).

If in addition X is Cohen-Macaulay in PN one can choose Qj so that

(1.4) deg (FjQj) ≤ deg Φ.

Remark 1.3. If X is Cohen-Macaulay it suffices that V is smooth to obtain (1.4). �

For V = Cn Theorem 1.2 appeared in [3, Theorem 1.2].

For a general X, in order to have a Max Noether theorem, we need the common
zero set of the fj not to intersect the singular locus of X too badly. To make this
statement more precise we need to introduce what we call the intrinsic BEF-varieties

Xn−1 ⊂ · · · ⊂ X1

of X ⊂ PN . These are the sets where the mappings in a locally free resolution of

OPN
/JX do not have optimal rank. They are intrinsically defined subvarieties of X

that are contained in X0 := Xsing. The codimension of X` is at least `+ 1, and if X

is locally Cohen-Macaulay X` is empty for ` ≥ 1, see Sections 2.3 and 2.5.

Theorem 1.4. Let V be an algebraic subvariety of CN of dimension n, with closure
X in PN , and let Fj be as in Theorem 1.2. Assume that Zf satisfies (1.2), that Zf

has no irreducible component contained in X∞, and moreover that

(1.5) codim (Zf ∩X`) ≥ m+ `+ 1, ` ≥ 0.
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If Φ is a polynomial that belongs to the ideal (Fj) on V , then there is a representation
(1.1) such that (1.3) holds. If in addition X is Cohen-Macaulay in PN , and m ≤ n,
we can choose Qj such that (1.4) holds.

Notice that (1.5) forces that either Zf ∩Xsing = ∅ or m < n. If X is smooth, then
(1.5) is vacuous, and thus Theorem 1.2 follows immediately from Theorem 1.4. If only
V is smooth but X is Cohen-Macaulay, then by the assumption on Zf codim (Zf ∩
X∞) ≥ m + 1 and since X0 ⊂ X∞, (1.5) is satisfied. This proves the claim in
Remark 1.3.

Next we will present some generalizations of Theorem 1.4 where we relax the
hypotheses on the common zero set Zf of the fj . First, we drop the size hypothesis

(1.2) on Zf ∩ V . We then still get an estimate of the form (1.3) but the second
entry on the right hand side is now replaced by a constant that depends on Fj in

a more involved manner. The condition that Zf has no irreducible component at
infinity should now be understood as that the ideal sheaf Jf over X generated by the
sections f1, . . . , fm has no associated variety, in the sense of [28], contained in X∞, see
Section 3. This means that at each x ∈ X∞, (Jf )x has no (varieties of) associated
prime ideals contained in X∞. Let Jf be the homogeneous ideal in C[z0, . . . , zN ]
associated with Jf , and let reg Jf be the regularity of Jf , cf. Section 4.

Theorem 1.5. Let V be an algebraic subvariety of CN , with closure X in PN , and
let F1, . . . , Fm be polynomials in CN . Assume that Jf has no associated variety
contained in X∞. Then there is a constant β = β(X,F1, . . . , Fm) such that if Φ ∈
(Fj), then there is a representation (1.1) on V with

(1.6) deg (FjQj) ≤ max(deg Φ, β).

If V = CN , one can take β = reg Jf .
Conversely, if there is an associated prime of Jf contained in X∞, then there is

no β such that one can solve (1.1) with (1.6) for all Φ in (Fj).

In [27] Shiffman computed the regularity of a zero-dimensional homogeneous poly-
nomial ideal Jf to be ≤ d1 + . . . + dn+1 − n. Using this he obtained (the first part

of) Theorem 1.5 for V = CN and dimZf = 0 with β = reg Jf = d1 + · · ·+ dn+1 − n,
i.e., the same bound as in Macaulay’s theorem, see [27, Theorem 2(iv)]. Theorem 1.5
can thus be seen as a generalization of Shiffman’s result.

The estimate (1.6) is clearly sharp if deg Φ ≥ β. If the ideal sheaf Jf is locally
Cohen-Macaulay, for instance locally a complete intersection, then there are no em-
bedded primes of Jf , and so the hypothesis that Jf has no associated variety at

infinity just means that no irreducible component of Zf is contained in X∞. Thus
we get back the hypothesis in Theorems 1.2 and 1.4.

Next, let us instead relax the condition that Zf has no irreducible components
at infinity. If the degrees of Fj are ≤ d, we let f̃j denote the section of O(d)|X
corresponding to Fj . We let Z f̃ be the common zero set of f̃1, . . . , f̃m and Jf̃ the

coherent analytic sheaf over X generated by the f̃j . Moreover, we let c∞ be the
maximal codimension of the so-called (Fulton-MacPherson) distinguished varieties of
Jf̃ that are contained in X∞, see Section 5.1. If there are no distinguished varieties

contained in X∞, then we interpret c∞ as −∞. Note that it is not sufficient that

Z f̃ ∩V = Z f̃ , since there may be embedded distinguished varieties contained in X∞.
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It is well-known that the codimension of a distinguished variety cannot exceed the
number m, see, e.g., Proposition 2.6 in [15], and thus c∞ ≤ µ, where

µ := min(m,n).

Theorem 1.6. Let V be an algebraic subvariety of CN , with closure X in PN , and

let F1, . . . , Fm be polynomials in CN of degree ≤ d. Assume that Z f̃ satisfies

(1.7) codim (Z f̃ ∩X) ≥ m

and

(1.8) codim (Z f̃ ∩X`) ≥ m+ `+ 1, ` ≥ 0.

If Φ is a polynomial that belongs to (Fj) on V , then there is a representation (1.1)
on V with

(1.9) deg (FjQj) ≤ max(deg Φ + µdc∞degX, (d− 1) min(m,n+ 1) + regX).

If in addition X is locally Cohen-Macaulay in PN and m ≤ n, then we can choose
Qj such that

deg (FjQj) ≤ deg Φ +mdc∞degX.

Note that for most choices of Fj and Φ the first entry in (1.9) is much larger than
the second entry. For instance this is true for all Φ if c∞ ≥ 2 and d is large enough.
In particular, if X = Pn, so that regX = 1, and c∞ ≥ 2, the first entry is the largest
for all d.

For X = Pn Theorem 1.6 is due to the first author and Götmark, [5, Theorem 1.3].

In the case when degFj = d, so that f̃j = fj , Theorem 1.6 generalizes Theorems 1.1
– 1.4, see Remark 6.3.

Example 1.7. If the Fj have no common zeros on V , then Theorem 1.6 gives a solution
to

F1Q1 + · · ·+ FmQm = 1

with deg (FjQj) ≤ µdµdegX if d is large enough. Except for the annoying factor µ
we then get back is Jelonek’s optimal effective Nullstellensatz, [20]. �

Note that the estimates of deg (FjQj) in the theorems above hold for representa-
tions of all Φ in (Fj). If one, instead of adding conditions on V and Fj , imposes
further conditions on Φ, then Hermann’s degree estimate for solutions to (1.1) can
also be essentially improved. Theorem 1.1 in our recent paper [9] asserts that for
any V ⊂ CN there is a number µ0 such that if F1, . . . , Fm are polynomials in CN
of degree ≤ d and Φ is a polynomial such that |Φ| ≤ C|F |µ+µ0 locally on V , where
|F |2 = |F1|2 + · · ·+ |Fm|2, then one can solve (1.1) with

(1.10) deg (FjQj) ≤ max
(
deg Φ+(µ+µ0)dc∞degX, (d−1) min(m,n+1)+regX

)
.

The statement that |Φ| ≤ C|F |µ+µ0 implies that there is a representation (1.1) is a
direct consequence of Huneke’s uniform Briançon-Skoda theorem, [12, 19], and thus
the degree estimate (1.10) can be seen as a global effective Briançon-Skoda-Huneke
theorem.

Acknowledgment. We thank Richard Lärkäng for helpful discussions.
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2. Residue currents

We will briefly recall some residue theory. For more details we refer to [9] and the
references therein.

2.1. Currents on a singular variety. If nothing else is mentioned X will be a
reduced subvariety of PN of pure dimension n. The sheaf C`,k of currents of bidegree
(`, k) on X is by definition the dual of the sheaf En−`,n−k of smooth (n − `, n − k)-

forms on X. If i : X → PN is an embedding of X, then En−`,n−k can be identified

with the quotient sheaf EPN

n−`,n−k/Ker i∗, where Ker i∗ is the sheaf of forms ξ on PN
such that i∗ξ vanish on Xreg. It follows that the currents τ in C`,k can be identified

with currents τ ′ = i∗τ on PN of bidegree (N−n+`,N−n+k) that vanish on Ker i∗.
Given a holomorphic function f on X, we write 1/f for the principal value distri-

bution, defined for instance as limε→0 χ(|f |2/ε)(1/f), where χ(t) is the characteristic
function of the interval [1,∞) or a smooth approximand of it, or as the analytic
continuation of λ → |f |2λ(1/f) to λ = 0. It is readily checked that f(1/f) = 1 as
distributions and that the residue current ∂̄(1/f) satisfies f∂̄(1/f) = 0. We will
need the fact that

(2.1) vλ|f |2λ 1

f

∣∣∣∣
λ=0

=
1

f

if v is a strictly positive smooth function; cf. [1, Lemma 2.1].

2.2. Pseudomeromorphic currents. The notion of pseudomeromorphic currents
on manifolds was introduced in [8]. A slightly extended version appeared in [6]: A
current on X is pseudomeromorphic if it is (the sum of terms that are) the push-
forward under (a composition of) modifications, projections, and open inclusions of
currents of the form

ξ

sα1
1 · · · s

αn−1

n−1

∧∂̄ 1

sαn
n
,

where s is a local coordinate system and ξ is a smooth form with compact support,
see, e.g., [6] for details.

Pseudomeromorphic currents in many respects behave like positive closed currents.
For example they satisfy the dimension principle: If τ is a pseudomeromorphic cur-
rent on X of bidegree (∗, p) that has support on a variety of codimension > p, then
τ = 0.

Also, pseudomeromorphic currents allow for multiplication with characteristic
functions of constructible sets so that ordinary computational rules hold. If τ is a
pseudomeromorphic current onX and V is a subvariety ofX, then the natural restric-
tion of τ to the open set X \V has a canonical extension 1X\V τ := |h|2λτ |λ=0, where
h is any holomorphic tuple such that {h = 0} = V . It follows that 1V τ := τ−1X\V τ
is a pseudomeromorphic current with support on V . Note that if α is a smooth form,
then 1V α∧τ = α∧1V τ and if W are W ′ are constructible sets, then

(2.2) 1W1W ′τ = 1W∩W ′τ.

Moreover, if π : X̃ → X is a modification, τ̃ is a pseudomeromorphic current on X̃,
and τ = π∗τ̃ , then

(2.3) 1V τ = π∗
(
1π−1V τ̃

)
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for any subvariety V ⊂ X. If W is a subvariety of X and 1V τ = 0 for all subvarieties
V ⊂W of positive codimension we say that τ has the the standard extension property,
SEP with respect to W , see [11].

Recall that a current is semi-meromorphic if it is the quotient of a smooth form
and a holomorphic function. Following [6] we say that a current τ is almost semi-

meromorphic in X if there is a modification π : X̃ → X and a semi-meromorphic
current τ̃ such that τ = π∗τ̃ .

2.3. Residue currents associated with Hermitian complexes. Consider a com-
plex of Hermitian holomorphic vector bundles over a complex manifold Y of dimen-
sion n,

(2.4) 0→ EM
fM−→ . . .

f3−→ E2
f2−→ E1

f1−→ E0 → 0,

that is pointwise exact outside an analytic variety Z ⊂ Y of positive codimension p.
Suppose that the rank of E0 is 1. In [2, 7] was associated to (2.4) a

⊕
Hom (E0, Ek)-

valued pseudomeromorphic current R = Rf ; it has support on Z and in a certain
sense it measures the lack of exactness of the associated sheaf complex of holomorphic
sections

(2.5) 0→ O(EM )
fM−→ . . .

f3−→ O(E2)
f2−→ O(E1)

f1−→ O(E0).

Proposition 2.1. If φ is a holomorphic section of E0 such that Rφ = 0, then
φ ∈ Im f1. Moreover, if

(2.6) Hk−1(Y,O(Ek)) = 0, 1 ≤ k ≤ min(M,n+ 1),

then there is a global holomorphic section q of E1 such that f1q = φ.

We also have the duality principle: If (2.5) is exact, i.e., if it is a locally free
resolution of the sheaf O(E0)/Im f1, then Rφ = 0 if and only if φ ∈ Im f1.

As in [9] we will refer to a (locally) free resolution (2.5) of O(E0)/J together with
Hermitian metrics on the corresponding vector bundles as a Hermitian (locally) free
resolution.

Let us look at the construction of R in a special case; see, e.g., [9] for more
details and the general case. Let Rk denote the component of R that takes values in
Hom (E0, Ek).

Example 2.2 (The Koszul complex). Given Hermitian line bundles S → Y and
L1, . . . , Lm → Y and a tuple f of holomorphic sections f1, . . . , fm of L1, . . . , Lm,
respectively, let (2.4) be the (twisted) Koszul complex of f : Let Ej be disjoint trivial
line bundles with basis elements ej , let E = L−1

1 ⊗E1⊕· · ·⊕L−1
m ⊗Em, and identify

f with a section f =
∑
fje
∗
j of E∗, where e∗j are the dual basis elements. Moreover,

let

E0 = S, Ek = S ⊗ ΛkE,

and let all fk in (2.4) be interior multiplication δf by the section f .
The current associated with the Koszul complex was introduced in [1]; we will

briefly recall the construction. Let σ be the section of E over Y \ Z with pointwise
minimal norm such that f · σ = δfσ = 1, i.e.,

σ =
∑
j

f∗j ej

|f |2
,
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where f∗j is the section of L−1
j of minimal norm such that fjf

∗
j = |fj |2Lj

, and |f |2 =

|f1|2L1
+ · · ·+ |fm|2Lm

. Then Rk equals the analytic continuation to λ = 0 of

(2.7) Rλk = Rf,λk := ∂̄|f |2λ∧σ∧(∂̄σ)k−1.

Here the exterior product is with respect to the exterior algebra over E ⊕ T ∗(Y ) so
that dz̄j∧e` = −e`∧dz̄j etc; in particular, ∂̄σ is a form of even degree.

If m = 1, then σ is just (1/f1)e1 and R = ∂̄(1/f1)∧e1. In general, the coefficients
of R are the Bochner-Martinelli residue currents introduced by Passare-Tsikh-Yger
[26]. The sheaf complex associated with the Koszul complex is exact if and only if f
is a complete intersection, i.e., codimZf = m. In this case one can prove that (the
coefficient of) R = Rm coincides with the classical Coleff-Herrera residue current
∂̄(1/f1)∧ · · · ∧∂̄(1/fm).

�

Since, in light of the above example, R generalizes the classical Coleff-Herrera
residue current (as well as the Bochner-Martinelli residue currents), we say that R
is the residue current associated with the Hermitian complex (2.4).

The construction of R in general involves the minimal inverse σk of each fk in
(2.4); R is defined as the analytic continuation to λ = 0 of a regularization Rλ which
generalizes (2.7). The component Rk is of the form ∂̄|f |2λ∧σk∂̄σk−1 · · · ∂̄σ1|λ=0; see,
e.g., [7] for a precise interpretation of this. It follows that outside the set Zk where
fk does not have optimal rank,

(2.8) Rk = αkRk−1,

where αk is a smooth Hom (Ek−1, Ek)-valued (0, 1)-form. If (2.5) is exact, these sets
are independent of the resolution; we call them BEF varieties (which is an acronym
for Buchsbaum-Eisenbud-Fitting, cf. [9]) and denote them Zbef

k = Zbef
k (Jf ). The

Buchsbaum-Eisenbud theorem asserts that codimZbef
k ≥ k; more precisely it says

that the complex (2.5) is exact if and only if the codimension of the set where fk
does not have optimal rank is ≥ k, see, e.g., [17, Theorem 3.3]. If Jf has pure
codimension p, then codimZbef

k ≥ k + 1 for k > p, see [16, Corollary 20.14]. Also,
note that if in addition X is locally Cohen-Macaulay, then Zk = ∅ for k > p. The
current Rk has bidegree (0, k), and thus, by the dimension principle, Rk = 0 for
k < p, and for degree reasons, Rk = 0 for k > n.

If the complex (2.4) is twisted by a Hermitian line bundle, the residue current R
is not affected. This follows since the σk are not affected by the twisting.

2.4. BEF-varieties on singular varieties. Let i : X → Y be a (local) embedding
of X of dimension n into a smooth manifold Y of dimension N . Note that if Jf is a
coherent ideal sheaf on X, then Jf +JX is a well-defined sheaf on Y . Indeed, locally

Jf is the pullback i∗J̃f of an ideal sheaf on Y and the sheaf J̃f +JX is independent

of the choice of J̃f . We define kth BEF-variety Zbef
k (Jf ) of Jf as Zbef

k+N−n(Jf + JX),
which clearly is a subvariety of X.

This definition is independent of the embedding i. To see this recall that (locally)

i can be factorized as X
ι→ Ω → Ω × Cr = Y , where ι is a minimal embedding.

From a locally free resolution of OΩ/J , where J is a coherent ideal sheaf over Ω, it
is not hard to construct a locally free resolution of OY /(J + JΩ). By relating the
sets where the mappings in these resolutions do not have have optimal rank one can
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show that the BEF-varieties of J are independent of i, cf. [4, Remark 4.6] and [9,
Section 3].

2.5. The structure form ω on a singular variety. Now assume that X is as
in Section 2.1, and let R be the residue current associated with a Hermitian free
resolution O(E•), g

• of the sheaf JX of X, and let Ω be a global nonvanishing
(dimPN , 0)-form with values in O(N + 1). It was shown in [6, Proposition 3.3] that
there is a (unique) almost semi-meromorphic current ω = ω0 + · · ·+ωn−1 on X, that
is smooth on Xreg and such that

i∗ω = R∧Ω.

We say that ω is a structure form onX. Let E` denote the restriction of EN−n+` toX.
Then the component ω` is an (n, `)-form taking values in Hom (E0, E`). Moreover,
let X0 = Xsing and X` = XN−n+`, where Xj are the BEF-varieties of JX . In the

language of the previous section X` is the `th BEF-variety of the zero sheaf. It
follows from that section that the X` are independent of the embedding i : X → Y
of X into a smooth manifold Y ; we therefore call them the intrinsic BEF-varieties
of X. In light of (2.8) there are almost semi-meromorphic forms α`, smooth outside
X`, such that

(2.9) ω` = α`ω`−1.

on X.

3. Gap sheaves and primary decomposition of sheaves

Recall that any ideal a in a Noetherian ring A admits a primary decomposition
(or Noether-Lasker decomposition), i.e., it can be written as a =

⋂
ak, where ak is

pk-primary (ab ∈ ak implies a ∈ ak or bs ∈ ak for some s and
√
ak = pk) for some

prime ideal pk. The primes in a minimal such decomposition are called the associated
primes of a and the set Ass(a) of associated primes is independent of the primary
decomposition.

Given a coherent subsheaf J of OX , Siu [28] gave a way of defining a “global” pri-
mary decomposition. Let us briefly recall his construction. First, for p = 0, 1, . . . ,dimX,
let J[p] ⊃ J be the pth gap sheaf (Lückergarbe), introduced by Thimm [29]: A germ
s ∈ Ox is in (J[p])x if and only if there is a neighborhood U of x and a section
t ∈ J (U) such that sx = tx and ty ∈ Jy for all y ∈ U outside an analytic set of
dimension at most p. It is not hard to see that J[p] is a coherent sheaf, see [29], and
that the set Y p where (J[p])x 6= Jx is an analytic variety of dimension at most p, see
[28, Theorem 3]. The irreducible components of Y p, p = 0, 1, . . . ,dimX, are called
the associated (sub)varieties of J . A coherent sheaf J is said to be primary if it has
only one associated variety Y ; we then say that J is Y -primary. Theorem 6 in [28]
asserts that each coherent J ⊂ OX admits a decomposition

(3.1) J =
⋂
Ji,

where there is one Yi-primary intersectand Ji for each associated variety Yi of J .
For a radical sheaf JX , the decomposition (3.1) corresponds to decomposing X into
irreducible components.

By Theorem 4 in [28] if Y is an associated prime variety of J , then at x ∈ X the
irreducible components Ass(JYx) of Yx are germs of varieties of associated primes
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of Jx. Furthermore, if Yx is (the variety of) an associated prime of Jx, then Yx is
contained in Y p

x for p ≥ dimYx. For fixed x we get that⋃
Y ∈Ass(J ),Y 3x

Ass(JYx)

is a disjoint union of Ass(Jx). Thus we have

Lemma 3.1. The germ at x of J[p] is precisely the intersection of the primary
components of Jx that are of dimension > p.

Given a subvariety Z of X, the gap sheaf J [Z] ⊃ J is defined as follows: A germ
s ∈ Ox is in J [Z]x if and only if it extends to a section of J (U) for some neighborhood
U of x, where sy ∈ Jy for all y ∈ U \ Z. Note that J [Z]x is the intersection of all
components in a primary decomposition of Jx for which the associated varieties are
not contained in Z. It is not hard to see that J [Z] is coherent, see [29]. Observe
that J[p] = J [Y p].

Remark 3.2. We claim that in fact

(3.2) J[p] = J [Zbef
n−p].

To see this assume first that X is smooth. Then the (germs of) varieties of associated
prime ideals of J of dimension ≤ p are precisely the (germs of) varieties of associated
prime ideals that are contained in Zbef

n−p, see, e.g., [16, Corollary 20.14]. Now (3.2)
follows from Lemma 3.1.

For a general X, let i : X → Y be a local embedding of X into a manifold Y of

dimension N and let J̃ = J +JX , cf. Section 2.4. It is not hard to verify that if a is
an ideal in OXx and ã := a+ (JX)x is the corresponding ideal in OYx then a = ∩ak is
a primary decomposition of a if and only if ã = ∩ãk is a primary decomposition of ã.

Hence, in light of Lemma 3.1, i∗J̃ [V ] = J [V ∩X] and i∗J̃[p] = J[p]. By the definition

of BEF-varieties in Section 2.4, thus i∗J̃ [Zbef
N−p(J̃ )] = J [Zbef

N−p(J̃ )] = J [Zbef
n−p(J )],

which proves (3.2) since J̃[p] = J̃ [Zbef
N−p(J̃ )] .

�

Given a residue current R constructed from a Hermitian locally free resolution
of OX/J on a smooth X as in Section 2.3, in [8] we showed that the germ Rx of
the current R at x ∈ X can be written as Rx =

∑
Rp, where the sum is over the

associated primes of Jx, and Rp has support on the variety V (p) of p and has the
SEP with respect to V (p).

4. Resolutions of homogeneous ideals

Let J be a coherent ideal sheaf on PN . Then there is a locally free resolution

O(Ef• ), f•, where Ek is a direct sum of line bundles Ek =
⊕

iO(−dik) and fk =

(fkij) are matrices of homogeneous forms with deg fkij = djk − dik−1, see, e.g., [22,

Ch.1, Example 1.2.21]. Let J denote the homogeneous ideal in the graded ring
S = C[z0, . . . , zN ] associated with J , and let S(`) denote the module S where all

degrees are shifted by `. Then O(Ef• ), f• corresponds to a free resolution

(4.1) . . .→ ⊕iS(−dik)→ . . .→ ⊕iS(−di2)→ ⊕iS(−di1)→ S
of the module S/J . Conversely, any such free resolution corresponds to a locally free
resolution O(E•), f

•.
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Recall that the regularity of a homogeneous module with a minimal graded free
resolution (4.1) is defined as maxk,i(d

i
k−k), see, e.g., [17, Ch.4]. The regularity reg J

of the ideal J equals reg (S/J) + 1, cf. [17, Exercise 4.3].
If X is a subvariety of PN , then the regularity of X, regX, is defined as the

regularity of JX . Notice that if X has pure dimension, then the ideal JX has pure
dimension in S; in particular the ideal associated to the origin is not an associated
prime ideal. Theorem 20.14 in [16] thus implies that Zbef

0 is empty. Therefore the
depth of S/JX is at least 1, and hence a minimal free resolution of S/JX has length
≤ N . For such a resolution we thus get

(4.2) regX = max
k≤min(M,N)

(dik − k) + 1.

A global section of O(s)|X → X extends to a global section of O(s) → PN as soon
as s ≥ regX − 1, see, e.g., [17, Chapter 4].

5. Division problems on singular varieties

Let Eg• , g
• be a complex that corresponds to a Hermitian free resolution ofOPN

/JX
as above, and let Ef• , f

• be an arbitrary Hermitian pointwise generically surjective
complex over PN . Then the product current

Rf∧Rg := Rf,λ∧Rg|λ=0

is well-defined on Pn,
Rf∧ω := Ri

∗f,λ∧ω|λ=0

is a well-defined current on X, and i∗(R
f∧ω) = Rf∧Rg, see [9, Section 2]. In

particular, Rf∧Rg and Rf∧ω only depend on the restriction of f to X, and thus these
currents are well-defined even if f is only defined over X. Moreover Rf∧Rgφ = 0 if
and only if Rf∧ωi∗φ = 0. On Xreg, Rf∧ω is just the product of the current Rf and
the smooth form ω.

The current Rf∧Rg is related to the tensor product complex Eh• , h
•, where

Ehk =
⊕
i+j=k

Efi ⊗ E
g
j ,

and h = f + g, cf. [9, Section 2.5], in a similar way as is the current Rh associated

with this complex, see [4]. In particular, if φ is a section of Eh0 = Ef0 ⊗E
g
0 such that

Rf∧Rgφ = 0, one can locally solve f1q + g1q′ = φ. Moreover if (2.6) is satisfied for

the product complex there is a global such section (q, q′) of Eh1 = Ef1 ⊗E
g
0⊕E

f
0 ⊗E

g
1 .

In general, however, Rf∧Rg does not coincide with Rh.
In fact, the definition of Rf in Section 2.3 works also when Y is singular. However,

Proposition 2.1 and the duality principle do not hold in general, see, e.g., [21], and
therefore Rf itself is not so well suited for division problems.

Example 5.1. Assume that Ef• , f
• is the Koszul complex generated by sections fj of

Lj = O(dj)|X , where X ⊂ PN , twisted by S = O(ρ), as in Example 2.2, and that
Eg• , g

• is a complex associated with a minimal Hermitian free resolution of S/JX as
in Section 4. Note that then Eh` is a direct sum of line bundles

O(ρ− (di1 + · · ·+ di`)− d
i
k−`).

Recall that

(5.1) Hk(PN ,O(`)) = 0 if ` ≥ −N or k < N,
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see, e.g., [13]. Thus (2.6) is satisfied if ρ ≥ di1 + · · · + di` + diN+1−` − N for ` =
1, 2, . . . ,min(m,n+ 1) and all choices of i and ij . Notice that, cf., (4.2),

diN+1−` −N =
(
diN+1−` − (N + 1− `)

)
+ 1− ` ≤ regX − `.

Hence (2.6) is satisfied if

(5.2) ρ ≥ d1 + · · ·+ dmin(m,n+1) −min(m,n+ 1) + regX.

Summing up we have:

If ρ satisfies (5.2) and φ is a section of O(ρ) on PN such that Rf∧Rgφ = 0 (or
equivalently Rf∧Rgi∗φ = 0) then there are global sections qj of O(ρ− dj) such that
f1q1 + · · ·+ fmqm = φ on X.

If X is Cohen-Macaulay we may assume that Eg• , g
• ends at level N −n. If moreover

m ≤ n, then Eh• , h
• ends at level ≤ N and thus (2.6) is satisfied for any ρ.

�

Example 5.2. Let Fj be polynomials in CN , let f̂j be the sections of O(degFj)→ PN

corresponding to Fj , and let Jf̂ be the ideal sheaf on PN generated by the f̂j .

Moreover, let Ef• , f
• and Eg• , g

• be complexes associated with minimal free resolutions

of Jf̂ and JX as in Section 4, where X is a subvariety of PN ; say Efk =
⊕
O(δik) and

Egk =
⊕
O(dik). Then Ehk is a direct sum of line bundles O(−δi` − d

j
k−`), and thus

(2.6) is satisfied if ρ ≥ δi` + djN+1−` − N for all i, j, `, cf. Example 5.1. Notice that,
in light of Section 4,

δi` + djN+1−` −N = (δi` − `) + (djN+1−` − (N + 1− `)) + 1 ≤ reg Jf̂ + regX − 1,

where Jf̂ is the homogeneous ideal associated with Jf̂ . Thus (2.6) is satisfied if

ρ ≥ reg Jf̂ + regX − 1.

Let Z f̂k and Zg` be the BEF-varieties of Jf̂ and JX , respectively. Theorem 4.2 in

[4] asserts that if

(5.3) codim (Z f̂k ∩ Z
g
` ) ≥ k + `,

then Rf∧Rgφ = 0 if and only if φ ∈ Jf̂ + JX = Jf + JX , where Jf is the sheaf on

X generated by the restrictions fj of f̂j , cf. Section 2.4. If moreover Jf̂ and JX are

both Cohen-Macaulay and the resolutions O(Ef• ), f• and O(Eg•), g
• have minimal

length, then Rf∧Rg = Rh, see [4, Theorem 4.2]. �

5.1. Distinguished varieties. Let X be a subvariety of PN and let f̃j be sections
of L = O(d)|X . Moreover, let ν : X+ → X be the normalization of the blow-up of X
along Jf̃ , and let W =

∑
rjWj be the exceptional divisor; here Wj are irreducible

Cartier divisors. The images Zj := ν(Wj) are called the (Fulton-MacPherson) dis-

tinguished varieties associated with Jf̃ , see, e.g., [22]. If we consider f̃ = (f̃1, . . . , f̃m)

as a section of E∗ := ⊕m1 O(−d), then ν∗f̃ = f̃0f̃ ′, where f̃0 is a section of the line

bundle O(−W ) and f̃ ′ = (f̃ ′1, . . . , f̃
′
m) is a nonvanishing section of ν∗E∗ ⊗ O(W ),

where O(W ) = O(−W )−1. Furthermore, ωf̃ := ddc log |f̃ ′|2 is a smooth first Chern

form for ν∗L⊗O(W ). We will use the geometric estimate

(5.4)
∑

rjdeg LZj ≤ deg LX
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from [15, Proposition 3.1], see also [22, (5.20)].

Let Rf̃ be the residue current associated with the Koszul complex of the f̃j as

in Example 2.2 and consider the regularization (2.7) of Rf̃ . Using the notation in

Example 2.2, ν∗σ = (1/f̃0)σ′, where 1/f̃0 is a meromorphic section of O(W ) and σ′

is a smooth section of ν∗E ⊗O(−W ). It follows that

ν∗(σ∧(∂̄σ)k−1) =
1

(f̃0)k
σ′∧(∂̄σ′)k−1,

and hence

ν∗Rλk = ∂̄|f̃0f̃ ′|2λ∧ 1

(f̃0)k
σ′∧(∂̄σ′)k−1 for Reλ >> 0,

when k ≥ 1. Since f̃ ′ is nonvanishing, by (2.1) the value at λ = 0 is precisely

(5.5) R+
k := ∂̄

1

(f̃0)k
∧σ′∧(∂̄σ′)k−1.

Thus

ν∗R
+
k = Rf̃k .

6. Proofs

Proof of Theorem 1.5. For j = 1, . . . ,m, let f̂j be the degFj-homogenization of
the polynomial Fj , considered as a section of O(degFj) → PN . Moreover let
g1, . . . , gr be global generators of the ideal sheaf JX ; assume they are sections of
O(d1), . . . ,O(dr), respectively. Let J = Jf̂ + JX = Jf + JX . Then there is a

locally free resolution O(Eh• ), h• of O/J , where each Ehk is a direct sum of line bun-
dles Ek =

⊕
iO(−dik) and in particular E1 =

⊕m
1 O(−degFj) ⊕r1

⊕
O(−dk) and

h1 = (f1, . . . , fm, g1, . . . , gr) =: f + g, cf. Section 4. Let R = Rh be the residue
current associated with Eh• , h

•.
Recall from Section 3 that for fixed x ∈ X, Rx =

∑
Rp, where the sum is over

Ass(Jx) and where Rp has the SEP with respect to V (p); in particular, 1H∞R
p = Rp

if V (p) ⊂ H∞ and 1H∞R
p = 0 otherwise. Thus

(6.1) 1H∞Rx =
∑

p∈Ass(Jx),V (p)⊂H∞

Rp.

In Remark 3.2 we saw that a = ∩ak is a primary decomposition of the ideal a in
OXx if and only if ã = ∩ãk is a primary decomposition of the ideal ã = a + (JX)x in
OYx . Thus, that Jf has no associated varieties contained in X∞ implies that, for a
fixed x ∈ X, Jx has no (varieties of) associated primes contained in the hyperplane
H∞ at infinity in PN . We conclude, in light of (6.1), that 1H∞R = 0. If φ is any
homogenization of Φ then 1CNRφ = 0 because of the duality principle and hence
Rφ = 1H∞Rφ+ 1CNRφ = 0.

Assume that the complex Eh• , h
• ends at level M (by Hilbert’s syzygy theorem we

may assume that M ≤ N + 1) and let

(6.2) β := max
i
diN+1 −N if M = N + 1 and β := 0 otherwise.

If ρ ≥ β then (2.6) is satisfied for Eh• , h
• twisted by O(ρ) in light of (5.1) and thus

by Proposition 2.1 there are global holomorphic sections q = (qj) of
⊕
O(ρ−degFj)

and q′ = (q′k) of
⊕
O(ρ − dk) over PN such that f̂ q + gq′ = φ. Indeed, recall from
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the end of Section 2.3 that R is also the residue current associated with the twisted
complex. Dehomogenizing gives polynomials Qj , Q

′
j , and Gj in CN such that∑

FjQj +
∑

GjQ
′
j = Φ

and where deg (FjQj) ≤ ρ. Since the Gj vanish on V we get the desired solution to
(1.1) on V , and thus the first part of Theorem 1.5 follows with β as in (6.2).

If V = CN , OX should be interpreted as the zero sheaf. Then Eh• , h
• is a locally

free resolution of O/Jf and β ≤ reg Jf , cf. Section 4.

For the second part of Theorem 1.5, assume that Jf has an associated variety
contained in X∞. We are to prove that for arbitrarily large ` there is a polynomial
Φ = Φ` of degree ≥ ` in (Fj) on V for which one can not solve (1.1) with deg (FjQj) ≤
deg Φ`.

Let L = O(1)|X . The hypothesis on Jf then means that Jf [X∞] is strictly larger
than Jf . Therefore, since L is ample, for some large enough s0 there is a global
section ψ0 of L⊗s0 → X such that ψ0 is in Jf [X∞] but not in Jf . Moreover we can
find a global section ψ of L⊗s for some s ≥ 1 such that ψ does not vanish identically
on any of the associated varieties of Jf that are contained in X∞. We may assume

that s0, s ≥ regX − 1, so that ψ0 and ψ extend to global sections ψ̂0 and ψ̂ of
O(s0) and O(s), respectively. Let Ψ0 and Ψ be the corresponding dehomogenized
polynomials in CN . For ` ≥ 0, let φ` = ψ0ψ

` and Φ` = Ψ0Ψ`. Since Jf [X∞]x = (Jf )x
for all x ∈ V , Φ` is in the ideal (Fj) on V , and thus we can solve (1.1) for Φ = Φ`

on V . Assume that there is a solution to (1.1) with deg (FjQj) ≤ ρ`. Then there are

sections qj of Lρ`−degFj such that∑
fjqj = z

ρ`−(s0+s`)
0 φ`

on X. Since φ` is not in Jf it follows that ρ` − (s0 + s`) ≥ 1 and thus ρ` ≥
1 + (s0 + s`) ≥ 1 + deg Φ`. Since ψ̂ does not vanish identically at X∞, deg Ψ ≥ 1
and hence deg Φ` ≥ `. Hence we have found Φ` with the desired properties and the
second part of Theorem 1.5 follows.

�

Remark 6.1. If Jf̂ and JX are Cohen-Macaulay and the BEF-varieties of Jf̂ and

JX satisfy (5.3), then we can choose the complex Eh• , h
• in the above proof to be

the tensor product of the complexes Ef• , f
• and Eg• , g

• corresponding to minimal
resolutions of Jf̂ and JX , see Example 5.2. In this case, by Example 5.2, we get

Theorem 1.5 for β = reg Jf̂ + regX − 1.

�

The residue current technique in the preceding proof is convenient and makes it
possible to carry out the proof within our general framework, but it is not crucial.

Remark 6.2 (The algebraic approach). Let us first sketch an algebraic proof of the
first part of Theorem 1.5. We use the notation from the proof above. To begin with
we have to prove that φ is in J , which of course precisely corresponds to proving
that Rφ = 0. Since (the restriction to V of) φ is in Jf on V it follows that φx′ is in

J outside H∞. Since moreover J = OPN
outside X, we have to prove that φx ∈ Jx

for each x ∈ X∞. At such a point x we have a minimal primary decomposition
Jx = ∩`J `x . Since J is coherent, J ⊂ J ` in a neighborhood U of x, where J ` is the
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coherent sheaf defined by J `x . Let Z` be the zero-set of J `. Since φx′ is in Jx′ for x′

outside H∞ it follows that φx′ is in J `x′ for x′ ∈ Z` \H∞. Hence F := (J ` + (φ))/J `
is a coherent sheaf in U with support on Z` ∩H∞. Since by assumption Jf has no

associated varieties contained in X∞ it follows that Z`∩H∞ has positive codimension
in Z`, cf. the proof of Theorem 1.5 above. Therefore, by the Nullstellensatz there
is a holomorphic function h, not vanishing identically on Z` such that hF = 0. In
particular, hxφx ∈ J `x . Since hx is not in the radical of J `x and J `x is primary it
follows that φx ∈ J `x . We conclude that φx ∈ Jx. Notice that the last arguments
above can be thought of as an algebraic version of the SEP-argument in the proof of
Theorem 1.5 above.

Next we would like to use that φ ∈ J to conclude that there is a global holomorphic
solution to hq = φ. By a partition of unity, using that Eh• , h

• is exact, one can glue
local such solutions together to obtain a global smooth solution to (h − ∂̄)ψ = φ,
cf. [9, Section 4]. By solving a certain sequence of ∂̄-equations in PN we can modify
ψ to a global holomorphic solution q to hq = φ. These ∂̄-equations are solvable if
ρ ≥ β defined by (6.2). Alternatively, one can directly refer to the well-known result
that there is a solution to hq = φ if ρ ≥ reg J , where J is the homogeneous ideal
corresponding to J , see, e.g., [17, Proposition 4.16].

In the same way Theorems 1.1 and 1.2 follow without any reference to residues.
Probably one can also find give an algebraic proof of Theorem 1.4.

�

In the next proof the residue technique plays a more decisive role.

Proof of Theorem 1.6. Let

ρ = max(deg Φ + µdc∞degX, (d− 1) min(m,n+ 1) + regX),

or if X is Cohen-Macaulay and m ≤ n let ρ = deg Φ + mdc∞degX, and let φ
be the ρ-homogenization of Φ considered as a section of O(ρ)|X . Note that then

φ = zρ−deg Φ
0 φ̃, where φ̃ is the deg Φ-homogenization of Φ. Moreover, let Rf̃ ∧ ω

be the residue current associated with the (twisted) Koszul complex E f̃• , f̃
• of the

sections f̃j of O(d)|X associated with Fj , and a complex Eg• , g
• associated with a

minimal resolution of O/JX as in Example 5.1 (with dj = d for all j).

Claim: Rf̃∧ω0φ has support on Z f̃ ∩X0.

To prove the claim, since ω is smooth on Xreg, it is enough to show that Rf̃φ = 0 on

Xreg. First, since codimZ f̃∩V ≥ m, the duality principle for a complete intersection,

cf. Example 2.2, implies that Rf̃φ = 0 on Vreg.

Next, to prove that 1X∞\X0Rf̃φ = 0 we consider the normalization of the blow-up

ν : X+ → X, and let R+ :=
∑
R+
k be as in Section 5.1. Let W ′ be the union of the

irreducible components of W = ν−1Z f̃ that are contained in ν−1X∞. We claim that

(6.3) 1X∞R
f̃ = ν∗

(
1W ′R

+
)
.

In fact, by (2.3),

(6.4) 1X∞R
f̃ = ν∗

(
1ν−1X∞R

+
)

= ν∗(1ν−1X∞(1W ′ + 1W\W ′)R
+
)
.
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By, (2.2), 1ν−1X∞1W ′R
+ = 1W ′R

+. Moreover,

1ν−1X∞1W\W ′ ∂̄
1

(f̃0)k
= 1ν−1X∞∩(W\W ′)∂̄

1

(f̃0)k
= 0

by (2.2) and the dimension principle, since ν−1X∞ ∩ (W \W ′) has codimension at
least 2 in X+. In view of (5.5) we conclude that 1ν−1X∞1W\W ′R

+ = 0, and thus
(6.3) follows from (6.4).

It follows from (6.3) that 1X∞\X0Rf̃φ = 0 if 1W ′R
+ν∗φ = 0. To show that

1W ′R
+ν∗φ vanishes first note that it is sufficient to show that it vanishes in a neigh-

borhood of each point x on W ′ where W is smooth. Indeed, since Wsing has codi-

mension at least 2 in W , 1Wsing ∂̄(1/(f̃0)k) = 0 by the dimension principle. Hence,
using (5.5) and (2.2) we get that

1W ′R
+ = 1W ′(1Wreg + 1Wsing)R+ = 1W ′∩WregR

+.

Consider now x ∈ 1W ′∩Wreg ; say x is contained in the irreducible component Wj of

W ′. In a neighborhood of x we have that f̃0 = srjv, where s is a local coordinate

function and v is nonvanishing and rj is as in Section 5.1. Since φ = zρ−deg Φ
0 φ̃, by

the choice of ρ, ν∗φ vanishes to order (at least) µdc∞degX on W ′.
If Ω is a first Chern form for O(1)|X , e.g., Ω = ddc log |z|2, then dΩ is a first Chern

form for L = O(d)|X on X (notice that d denotes the degree and not the differential).
By (5.4) we therefore have that

rj

∫
Zj

(dΩ)dimZj ≤
∫
X

(dΩ)n,

which implies that

rj ≤ dcodimZjdegX.

It follows that ν∗φ vanishes (at least) to order µrj on Wj and hence it has a factor
sµrj . In a neighborhood of x,

∂̄
1

(f̃0)k
= ∂̄

1

skrj
∧smooth

and thus, in light of (5.5), R+
k ν
∗φ = 0 for k ≤ µ there. Hence 1W ′∩WregR

+
k ν
∗φ = 0

for k ≤ µ and 1X∞\X0Rf̃φ = 0. We conclude that 1X\X0Rf̃φ = 1Vreg Rf̃φ +

1X∞\X0Rf̃φ = 0, which proves the claim that Rf̃∧ω0φ has support on Z f̃ ∩X0.

By (1.8) and the dimension principle we conclude that Rf̃∧ω0φ vanishes identi-

cally, since the bidegree of Rf̃ is at most (0,m) and ω0 has bidegree (n, 0). Thus

Rf̃∧ω1φ = Rf̃∧α1ω0φ, see (2.9), vanishes outside X1. By (1.8) and the dimension

principle, it vanishes identically since the bidegree of Rf̃∧ω1 is at most (n,m + 1).

By induction, it follows that Rf̃∧ω`φ = 0 for each `. We conclude that Rf̃ ∧ωφ = 0.

Since ρ satisfies (5.2) (with dj = d) and Rf̃ ∧ ωφ = 0, by Example 5.1 there is a
global section q = (qj) of

∑m
1 O(ρ − d) such that fq = φ on X. Dehomogenizing

gives polynomials Qj such that (1.1) holds on V and deg (FjQj) ≤ ρ.
�

Proof of Theorems 1.1 and 1.4. Let

ρ = max(deg Φ, d1 + . . .+ dmin(m,n+1) −min(m,n+ 1) + regX),
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or if X is Cohen-Macaulay and m ≤ n let ρ = deg Φ. Moreover let φ be the
ρ-homogenization of Φ and let Rf ∧ ω be the residue current associated with the

twisted Koszul complex Ef• , f
• of the degFj-homogenizations fj of Fj and a minimal

resolution of O/JX as in Example 5.1.
We claim that under the hypotheses of both theorems Rf∧ω0φ has support on

Zf ∩ X0. Since ω is smooth outside X0 it is enough to show that Rfφ = 0 there.
First in the case of Theorem 1.1, Rf vanishes for trivial reasons, since Zf is empty.
In the case of Theorem 1.4, first Rfφ vanishes on Vreg by the duality principle. Next,

since by assumption (1.2) holds and Zf has no irreducible components in X∞, it
holds that codim (X∞ ∩ Zf ) > m. Since the components of Rf have bidegree at
most (0,m), we conclude that 1X∞\X0

Rf = 0 by the dimension principle. This

proves that Rf∧ωφ has support on Zf ∩X0.
Now arguing as in the end of the proof of Theorem 1.6, we get that Rf∧ωφ = 0,

and the results follow from Example 5.1.
�

Remark 6.3. If degFj = d, then Theorems 1.1 and 1.4 follow directly from Theo-
rem 1.6. First, notice that Theorem 1.1 follows if we apply Theorem 1.6 to Fj with

no common zeros on X. Indeed, since Zf is empty, codim (Zf ∩X) = ∞ and thus
(1.7) and (1.8) are satisfied, and moreover c∞ = −∞.

Next, assume that Fj satisfy the hypothesis of Theorem 1.4. Since the codimension

of a distinguished variety is at most m the condition that Zf satisfies (1.2) and
has no irreducible component contained in X∞ means that (1.7) is satisfied and no
distinguished varieties can be contained in X∞. Thus c∞ = −∞ and dc∞ = 0 and
Theorem 1.4 follows from Theorem 1.6.

�
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