SPARSE EFFECTIVE MEMBERSHIP PROBLEMS VIA RESIDUE CURRENTS

ELIZABETH WULCAN

Abstract

We use residue currents on toric varieties to obtain bounds on the degrees of solutions to polynomial ideal membership problems. Our bounds depend on (the volume of) the Newton polytope of the polynomial system and are therefore well adjusted to sparse polynomial systems. We present sparse versions of Max Nöther's $A F+B G$ Theorem, Macaulay's Theorem, and Kollár's Effective Nullstellensatz, as well as recent results by Hickel and Andersson-Götmark.

1. Introduction

Residue currents are generalizations of one complex variable residues and can be thought of as currents representing ideals of holomorphic functions or polynomials. The purpose of this paper is to investigate how residue currents on toric varieties can be used to obtain effective solutions to polynomial ideal membership problems.

Let F_{1}, \ldots, F_{m}, and Φ be polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$. Assume that Φ vanishes on the common zero set of the F_{j}. Then Hilbert's Nullstellensatz asserts that there are polynomials G_{1}, \ldots, G_{m} such that

$$
\begin{equation*}
\sum_{j=1}^{m} F_{j} G_{j}=\Phi^{\nu} \tag{1.1}
\end{equation*}
$$

for some integer ν large enough. Much attention has recently been paid to the problem of bounding the complexity of the solutions to (1.1), starting with the breakthrough work of Brownawell [10]. For example, one can ask for bounds of ν and the degrees of the G_{j} in terms of the degrees of the F_{j}. The optimal result in this direction was obtain by Kollár [22]:
Assume that $\operatorname{deg} F_{j} \leq d \neq 2$. Then one can find G_{j} so that (1.1) holds for some $\nu \leq d^{\min (m, n)}$ and

$$
\begin{equation*}
\operatorname{deg}\left(F_{j} G_{j}\right) \leq(1+\operatorname{deg} \Phi) d^{\min (m, n)} \tag{1.2}
\end{equation*}
$$

The restriction $d \neq 2$ was removed by Jelonek, [21], for $m \leq n$. For $m \geq n+1$ Sombra, [33], proved that one can find G_{j} that satisfy $\operatorname{deg}\left(F_{j} G_{j}\right) \leq(1+\operatorname{deg} \Phi) 2^{n+1}$.

Kollár's and Jelonek's result are sharp; the original statements also take into account different degrees of the F_{j}. In many cases, however, one can do much better. Classical results due to Max Nöther [27] and Macaulay [26] show that the bounds can be substantially improved if (the homogenizations of) the F_{j} have no common zeros at infinity.

Another situation in which one can improve Kollár's result is when the system of polynomials is sparse, meaning that its Newton polytope has small volume. Recall that the support $\operatorname{supp} F$ of a Laurent polynomial $F=\sum_{\alpha \in \mathbb{Z}^{n}} c_{\alpha} z^{\alpha}=\sum_{\alpha \in \mathbb{Z}^{n}} c_{\alpha} z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$ in $\mathbb{C}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]$ is defined as $\operatorname{supp} F=\left\{\alpha \in \mathbb{Z}^{n}\right.$ such that $\left.c_{\alpha} \neq 0\right\}$ and that the Newton polytope $\mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)$ of the system of polynomials F_{1}, \ldots, F_{m} is the convex hull of $\bigcup_{j} \operatorname{supp} F_{j}$ in \mathbb{R}^{n}. In particular, a polynomial of degree d has support in $d \Sigma^{n}$, where Σ^{n} is the n-dimensional simplex in \mathbb{R}^{n} with the origin and the unit lattice points $e_{1}=(1,0, \ldots, 0), e_{2}=$ $(0,1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$ as vertices. The normalized volume $\operatorname{Vol}(\mathcal{S})$ of a convex set \mathcal{S} in \mathbb{R}^{n} is k ! times the Euclidean volume of \mathcal{S}, where k is the dimension of \mathcal{S}, so that $\operatorname{Vol}\left(\Sigma^{n}\right)=1$. A lattice polytope is a polytope in \mathbb{R}^{n} with vertices in \mathbb{Z}^{n}. Sombra [33] proved the following using techniques from toric geometry:
Let \mathcal{P} be a lattice polytope that contains $\mathcal{N} \mathcal{P}=\mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}, 1, z_{1}, \ldots, z_{n}\right)$. Then there are polynomials G_{j} that satisfy (1.1) for $\nu \leq n^{n+2} \operatorname{Vol}(\mathcal{P})$ and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq(1+\operatorname{deg} \Phi) n^{n+3} \operatorname{Vol}(\mathcal{P}) \mathcal{P} \tag{1.3}
\end{equation*}
$$

In particular, if $\operatorname{deg} F_{j} \leq d$, then

$$
\begin{equation*}
\operatorname{deg}\left(F_{j} G_{j}\right) \leq(1+\operatorname{deg} \Phi) n^{n+3} \operatorname{Vol}(\mathcal{N P}) d \tag{1.4}
\end{equation*}
$$

In general the bound (1.4) is less sharp than Kollár's bound, but if d is large compared to n and $\operatorname{Vol}(\mathcal{P})$ is small compared to $\operatorname{Vol}\left(d \Sigma^{n}\right)=d^{n}$, then (1.4) is sharper than (1.2).

The main ingredient in Sombra's proof is an effective Nullstellensatz for arithmetically Cohen-Macaulay varieties, [33, Lemma 1.1]. This result was later extended to general varieties by Kollár, [23], EinLazarsfeld, [17], and Jelonek, [21]. Combining their results and Sombra's techniques, (1.3) can be substantially improved; in many cases one can get rid of the factor $n^{n+3},[34]$. For example, if F_{1}, \ldots, F_{n} lack common zeros (in \mathbb{C}^{n}) then one can solve (1.1) with $\Phi=1$ and

$$
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \operatorname{Vol}(\mathcal{P}) \mathcal{P}
$$

as follows using Jelonek's Nullstellensatz, [21]. In [17, Example 2], due to Rojas, the special case when \mathcal{P} is a product of simplices is considered.

Residue currents have been used as a tool to solve polynomial membership problems by several authors, see, for example, [6]. In this paper we extend the ideas developed by Andersson [3] and AnderssonGötmark [4], who used residue currents on complex projective space \mathbb{P}^{n} to obtain effective solutions. We consider residue currents on general
toric compactifications of \mathbb{C}^{n} in order to obtain sparse effective results. Given a lattice polytope \mathcal{P} one can construct a toric variety $X_{\mathcal{P}}$ and a line bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)$ on $X_{\mathcal{P}}$ whose global sections correspond precisely to polynomials with support in \mathcal{P}, see Section 3 . The toric variety $X_{\mathcal{P}}$ is smooth if for each vertex v of \mathcal{P} the smallest integer normal vectors of the facets of \mathcal{P} containing v form a base for \mathbb{Z}^{n}, see [18, p. 29]. We then say that the lattice polytope \mathcal{P} is smooth (with respect to the lattice \mathbb{Z}^{n}), see [14].

The following sparse version of Macaulay's Theorem [26] is due to Castryck-Denef-Vercauteren [11].

Theorem 1.1. Let F_{1}, \ldots, F_{m} be polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ and let \mathcal{P} be a lattice polytope that contains the Newton polytope of $F_{1}, \ldots F_{m}$. Assume that the F_{j} have no common zeros neither in \mathbb{C}^{n} nor at infinity. Then there are polynomials G_{j} that satisfy

$$
\begin{equation*}
\sum_{j=1}^{m} F_{j} G_{j}=1 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq(n+1) \mathcal{P} \tag{1.6}
\end{equation*}
$$

We will specify in Section 5.1 how no common zeros at infinity should be interpreted.

Macaulay's Theorem, [26], corresponds to the case when $\mathcal{P}=d \Sigma^{n}$, that is, $\operatorname{deg} F_{j} \leq d$. Then (1.6) reads $\operatorname{deg}\left(F_{j} G_{j}\right) \leq(n+1) d$. Macaulay's original result is in fact slightly stronger; we refer to Section 5.1 for an exact statement. In the special case when \mathcal{P} is of the form $\mathcal{P}=d \Sigma^{n}$ or more generally of the form

$$
\begin{equation*}
\mathcal{P}=d_{1} \Sigma^{n_{1}} \times \cdots \times d_{r} \Sigma^{n_{r}} \tag{1.7}
\end{equation*}
$$

we get a slightly sharper bound than (1.6), see Theorem 5.2; in particular, we get back Macaulay's result. Observe that $\operatorname{supp} F \subseteq \mathcal{P}$, where \mathcal{P} is given by (1.7), means that the degree of F in the first n_{1} variables is bounded by d_{1}, the degree in the next n_{2} variables is bounded by d_{2}, etc.

Our next result is a sparse version of Max Nöther's $A F+B G$ Theorem, [27].
Theorem 1.2. Let F_{1}, \ldots, F_{m}, and Φ be polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ and let \mathcal{P} be a smooth and "large" polytope that contains the origin and the support of Φ and the coordinate functions z_{1}, \ldots, z_{n}. Assume that Φ is in the ideal $\left(F_{1}, \ldots, F_{m}\right)$ and moreover that the codimension of the common zero set of the F_{j} is m and that it has no component contained in the variety at infinity. Then there are polynomials G_{j} such that

$$
\begin{equation*}
\sum F_{j} G_{j}=\Phi \tag{1.8}
\end{equation*}
$$

and

$$
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \mathcal{P}
$$

It will be specified in Section 5.2 what we mean by that the common zero set of the F_{j} has no component contained in the variety at infinity and by that the polytope is "large"; in particular, \mathcal{P} is large if it is of the form $(n+1)$ times a lattice polytope. Theorem 1.2 also holds if \mathcal{P} is of the form (1.7). In particular, if $m=n$ and $\mathcal{P}=(\operatorname{deg} \Phi) \Sigma^{n}$ we get back Nöther's original result [27]:
Assume that the common zero set of F_{1}, \ldots, F_{n} is discrete and contained in \mathbb{C}^{n} and that Φ is in the ideal $\left(F_{1}, \ldots, F_{n}\right)$. Then, there are G_{j} that satisfy (1.8) and $\operatorname{deg}\left(F_{j} G_{j}\right) \leq \operatorname{deg} \Phi$.

If $\mathcal{P}=(\operatorname{deg} \Phi) \Sigma^{n}$ but we drop the condition $m=n$, then the corresponding result appeared as Theorem 1.2 in [3].

In general, the F_{j} have common zeros at infinity. The following is a sparse version of a result by Andersson-Götmark, [4, Theorem 1.3], which generalizes Nöther's Theorem to the situation when there are no restriction on the zeros of the F_{j} at infinity.
Theorem 1.3. Let F_{1}, \ldots, F_{m}, and Φ be polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, let \mathcal{P} be a smooth polytope that contains the origin and the Newton polytope of $F_{1}, \ldots, F_{m}, z_{1}, \ldots, z_{n}$, and let a denote the minimal side length of \mathcal{P}. Assume that the codimension of the common zero set of F_{1}, \ldots, F_{m} in \mathbb{C}^{n} is m, that $\Phi \in\left(F_{1}, \ldots, F_{m}\right)$, and that supp $\Phi \subseteq e \mathcal{P}$, where $e \mathcal{P}$ is a lattice polytope. Then there are polynomials G_{j} that satisfy (1.8) and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq\lceil e+m \operatorname{Vol}(\mathcal{P}) / a\rceil \mathcal{P} \tag{1.9}
\end{equation*}
$$

By the minimal side length of \mathcal{P} we mean the length of the shortest edge of \mathcal{P}. For example, if $\mathcal{P}=d \Sigma$, then $a=d$. Thus with $\mathcal{P}=d \Sigma^{n}$ (1.9) reads

$$
\operatorname{deg}\left(F_{j} G_{j}\right) \leq\left(\operatorname{deg} \Phi / d+m d^{n} / d\right) d=\left(\operatorname{deg} \Phi+m d^{n}\right)
$$

which is Andersson-Götmark's result in the case when the degrees of the F_{j} are bounded by d and $m=n$. Their result is more precise; in particular, it allows for the F_{j} to have different degrees and d^{n} in the estimate should be replaced by $d^{\min (m, n)}$.

Recall that Φ lies in the integral closure $\overline{(F)}$ of $(F)=\left(F_{1}, \ldots, F_{m}\right)$ if Φ satisfies a monic equation $\Phi^{r}+H_{1} \Phi^{r-1}+\cdots+H_{r}=0$, where $H_{j} \in$ $(F)^{j}$ for $1 \leq j \leq r$, or, equivalently, if Φ locally satisfies $|\Phi| \leq C|F|$, where $|F|^{2}=\left|F_{1}\right|^{2}+\cdots+\left|F_{m}\right|^{2}$. If $\Phi \in \overline{(F)}$, then the Briançon-Skoda Theorem, [9], asserts that one can solve (1.1) with $\nu=\min (m, n)$. The following is a sparse versions of an effective Briançon-Skoda Theorem due to Hickel [19, Theorem 1.1], see also Ein-Lazarsfeld [17, p. 430].

Theorem 1.4. Let F_{1}, \ldots, F_{m}, and Φ be polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, let \mathcal{P} be a smooth polytope that contains the origin and the Newton
polytope of $F_{1}, \ldots, F_{m}, z_{1}, \ldots, z_{n}$, and let a denote the minimal side length of \mathcal{P}. Assume that Φ is in the integral closure of $\left(F_{1}, \ldots, F_{m}\right)$ and that supp $\Phi \subseteq e \mathcal{P}$, where $e \mathcal{P}$ is a lattice polytope. Then there are polynomials G_{j} such that

$$
\begin{equation*}
\sum_{j=1}^{m} F_{j} G_{j}=\Phi^{\min (m, n)} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \max (\lceil\min (m, n)(e+\operatorname{Vol}(\mathcal{P}) / a)\rceil, \min (m, n+1)) \mathcal{P} \tag{1.11}
\end{equation*}
$$

In most cases $\lceil\min (m, n)(e+\operatorname{Vol}(\mathcal{P}) / a)\rceil$ is much larger than $\min (m, n+$ 1). In fact, $\min (m, n+1)$ is the largest only when $\mathcal{P}=\Sigma^{n}$ and $e=0$.

If $\mathcal{P}=d \Sigma^{n}$, then (1.11) reads $\operatorname{deg}\left(F_{j} G_{j}\right) \leq \min (m, n)\left(\operatorname{deg} \Phi+d^{n}\right)$, which is precisely Hickel's result, provided $m \geq n$. Hickel's original formulation is more precise, taking into account different degrees of the F_{j}; also, d^{n} in the estimate should be replaced by $d^{\min (m, n)}$.

Finally, we have the following sparse Nullstellensatz.
Theorem 1.5. Let F_{1}, \ldots, F_{m}, and Φ be polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, let \mathcal{P} be a smooth polytope that contains the origin and the Newton polytope of $F_{1}, \ldots, F_{m}, z_{1}, \ldots, z_{n}$, and let a denote the minimal side length of \mathcal{P}. Assume that Φ vanishes on the common zero set of the F_{j} and that supp $\Phi \subseteq e \mathcal{P}$, where $e \mathcal{P}$ is a lattice polytope. Then there are polynomials G_{j} such that

$$
\begin{equation*}
\sum F_{j} G_{j}=\Phi^{\min (m, n) \operatorname{Vol}(\mathcal{P})} \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \max (\lceil\min (m, n)(1 / a+e) \operatorname{Vol}(\mathcal{P})\rceil, \min (m, n+1)) \mathcal{P} \tag{1.13}
\end{equation*}
$$

Note that in most cases $\lceil\min (m, n)(e+1 / a) \operatorname{Vol}(\mathcal{P})\rceil$ is much larger than $\min (m, n+1)$. As above, $\min (m, n+1)$ is the largest only if $\mathcal{P}=\Sigma^{n}$ and $e=0$.

If $\mathcal{P}=d \Sigma^{n}$, then (1.13) reads $\operatorname{deg}\left(F_{j} G_{j}\right) \leq \min (m, n)(1+\operatorname{deg} \Phi) d^{n}$. Moreover the exponent in (1.12) is $\min (m, n) d^{n}$, so if $m \geq n$ we get back Kollár's result modulo a factor n in the exponent ν in (1.1) and in the degree estimate (1.2). Because of the factor $1 / a$, Theorem 1.5 slightly improves Sombra's result when \mathcal{P} is smooth. Also from a modified version of Theorem 1.5 we recover Rojas' example [17, Example 2], see Section 5.3.

We will provide a proof of Theorem 1.5 using residue currents. However, this result should be possible to conclude from Ein-Lazarsfeld's Geometric Effective Nullstellensatz [17], cf. [17, Example 2], although we get a slightly better coefficient: a factor $\min (m, n)$ instead of $\min (m, n+$ 1).

Let us sketch the idea of the proofs of our results. A standard way of reformulating the kind of division problems we consider is the following. There are polynomials G_{j} that satisfies (1.1) and $\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq c \mathcal{P}$ if and only if there are sections g_{j} of line bundles $\mathcal{O}\left(D_{(c-1) \mathcal{P}}\right)$ over $X_{\mathcal{P}}$ such that

$$
\begin{equation*}
\sum_{j=1}^{m} f_{j} g_{j}=\psi \tag{1.14}
\end{equation*}
$$

where f_{j} and ψ are sections of line bundles $\mathcal{O}\left(D_{\mathcal{P}}\right)$ and $\mathcal{O}\left(D_{c \mathcal{P}}\right)$ over $X_{\mathcal{P}}$ corresponding to F_{j} and Φ^{ν}, respectively. In [2] it was shown that ψ solves (1.14) locally on $X_{\mathcal{P}}$ if ψ annihilates the so-called BochnerMartinelli residue current R^{f} of f_{1}, \ldots, f_{m}, see Section 2. To obtain a global solution to (1.14) the constant c has to be large enough so that certain Dolbeault cohomology on $X_{\mathcal{P}}$ vanishes. By analyzing when these conditions are satisfied we obtain our results. In general, ψ annihilates R^{f} if it vanishes to high enough order along the common zero set V_{f} of f_{1}, \ldots, f_{m}; this is used to prove Theorems 1.5 and 1.4. Ein-Lazarsfeld [17] (as well as Brownawell [10]) used Skoda's Theorem [32] to obtain analogous results. If the codimension of V_{f} is m, we have a more refined estimate of when R^{f} is annihilated, which makes it possible to get results such as Theorems 1.2 and 1.3.

The somewhat unsatisfactory assumption in most of our results that the polytope \mathcal{P} is smooth is explained by the fact that the use of residue current techniques limits us to work on smooth toric varieties, cf. Remark 5.6. The Bochner-Martinelli residue current can actually be defined also on singular varieties; it will however not have as nice properties as in the smooth case, cf. [7, 24]. It would be interesting to investigate the general situation more carefully.

The organization of this paper is as follows. In Sections 2 and 3 we provide some necessary background on residue currents and toric varieties, respectively. In Section 4 we present a basic result, which essentially is a toric interpretation of Theorem 2.3 in [3]. Based on this we prove Theorems 1.1-1.5 in Section 5, in which we also provide slightly more general formulations and consider the special case when \mathcal{P} is of the form (1.7). Finally, in Section 6 we compare our results to previous work, interpret them in terms of usual degree bounds and give some examples.

Acknowledgment: I would like to thank Mats Andersson, Sébastien Boucksom, Mircea Mustaţă, Alexey Shchuplev, and Martín Sombra for fruitful discussions. Thanks to Maurice Rojas for pointing out the reference to the work of Castryck et al. Also thanks to the referee for careful reading and for many important remarks and helpful suggestions. This work was partially carried out when the author was visiting Institut Mittag-Leffler.

2. Residue currents

Let f_{1}, \ldots, f_{m} be holomorphic functions whose common zero set V_{f} has codimension m. Then the Coleff-Herrera product, introduced in [12],

$$
\begin{equation*}
R_{C H}^{f}=\bar{\partial}\left[\frac{1}{f_{1}}\right] \wedge \cdots \wedge \bar{\partial}\left[\frac{1}{f_{m}}\right], \tag{2.1}
\end{equation*}
$$

represents the ideal (f) generated by the f_{j} in the sense that it has support on V_{f} and moreover if ψ is a holomorphic function, then $\psi \in$ (f) locally if and only if $\psi R_{C H}^{f}=0$, see [16, 29].

Passare-Tsikh-Yger, [30], constructed residue currents by means of the Bochner-Martinelli kernel that generalize the Coleff-Herrera product to when the codimension of V_{f} is arbitrary. Their construction was later developed by Andersson [2]. We will use his global construction.
Theorem 2.1 (Andersson [2], Passare-Tsikh-Yger [30]). Let f be a holomorphic section of a Hermitian vector bundle E of rank m over a complex manifold X of dimension n. Then one can construct a $\left(\Lambda\left(E^{*}\right)\right.$ valued) residue current R^{f} on X, which has support on the zero locus V_{f} of f and satisfies:
(a) If ψ is holomorphic on X and $\psi R^{f}=0$, then ψ is locally in the ideal (f) generated by f.
(b) If codim $V_{f}=m$ then R^{f} is locally equal to a Coleff-Herrera product (2.1); in particular, $\psi R^{f}=0$ if and only if $\psi \in(f)$ locally.
(c) If ψ locally satisfies

$$
\begin{equation*}
|\psi| \leq C|f|^{\min (m, n)} \tag{2.2}
\end{equation*}
$$

for some constant C, then $\psi R^{f}=0$.
If ψ is a holomorphic section of a line bundle L over X, then $\psi \in(f)$ if there is a $g \in \mathcal{O}\left(X, E^{*} \otimes L\right)$ such that

$$
\begin{equation*}
\delta_{f} g=\psi, \tag{2.3}
\end{equation*}
$$

where δ_{f} is contraction (interior multiplication) with f. If $\varepsilon_{1}, \ldots, \varepsilon_{m}$ is a local holomorphic frame for E and $\varepsilon_{1}^{*}, \ldots, \varepsilon_{m}^{*}$ is the dual frame, so that $f=\sum_{i=1}^{m} f_{i} \varepsilon_{i}$ and $g=\sum g_{i} \varepsilon_{i}^{*}$, then (2.3) just reads $\sum f_{i} g_{i}=\psi$, that is, (1.14). Andersson's construction of R^{f} is based on the Koszul complex, which, combined with solving $\bar{\partial}$-equations, is a classical tool for solving division problems, see for example [20]. Vaguely speaking, R^{f} appears as an obstruction when one tries to extend a solution g to the division problem (2.3) from $X \backslash V_{f}$ to X. Let s be the section of E^{*} with pointwise minimal norm, such that $\delta_{f} s=|f|^{2}$, where $|\cdot|$ is the Hermitian metric on X, and let

$$
\begin{equation*}
u=\sum_{k} \frac{s \wedge(\bar{\partial} s)^{k-1}}{|f|^{2 k}} \tag{2.4}
\end{equation*}
$$

Then u is a section of $\Lambda\left(E^{*} \oplus T_{0,1}^{*}(X)\right)$, which is clearly well-defined and smooth outside V_{f}, and moreover $\bar{\partial}|f|^{2 \lambda} \wedge u$ has an analytic continuation as a current to where $\operatorname{Re} \lambda>-\varepsilon$ for some $\varepsilon>0$. The current R^{f} is defined as the value at $\lambda=0$. Locally the coefficients of R^{f} are the residue currents introduced by Passare-Tsikh-Yger [30].

Morally, the residue current R^{f} is an obstruction to solve (2.3) locally on X. To glue these local solutions together to a global solution we need to solve certain $\bar{\partial}$-equations on X. The following result is a special case of Theorem 2.3 in [3].
Theorem 2.2. Let L be a line bundle over X. Assume that

$$
\begin{equation*}
H^{0, q}\left(X, \Lambda^{q+1} E^{*} \otimes L\right)=0 \tag{2.5}
\end{equation*}
$$

for $1 \leq q \leq \min (m-1, n)$. Let ψ be a holomorphic section of L. If $\psi R^{f}=0$, then there is a $g \in \mathcal{O}\left(X, E^{*} \otimes L\right)$ that satisfies (2.3).

Given a holomorphic function g we will use the notation $\bar{\partial}[1 / g]$ for the value at $\lambda=0$ of $\bar{\partial}|g|^{2 \lambda} / g$ and analogously by $[1 / g]$ we will mean $|g|^{2 \lambda} /\left.g\right|_{\lambda=0}$. For further reference note that $g \bar{\partial}[1 / g]=0$.

The residue currents that appear in this paper allow for multiplication with characteristic functions of varieties, and more generally constructible sets, in such a way that ordinary calculus rules hold; in fact, they are pseudomeromorphic currents in the sense of [5]. In particular, if R is a residue current on X and $V \subset X$ is a variety, then $\psi R=0$ if and only if $\psi \mathbf{1}_{V} R=0$ and $\psi \mathbf{1}_{X \backslash V} R=0$. Also, if $\pi: X \rightarrow Y$ is a holomorphic modification and W is a subvariety of Y, then

$$
\begin{equation*}
\mathbf{1}_{W}\left(\pi_{*} R\right)=\pi_{*}\left(\mathbf{1}_{\pi^{-1}(W)} R\right) \tag{2.6}
\end{equation*}
$$

A pseudomeromorphic current with support on a variety Z is said to have the Standard Extension Property (SEP) (with respect to Z) in the sense of Björk [8] if $\mathbf{1}_{W} T=0$ for all subvarieties $W \subset Z$ of positive codimension. The Coleff-Herrera product (2.1) has the SEP (with respect to V_{f}); in particular, $\bar{\partial}[1 / g]$ has the SEP.

One can define pseudomeromorphic currents also on singular varieties, so that the properties above hold true, see [24].

3. Toric varieties

A toric variety is a partial compactification of the torus $T=\left(\mathbb{C}^{*}\right)^{n}$, which admits an action of T that extends the action of T on itself; for a general reference on toric varieties, see [18]. A toric variety can be constructed from a fan Δ, which is a certain collection of lattice cones, by gluing together copies of \mathbb{C}^{n} corresponding to n-dimensional cones of Δ; we denote the resulting toric variety by X_{Δ}. Throughout this paper we will assume that the lattice is \mathbb{Z}^{n}. We will also assume that all fans Δ are complete, that is, $\bigcup_{\sigma \in \Delta} \sigma=\mathbb{R}^{n}$; then the corresponding toric varieties are compact.
3.1. Toric varieties from polytopes. Let \mathcal{P} be a lattice polytope in \mathbb{R}^{n}. Note that if F is a polynomial, then $\operatorname{supp} F \subseteq \mathbb{R}_{\geq 0}^{n}$. Therefore we will assume that all lattice polytopes in this paper are contained in $\mathbb{R}_{\geq 0}^{n}$. Let $\rho_{1}, \ldots, \rho_{s}$ be the normal vectors of the facets (faces of maximal dimension) of \mathcal{P}, chosen in such a way that each ρ_{j} is the shortest inwards pointing normal vector that has integer coefficients. Then \mathcal{P} admits a representation

$$
\begin{equation*}
\mathcal{P}=\bigcap_{j}\left\{x \in \mathbb{R}^{n} \text { such that }\left\langle x, \rho_{j}\right\rangle \geq-a_{j}\right\} \tag{3.1}
\end{equation*}
$$

for some integers a_{j}. The polytope \mathcal{P} determines a complete fan $\Delta_{\mathcal{P}}$ whose cones correspond to the faces of \mathcal{P}; given a face A of \mathcal{P}, the corresponding cone σ_{A} is generated by the ρ_{j} for which A is a face of the facet determined by ρ_{j}.

A toric variety X_{Δ} is smooth if and only if each cone in Δ is generated by a part of a basis for the lattice \mathbb{Z}^{n}. Such a fan is said to be regular. A polytope \mathcal{P} is smooth precisely when $\Delta_{\mathcal{P}}$ is regular, cf. the introduction. For each fan Δ there exists a refinement $\widetilde{\Delta}$ of Δ such that $X_{\widetilde{\Delta}} \rightarrow X_{\Delta}$ is a resolution of singularities. Also if Δ_{1} and Δ_{2} are two different fans, there exists a regular fan $\widetilde{\Delta}$ that refines both Δ_{1} and Δ_{2}. If Δ is a refinement of $\Delta_{\mathcal{P}}$ we say that Δ is compatible with \mathcal{P}.
3.2. Divisors and line bundles. Each one-dimensional cone $\mathbb{R}_{+} \rho_{j}$ of a fan Δ determines a divisor D_{j} on X_{Δ} that is invariant under the action of T. Moreover, any divisor on X_{Δ} is rationally equivalent to a T-invariant divisor, or T-divisor for short, so the D_{j} generates the Chow group $A_{n-1}\left(X_{\Delta}\right)$ of Weil divisors modulo rational equivalence.

A T-Cartier divisor on X_{Δ} is of the form $\sum_{j}\left\langle a, \rho_{j}\right\rangle D_{j}$, for some $a \in$ \mathbb{Z}^{n}; we identify Cartier divisors with the corresponding Weil divisors. A T-Cartier divisor on X_{Δ} gives rise to a polytope \mathcal{P}_{D}, compatible with Δ. If $D=\sum b_{j} D_{j}$, then $\mathcal{P}_{D}=\bigcap_{j}\left\{x \in \mathbb{R}^{n}\right.$ such that $\left.\left\langle x, \rho_{j}\right\rangle \geq-b_{j}\right\}$. The global holomorphic sections of the line bundle $\mathcal{O}(D)$ correspond precisely to polynomials with support in \mathcal{P}_{D}.

A T-Cartier divisor D also gives rise to a continuous piecewise linear function Ψ_{D} on \mathbb{R}^{n}; if $D=\sum b_{j} D_{j}$, then Ψ_{D} is defined by $\Psi_{D}\left(\rho_{j}\right)=$ $-b_{j}$. In particular, Ψ_{D} is linear on each cone of Δ. The function Ψ_{D} is said to be strictly concave if it is concave and the linear functions defining it are different for different n-dimensional cones of Δ. Concavity of Ψ_{D} is related to positivity of the line bundle $\mathcal{O}(D): \mathcal{O}(D)$ is generated by its sections if and only if Ψ_{D} is concave and it is ample if and only if Ψ_{D} is strictly concave. It follows that the line bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)$ is ample on $X_{\mathcal{P}}$. Moreover, if Δ is compatible with \mathcal{P} of the form (3.1), then \mathcal{P} determines a T-Cartier divisor $D_{\mathcal{P}}=\sum a_{j} D_{j}$ on X_{Δ} such that $\mathcal{P}_{D_{\mathcal{P}}}=\mathcal{P}$ and the line bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)$ is generated by its sections.
3.3. Line bundle cohomology. If Δ is complete and L is a line bundle over X_{Δ}, which is generated by its sections, then $H^{0, q}\left(X_{\Delta}, L\right)=0$ for all $q \geq 1$. By Serre duality, $H^{0, q}(X,-L)=H^{0, n-q}\left(X, L+K_{X}\right)$, where K_{X} denotes the canonical divisor on X. The canonical divisor on X_{Δ} is given as $K_{X_{\Delta}}=-\sum D_{j}$, where D_{j} are the irreducible divisors corresponding to the one-dimensional cones of Δ. We conclude the following.

Lemma 3.1. If Δ is compatible with \mathcal{P}, then $H^{0, q}\left(X_{\Delta}, \mathcal{O}\left(D_{c \mathcal{P}}\right)\right)=0$ for all $c \geq 0$, for which $c \mathcal{P}$ is a lattice polytope, and $q \geq 1$.

If moreover $\mathcal{O}\left(D_{\mathcal{P}}+K_{X_{\Delta}}\right)$ is generated by its sections, then $H^{0, q}\left(X_{\Delta}, \mathcal{O}\left(-D_{c \mathcal{P}}\right)\right)=$ 0 for $1 \leq q \leq n-1$ and any $c \geq 1$, for which $c \mathcal{P}$ is a lattice polytope.

To see the second statement, note that for $c \geq 1, \Psi_{D_{c \mathcal{P}}+K_{X_{\Delta}}}$ is concave as soon as $\Psi_{D_{\mathcal{P}}+K_{X_{\Delta}}}$ is.

Let $\mathcal{O}(a)$ denote the line bundle over \mathbb{P}^{n} whose sections correspond to a-homogeneous polynomials. Recall the following well known vanishing theorem, see for example [15, Thm. 10.7, p. 437].
Theorem 3.2. It holds that $H^{0, q}\left(\mathbb{P}^{n}, \mathcal{O}(a)\right)=$ if (and only if) $q=0$ and $a<0,1 \leq q \leq n-1$, or $q=n$ and $a \geq-n$.

Given line bundles $L_{1} \rightarrow X_{1}$ and $L_{2} \rightarrow X_{2}$, let $L_{1} \boxtimes L_{2} \rightarrow X_{1} \times X_{2}$ denote the tensor product of the pullbacks of L_{1} and L_{2} to $X_{1} \times X_{2}$. By the Künneth Formula, we have:

$$
\begin{align*}
H^{0, q}\left(\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{r}}, \mathcal{O}\left(a_{1}\right) \boxtimes \cdots \boxtimes \mathcal{O}\left(a_{r}\right)\right)= \tag{3.2}\\
\quad \bigoplus_{q_{1}+\cdots+q_{r}=q} H^{0, q_{1}}\left(\mathbb{P}^{n_{1}}, \mathcal{O}\left(a_{1}\right)\right) \otimes \cdots \otimes H^{0, q_{r}}\left(\mathbb{P}^{n_{r}}, \mathcal{O}\left(a_{r}\right)\right) .
\end{align*}
$$

Example 3.3. Assume that \mathcal{P} is a product of simplices, that is, \mathcal{P} is of the the form (1.7). Set $n:=n_{1}+\cdots+n_{r}$. Then \mathcal{P} has normal directions $\rho_{1}=e_{1}, \ldots, \rho_{n}=e_{n}, \rho_{n+1}, \ldots, \rho_{n+r}$, where ρ_{n+1} has -1 in the first n_{1} positions and zeros elsewhere, and for $2 \leq k \leq r, \rho_{n+k}$ has -1 in position $n_{1}+\cdots+n_{k-1}+1, \ldots, n_{1}+\ldots+n_{k}$ and zeros elsewhere. The fan $\Delta_{\mathcal{P}}$ is regular so that \mathcal{P} is smooth. In fact, $X_{\mathcal{P}}=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{r}}$.

Now $D_{\mathcal{P}}=\sum d_{j} D_{n+j}$ and the line bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)$ is just the line bundle $\mathcal{O}\left(d_{1}\right) \boxtimes \cdots \boxtimes \mathcal{O}\left(d_{r}\right)$ over $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{r}}$. Note that $\Psi_{D_{\mathcal{P}}}$ is concave, which means that $\mathcal{O}\left(D_{\mathcal{P}}\right)$ is generated by its sections, precisely when $d_{k} \geq 0$ for $1 \leq k \leq r$ and that $\Psi_{D_{\mathcal{P}}}$ is strictly concave, which means that $\mathcal{O}\left(D_{\mathcal{P}}\right)$ is ample, precisely when $d_{k} \geq 1$ for $1 \leq k \leq r$.

We claim that $H^{0, q}\left(X_{\mathcal{P}}, \mathcal{O}\left(D_{\mathcal{P} \mathcal{P}}\right)\right)=0$ if $1 \leq q \leq n-1$ and c is any integer. More precisely, if $1 \leq q \leq n-1$, then (3.2) vanishes as soon as either all $a_{i} \geq 0$ or all $a_{i}<0$. To see this note that if $q>0$ then each term in the left hand side of (3.2) has at least one factor $H^{0, q_{j}}\left(\mathbb{P}^{n_{j}}, \mathcal{O}\left(a_{j}\right)\right)$ for which $q_{j}>0$. Now if $a_{i} \geq-n_{i}$ or $a_{i}<0$ for all i, this factor vanishes according to Theorem 3.2. Similarly, if $q<n$, then
each terms has a factor for which $q_{j}<n_{j}$ and so this factor vanishes if $a_{j}<0$, which proves the claim.
3.4. Homogeneous coordinates on toric varieties. The homogeneous coordinate ring S on a toric variety X_{Δ} was introduced by Cox [13] as a generalization of homogeneous coordinates on projective space. The ring S has one variable z_{j} for each one-dimensional cone $\mathbb{R}_{+} \rho_{j}$ in the fan Δ or, equivalently, for each irreducible T-Weil divisor D_{j} on X_{Δ}. Moreover S has a grading inherited from the Chow group $A_{n-1}\left(X_{\Delta}\right)$: the degree of a monomial $\prod z_{j}^{a_{j}}$ is $\left[\sum a_{j} D_{j}\right] \in A_{n-1}\left(X_{\Delta}\right)$. Let $D=\sum a_{j} D_{j}$ be a T-Cartier divisor on X_{Δ}. The global sections of the line bundle $\mathcal{O}(D)$ can then be expressed as polynomials in the monomials $\mu_{b}=\prod_{j} z_{j}^{\left\langle b, \rho_{j}\right\rangle+a_{j}}$, where $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathcal{P}_{D} \cap \mathbb{Z}^{n}$. If X_{Δ} is smooth, then local coordinates in the affine chart \mathcal{U}_{σ} corresponding to the n-dimensional cone σ is obtained by setting $z_{j}=1$ if $\mathbb{R}_{+} \rho_{j}$ is not a face of σ, see, for example, [36].

In this paper we want to consider toric varieties that are compactifications of \mathbb{C}^{n}. Assume that \mathcal{P} is a lattice polytope that contains the origin. Then one can find a regular fan, compatible with \mathcal{P}, that contains the n-dimensional cone σ_{0} generated by $\rho_{1}=e_{1}, \ldots, \rho_{n}=e_{n}$; in fact, σ_{0} is the first orthant in \mathbb{R}^{n}. Let Δ be such a fan. Then, in the representation (3.1) of $\mathcal{P}, a_{1}=\ldots=a_{n}=0$. It follows that

$$
\mu_{b}=z_{1}^{b_{1}} \cdots z_{n}^{b_{n}} z_{n+1}^{\left\langle b, \rho_{n+1}\right\rangle+a_{n+1}} \cdots z_{n+s}^{\left\langle b, \rho_{n+s}\right\rangle+a_{n+s}} .
$$

Thus, in local coordinates in $\mathcal{U}_{\sigma_{0}}, \mu_{b}=z_{1}^{b_{1}} \cdots z_{n}^{b_{n}}=z^{b}$, and so μ_{b} can really be thought of as a homogenization of the monomial z^{b}; we will refer to a global section of $\mathcal{O}\left(D_{\mathcal{P}}\right)$ as the \mathcal{P}-homogenization of the corresponding polynomial in $\mathcal{U}_{\sigma_{0}}$. We will identify the chart $\mathcal{U}_{\sigma_{0}}$ with our original \mathbb{C}^{n} and refer to $X_{\Delta} \backslash \mathcal{U}_{\sigma_{0}}=\bigcup_{j \geq n+1} D_{j}$ as the variety at infinity and denote it by V_{∞}. If \mathcal{P} contains the origin and the lattice points e_{1}, \ldots, e_{n}, then $\Delta_{\mathcal{P}}$ contains σ_{0}.

Let us remark that by working on toric varieties obtained from arbitrary polytopes we could probably obtain results for Laurent polynomials in $\left(\mathbb{C}^{*}\right)^{n}$, cf. [33, Theorem 2].

4. The basic result

The following basic result is a consequence of Theorem 2.2.
Theorem 4.1. Let F_{1}, \ldots, F_{m}, and Ψ be polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, and let $\mathcal{P}_{j} \supseteq \operatorname{supp} F_{j}$ and $\mathcal{Q} \supseteq \operatorname{supp} \Psi$ be lattice polytopes that contain the origin in \mathbb{R}^{n}. Assume that Δ is a regular fan, compatible with \mathcal{P}_{j} and \mathcal{Q}, that contains the first orthant in \mathbb{R}^{n} as a cone, and that

$$
\begin{equation*}
H^{0, q}\left(X_{\Delta}, \mathcal{O}\left(D_{\mathcal{Q}}-\left(D_{\mathcal{P}_{j_{1}}}+\cdots+D_{\mathcal{P}_{j_{q+1}}}\right)\right)\right)=0 \tag{4.1}
\end{equation*}
$$

for $1 \leq q \leq \min (m-1, n)$ and all $\mathcal{J}=\left\{j_{1}, \ldots, j_{q+1}\right\} \subseteq\{1, \ldots, m\}$. Assume moreover that

$$
\begin{equation*}
\psi R^{f}=0, \tag{4.2}
\end{equation*}
$$

where ψ is the \mathcal{Q}-homogenization of Ψ and f is the section $\left(f_{1}, \ldots, f_{m}\right)$ of $\mathcal{O}\left(D_{\mathcal{P}_{1}}\right) \oplus \cdots \oplus \mathcal{O}\left(D_{\mathcal{P}_{m}}\right)$ over X_{Δ}, where f_{j} is the \mathcal{P}_{j}-homogenizations of F_{j}.

Then there are polynomials G_{1}, \ldots, G_{m} such that

$$
\begin{equation*}
\sum_{j=1}^{m} F_{j} G_{j}=\Psi \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{supp} F_{j} G_{j} \subseteq \mathcal{Q} \tag{4.4}
\end{equation*}
$$

In general, (4.1) is satisfied if $\mathcal{O}\left(D_{\mathcal{Q}}\right)$ is positive enough. For example, if $D_{\mathcal{P}}$ is ample, then there is an r such that (4.1) holds for $\mathcal{Q}=s \mathcal{P}$ if $s \geq r$.
If $\mathcal{P}_{j}=d_{j} \Sigma^{n}$, where $d_{j}=\operatorname{deg} F_{j}$, and \mathcal{Q} is of the form $c \Sigma^{n}$, we can choose X as \mathbb{P}^{n}. Then $\mathcal{O}\left(D_{\mathcal{Q}}-\left(D_{\mathcal{P}_{j_{1}}}+\cdots+D_{\mathcal{P}_{j_{q+1}}}\right)\right)$ is the bundle $\mathcal{O}\left(c-d_{j_{1}}-\cdots-d_{j_{q+1}}\right)$ over \mathbb{P}^{n}, and so by Theorem 3.2, (4.1) is satisfied if $m \leq n$ or $c \geq d_{1}+\cdots+d_{n+1}-n$ if the d_{j} are ordered so that $d_{1} \geq \ldots \geq d_{m}$; this is Theorem 1.1 in [3]. In this paper we generalize this basic situation in two directions: we consider the case when \mathcal{P}_{j} is of the form $d_{j} \mathcal{P}$, where \mathcal{P} is a fixed polytope (with certain properties), and the case when \mathcal{P}_{j} is a product of simplices.

Let \mathfrak{a} denote the ideal sheaf over X generated by the tuple f_{1}, \ldots, f_{m}, let $\pi: X^{+} \rightarrow X$ be the normalization of the blow-up of \mathfrak{a}, and let $[D]=\sum r_{i}\left[D_{i}\right]$ be the associated divisor in X^{+}. Then ψ is in the integral closure $\overline{\mathfrak{a}}$ of \mathfrak{a} if $\pi^{*} \psi$ vanishes at least to order r_{j} on each divisor D_{j}, see for example [25]. In particular, if we let $r:=\max _{j} r_{j}$, then (2.2) is satisfied if $\pi^{*} \psi$ vanishes to order $\min (m, n) r$ along D. Recall from Section 2 that (4.2) is satisfied if and only if $\psi \mathbf{1}_{\mathbb{C}^{n}} R^{f}=0$ and $\psi \mathbf{1}_{V_{\infty}} R^{f}=0$.

Lemma 4.2. Assume that ψ vanishes to order $\min (m, n) r$ along V_{∞}. Then $\psi \mathbf{1}_{V_{\infty}} R^{f}=0$.

Proof. One can show that $\pi^{*}\left(\bar{\partial}|f|^{2 \lambda} \wedge u\right)$, where u is defined by (2.4), has an analytic continuation as a current on X^{+}to where $\operatorname{Re} \lambda>-\epsilon$, such that $\pi_{*} R^{+}=R^{f}$, where $R^{+}=\left.\pi^{*}\left(\bar{\partial}|f|^{2 \lambda} \wedge u\right)\right|_{\lambda=0}$, see [24].

In $X^{+}, \pi^{*} f=f_{0} f^{\prime}$, where f_{0} is holomorphic and f^{\prime} is a nonvanishing tuple. It follows that R^{+}is of the form $\sum_{k=1}^{\min (m, n)} \bar{\partial}\left[1 / f_{0}^{k}\right] \wedge$ α_{k}, where α_{k} are smooth, cf. [2, Pf of Thm 1.1]. Since $\bar{\partial}\left[1 / f_{0}^{k}\right]$ has the SEP with respect to (the support of) D, so has R^{+}. It follows that $R^{+}=\sum_{D_{j} \subseteq D} \mathbf{1}_{D_{j}} R^{+}$and moreover, using (2.6), $\mathbf{1}_{V_{\infty}} R^{f}=$ $\sum_{\pi\left(D_{j}\right) \subseteq V_{\infty}} \pi_{*}\left(\mathbf{1}_{D_{j}} R^{+}\right)$. Let Z denote the union of the singular locus of
X^{+}and the singular locus of D. Then Z has codimension 2 in X^{+}and so $R^{+}=\mathbf{1}_{X+\backslash Z} R^{+}$.

Assume that ψ vanishes to order $\min (m, n) r$ along V_{∞}. We need to show that $\left(\pi^{*} \psi\right) \mathbf{1}_{D_{j} \backslash Z} R^{+}=0$ if D_{j} is one of the divisors that are mapped into V_{∞}. Let D_{j} be such a divisor. Then locally on $D_{j} \backslash Z$, $f_{0}=\sigma^{r_{j}}$, where σ is a local defining function for D_{j}. Moroever $\pi^{*} \psi$ is divisible by $\sigma^{\min (m, n) r}$ and consequently it annihilates $\mathbf{1}_{D_{j} \backslash Z} R^{+}=$ $\sum_{k} \bar{\partial}\left[1 / \sigma^{k r_{j}}\right] \wedge \alpha_{k}$. Hence $\psi \mathbf{1}_{V_{\infty}} R^{f}=0$.

Remark 4.3. In some cases we can estimate r. Let us follow [25, Chapter 10.5]. Suppose that D is a divisor on X such that $\mathcal{O}_{X}(D) \otimes \mathfrak{a}$ is globally generated. Then Proposition 10.5.5 in [25] asserts that

$$
\sum_{j} r_{j} \cdot \operatorname{deg}_{D}\left(Z_{j}\right) \leq \operatorname{deg}_{D}(X)
$$

where $Z_{j}=\pi\left(D_{j}\right)$ are the so-called distinguished varieties associated with \mathfrak{a}. If moreover D is ample, then $\operatorname{deg}_{D}\left(Z_{j}\right)>0$ and so we get the following rough estimate of r :

$$
r \leq \operatorname{deg}_{D}(X)
$$

Let \mathcal{P} be a smooth polytope that contains the supports of the F_{j}. Then $\mathcal{O}_{X_{\mathcal{P}}}\left(D_{\mathcal{P}}\right) \otimes \mathfrak{a}$ is globally generated and $D_{\mathcal{P}}$ is an ample divisor on $X_{\mathcal{P}}$. Moreover $\operatorname{deg}_{D_{\mathcal{P}}}\left(X_{\mathcal{P}}\right)=\operatorname{Vol}(\mathcal{P})$, see [28, Prop. 2.10]. Thus $r \leq \operatorname{Vol}(\mathcal{P})$.

Proof of Theorem 4.1. Let E be the bundle $\mathcal{O}\left(D_{\mathcal{P}_{1}}\right) \oplus \cdots \oplus \mathcal{O}\left(D_{\mathcal{P}_{m}}\right)$ over X_{Δ} and let $L=\mathcal{O}\left(D_{\mathcal{Q}}\right)$. Then

$$
\Lambda^{q} E^{*} \otimes L=\bigoplus_{\mathcal{J}=\left\{j_{1}, \ldots, j_{q}\right\} \subseteq\{1, \ldots, m\}} \mathcal{O}\left(D_{\mathcal{Q}}-\left(D_{\mathcal{P}_{j_{1}}}+\cdots+D_{\mathcal{P}_{j_{q}}}\right)\right)
$$

and so (2.5) holds for $1 \leq q \leq \min (m-1, n)$ if (4.1) holds for $1 \leq q \leq$ $\min (m-1, n)$ and any multi-index \mathcal{J} of length $q+1$. Thus, if $\psi \in$ $\mathcal{O}\left(X_{\Delta}, L\right)$ annihilates the residue current R^{f}, then Theorem 2.2 asserts that we can find a $g=\left(g_{1}, \ldots, g_{m}\right) \in \mathcal{O}\left(X_{\Delta}, E^{*} \otimes L\right)$ that satisfies (2.3). Dehomogenizing gives polynomials G_{1}, \ldots, G_{m} in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ that satisfy (4.3) and (4.4).

5. Results and proofs

In this section we deduce Theorems 1.1-1.5 from Theorem 4.1. We provide slightly more general formulations of some of the results and we also give sharper estimates in the special case when \mathcal{P} is a product of simplices, which corresponds to separate degree bounds in subsets of the variables. From now on let us use the shorthand notation $\mu:=$ $\min (m, n)$. Also throughout the paper F_{1}, \ldots, F_{m}, and Φ are assumed to be polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
5.1. Sparse versions of Macaulay's Theorem. In Theorem 1.1 the F_{j} are assumed to have no common zeros neither in \mathbb{C}^{n} nor at infinity. This should be interpreted as that \mathcal{P} necessarily contains the origin and the \mathcal{P}-homogenizations f_{j} of the F_{j} lack common zeros in X_{Δ} if Δ is compatible with \mathcal{P}. Observe that, whether the f_{j} have common zeros in X_{Δ} in fact only depends on \mathcal{P} and not on the particular choice of Δ.

Theorem 1.1 is a direct consequence of the following more general result, which was proved for polynomials over arbitray fields, or even DVRs, by Castryck-Denef-Vercauteren, [11]. We include a proof for completeness. Theorem 1.1 corresponds to $d_{j}=1$ and $\Phi=1$. Tuitman, [35], proved a generalization of Castryck-Denef-Vercauteren's result, in which he allows the polynomials to have support in different polytopes, see also [37].
Theorem 5.1. Assume that F_{j} has support in the lattice polytope $d_{j} \mathcal{P}$, where \mathcal{P} is a fixed lattice polytope that contains the origin and the d_{j} are ordered so that $d_{1} \geq \cdots \geq d_{m}$. Assume that the F_{j} have no common zeros neither in \mathbb{C}^{n} nor at infinity, meaning that the $d_{j} \mathcal{P}$ homogenizations of the F_{j} lack common zeros. Assume that Φ has support in the lattice polytope $e \mathcal{P}$. Then there are polynomials G_{j} that satisfy (1.8) and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \max \left(\sum_{j=1}^{n+1} d_{j}, e\right) \mathcal{P} \tag{5.1}
\end{equation*}
$$

Proof. Let $\mathcal{P}_{j}=d_{j} \mathcal{P}$ and let Δ be regular and compatible with \mathcal{P}. Since $\mathcal{P} \subseteq \mathbb{R}_{+}^{n}$ contains the origin, we can choose Δ so that it contains the first orthant. Moreover, let $\mathcal{Q}=c \mathcal{P}$, where $c=\max \left(d_{1}+\cdots+d_{n+1}, e\right)$. Then

$$
\mathcal{O}\left(D_{\mathcal{Q}}-\left(D_{\mathcal{P}_{1}}+\ldots+D_{\mathcal{P}_{j_{q+1}}}\right)\right)=\mathcal{O}\left(D_{\left(c-\left(d_{j_{1}}+\ldots+d_{j_{q+1}}\right)\right) \mathcal{P}}\right)
$$

where $c-\left(d_{j_{1}}+\ldots+d_{j_{q+1}}\right) \geq 0$ if $q \leq n$. It follows by Lemma 3.1 that (4.1) is satisfied for $1 \leq q \leq \min (m-1, n)$ and any multi-index \mathcal{J} of length $q+1$.

Let f_{j} be the \mathcal{P}_{j}-homogenizations of the F_{j}, let R^{f} be the corresponding residue current, and let ψ be the \mathcal{Q}-homogenization of Φ. Since the f_{j} lack common zeros, $R^{f}=0$ and thus (4.2) is trivially satisfied. Hence Theorem 4.1 asserts that there are polynomials G_{j} that satisfy (5.1).

The following result appeared in [1, Theorems 10.2 and 13.4]. The proof given there uses Koszul complex methods. For completeness we give a proof using Theorem 4.1.

Theorem 5.2. Assume that F_{j} has support in

$$
\mathcal{P}_{j}=d_{j 1} \Sigma^{n_{1}} \times \cdots \times d_{j r} \Sigma^{n_{r}}
$$

where $n_{1}+\cdots+n_{r}=n$, and moreover that the F_{j} have no common zeros neither in \mathbb{C}^{n} nor at infinity in $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{r}}$. Let k_{1}, \ldots, k_{r} be a permutation of $1, \ldots, r$ and let

$$
\begin{equation*}
c_{k_{\ell}}=\max _{\mathcal{J} \text { such that }} \mathcal{J}_{\mathcal{J} \mid=n_{k_{\ell}}+\cdots+n_{k_{r}}+1} \sum_{i=1}^{n_{k_{\ell}}+\cdots+n_{k_{r}}+1} d_{j_{i} k_{\ell}}-n_{k_{\ell}} \tag{5.2}
\end{equation*}
$$

Then there are polynomials G_{j} that satisfy (1.5) and

$$
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq c_{1} \Sigma^{n_{1}} \times \cdots \times c_{r} \Sigma^{n_{r}}
$$

The condition (5.2) means that $c_{k_{\ell}}$ is equal to the sum of the $n_{k_{\ell}}+$ $\cdots+n_{k_{r}}+1$ largest $d_{j k_{\ell}}$ minus $n_{k_{\ell}}$. In particular, if $\mathcal{P}_{j}=\mathcal{P}$ of the form (1.7), then $c_{k_{\ell}}=\left(n_{k_{\ell}}+\cdots+n_{k_{r}}+1\right) d_{k_{\ell}}-n_{k_{\ell}}$.

Macaulay's Theorem [26] corresponds to the case when $\mathcal{P}_{j}=d_{j} \Sigma^{n}$, where $d_{j}=\operatorname{deg} F_{j}$ and the d_{j} are ordered so that $d_{1} \geq \ldots \geq d_{m}$:
Assume that F_{j} have no common zeros even at infinity (in \mathbb{P}^{n}). Then one can find G_{j} that satisfy (1.5) and $\operatorname{deg}\left(F_{j} G_{j}\right) \leq \sum_{j=1}^{n+1} d_{j}-n$.
Proof. Let $X=X_{\mathcal{P}_{j}}=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{r}}$, cf. Example 3.3, and let $\mathcal{Q}=c_{1} \Sigma^{n_{1}} \times \cdots \times c_{r} \Sigma^{n_{r}}$. Note that $\Delta_{\mathcal{P}_{j}}$ contains the first orthant. Moreover note that

$$
\begin{align*}
& H^{0, q}\left(X, \mathcal{O}\left(D_{\mathcal{Q}}-\left(D_{\mathcal{P}_{j_{1}}}+\cdots+D_{\mathcal{P}_{j_{q+1}}}\right)\right)\right)= \tag{5.3}\\
& \quad H^{0, q}\left(\mathcal{O}\left(c_{1}-\sum_{i=1}^{q+1} d_{j_{i} 1}\right) \boxtimes \cdots \boxtimes \mathcal{O}\left(c_{r}-\sum_{i=1}^{q+1} d_{j_{i} r}\right)\right) .
\end{align*}
$$

By the Künneth formula, the right hand side of (5.3) is equal to
$\bigoplus_{q_{1}+\cdots+q_{r}=q} H^{0, q_{1}}\left(\mathbb{P}^{n_{1}}, \mathcal{O}\left(c_{1}-\sum_{i=1}^{q+1} d_{j_{i}, 1}\right)\right) \otimes \cdots \otimes H^{0, q_{r}}\left(\mathbb{P}^{n_{r}}, \mathcal{O}\left(c_{r}-\sum_{i=1}^{q+1} d_{j_{i}, r}\right)\right)$.
If $n_{k_{2}}+\ldots+n_{k_{r}}+1=n-n_{k_{1}}+1 \leq q \leq n$, then $q_{k_{1}} \geq 1$ in all terms in (5.4). Thus by (5.2) and Theorem 3.2 the factor

$$
\begin{equation*}
H^{0, q_{k_{1}}}\left(\mathbb{P}^{n_{k_{1}}}, \mathcal{O}\left(c_{k_{1}}-\sum d_{j_{i} k_{1}}\right)\right) \tag{5.5}
\end{equation*}
$$

in each term vanishes since the sum contains $q+1 \leq n+1$ terms.
If $n-n_{k_{1}}-n_{k_{2}}+1 \leq q \leq n-n_{k_{1}}$, then, in each term in (5.4), either $q_{k_{1}} \geq 1$ or $q_{k_{2}} \geq 1$. In the first case (5.5) vanishes as above. In the second case $H^{0, q_{k_{2}}}\left(\mathbb{P}^{n_{k_{2}}}, \mathcal{O}\left(c_{k_{2}}-\sum d_{j_{i} k_{2}}\right)\right)$ vanishes.

Hence (5.3) vanishes for $n-n_{k_{1}}-n_{k_{2}}+1 \leq q \leq n$. It follows by induction, using (5.2), that (5.3) vanishes for $1 \leq q \leq n$ and any multi-index $\mathcal{J}=\left\{j_{1}, \ldots, j_{q+1}\right\}$.

Let R^{f} be the residue current associated with the \mathcal{P}_{j}-homogenizations of the F_{j} and let ψ be the \mathcal{Q}-homogenization of 1 . As in the proof of Theorem 5.1, (4.2) is trivially satisfied and so Theorem 4.1 gives the desired polynomials G_{j}.
5.2. Sparse versions of Nöther's $A F+B G$ Theorem. The assumption in Theorem 1.2 that the common zero set of the F_{j} has no component contained in the variety at infinity should be interpreted as that for some d_{j}, such that $d_{j} \mathcal{P}$ are lattice polytopes, the common zero set V_{f} of the $d_{j} \mathcal{P}$-homogenizations of F_{j} has no irreducible component contained in V_{∞} in $X_{\mathcal{P}}$. Note that whether V_{f} has a component contained in V_{∞} in X_{Δ}, where Δ is compatible with \mathcal{P}, actually does depend on Δ. Indeed, in general V_{f} blows up as Δ is refined.

Moreover by \mathcal{P} being large we mean that $\mathcal{O}\left(D_{\mathcal{P}}+K_{X_{\mathcal{P}}}\right)$ is generated by its sections. Roughly speaking this is satisfied if the faces of \mathcal{P} are large enough. In particular, given a smooth polytope \mathcal{P}, for some large enough integer b the polytope $b \mathcal{P}$ is large. In fact, Fujita's conjecture, which holds for toric varieties, asserts that $b \mathcal{P}$ is large if $b \geq n+1$, see [31]. The assumption that \mathcal{P} is large and smooth is used in the proof of Theorem 1.2; we do not know whether it is necessary for the validity of the theorem.

Let us give a more precise formulation of Theorem 1.2. Let \mathbb{N} denote the natural numbers $1,2, \ldots$.

Theorem 5.3. Let \mathcal{P} be a smooth polytope that contains the origin and the support of the coordinate functions z_{1}, \ldots, z_{n} and that satisfies that the line bundle $\mathcal{O}\left(D_{\mathcal{P}}+K_{X_{\mathcal{P}}}\right)$ over $X_{\mathcal{P}}$ is generated by its sections. Assume that for some $d_{j} \in \mathbb{N}$, the common zero set V_{f} of the $d_{j} \mathcal{P}$ homogenizations of the F_{j} has codimension m and moreover V_{f} has no irreducible component contained in V_{∞} in $X_{\mathcal{P}}$.

Assume that $\Phi \in\left(F_{1}, \ldots, F_{m}\right)$ and that supp $\Phi \subseteq e \mathcal{P}$, where $e \in \mathbb{N}$. Then there are polynomials G_{j} that satisfy (1.8) and

$$
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq e \mathcal{P}
$$

Proof. Let $\mathcal{P}_{j}=d_{j} \mathcal{P}$ and $\Delta=\Delta_{\mathcal{P}}$. Then Δ contains the first orthant and $X_{\Delta}=X_{\mathcal{P}}$ is smooth. Note that the fact that the codimension of the common zero set of the F_{j} is m implies that $m \leq n$. By the second part of Lemma 3.1, for $1 \leq q \leq \min (m-1, n) \leq n-1$, (4.1) is thus satisfied for any polytope \mathcal{Q} of the form $\mathcal{Q}=c \mathcal{P}$, where $c \in \mathbb{Z}$, in particular for $\mathcal{Q}=e \mathcal{P}$.

Let R^{f} be the residue current associated with the \mathcal{P}_{j}-homogenizations of the F_{j} and let ψ be the \mathcal{Q}-homogenization of Φ. Since codim $V_{f}=m$, Theorem 2.1 implies that R^{f} is locally a Coleff-Herrera product. It follows that $\psi \mathbf{1}_{\mathbb{C}^{n}} R^{f}=0$ since $\Phi \in(F)$. Moreover $\mathbf{1}_{V_{\infty}} R^{f}=0$, since V_{f} has no component contained in V_{∞} and R^{f} has the SEP, see Section 2. Hence (4.2) is satisfied and so Theorem 4.1 gives the result.

Remark 5.4. In light of (the last part of) Example 3.3, Theorem 5.3 holds true also if \mathcal{P} is a product of simplices, that is, if \mathcal{P} of the form (1.7), even if $\mathcal{O}\left(D_{\mathcal{P}}+K_{X_{\mathcal{P}}}\right)$ is not generated by its sections.

5.3. Sparse versions Andersson-Götmark's and Hickel's Theo-

 rems and the Nullstellensatz. In general, to satisfy (4.2), ψ has to annihilate R^{f} both in \mathbb{C}^{n} and at infinity. In the above situations the latter condition was trivially satisfied.The assumption that \mathcal{P} is smooth is used in the proofs of Theorems $1.3-1.5$; we do not know if it is necessary for the validity of the results.

Remark 5.5. Let \mathcal{P} be a lattice polytope and Δ a regular fan compatible with \mathcal{P}. Assume that Δ contains the first orthant, generated by $\rho_{1}=e_{1}, \ldots, \rho_{n}=e_{n}$, and that $D_{\mathcal{P}}=\sum_{j=n+1}^{n+r} a_{j} D_{j}$ on X_{Δ}. Recall from Section 3.4 that the \mathcal{P}-homogenization $\tilde{1}$ of 1 is given by $\tilde{1}=\prod_{j=n+1}^{n+r} z_{j}^{a_{j}}$. Note that $\tilde{1}$ vanishes to order $a_{\infty}:=\min _{j \geq n+1} a_{j}$ along $V_{\infty}=\bigcup_{j=n+1}^{n+r} D_{j}$. If \mathcal{P} is of the form (1.7) then $a_{\infty}=\min _{j} d_{j}$. Note that a_{∞} is bounded from below by the minimal side length of \mathcal{P}.

Proof of Theorem 1.3. Let $\Delta=\Delta_{\mathcal{P}}$. Then Δ contains the first orthant and $X_{\Delta}=X_{\mathcal{P}}$ is smooth. Moreoever, let $\mathcal{P}_{j}=\mathcal{P}$ and $\mathcal{Q}=c \mathcal{P}$, where $c=\lceil e+m \operatorname{Vol}(\mathcal{P}) / a\rceil$. Then

$$
\mathcal{O}\left(D_{\mathcal{Q}}-\left(D_{\mathcal{P}_{j_{1}}}+\ldots+D_{\mathcal{P}_{j_{q+1}}}\right)\right)=\mathcal{O}\left(D_{(c-(q+1)) \mathcal{P}}\right)
$$

Note that $c \geq m$; indeed, $\operatorname{Vol}(\mathcal{P}) / a \geq 1$. It follows from Lemma 3.1 that (4.1) is satisfied for $1 \leq q \leq \min (m-1, n)$ and any \mathcal{J} of length $q+1$.

Let R^{f} be the residue current associated with the \mathcal{P}-homogenizations of the F_{j} and let ψ be the \mathcal{Q}-homogenization of Φ. By Theorem 2.1(b) the assumption that $\Phi \in\left(F_{1}, \ldots, F_{m}\right)$ implies that ψ annihilates R^{f} in \mathbb{C}^{n}, that is, $\psi \mathbf{1}_{\mathbb{C}^{n}} R^{f}=0$. Moreover, according to Remark 5.5, ψ vanishes to order $\geq m \operatorname{Vol}(\mathcal{P})$ along V_{∞}, which by Lemma 4.2 and Remark 4.3 means that $\psi \mathbf{1}_{V_{\infty}} R^{f}=0$. Thus ψ satisfies (4.2) and now the result follows from Theorem 4.1.

Proof of Theorem 1.4. Let $\mathcal{P}_{j}=\mathcal{P}$, let $\Delta=\Delta_{\mathcal{P}}$, and let $\mathcal{Q}=c \mathcal{P}$, where $c=\max (\lceil\mu(e+\operatorname{Vol}(\mathcal{P}) / a)\rceil, \min (m, n+1))$. Clearly $c \geq \min (m, n+1)$. It follows from Lemma 3.1 that (4.1) is satisfied for the required q and \mathcal{J}; cf. the proof of Theorem 1.3.

Let R^{f} be the residue current associated with the \mathcal{P}-homogenizations of the F_{j} and let ψ be the \mathcal{Q}-homogenization of Φ^{μ}. Then, by Theorem 2.1(c), $\psi \mathbf{1}_{\mathbb{C}^{n}} R^{f}=0$ since $\Phi \in \overline{(F)}$. Moreover, in light of Remark 5.5, ψ vanishes at least to order $\mu \operatorname{Vol}(\mathcal{P})$ along V_{∞}, which by Lemma 4.2 and Remark 4.3 implies that $\psi \mathbf{1}_{V_{\infty}} R^{f}=0$. Thus ψ satisfies (4.2) and Theorem 4.1 gives the result.

Proof of Theorem 1.5. Let $\mathcal{P}_{j}=\mathcal{P}$, let $\Delta=\Delta_{\mathcal{P}}$, and let $\mathcal{Q}=c \mathcal{P}$, where $c=\max (\lceil\mu \operatorname{Vol}(\mathcal{P})(1 / a+e)\rceil, \min (m, n+1))$. It follows from Lemma 3.1 that (4.1) is satisfied for the required q and \mathcal{J}.

Let R^{f} be the residue current associated with the \mathcal{P}-homogenizations of the F_{j} and let ψ be the \mathcal{Q}-homogenization of $\Phi^{\mu \mathrm{Vol}(\mathcal{P})}$. Then, in light of Remark 5.5, ψ vanishes at least to order $\mu \operatorname{Vol}(\mathcal{P})$ along the common zero set of the f_{j} including V_{∞}, which by Theorem 2.1(c) and the discussion after Theorem 4.1 implies that $\psi R^{f}=0$. Thus ψ satisfies (4.2) and Theorem 4.1 gives the result.

Remark 5.6. In light of the above proofs, note that, in the formulations of Theorems 1.3-1.5, as well as Theorems 5.7-5.9 below, we could in fact replace $\operatorname{Vol}(\mathcal{P})$ by the order r of vanishing at infinity, as defined in Section 4. This would allow us to drop the assumption that \mathcal{P} is smooth. However, we only know how to estimate r when \mathcal{P} is smooth, and then by the rather rough estimate $r \leq \operatorname{Vol}(\mathcal{P})$. In many cases one can do much better.

Moreover we could replace the minimal side length a of \mathcal{P} by a_{∞}, as defined in Remark 5.5, and the polytopes of the form $\lceil c\rceil \mathcal{P}$ could be replaced by the smallest lattice polytopes that contains $c \mathcal{P}$.

If \mathcal{P} is a product of lattice polytopes one can get somewhat sharper estimates. For \mathcal{P} of the form (1.7) we get the following versions of Andersson-Götmark's and Hickel's Theorems and the Nullstellensatz.

Theorem 5.7. Assume that F_{j} has support in \mathcal{P} of the form (1.7). Moreover, assume that the codimension of the common zero set of F_{1}, \ldots, F_{m} in \mathbb{C}^{n} is m, that $\Phi \in\left(F_{1}, \ldots, F_{m}\right)$, and that

$$
\begin{equation*}
\operatorname{supp} \Phi \subseteq e_{1} \Sigma^{n_{1}} \times \cdots \times e_{r} \Sigma^{n_{r}} \tag{5.6}
\end{equation*}
$$

Then there are polynomials G_{j} that satisfy (1.8) and

$$
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \prod_{j=1}^{r}\left(e_{j}+m \operatorname{Vol}(\mathcal{P})\right) \Sigma^{n_{j}}
$$

Theorem 5.8. Assume that F_{j} has support in \mathcal{P} of the form (1.7). Assume that Φ is in the integral closure of $\left(F_{1}, \ldots, F_{m}\right)$ and that supp Φ satisfies (5.6). Then there are polynomials G_{j} that satisfy (1.10) and

$$
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \prod_{j=1}^{r} \max \left(\mu\left(e_{j}+\operatorname{Vol}(\mathcal{P})\right), \min (m, n+1) d_{j}-n_{j}\right) \Sigma^{n_{j}}
$$

Theorem 5.9. Assume that F_{j} has support in \mathcal{P} of the form (1.7). Assume moreover that Φ vanishes on the common zero set of the F_{j} and supp Φ satisfies (5.6). Then there are polynomials G_{j} that satisfy (1.12) and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \prod_{j=1}^{r} \max \left(\mu\left(1+e_{j}\right) \operatorname{Vol}(\mathcal{P}), \min (m, n+1) d_{j}-n_{j}\right) \Sigma^{n_{j}} \tag{5.7}
\end{equation*}
$$

Observe that

$$
\operatorname{Vol}(\mathcal{P})=\operatorname{Vol}\left(d_{1} \Sigma^{n_{1}} \times \cdots \times d_{r} \Sigma^{n_{r}}\right)=\frac{n!}{n_{1}!\cdots \cdots n_{r}!} d_{1}^{n_{1}} \cdots \cdots d_{r}^{n_{r}} .
$$

In particular, if $n_{j}=1$ and $e_{j}=0$, then (5.7) reads $\operatorname{deg}_{z_{k}}\left(F_{j} G_{j}\right) \leq$ $n \cdot n!\cdot d_{1} \cdots d_{n}$, which is (a slight improvement of) Rojas' example [17, Example 2]. Also, observe that in general $\mu\left(1+e_{j}\right) \operatorname{Vol}(\mathcal{P})$ is much larger than $\min (m, n+1) d_{j}-n_{j}$, for example if $n_{j}>1$ for any j.

Theorems 5.7-5.9 improve Theorems 1.3-1.5, respectively, for \mathcal{P} of the form (1.7), unless $d_{1}=\ldots=d_{r}$ and $e_{1}=\ldots=e_{r}$, in which case they coincide.

Let us give a proof of Theorem 5.8. Theorems 5.7 and 5.9 follow along the same lines; cf. the proofs of Theorems 1.3 and 1.5.

Proof of Theorem 5.8. Note that if (5.6) holds, then, in fact, $\operatorname{supp} \Phi \subseteq$ $\left\lfloor e_{1}\right\rfloor \Sigma^{n_{1}} \times \cdots \times\left\lfloor e_{r}\right\rfloor \Sigma^{n_{r}}$, where $\lfloor c\rfloor$ denotes the largest integer smaller than or equal to c. Let $\mathcal{P}_{j}=\mathcal{P}$, let $X=X_{\mathcal{P}}=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{r}}$, and let $\mathcal{Q}=c_{1} \Sigma^{n_{1}} \times \cdots \times c_{r} \Sigma^{n_{r}}$, where $c_{j}=\max \left(\mu\left(\left\lfloor e_{1}\right\rfloor+\operatorname{Vol}(\mathcal{P})\right), \min (m, n+\right.$ 1) $\left.d_{j}-n_{j}\right)$. Then
$\mathcal{O}\left(D_{\mathcal{Q}}-\left(D_{\mathcal{P}_{j_{1}}}+\ldots+D_{\mathcal{P}_{j_{q+1}}}\right)\right)=\mathcal{O}\left(c_{1}-(q+1) d_{1}\right) \boxtimes \cdots \boxtimes \mathcal{O}\left(c_{r}-(q+1) d_{r}\right)$.
Thus, by the Künneth Formula (3.2), for $q \geq 1$, (4.1) is a sum of terms which all contain a factor

$$
\begin{equation*}
H^{0, q_{j}}\left(\mathbb{P}^{n_{j}}, \mathcal{O}\left(c_{j}-(q+1) d_{j}\right)\right) \tag{5.8}
\end{equation*}
$$

for which $q_{j} \geq 1$. Since $c_{j} \geq \min (m, n+1) d_{j}-n_{j}$, (5.8) vanishes for $q \leq \min (m-1, n)$ according to Theorem 3.2 and so (4.1) is satisfied for the required q and \mathcal{J}.

Let R^{f} be the residue current associated with the \mathcal{P}-homogenizations of the F_{j} and let ψ be the \mathcal{Q}-homogenization of Φ^{μ}. By Theorem 2.1(c), the assumption that $\Phi \in \overline{(F)}$ implies that $\psi R^{f}=0$ in \mathbb{C}^{n}. Moreover, in light of Remark 5.5, ψ vanishes at least to order $\mu \operatorname{Vol}(\mathcal{P})$ along V_{∞}, which by Lemma 4.2 and Remark 4.3 implies that ψ annihilates R^{f} at infinity. Thus ψ satisfies (4.2), and so the result follows by applying Theorem 4.1.

6. Discussion of Results

Our results extend the classical results in essentially two directions. First, by taking into account the shape of the Newton polytope of the F_{j}, they give more precise estimates of ν and the degrees of the G_{j} in (1.1). Second, our versions of Macaulay's and Max Nöther's Theorems extend the classical results in the sense that they apply to more general situations than when the F_{j} lack common zeros at the hyperplane at infinity in \mathbb{P}^{n}.
6.1. Degree estimates. Our estimates of $\operatorname{supp}\left(F_{j} G_{j}\right)$ can be translated into degree bounds in the usual sense. Let us compare the degree estimates given by Theorem 1.5 with Kollár's result. Let $\operatorname{deg}(\mathcal{P})$ denote the degree of a generic polynomial with support in $\mathcal{P} \subseteq \mathbb{R}_{\geq 0}^{n}$, in other words, $\operatorname{deg}(\mathcal{P})=\max _{\alpha \in \mathbb{Z}^{n} \cap \mathcal{P}}|\alpha|$, where $\left|\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right|=\alpha_{1}+\cdots+\alpha_{n}$. Then, unless $\min (m, n+1)>\lceil\mu(1 / a+e) \operatorname{Vol}(\mathcal{P})\rceil$, (1.13) gives the following degree estimate:

$$
\begin{equation*}
\operatorname{deg}\left(F_{j} G_{j}\right) \leq\lceil\mu(1 / a+e) \operatorname{Vol}(\mathcal{P})\rceil \operatorname{deg}(\mathcal{P}) \tag{6.1}
\end{equation*}
$$

Assume that $\operatorname{deg} F_{j} \leq d$ and choose \mathcal{P} such that $\operatorname{deg}(\mathcal{P})=d$. Note that this is always possible; in particular, $\operatorname{deg}\left(d \Sigma^{n}\right)=d$. Then (6.1) improves (1.2) if

$$
\begin{equation*}
\operatorname{Vol}(\mathcal{P}) \leq \frac{(1+\operatorname{deg} \Phi) a d^{\mu-1}}{\mu(1+a e)} \tag{6.2}
\end{equation*}
$$

to be precise, we should add a term $-a /(\mu(1+a e))$ to the right hand in (6.2) side because of the integer parts in (6.1). Now $a e \leq \operatorname{deg} \Phi$ so that (6.2) is in particular satisfied if $\operatorname{Vol}(\mathcal{P}) \leq a d^{\mu-1} / \mu$. Thus Theorem 1.5 improves Kollár's result if the volume of the Newton polytope of the F_{j} is small compared to $a d^{\mu-1} / \mu$, see also [33].

An analogous analysis shows that Theorems 1.3 and 1.4 improve the results by Andersson-Götmark and Hickel, respectively, if $\operatorname{Vol}(\mathcal{P}) \leq$ $a d^{\mu-1}$.
6.2. Common zeros at infinity. Whether or not the \mathcal{P}_{j}-homogenizations of the polynomials F_{j} have common zeros at infinity clearly depends on the polytopes \mathcal{P}_{j}. For example, given a smooth polytope \mathcal{P}, the \mathcal{P} homogenizations of F_{j} do have common zeros unless $\mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)=$ \mathcal{P}. To see this, assume that $\mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)$ is strictly included in \mathcal{P}, so that there is a vertex $v \in \mathcal{P} \backslash \mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)$. Assume that v meets the facets $\tau_{1}, \ldots, \tau_{n}$ of \mathcal{P} with corresponding coordinates x_{1}, \ldots, x_{n}. That $v \notin \operatorname{supp} F_{j}$ implies that the \mathcal{P}-homogenization f_{j} of F_{j} is divisible by at least one of the x_{1}, \ldots, x_{n}. Indeed, the \mathcal{P}-homogenization of z^{α} where $\alpha \in \mathcal{P}$ is divisible by the coordinate functions x_{i} corresponding to the facets τ_{i} for which α is not contained in τ_{i}. In particular, all f_{j} vanish at the point $x_{1}=\ldots=x_{n}=0$ at infinity.

On the other hand, the \mathcal{P}-homogenizations of any generic choice of n polynomials F_{j} with support in \mathcal{P}, meaning that for $\alpha \in \mathcal{P}$ the coefficient of z^{α} in F_{j} is generic, will have no common zeros at infinity, since the variety at infinity is of dimension $n-1$.

Thus it may well happen that even though the polynomials F_{j} have common zeros in \mathbb{P}^{n} one can find a polytope \mathcal{P} such that the \mathcal{P} homogenizations (or $d_{j} \mathcal{P}$-homogenizations) of the F_{j} lack common zeros at infinity. Hence Theorems 1.1 and 1.2 and Theorems 5.1-5.3 apply to more general systems of polynomials F_{j} than Macaulay's and Nöther's results. Let us look at an example.

Example 6.1. Let $F_{1}=z+z w+w^{2}$ and $F_{2}=z+2 z w+3 w^{2}$. Then the common zero set of F_{1} and F_{2} in \mathbb{C}^{2} is discrete. Note that the \mathbb{P}^{2}-homogenizations $t z+z w+w^{2}$ and $t z+2 z w+3 w^{2}$ of F_{1} and F_{2}, respectively, have a common zero at the hyperplane at infinity, namely at $t=w=0$. Thus we cannot apply Nöther's original theorem to this example. In fact, it is not hard to check that $\Phi=z^{2}+2 z w \in$ (F), but if G_{1}, G_{2} are polynomials such that $F_{1} G_{1}+F_{2} G_{2}=\Phi$, then necessarily $\operatorname{deg}\left(F_{j} G_{j}\right) \geq 3$ for $j=1$ or $j=2$, so that Nöther's bound $\operatorname{deg}\left(F_{j} G_{j}\right) \leq \operatorname{deg} \Phi$ does not hold in this case.

Let $\mathcal{P}=\mathcal{N} \mathcal{P}\left(F_{1}, F_{2}, 1, z, w\right)$, that is, the polytope with vertices $(0,0),(1,0),(1,1)$, and $(0,2)$. Then the corresponding toric variety $X_{\mathcal{P}}$ is smooth and V_{∞} consists of two irreducible components. We choose homogeneous coordinates z, w, x_{1}, x_{2} so that $\left\{x_{1}=0\right\}$ and $\left\{x_{2}=0\right\}$ are the divisors corresponding to the facets with vertices $(1,0),(1,1)$ and $(1,1),(0,2)$, respectively. According to Section 3.4, the \mathcal{P}-homogenizations of F_{1} and F_{2} are given by $f_{1}=z x_{2}+z w+w^{2} x_{1}$ and $f_{2}=z x_{2}+2 z w+3 w^{2} x_{1}$, respectively. Now f_{1} and f_{2} have no common zeros at $V_{\infty}=\left\{x_{1}=0\right\} \cup\left\{x_{2}=0\right\}$ as can be checked using local coordinates on $X_{\mathcal{P}}$, see Section 3.4. For example, in the ($z, 1,1, x_{2}$)chart \mathcal{U} we have that $f_{1}=z x_{2}+z+1$ and $f_{2}=z x_{2}+2 z+3$ so that in $\mathcal{U} \cap V_{\infty}=\left\{x_{2}=0\right\}$ we get $f_{1}=z+1$ and $f_{2}=2 z+3$, which clearly have no common zeros.

It follows that we can apply Theorem 1.2 to any polynomial in (F). Let $\Phi=z^{2}+2 z w$. Then $\Phi \in(F)$ and $\operatorname{supp} \Phi \subseteq 2 \mathcal{P}$, and so Theorem 1.2 asserts that there are polynomials G_{j} such that (1.8) is satisfied and $\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq 2 \mathcal{P}$. In fact, we can choose $G_{1}=2 z+3 w$ and $G_{2}=$ $-z-w$.

References

[1] D. Ahlberg: Some variants of the Max Nöther and Macaulay Theorems, Master's Thesis, Chalmers University of Technology and Göteborg University, 2006.
[2] M. Andersson: Residue currents and ideals of holomorphic functions, Bull. Sci. Math. 128 (2004) no. 6 481-512.
[3] M. Andersson: The membership problem for polynomial ideals in terms of residue currents, Ann. Inst. Fourier 56 (2006), 101-119.
[4] M. Andersson \& E. Götmark: Explicit representation of membership of polynomial ideals, Mathematische Annalen, to appear.
[5] M. Andersson \& E. Wulcan: Decomposition of residue currents, J. Reine Angew. Math. 638 (2010) 103-118.
[6] C. A. Berenstein \& R. Gay \& A. Vidras \& A. Yger: Residue currents and Bezout identities, Progress in Mathematics 114 Birkhäuser Verlag (1993).
[7] C. A. Berenstein \& A. Vidras \& A. Yger: Analytic residues along algebraic cycles, J. Complexity 21 (2005), no. 1, 5-42.
[8] J-E. BנöRk: Residues and D-modules, The legacy of Niels Henrik Abel, 605-651, Springer, Berlin, 2004.
[9] J. Briançon, H. Skoda : Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de \mathbb{C}^{n}, C. R. Acad. Sci. Paris Sér. A 278 (1974) 949-951.
[10] W. D. Brownawell: Bounds for the degrees in the Nullstellensatz, Ann. of Math. 126 (1987), no. 3, 577-591.
[11] W. Castryck, J. Denef \& F. Vercauteren: Computing zeta functions of nondegenerate curves, IMRP Int. Math. Res. Pap. 2006, Art. ID 72017, 57 pp .
[12] N. Coleff \& M. Herrera: Les courants résiduels associcés à une forme méromorphe, Lecture Notes in Mathematics 633 Springer Verlag, Berlin, 1978.
[13] D. Cox: The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17-50.
[14] D. Cox \& J. Sidman: Secant varieties of toric varieties, J. Pure Appl. Algebra 209 (2007), no. 3, 651-669.
[15] J.-P. Demailly: Complex analytic and algebraic geometry, Monograph, available at http://www-fourier.ujf-grenoble.fr/ demailly.
[16] A. Dickenstein \& C. Sessa: Canonical representatives in moderate cohomology, Invent. Math. 80 (1985), 417-434.
[17] L. Ein \& R. Lazarsfeld: A geometric effective Nullstellensatz, Invent. Math. 137 (1999), 427-448.
[18] W. Fulton: Introduction to toric varieties, Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993.
[19] M. Hickel: Solution d'une conjecture de C. Berenstein-A. Yger et invariants de contact à l'infini, Ann. Inst. Fourier 51 (2001), 707-744.
[20] L. Hörmander: Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967) 943-949.
[21] Z. Jelonek: On the effective Nullstellensatz, Invent. Math. 162 (2005), no. 1, 1-17.
[22] J. KolláR: Sharp effective Nullstellensatz, J. Amer. Math. Soc. 1 (1988), 963-975.
[23] J. Kollár: Effective Nullstellensatz for arbitrary ideals, J. Eur. Math. Soc. 1 (1999), no. 3, 313-337.
[24] R. LÄRKÄNG: Residue currents associated with weakly holomorphic functions, Preprint, available at arXiv:0910.3589.
[25] R. Lazarsfeld: Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Springer-Verlag, Berlin, 2004.
[26] F. S. Macaulay: The algebraic theory of modular systems, Cambridge University Press, Cambridge, 1916.
[27] M. NöTHER: Über einen Satz aus der Theorie der algebraischen Functionen, Math. Ann. 6 (1873), no. 3, 351-359.
[28] T. OdA: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete 15, Springer-Verlag, Berlin, 1988.
[29] M. Passare: Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), no. 1, 75-152.
[30] M. Passare \& A. Tsikh \& A. Yger: Residue currents of the BochnerMartinelli type, Publ. Mat. 44 (2000), 85-117.
[31] S. Payne: Fujita's very ampleness conjecture for singular toric varieties, Tohoku Math. J. 58 (2006), no. 3, 447-459.
[32] H. Skoda: Application des techniques L^{2} à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. 5 (1972), 545-579.
[33] M. Sombra: A sparse effective Nullstellensatz, Adv. in Appl. Math. 22 (1999) 271-295.
[34] M. Sombra: Private communication, .
[35] J. Tuitman: A mixed sparse effective nullstellensatz, Preprint, 2008.
[36] M. Weimann: La trace en géométrie projective et torique, Ph. D. Thesis, Université Bordeaux, 2006.
[37] E. Wulcan: Some variants of Macaulay's and Max Noether's Theorems, Journal of Commutative Algebra, to appear.

Dept of Mathematics, University of Michigan, Ann Arbor, Mi 481091043, USA

E-mail address: wulcan@umich.edu

