STABILIZATION OF MONOMIAL MAPS
MATTIAS JONSSON AND ELIZABETH WULCAN

ABSTRACT. A monomial (i.e. equivariant) selfmap of a toric variety is called stable
if its action on the Picard group commutes with iteration. Generalizing work of
Favre to higher dimensions, we show that under suitable conditions, a monomial
map can be made stable by refining the underlying fan. In general, the resulting
toric variety has quotient singularities; in dimension two we give criteria for when
it can be chosen smooth, as well as examples when it cannot.

INTRODUCTION

An important part of higher-dimensional complex dynamics concerns the construc-
tion of currents and measures that are invariant under a given meromorphic selfmap
f X --» X of a compact complex manifold X. In doing so, it is often desirable
that the action of f on the cohomology of X be compatible with iteration; following
Sibony [S] (see also [ES]) we then call f (algebraically) stable.

If f is not stable, we can try to make a bimeromorphic change of coordinates
X’ — X such that the induced selfmap of X’ becomes stable. Understanding when
this is possible seems to be a difficult problem. On the one hand, Favre [Fa] showed
that stability is not always achievable. On the other hand, it can be achieved for
bimeromorphic maps of surfaces [DE], for a large class of monomial mappings in
dimension two [Fa] (more on this below) and for polynomial maps of C? [F.I2].
Beyond, these classes, very little seems to be known.

In this paper, we study the stabilization problem for monomial (or equivariant)
maps of toric varieties, extending certain results of Favre to higher dimensions. A
toric variety X = X (A) is defined by a lattice N = Z™ and fan A in N. A monomial
selfmap f : X --» X corresponds to a Z-linear map ¢ : N — N. See Sections [
and B for more details.

We work in codimension one and say that f is I-stable if (f™)* = (f*)", where
f* denotes the action on the Picard group of X. Geometrically, this means that no
iterate of f sends a hypersurface into the indeterminacy set of f [ES, [S].

Theorem A. Let A be a fan in a lattice N = Z™, and f : X(A) --» X(A) a
monomial map. Assume that the eigenvalues of the associated linear map ¢ : Ng —
Ng are real and satisfy p1 > pg > -+ > pym > 0. Then there exists a complete

simplicial refinement A’ of A such that X(A') is projective and the induced map
[ X(A") --» X(A) is 1-stable.

Date: October 3, 2011.
First author partially supported by the NSF. Second author partially supported by the Swedish
Research Council and the NSF.



2 MATTIAS JONSSON AND ELIZABETH WULCAN

Here Ngr denotes the vector space N @z R. The variety X’ = X(A’) will not be
smooth in general but it will have at worst quotient singularities. We can pick X’
smooth at the expense of replacing f by an iterate (but allowing more general ¢):

Theorem A’. Let A be a fan in a lattice N of rank m, and let f : X(A) --» X(A)
be a monomial map. Suppose that the eigenvalues of the associated linear map ¢ :
Nr — Nr are real and satisfy |pi| > |p2| > -+ > |um| > 0. Then there exists a
complete (regular) refinement A" of A and ng € N, such that X(A') is smooth and
projective and the induced map f™ : X(A') --» X(A') is 1-stable for all n > ny.

When the fan we start with is trivial, that is, the initial toric variety is the torus
(C*)™, we can relax the assumptions on the eigenvalues slightly and obtain:

Theorem B. Let f: (C*)™ — (C*)™ be a monomial map. Suppose that the asso-
ciated linear map ¢ : Nr — Ngr is diagonalizable, with real eigenvalues p1 > po >
p3 > -+ > fuy > 0. Then there exists a complete simplicial fan A such that X (A)
is projective and f : X(A) --» X(A) is 1-stable.

It is unclear whether X (A) can be chosen smooth in Theorem B, even if we replace
f by an iterate, see Remark BEJl Picking X (A’) smooth in Theorem A (without
passing to an iterate) also seems quite delicate. We address the latter problem only
in dimension two:

Theorem C. Let A be a fan in a lattice N of rank m = 2, let f : X(A) --» X(A)
be a monomial map, and let 1, po be the eigenvalues of the associated linear map ¢ :

Nr — NRr, labeled so that |u1| > |p2|. Suppose that any of the following conditions
holds:

(a) 2] < 1,
(b) [pa| > pa| and p1, po € Z;
(¢) p1,p2 € R and pype > 0.
Then there is a complete (reqular) refinement A’ of A such that X (A') is smooth
(and projective) and f : X (A') --» X(A') is 1-stable.

Example shows that Theorem C may fail when |ui| > |u2| > 1, whereas
Example BJ4 and [Fal, Exemple 2| show that it may fail when |u1| = |u2| and p/pe
is root of unity different from 1.

Theorem C should be compared with the work of Favre [Ea], in which the following
result is proved.

Theorem C’. Let A be a fan in a lattice N of rank m = 2, let f : X(A) --» X(A)
be a monomial map and let py, po be the eigenvalues of the associated linear map
¢ : Nr — Nr. Then we are in precisely one of the following cases:

(i) p1, pe are complex conjugate and py/ug is not a root of unity;
(ii) there exists a complete refinement A’ of A such that the induced map f :
X(A) --» X(A') is 1-stable.

Here X (A’) is not necessarily smooth. The main result in [Fa] also asserts that
we can make f 1-stable on a smooth toric variety by allowing ramified covers, but
there is a gap in this argument, see Remark Bl
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While monomial maps are quite special, they are interesting in their own right.
We refer to the article by Hasselblatt and Propp [HP] for more information, and
to the paper by Bedford and Kim [BK2| for the problem—related to stability—
of characterizing monomial maps whose degree growth sequence satisfies a linear
recursion formula. For nonmonomial maps in higher dimensions, stability or degree
growth is only understood in special cases [BKIL [N].

We note that many of the results in this paper have been obtained independently
by Jan-Li Lin [Lil]. In particular, [Lill, Thm 5.7 (a)] coincides with our Theorem B’
in Section Bl

There is a conjectured relationship between the eigenvalues p; and the dynamical
degrees A\j, 1 < j < m of f (see RS, DS, IG] for a definition of dynamical degrees).
Namely, the conjecture says that A; = |u1]...|p;]. See [EWL [Li2] for work in this
direction. Granting this formula, the condition |u1| > -+ > |wm| is equivalent to
J + log \; being strictly concave. Now the conjecture does hold in dimension two.
This means that (a) in Theorem C is equivalent to (a’) Ao < A1 and (b) is equivalent
to (b)) A2 < A2 and \; € Z. Also observe that (c) is satisfied for f2 as soon as
Ao < )\%

To prove the theorems above, we translate them into statements about the linear
map ¢ : Ng — Nr. What we ultimately prove is that we can refine the original fan
A (by adding cones) so that the new fan A’ contains a finite collection 7 of invariant
cones (i.e. ¢ maps each cone into itself) that together attract all one-dimensional
cones in A’. More precisely, for every one-dimensional cone p € A’ there exists
ng > 0 such that ¢"(p) lies in a cone in 7 for n > ngy and ¢™(p) is a one-dimensional
cone in A’ for 0 < n < ng, see Corollary

Constructing such a collection of cones is also the strategy by Favre [Ea] for proving
Theorem C’. In fact, the proof of Theorem B is a straightforward adaptation of ar-
guments in [Fal. Indeed, the dynamics of ¢ : Ng — NR is easy to understand: under
iteration, a typical vector v tends to move towards the one-dimensional eigenspace
associated to the largest eigenvalue uy of ¢. We can therefore find a simplicial cone
o of maximum dimension which is invariant under ¢; it will contain an eigenvector
e1 corresponding to p1, in its interior. Using this cone we easily construct a fan for
which Theorem B holds.

On the other hand, Theorems A and A’ are much more delicate as we have to take
into account the original fan A. For example, the simple argument for Theorem B
outlined above will not work in general, as it is possible that the one-dimensional cone
R e is rational and belongs to A. Moreover, there may be one-dimensional rays
in A that are not attracted to Rie; under iteration. Thus we must proceed more
systematically, and this is where the argument becomes significantly more involved
in higher dimensions.

What we do is to look at the set Tieq(¢) of all invariant rational subspaces V' C Ng.
This means that ¢(V') = V and that VN Nq is dense in V. It turns out that Tieq(¢) is
a finite set that admits a natural tree structure determined by the dynamics. Using
this tree we inductively construct a collection 7 of invariant rational cones that
together attract any lattice point in N. The construction is flexible enough so that
the cones in 7 are “well positioned” with respect to the original fan A. In particular,
each cone in 7 is contained in a unique minimal cone in A. This allows us to refine
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A into a fan that contains all cones in 7. Significant care is called for, however, as
the construction is done inductively over a tree, and incorporating a new cone into
a given fan will require many cones of the original fan to be subdivided. The actual
construction is therefore more technical than may be expected.

In dimension two, these difficulties are largely invisible. They are the reason
why we in Theorem A impose stronger conditions on the eigenvalues than Favre did
in [Ea]. It would be interesting to try to weaken the conditions in Theorem A.

The proof of Theorem C is of a quite different nature, and uses the original ideas
of Favre as well as some methods from classical number theory. Indeed, some of
the arguments are parallel to the analysis of the continued fractions expansion of
quadratic surds [HW].

The paper is organized as follows. In Sections [l and Bl we discuss toric varieties
and monomial mappings. Section Bl is concerned with the two-dimensional situa-
tion, namely the proofs of Theorems C and C’, and examples showing that smooth
stabilization is not always possible. Then in Sections Hl and B we return to the higher-
dimensional case and prove Theorems A, A’ and B. Finally, in Section @l we illustrate
our proof of Theorem A in dimensions two and three and give a counterexample to
the statement in Theorem A when the eigenvalues have mixed signs.

Acknowledgment We thank Alexander Barvinok, Stephen DeBacker, Charles
Favre, Jan-Li Lin and Mircea Mustata for fruitful discussions. We are especially
grateful to Jan-Li Lin who pointed out several mistakes in an earlier version of this
paper. Finally we thank the referee for several helpful suggestions, in particular that
the toric varieties in Theorems A and A’ could be made projective.

1. TORIC VARIETIES

A toric variety is a (partial) compactification of the torus 7' = (C*)™, which
contains T as a dense subset and which admits an action of T that extends the
natural action of T' on itself. We briefly recall some of the basic definitions, referring
to [Fud] and [O] for details.

1.1. Fans and toric varieties. Let N be a lattice isomorphic to Z™ and let M =
Hom(N,Z) denote the dual lattice. Set Nq := N ®z Q, Nr := N ®z R, and
N¢g := N ®z C.

A cone o in NR is a set that is closed under positive scaling. If o is convex and
does not contain any line in Ny it is said to be strictly convex. If o is of the form
o = Y Rywv; for some v; € N, we say that o is a convex rational cone generated
by the vectors v;. A face of o is the intersection of o and a supporting hyperplane.
The dimension of o is the dimension of the linear space R - o spanned by o. One-
dimensional cones are called rays. Given a ray o, the associated primitive vector is
the first lattice point met along 0. A k-dimensional cone is simplicial if it can be
generated by k vectors. A cone is reqular if it is generated by part of a basis for N.
If o is a rational cone we denote by Int o the relative interior of o, that is, Int o are
the elements that are in ¢ but not in any proper face of o. If ¢ is generated by v;,
then Into = > R} v;. Write do := o \ Into.

A fan A in N is a finite collection of rational strongly convex cones in Ny such
that each face of a cone in A is also a cone in A, and moreover the intersection of two
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FIGURE 1. Examples of cones o1 C oy in Lemma [Tl The cone og
is three-dimensional; the figure shows the intersection with an affine
plane. The dashed lines indicate the fan Ag in the proof of Lemmal[lTl

cones in A is a face of both of them. The last condition could also be replaced by the
relative interiors of the cones in A being disjoint. Note that a fan is determined by
its maximal cones with respect to inclusion. Let A(k) denote the set k-dimensional
faces of A. The support |A| of the fan A is the union of all cones of A. In fact, given
any collection of cones X, we will use |X| to denote the union of the cones in . If
|A] = Ng, then the fan A is said to be complete. If all cones in A are simplicial,
then A is said to be simplicial, and if all cones in A are regular, then A is said to be
regular. A sub-fan of a fan A is a fan A with A C A. A fan A’ is a refinement of A
if each cone in A is a union of cones in A’. Every fan admits a regular refinement.

A strongly convex rational cone ¢ in N determines an affine toric variety U, and
a fan A determines a toric variety X(A), obtained by gluing together the U, for
o € A. The variety U, is dense in U, if 7 is a face of 0. In particular, the torus
Ty = Uy = N ®z C* = (C*)"™, is dense in X(A). The torus acts on X(A), the
orbits being exactly the varieties U,, o € A.

A toric variety X (A) is compact if and only if A is complete. Toric varieties are
normal and Cohen-Macaulay. If A is simplicial, then X(A) has at worst quotient
singularities, and X (A) is non-singular if and only if A is regular.

1.2. Incorporation of cones. To prove Theorems A, A’, and C we will refine fans
by adding certain cones. The following lemma is probably well known; we learned
it from A. Barvinok. The techniques in the proof will not be used elsewhere in the

paper.

Lemma 1.1. Let A be a simplicial fan and let o9 € A. Assume that o1 C og is a
simplicial cone, such that 0o N dog is a face of both o1 and oy. Then there exists a
simplicial refinement A" of A such that oy € A, and if o € A satisfies 0 2 oq, then
o € A'. Moreover, all rays in A'(1) \ A(1) are one-dimensional faces of o7.

For examples of cones o1 C 0g, see Figure 1.

Proof. Following [Z, p. 129 ff] we construct a fan Ag, that contains o7 and whose
support is 0g. Embed Ngr in Ng @ R as the hyperplane {z,,11 = 0}, let 79 be the
image of gg, and let 7 : Ng ® R — NR be the projection. For each ray Ryv of o1
that is not in dog, choose t, € Ry and let T be the convex hull in Ng & R of 7
and the rays Ry (v,t,). Observe that for a generic choice of t,, the faces of T are
simplicial cones. Let Ag be the collection of images of faces of T except oq itself.
Note that 7 maps 9T \ Int 79 1-1 onto oy. It follows that Ay is a simplicial fan, with
support equal to o, and o7 is one of the cones in Ay. If o € Ag, then either o is a
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face of og or Int o C Intog. Also, note that all rays in Ay \ A are one-dimensional
faces of 0.

We will now construct a fan A’ that refines A and contains Ag as a subfan. Let
Al be the collection of cones in A that do not contain og. Moreover, let Af, be the
collection of cones of the form o + 7, where 0 € Ag and 7 € A is a face of a cone
7 € A, such that 7 2 o, but 7 N oy = {0}. Finally, let A’ be the union of A} and
AY. Note that this union is not disjoint. Observe that all cones in A’ are simplicial.
We claim that A’ is a simplicial fan.

To prove the claim, first note that if ¢ € A does not contain og, then clearly
the faces of o do not contain op. In other words, a face of a cone in A} is in Af.
Moreover, a face of a simplicial cone o + 7 € A} is of the form o’ + 7/, where ¢’ is
a face of o and 7’ is a face of 7. Since Ay is a fan, ¢/ € Ay, and since A is a fan,
7' € A. Moreover {0} C 7' Noy C7Nog= {0} soc’ + 7" €Al To conclude, a face
of a cone in A is in A,

It remains to prove that if p and p’ are two distinct cones in A’, then Int pNInt p’ =
(. We have to consider three cases. In the first case, p,p’ € A}l C A. Then
Int pNInt p’ = 0, since A is a fan and p # p'.

In the second case, p € AL\ A] and p' € A]. Then we can write p = o + 7,
where Intoc C Intog. Indeed, if o is a face of op, then p € Al. Tt follows that
Int p NInt p' C Int(og + 7) NInt p’ = (. Indeed, oo + 7 is a cone in A, since A is
simplicial, and by construction p’ # oo + 7.

In the third case, p = 0 + 7 and p’ = ¢’ + 7’ are both in AL\ A]. If 7 # 7/, then
by construction o9+ 7 and o + 7’ are two distinct cones in A. Hence Int pNInt p/ C
Int(og 4+ 7) N Int(og + 7') = 0. Next, assume that 7 = 7/. Then oo N7 = {0}, which
implies that each element v € o9 + 7 admits a unique representation v = vg + w,
where vy € 0g and w € 7. Assume that v € Int p NInt p’. Then vy € Int o N Into’,
since Int p = Int o + Int 7. Hence o = ¢/, which implies that p = p’. To conclude, A’
is a simplicial fan.

Now let us show that A’ has the desired properties. First, observe that all cones
in Ay, and in particular o1, are in A’. Indeed, if o € Ag, then 0 = 0+ 0 € Al,. Next,
by definition of A’, each cone in A that does not contain oy is in A} C A’. Moreover
each ray in A\ A is in Ap \ A and hence a one-dimensional face of ;.

It remains to show that A’ refines A. Consider p € A. If p does not contain
09, then p is itself in A/, so assume that p D 0(. Since A is simplicial this means
that p = oo + 7 for some face 7 of p, for which oo N7 = {0}. Thus p =09+ 7 =
(Usen, @) +7=Usen, (0 +7), and each 0 + 7 € Ay C A’ by construction. Hence
A refines A. O

1.3. Invariant divisors and support functions. Let CI(X) and Pic(X) denote
the groups of Weil and Cartier divisors on X, respectively, modulo linear equivalence.
For X = X(A), CI(X) and Pic(X) are generated by divisors that are invariant under
the action of the torus T. Since X(A) is normal, every Cartier divisor defines a
WEeil divisor.

Each ray p of A determines a prime Weil divisor D(p) that is invariant under the
action of T, and these divisors generate Cl(X) and Pic(X). A Ty-invariant Weil
divisor is of the form > a;D(p;), where a; € Z and the sum runs over the rays in A.
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A Ty-invariant Cartier divisor can be represented as a certain piecewise linear
function. We say that h : |[A] — R is a (A-linear) Q-support function if it is linear
on each cone of A and if h(]A| N Nq) C Q. If the restriction of h to a cone is
given by some element of M (rather than Mq) then h is said to be a (A-linear)
support function. There is a one-to-one correspondence between Ty-invariant Q-
Cartier divisors and Q-support functions and between Tn-invariant Cartier divisors
and support functions, see [Ml, Ch 6, p. 6]. Moreover, a Ty-invariant Q-Cartier
divisor is a Weil divisor if and only if h(JA] N N) C Z. Given support functions h;
and ho, the corresponding divisors are linear equivalent if and only if A1 — hs is linear.

Note that a A-linear support function is determined by its values on primitive
vectors of rays in A. In particular, if D is a Q-Cartier divisor of the form D =
> a;D(p;), then the corresponding Q-support function is determined by h(v;) = a;,
where v; is the primitive vector of p;. Conversely, a support function h determines a
Weil-divisor > h(v;)D(p;).

A A-linear support function h is said to be strictly conver if it is convex and
defined by different elements &, € M for each 0 € A(m). A compact toric variety
X (A) is projective if and only if there is a strictly convex A-linear support function,
see [Ol Cor. 2.16]. We will then say that A is projective.

Lemma 1.2. Any fan A admits a reqular (hence simplicial) projective refinement.

Proof. This is well known, so we only sketch the proof. First, by the toric Chow
Lemma Ol Prop. 2.17] A admits a projective refinement. In general, this refinement
is not regular or even simplicial. However, one can check that the standard proce-
dure for desingularizing a toric variety by refining the fan (see [Full, §2.6]) preserves
projectivity. U

Lemma 1.3. If the fan A in Lemmall1l is projective, then the refinement A’ in that
lemma can also be chosen projective.

Proof. Assume that A is projective and let h be a strictly convex A-linear support
function. We will show that we can modify h to a strictly convex A’-linear function
K, where A’ is the fan constructed in the proof of Lemma [CJl We will use the
notation from that proof.

The construction of the fan Ay in the proof of Lemma [Tl implies that there
is a strictly convex Ag-linear support function hg that is zero on the boundary of
|Ag| = 0g. Pick a norm on Mg and choose 0 < € < min, rca(m)ozr €0 — &l if
h=& € Mg on o € A(m).

Consider 7 € A(m). Either 7N oy = {0} or 7 D 0¢. In the first case 7 € A’(m)
and we let /' = h on 7.

Next, assume that 7 O 0g. Since A is simplicial there exists a unique maximal
face 7' of 7 such that 7' N oy = {0} It follows that an element in oy admits a unique
representation s+t, with s € og and t € 7. In A/, 7 will be subdivided into maximal
cones of the form p = 7/ + o where o is a cone of maximal dimension in Ay. On each
p let b’ be defined by h'(s +t) = ehg(s). Clearly h' is piecewise linear and strictly
convex on the subfan of A’ that has support on 7. Moreover, since hg vanishes on
the boundary of og, the choice of € ensures that A’ is continuous and convex on A’
and different on all ¢ € A’(n). In other words, h’' is A’-linear and strictly convex
and hence A’ is projective. O
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If all maximal cones of A are of dimension m, then H?(X(A),Z) = Pic(X(A)).
If A is complete and regular, then HY1(X(A)) = H?(X(A),C). If A is simplicial,
then X (A) is Q-factorial, that is, a Weil-divisor is Q-Cartier.

2. MONOMIAL MAPS

Let A and A’ be fans in N 2 Z™ and N’ = Z™ | respectively. Then any Z-linear
map ¢ : N — N’ gives rise to a rational map f : X(A) --» X(A’), which is equi-
variant with respect to the actions of Ty and Tnv. Let eq,...e, and €},... €,

be bases of N and N’, respectively, and let z1,..., 2y, and z},..., 2, , be the corre-

sponding bases for the duals M and M'. Then ¢ = >, << Qkj€j @ T}, Where
ap; € Z. Let z1,..., 2y, and 21, ...,z , be the induced coordinates on T = (C*)™
and Tyr = (C*)™, respectively. Then f : Ty — T is given by the monomial map
fo(zryeeyzm) > (2P0 2@m P zgm™). Conversely, any rational, equi-
variant map f : X(A) --» X(A’) comes from a Z-linear map ¢ : N — N’, see [O,
p.19].

The map f: X(A) --» X(A') is holomorphic precisely if the extension ¢ : Ng —
Np satisfies that for each o € A there is a ¢/ € A’ such that ¢(c) C o’. Let
dan : (N,A) — (N',A’) be the map that takes (v,0) to (¢(v),o’), where ¢’ is the
smallest cone in A’ that contains ¢(c). If f is holomorphic we say that ¢aas is
regular. If f is not holomorphic, ¢aa/ is not defined everywhere; we write gpaa- :
(N,A) --» (N, A"). Observe that there is a sub-fan A of A which contain all rays of
A, such that ¢aas is well-defined on (IV, ﬁ) Indeed, the image of a ray in A under
¢ is always contained in a cone in A’

A Z-linear map ¢ : N — N’ induces a Z-linear map ¢* : M’ — M given by

¢ =¢ 0o

2.1. Desingularization. By regularizing fans we can desingularize toric varieties
and equivariant maps between toric varieties. First, let A be a regular refinement of
A and let idx, : (N,A) — (N,A) be the map induced by id : N — N. Then the
map 7 : X(A) — X(A) induced by idx , is a resolution of singularities, see [Full
Ch. 2.5].

Seco}nd, let N and N’ be lattices of the same rank, let A and A’ be fans in N
and N’, respectively, and let ¢ : N — N’ be a Z-linear map of maximal rank. We
claim that there is a regular refinement A of A such that the map ¢z (I, ﬁ) --3
(N’,A’) induced by ¢ : N — N’ is regular. We obtain the left-hand diagram of (ZII)

(N,A) X(A) (2.1)
. VN, f
ldgAl } ﬂ'l X

(N,A) == (N, A") X(A)-==X(A")

inducing the right-hand diagram, where 7 : X (A) — X(A) and f : X(A) — X(A)
are holomorphic.

To prove the claim, let ¢~'(A’) be the collection of cones ¢~ (¢’), where o’ € A’
Since ¢ is of maximal rank, the cones in ¢~!(A’) are strictly convex, and thus ¢~ (A’)
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is a fan. Now, any regular fan A that refines both A and #~1(A’) has the desired
properties, and recall from Section [Tl that such a fan always exists.

2.2. Pullback and pushforward under holomorphic maps. Let N and N’ be
lattices of the same rank, let A and A’ be fans in N and N’, respectively, and let
¢ : N — N’ be a Z-linear map of maximal rank, such that ¢aas is regular. Let
f: X(A) — X(A') be the corresponding holomorphic map on toric varieties.

Let D be a Tys-invariant Q-Cartier divisor on X(A’) and let hp be the corre-
sponding Q-support function. Then the pullback f*D is a well-defined Q-Cartier
divisor, see [Fu2, Ch. 2.2], and hy«p = ¢*hp, see for example [M, Ch. 6, Exercise §].
If D is Cartier, then f*D is Cartier. To see this, assume that h is a support function
on A’. Pick o € A and assume that ¢(c) C ¢’. On ¢’ € A’ h is defined by h = &',
for some & € M’'. 1t follows that on o, ¢*h = ¢*¢' € M.

Next, let D = > a;D(p;) be a Ty-invariant Weil divisor on X (A). Then f.D is a
well-defined T-invariant Weil divisor on X (A’), see for example [Fu2, Ch. 1.4], and
f«D =" ain;D(¢(p;)), where the sum is over all i such that ¢(p;) € A’ and where
n; € N*. Note that the pushforward of a Cartier divisor is in general only Q-Cartier.
Pullback and pushforward respect linear equivalence.

2.3. Pullback under rational maps. Let N and N’ be lattices of the same rank,
let A and A’ be fans in N and N’, respectively, and let ¢ : N — N’ be a Z-linear
map of maximal rank. Let D be a Ts-invariant Cartier divisor on X (A’). In terms
of the right-hand diagram of (ZII), we can define the pullback of D under f as
[*D =, f*D. In fact this definition does not depend on the particular choice of
A. Observe that f*D is the Ty-invariant Weil divisor » —hp(¢(v;))D(p;), where
the sum is over the rays p; € A(1).

Assume that A is simplicial, and let h be a A’-linear Q-support function. Let
¢ ah be the A-linear support function defined by (¢4 o/h)(v) = h(P(v)) if v is a
primitive vector of a ray in A. In other words, ¢\ o,h is obtained from ¢*h using
A-linear interpolation. If D is a Ts-invariant Q-Cartier divisor on X (A’), and hp
is the corresponding Q-support function, then f*D is determined by the Q-support
function ¢\ hp.

Let 0 € A and let h be a A'-linear Q-support function. Assume that ¢(o) is
contained in a cone ¢/ € A’. Then h is linear on ¢(o), which implies that ¢*h is
linear on ¢ and

Panrhle = ¢ hlo. (2.2)

In particular, if ¢aas is regular, then ¢ b = ¢*h for all A’-linear Q-support
functions. This is not the case in general if ¢/ is not regular. Assume that there
are cones 0 € A and 07,05 € A’ such that (Int ¢(c)) Noj # 0 for j = 1,2, and
moreover that hly, and hly, are not defined by the same element in M . Then
Oaah # ¢*h; indeed @A A h is linear on o, whereas h is not linear on ¢(o).

2.4. Criteria for stability. We can express the stability of f: X(A) --» X(A) in
terms of ¢ : N — N.
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Lemma 2.1. Assume that N, N', and N" are lattices of the same rank, that A, A/,
and A" are complete simplicial fans in N, N', and N", respectively, and that

N &N N
are Z-linear maps of maximal rank, with corresponding rational equivariant maps

x(A) -5 xany L xan,

Moreover, let f*, f"* be the corresponding pullback maps
Pic(x(A") L= Pic(x(A") L Pic(x(A)).

For p € A(1) let a,, be the (unique) cone in A" such that Int ¢(p) C Intoy,. Then
(flof)r = f*f™ if ¢/ (0},) is contained in a cone in A" for all p € A(1). The converse
holds when A is a projective fan.

Proof. Note that f*f"™* = (f’ o f)* on Pic(X(A")) if and only if, for every A”-linear
support function h, the function ¢} ;¢ anh — (¢ 0 @), anh on Nq is linear, that is,
belongs to Mq. However, when A is projective, this turns outll to be equivalent to the
(stronger) condition ¢pA A/ @A anh = (¢’ 0P)A arh for every A”-linear support function
h, see [Lill, Prop. 5.5]. Further, the latter condition can be written ¢ A,¢A/An P (V) =
¢*¢™*h(v) for all primitive vectors of rays of A.

Let p be a ray of A with corresponding primitive vector v and let a;) € A’ be the
(unique) cone for which ¢(v) € Int o7,

First assume there is a cone o” € A" such that ¢'(07,) C 0" and let h be a A”-linear
support function. Then

Pan @R anh(v) = ¢™ (R anh) oy (v) = (") oy (v) = ¢7¢"h(v);

here we have used that v is a primitive vector of p for the first equality and (Z2) for
the second equality. Hence the “if”-direction of the lemma follows.

Now assume ¢'(07,) is not contained in any cone in A”. Tt follows that there are
cones a1,05 € A", such that dim(¢'(0},) No}) = dimo, for j = 1,2. Note that then
o € ofj. Pick p! € A”(1), such that pf is a face of o but not of ¢4, and let v{ be
the corresponding primitive vector. Let h be the A”-linear Q-support function that
is determined by h(v)) = 1, but h(v)) = 0 for all other primitive vectors of rays in
A". Then h # 0 on 05, but h = 0 on oY, which implies that ¢{,y»h is linear on o7,
whereas ¢™*h is not. In particular, ¢)X x/M(d(v)) > ¢ h(d(v)), since ¢(v) € Int o,
Hence ¢\ p/@R/anh(v) # ¢*¢*h(v), proving the “only if”-direction of the lemma
(when A is projective). O

The following results are immediate consequences of Lemma BTl

Corollary 2.2. Assume that A is a complete simplicial fan in N and that ¢ : N — N
is a Z-linear map, with corresponding rational equivariant map f: X(A) --» X(A).

Then f is 1-stable if all cones o in A for which there is a ray p € A(1) such that
Int ¢"(p) C Int o for some n, satisfy that qﬁ"/(a) s contained in a cone in A for all
n’ € N. The converse holds when A is projective.

1We thank Jan-Li Lin for pointing this out.
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When ¢ : N — N satisfies the assumption in Corollary we say that it is
torically stable on A.

Corollary 2.3. Assume that A is a complete simplicial fan and ¢ : N — N a Z-
linear map. Assume there is a collection S C A such that ¢(c) C o for o € S and
such that each ray in A is either mapped onto another ray in A or mapped into one
of the cones in S. Then f: X(A) --» X(A) is 1-stable.

Remark 2.4. In Corollary it suffices to require that ¢ maps every cone in S into
some other cone in S. ([

In Theorems A and B we require that the eigenvalues of ¢ be positive. The reason
is that when some eigenvalues are negative, it may be impossible to find invariant
cones:

Proposition 2.5. Let ¢ : N — N be a Z-linear map, where N = Z™. If o is a
simplicial cone of dimension m such that ¢(o) C o, then the trace of ¢, i.e., the sum
of the eigenvalues, must be nonnegative.

This result is presumably known, but we include a proof for completeness.

Proof. Let vy, ...,v, be a basis for Ng such that o = Z;”Zl Rv;. We may assume
det(vy,...,vm) = 1. Since ¢(0) C o, we must have
det(vl, sy Vi1, @(’Uj),l)]q_l, ce ,’Um) >0 for 1 < ] <m. (2.3)

As the left hand side of ([Z3) equals the jth diagonal element in the matrix of ¢ in
the chosen basis, the lemma follows by summing 3) over j. O

3. SMOOTH STABILIZATION IN DIMENSION TWO

We now look at two-dimensional monomial mappings so that N ~ Z2. In this case,
any fan in NN is simplicial and projective. Recall that a Z-linear map ¢ : N — N is
said to be torically stable on a fan A if it satisfies the condition in Corollary

Note that the eigenvalues p1, o are either both real or complex conjugates of each
other. When they are real, they are either both integers or both irrational.

In [Ea], Favre gave a complete characterization of when we can make ¢ torically
stable on a possibly irregular fan, see Theorem C’ in the introduction. For the
rest of this section we analyze whether we can make ¢ torically stable on a reqular
fan. We will prove Theorem C and give several examples showing that this result is
essentially sharp. We also recover Theorem C’. The main new ideas are contained in
Section

Remark 3.1. The statement in [Fal, Théoréme Principal] does deal with smooth toric
varieties, but there is a gap in the proof. Suppose po/p; is not of the form e
with 6 € R\ Q. What Favre proves is that we can find a (not necessarily regular)
refinement A’ of A on which ¢ is torically stable. He then asserts that A’ becomes
a regular fan by passing to a sublattice N’ C N. However, this last step does not
work in general, see [Full, §2.2, p.36]. O
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3.1. Basic facts on fans in dimension two. We need a few basic results about
refinements of fans in dimension two. Let us call a fan A symmetric if —o € A for
every cone o € A.

First, as described in [Full Section 2.6] there exists a canonical procedure for
making an irregular fan regular. In fact, we have

Lemma 3.2. Every fan A admits a reqular refinement A’ such that:

(i) any regular cone in A is also a cone in A';
(i) if A is symmetric, then so is A’

Both the lemma and its proof below are valid in any dimension.

Sketch of proof. The construction of A’ proceeds inductively as follows. Pick an
irregular two-dimensional cone 7 in A, let o1, 09 be its one-dimensional faces and let
vj € 0 N N be the associated primitive vectors. Since 7 is irregular, there exists
t; € (0,1) N Q, ¢ = 1,2, such that v := tjv; + tovg € N. Let 0 = Riv and let
7;y, © = 1,2 be the two-dimensional cones whose one-dimensional faces are o; and
o. Applying this procedure finitely many times yields a regular fan A’. If A is
symmetric, then we may simultaneously subdivide 7 and —7 into 71, 7 and —my,
—To, respectively. In this way, A’ will stay symmetric. O

Second, we need to refine fans that may already be regular. Let 7 be a regular two-
dimensional cone and o1, 09 its one-dimensional faces with corresponding primitive
vectors vy and ve. Then vy, ve generate N. Let 0 = R (v; +v2) and let 74,7 = 1,2 be
the two-dimensional cones whose one-dimensional faces are o; and o. The barycentric
subdivision of T consists of replacing 7 by 71 and 7».

Remark 3.3. Both the barycentric subdivision and the closely related procedure in
the proof of Lemma are special cases of Lemma [Tl d

Lemma 3.4. Let (1,)n>0 be a sequence of reqular two-dimensional cones such that
Tnt1 ©s one of the two cones obtained by barycentric subdivision of T,, n > 0. Then
MNy>0 T = Ryw for some w € Nr.

Proof. Since 7y is regular, 79 = Ryv + Ry v, where v,v' generate N. Write 7,, =
R v, +Ryv;,, where vy, v;, generate N. We can assume v, 41 = v, +v;, and v;, | €
{vn, v}, }. Inductively, we see that v, = p,v + ¢,v' and v], = pl,v + ¢,v’', where
Drs Gns P> @by > 0 and |prql, — pl,gn| = 1. The lemma follows since max{p,,, g,} — oo
or max{p),,q,} — oo as n — oo. O

Lemma 3.5. Consider reqular two-dimensional cones 7,79 C Nr such that T C 9.
Then T is obtained from 19 by performing finitely many barycentric subdivisions.

Proof. By Lemma B4l and induction it suffices to show that 7 is contained in one of
the two-dimensional cones obtained by barycentric subdivision of 7.

Write 79 = Ryv; + Ryvy and 7 = Riw; + Ryws where v, v and wi,wy are
generators of N. As 7 is regular and 7 C 7y we may assume w; = p;v1 + ¢;v2, where
Pi,q; > 0,1 =1,2, p1g2 — p2q1 = 1, p1 > p2, and thus g2 > q1.

It suffices to prove that vy +wvo & Int 7 unless 7 = 73. Assume that v; + vy € Int 7.
Then p; > g1 and p2 < ¢o, which implies that piqo — pag1 > g1 + p2 + 1. It follows
that g1 = p2 = 0, and hence 7 = 7. O
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Corollary 3.6. Let 1,, n > 0 be regular two-dimensional cones such that 7,41 C Tn
for all n. Then (,~o ™ = Ryw for some w € Ng.

3.2. The case |u1| > |u2|. We consider first the case when || > |ue|. Then the
u; are real and the corresponding eigenspaces F; C Ng are one-dimensional. Either
U1, o € Z or p, pe ¢ Q. As n — oo we have ¢"(v) — Ej for any v € Ng \ Es and
¢~ "(v) = Ey for any v € Ng \ Ej.

We will use the following criterion for making ¢ torically stable.

Lemma 3.7. Suppose that A is a regular fan and define U; C Nr as the union
of all cones in A that intersect E; \ {0} for i =1,2. Assume that ¢(Uy) C Uy and
¢~ 1(Uy) C Uy. Then there exists a reqular refinement A’ of A on which ¢ is torically
stable. If A is symmetric, then we can choose A’ symmetric.

Conversely, suppose ¢ is torically stable with respect to a reqular fan A and define
U; as above. Then ¢(Uy) C Uy and ¢~ (Us) C Us.

Proof. We may assume U; U Uz # NRg, or else f : X(A) --» X(A) is 1-stable by
Corollary Z3l We define an integer J > 1 and a sequence of (not necessarily convex)
cones

as follows. The set ©; := ¢(Q) \ (U1 U Uz) is nonempty and there exists J > 1
minimal such that ¢7(Q1) C Uy. Set ; = ¢/ 1(Q;)\ Uy for 1 < j < J. Then
{Q; \ {0} j;rol defines a partition of Ng \ {0}. Note that ¢(Q2;) C Q;1; UU; for
1<j<J.

Let A; be the fan obtained from A by adding all rays of the form ¢(o) € Qy,
where o is a ray in A contained in Us. Let A} be a regular refinement of Ay, in
which the regular cones of A; are kept, as described in Lemma Note that this
refinement procedure does not subdivide any cone contained in U; U Us.

Inductively, for 1 < j < J, let A; be the fan obtained from A;_l by adding all
rays of the form ¢(o) € €2, where o is a ray in A;-_l contained in ©;_q, and let
A;» be the regular refinement of A; given by Lemma This refinement procedure
does not modify any cone contained in U; UUz U € U---U€);_1. Then we can use
A" = A’ If A is symmetric, then so is A’.

For the second part of the lemma, note that if o is a ray in A that is not contained
in 1 U Es, then ¢"(Int o) C Int Uy for n > 1. Thus, for ¢ to be torically stable on
A, ¢ must map any cone contained in U; into another cone contained in U;. This
implies ¢(U;) C Uy. A similar argument shows ¢! (Us) C Us. O

3.2.1. Integer eigenvalues. The first subcase is when || > |uo| and p1, p2 € Z and
thus the corresponding eigenspaces F1, Fo are rational. We claim that ¢ can always
be made torically stable on a regular fan in this case. To see this, we only need
to satisfy the hypotheses of Lemma Bl After refining, we may assume that A is
symmetric and regular and that the eigenspaces E; C Ng are unions of cones in A.

For i = 1,2, let U; be the union of all cones in A intersecting F;. If pq, e > 0,
then ¢(U;) C Uy and and ¢~ (Uy) C U;. Hence Lemma B applies. The same is
true also when 1, o < 0 since A is symmetric.

When pq and po have opposite signs, we have to be more careful. For definiteness,
let us assume pq > 0 > po. (The case py < 0 < peo is handled the same way as long
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as all fans we construct are symmetric.) Let o1 and o2 be two-dimensional cones in
A sharing a common face 7 contained in E;. Provided A is symmetric, ¢(U;) C U
is equivalent to ¢(01) C o9 and ¢(o2) C o1, which will only happen if o7 and o9 have
roughly the same size. We claim this can be arranged by subdividing the cones o;.
Pick generators vy, vy for N such that v1 € 7 = 01 Nos. Then ¢ is given by the
matrix (8 _bd) where a = p; > 0 and 0 < d = |u2| < a. The one-dimensional faces
of o1 (resp. 03) are 7 and a ray whose primitive vector is of the form rjv; + vy (resp.
rou; —U3), where 11,79 € Z. By making a barycentric subdivision of o; and replacing
o; by the subcone containing 7 we replace r; by r; + 1. Repeating this procedure
finitely many times, we can achieve r1 = ro = r > 0. Picking r > |b|/(a — d) it is
straightforward to verify that ¢(o1) C o9 and ¢(o2) C o1. Making the construction
symmetric, we obtain ¢(U;) C Uy. A similar construction gives ¢~ (Uy) C Uy. Thus
Lemma B applies.

3.2.2. Irrational eigenvalues. The second subcase is when |ui| > |uo| and py and
po are both real irrational. Then the corresponding eigenspaces F; C N, i = 1,2,
contain no nonzero lattice points.

Proposition 3.8. If u1,us are of the same sign then any fan A admits a regular
refinement A’ on which ¢ is torically stable.

Proof. We may assume A is symmetric. The assumption that p; and e have the
same sign implies that any symmetric cones U;, i = 1,2 for which E; \ {0} C IntU;
must satisfy ¢(U;) C Uy and ¢~ 1(Uy) C U,. Thus the proposition follows from
Lemma B O

Now assume p1 and po have different signs. This case is quite delicate. Let us
assume for now that py > 0 > puo.

Our starting point is a regular two-dimensional cone ¢ containing an eigenvector
associated to w1 but not containing any eigenvector associated to po. Such a cone
exists and can be constructed using repeated barycentric subdivisions and invoking
Lemma B4 Write 01 = Rywv; + Ryve, where vy, vy are generators for N. Then
¢ admits eigenvectors of the form vy + z;v9 associated to p;, i = 1,2, where z5 <
0 < z. After exchanging vy and vy if necessary, we may and will assume that
max{|z1|, |22} > 1.

We now inductively define a sequence (v; 5, U2 5 )nez of generators for N. They will
have the property that ¢ admits an eigenvector of the form vy, + 2; nv2,, associated
to pi, © = 1,2, where 22, < 0 < 21, and max{|21,|, |22.n|} > 1. Set v; := v; and
2i,0 = Zi, 1= 1,2.

First suppose n > 0. If 21,1 > 1, set (vip,V2n) = (V1,n—1 + V2n—1,V2n—1) and
if 0 < z1p—1 <1, set (vin,v20) == (V2—1,V1,n—1). This leads to

1 (3.1)

(Zl 2 ) _ (zl,n—l — 1,227n_1 — 1) if Z1n—1 > 1
s (zin_l,zz}ll_l) if0<zp—1 <1
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Now suppose n < 0. If 29 11 < —1, set (V1n,V25) = (Vint1 — V2n+1,V2,n+1) and if
—1 < 23541 <0, set (v1n,v2,) = (—V2n+1, —V1n+1). We obtain
) (gt F Lz +1) i zp g < -1
(Zl,n7 Z2,n) = 1 1 . (32)
(#Lnt1 Z2ms1) if =1 < 29p,41<0.

Notice that BI]) and (B2) in fact hold for all n € Z. This follows from the fact
that max{|z1 |, |22,n]} > 1. For example, suppose n < 0 and that z;,-; > 1. To
verify (Bl we must show that (21,,22,) = (21,n—1 — 1, 22,1 — 1). This follows
from (B2) applied to n — 1 if we know that 23, < —1. But if —1 < 23, < 0, then
21, > 1 and so (B2) would give 21,1 = 21, ,11 < 1, a contradiction.

For any n € Z, 01, = Ryvin + Rivy, and o, == Ryvy, + Ry(—v2,) are
regular cones containing eigenvectors associated to p; and us, respectively, in their
interiors. For n > 0, 01, is obtained by barycentric subdivision of oy ,,—1. For n <0,
o2, is obtained by barycentric subdivision of o ,,41. This implies that the sequences
(0in)nez, © = 1,2 are largely independent of the initial choice of cone 1. Indeed,
suppose we start with another cone o/, obtaining corresponding sequences (Ug,n)nez-
By Lemma B3 there exist [; € Z, i = 1,2, such that a’Ln = 01 nt1, and Ué,n = 092 n+ls
for n > 0 and n < 0, respectively.

Let A, = (‘C’: Z:) be the matrix of ¢ in the basis (vi,,v2,,). We are interested
in whether A, has nonnegative entries. A direct computation shows b, = (u; —
p2)/(z1m — 22.n) > 0 and ¢, = (1 — ug)/(zl_’}l — 22_;) > 0 for all n. As for the
diagonal entries, note that a, + d, = u1 + p2 =: v > 0 is independent of n. Set
dp = ap, — d,,. We see that A, has nonnegative entries if and only if |0,] < .

Lemma 3.9. The sequence (Ap)nez is periodic. Further, the following conditions
are equivalent:

(i) there exists n such that ay, by, cp,dy > 0;
(ii) there exist infinitely many n > 0 such that ay, by, ¢y, dy > 0;
(iii) any fan A admits a reqular refinement A’ on which ¢ is torically stable.

Proof. Note that z; ,, i = 1,2 are the roots of bnz?+6,2—c, = 0. It follows from (BI)
that

(b, O + 2bp, ¢y — by, — 6y)  if ¢ > by + I

3.3
(Cny —0n,bp) if ¢, < b, + oy, (3:3)

(bn—i-la 6n+17 Cn—i—l) - {

We see that the quantity D := D, = §2 + 4b,c, is independent of n; in fact, D
is the discriminant of b,z% + 6,2 — by. As by, cp, 0, are integers and b, c, > 0, it
follows that the sequence (by,, O, ¢n)nez, and hence also the sequence (A;,)nez, must
be periodic. This immediately shows that (i) and (ii) are equivalent.

Before showing that (i) and (ii) are equivalent to (iii), recall that the data con-
structed so far is essentially independent of the initial choice of regular cone oq. In
particular, the sequence (A;,),cz is independent of this choice, up to an index shift,
and so the validity of (ii) is independent of o;.

To show that (ii) implies (iii), suppose A, has nonnegative entries. Then the
regular cone oy, = Ryvi, + Ryve, is invariant: ¢(oy,) C o1, Similarly, the
regular cone o2, = Ryv;, + Ry(—vy,,) satisfies ¢_1(02,n) Cogp.
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Pick n; > 0 and ny < 0 such that A,, has nonnegative entries for i = 1,2. We
may assume o1 ,, and o9 ,, are arbitrarily small regular cones containing eigenvectors
associated to p1 and puso, respectively. By Lemma B we may, after replacing A by
a suitable symmetric regular refinement, assume that +oy,, and +o09,, are cones
in A. We may then apply Lemma B to U; = 0, ,, U (—0; ) and conclude that (iii)
holds.

Finally, to show that (iii) implies (i), assume that ¢ is torically stable on a regular
refinement A’ of A. We can then use as our initial cone o7 a cone in A’ containing an
eigenvector associated to p;. Indeed, it follows from Lemma BT that ¢(o1) C o and
that o1 cannot contain any eigenvector associated to ps. The fact that ¢(o1) C oy
implies that Ag has nonnegative entries. O

Remark 3.10. The sequence (21, )n>0 encodes the continued fractions expansion of
21, and the proof that (A;)n>0 is periodic corresponds to the classical proof of the
(pre)periodicity of the continued fractions expansion of a quadratic surd (a result
due to Lagrange, see [HW| Theorem 177, p.185]). d

Proposition 3.11. When |us| < 1, any fan A admits a reqular refinement A’ on
which ¢ is torically stable.

Proof. Note that p1 and g must be real irrational and that |pi| > 1 > |ua|. By
Proposition B8 we may assume they have different signs. First suppose 1 > 0 > puo.
The condition —1 < s < 0 easily translates into vD — 2 < v < /D, where
v = p1 + po and D is as in the proof of Lemma B9 indeed p; = (v £ VD)/2. As
noted above, b,,, ¢, > 0 for all n and by Lemma we only need to find n € N such
that [6,| < v, where §,, = a,, — d,.

First suppose there exists n such that ¢,, = 1 and |d,,| = b,,. Then D = 5%+4bncn =
(bp+2)2—4,50 Z >~ >+/D—2 implies v > b, +2—2 = b, = |6,| and we are done.

In general, it suffices to find n with |0, < VD — 2, a condition equivalent to
|0| < bpcn. There exists ng > 0 such that 6, < 0, or else we would be able to apply
the first transformation in ([B3)) infinitely many times in a row, which is clearly not
possible. Indeed, the second transformation changes the sign of ¢,,. Successively
applying B3) we find n > ng with —b, < 9§, < b,. Then |0,| < byc,, unless
6, = —b, and ¢, = 1, a case we have already taken care of.

Finally, consider the case u; < 0 < uo. By what precedes, we can find a symmetric
regular refinement A’ of A on which the map —¢ : N — N is torically stable. Then
¢ is also torically stable on A’. d

The following example shows that Theorem C fails in general when |p1| > |p2| > 1.

Ezample 3.12. It follows from Lemma that the linear map ¢ : N — N given by
the matrix A = Ay = ( _31 :2)’) cannot be made torically stable for any complete regular

fan. Indeed, Ag = A, A; = (3 3)) and A, = A,_. Here p; = (1£3v5)/2. O
We record the following consequence of our analysis in Section

Corollary 3.13. Assume that the eigenvalues of ¢ : N — N satisfy pu1 > —po > 0
and pu; € Z for i = 1,2. Moreover, assume N has generators vi,ve such that ¢ is
given by a matriz with nonnegative coefficients in the associated basis for Nr. Then
¢ admits an eigenvector ey = vy + z1ve in the first quadrant o9 = Ryvi + Rywvs
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and there exists a sequence (0;);>0 of reqular cones such that Rye; C o541 C oy,
Nj<ooj = Ryer and ¢(o;) C o for j > 0.

We thus obtain an independent proof of [E.J1, Lemma 7]; see also [EJ2].
3.3. The case |u1| = |u2|. Write A = |pu1| = |p2|. There are two subcases.

3.3.1. The diagonalizable case. First consider the case when ¢ : No — N¢ is diago-
nalizable. When p1/p9 is not a root of unity, Favre [Fa] observed that f cannot be
made torically stable even on an irregular fan [Fa]. Indeed, the orbit | J,~, ¢"(p) of
any ray p is dense in NR, so stability is impossible in view of Lemma EZ2

Now suppose f1/p2 is a root of unity. Then ¢ = A" Id for some n > 0, where
A = |u1| = |p2|. This implies that when f is stable, ¢ must map any ray to another
ray in the fan. We can only achieve this in special cases, such as when pu; = uo.
Indeed, then ¢ = £\ 1d and any symmetric fan is invariant.

The following example illustrates the problems that may appear when uq/ps is a
root of unity different from 1. See also [Eal, Exemple 2].

Ezample 3.14. Let ¢ : N — N be given by the matrix A = Ay = (_31 j) Then
i = 22711 /3, j = 1,2. In particular, ¢ = 81d. We claim that no complete regular
fan A can be invariant by ¢. To see this, consider any ray in A and let v € N be the
corresponding primitive vector. Then ¢(v) = v’ where v’ is another primitive vector
and [ = [(v) € N. If v; and v are the primitive vectors of two adjacent rays in A,
then [(v1)l(vy) = |det ¢| = 4, since A is regular. Thus there are two cases: either
l(v) = 2 for all v, or {l(v1),l(ve)} = {1,4} for any two adjacent primitive vectors
v1,v9. The first case is not possible as all entries in ¢ would have to be even. The
second case cannot occur in view of ¢3 = 81d. O

3.3.2. The non-diagonalizable case. Finally assume ¢ : No — Nc is not diagonal-
izable. Then p; = ps = £, where A € N. There exists a primitive lattice point
v € N such that Rv is the eigenspace for ¢ : Ng — Nr. After subdividing, we may
assume A is regular, symmetric and that ¢ := R;v and —o are cones in A. Pick
w € N such that (v, w) are generators for N and such that Ryw and —Rjw are
cones in A. The matrix of ¢ is given by A = Ay = (8 3) where a = X and b € Z,
b # 0. Replacing w by —w if necessary, we have b > 0.

First assume a = A. Let 7 € A(2) be the unique cone contained in Ry v+Rjw and
having o as one of its faces. Then ¢(7) C 7 and ¢(—7) € —7. We can now proceed
as in the proof of Lemma BT and refine A into a symmetric regular fan A’ such that
+7 € A’ and for all rays o/ € A(1) and all n > 0 we have either ¢"(0’) € A(1) or
¢"(0") C 7. Then ¢ is torically stable on A’. The case when a = —\ is handled in
the same way, keeping all fans symmetric.

3.4. Proof of Theorems C and C’. We now have all ingredients necessary to
complete the proof of Theorem C. In case (a), that is, |u2| < 1, we are done by
Proposition BIIl In case (b), that is, |u1]| > |ue| and uq, e € Z, the result follows
as explained in Section B2l

Finally consider case (c), that is, p1,u2 € R and pjpue > 0. If g and po are
irrational, then we are done by Proposition B8, so having treated cases (a) and (b),
we may assume 1 = po € Z. Then either ¢ = pqld, with the theorem being
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trivial, or ¢ is not diagonalizable over C, in which case the theorem follows from the
discussion in Section

In fact, we have also proved Theorem C’, except for the case when py, ue are
real, irrational, and of different sign. We can then refine the original fan A so that it
contains (possibly irregular) cones o1, oo for which ¢(o1) € 01 and ¢~ !(02) C +09.
The proof of Lemma B now goes through and produces a refinement A’ of A on
which ¢ is torically stable. In fact, the only irregular cones in A’ are 01 and +os.

4. STABILIZATION - PROOF OF THEOREMS A AND A’

Throughout this section we assume that ¢ : N — N has distinct and positive
eigenvalues. To prove Theorems A and A’ we will use the criterion in Corollary B3l

The mapping ¢ : Nr — Ngr induces a mapping ¢* : Mr — MR, defined by
(¢*&,v) = (&, ¢(v)) and with the same eigenvalues as ¢. Given a one-dimensional
eigenspace £ C Ng of ¢, let E C Mg denote the corresponding eigenspace of ¢,
and let B+ := {v € Nr | (£,v) = 0 V¢ € E} C Nr. Note that, since the eigenvalues
of ¢ are distinct, E is spanned by the eigenvectors that are not in E.

4.1. Real dynamics. We say that a set Z C N is invariant (under ¢) if ¢(Z) C Z.
The following result is well-known, see for example [Lal Exercise 13, p.552].

Lemma 4.1. Any invariant subspace V.C Ng is spanned by eigenvectors of ¢.

Given an invariant subspace V. C N, let E1, ..., Eqm v be the invariant eigenspaces
of ¢, corresponding to the eigenvalues vy > -+ > vgimy > 0, that span V. For
1<j<dimV,let V; .= E; ®--- @ Egimv. Then we have a filtration V =V; 2 V5 D
-+ 2 Vagimv4 := {0} and if v € V} \ Vj11, then ¢"(v) — E; when n — oo.

4.2. Invariant rational subspaces. We say that a subspace V' C Ny is rational
if V.N Nq = V. This is equivalent to the lattice N NV having rank equal to dim V.
A subspace V' C Ng is rational if and only if its annihilator V° :={{ € MR | |y =
0} C Mp is rational. Note that (V°)° =V.

Assume that V and W are rational subspaces. Then V + W is rational and hence
sois VAW = (V°e+W?)°. Given V C Ny it follows that there is a minimal rational
subspace of Vg that contains V' and a maximal rational subspace contained in V.

Lemma 4.2. Assume that V C Ng is invariant under ¢. Then the minimal rational
subspace that contains V' and the maximal rational subspace contained in V' are both
invariant.

Proof. Let W be the minimal rational subspace that contains V. Then V C W N
(W) = W, since W is minimal. To conclude, ¢(W) = W. The second statement
follows from the first, using annihilators. O

The mapping ¢ induces a binary tree T'(¢) of rational invariant subspaces of Ng,
which should be compared to the real filtration in Section EEIl The nodes of T'(¢)
are of the form (V,W), where V and W are rational invariant subspaces of Ng,
such that V' C W. The root of T(¢) is ({0}, Ng) and (V,W) is a leaf if V' = W.
Assume that V' # W. Among all one-dimensional eigenspaces E of ¢ such that
ECW,but EZV,let E(V,W) be the one with the largest eigenvalue. Let V' be
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the smallest rational subspace that contains V + E(V, W) and let W' be the largest
rational subspace contained in W N E(V,W)+. Then the two children of (V, W) are
(V!,W) and (V,W’). Note that V' C W since V and E(V,W) are contained in W
and W is rational, and that V' C W' since W and E(V, W) contain V and V is
rational. Observe, in light of Lemma EEZ that V' and W' are invariant.

Lemma 4.3. Let (V,W) be a node in T(p) and U a rational invariant subspace such
that V.C U CW. Then either E(V,W) CU or U C E(V,W)*.

Proof. Pick + € Mg, such that E+ = {z = 0}, where E := = E(V,W). Assume
UZE E*, and pick v € U, such that z(v) # 0. Then v ¢ ELDOV. Let W = W/V, let
b : W — W be the map induced by ¢, and let E U and v be the images of E, U,
and v, respectively, under the quotient map W — W. Then E is an eigenspace for
6 with eigenvalue v domlnatlng all other elgenvalues of ¢. Thus v "(;5"( ) converges

to a nonzero element of E. This implies that EC U since ¥ € U and U is invariant
under ¢. It follows that E C U. (]

Let us create a new tree from 7'(¢). Replace each node (V,W) in T(¢) by V
and thereafter collapse all edges between nodes V and V. We will refer to the tree
so obtained as the reduced tree induced by ¢ and denote it by Tieq(¢). Observe
that the nodes in Ti.q(¢) are in one-to-one correspondence with the leaves in T'(¢).
Given a node V in Tyeq(¢) with parent V/, among all one-dimensional eigenspaces
of $ in V\ V', let E(V) be the one corresponding to the largest eigenvalue. Then,
by construction, V' is the smallest (invariant) rational subspace of Nr that contains
V' + E(V).

We claim that all rational invariant subspaces of Ng are in Ti.q(¢). To see this,
given a rational invariant subspace U, let S(U) = {(V.W) € T(¢) | V CU C W}.
Note that S(U) is non-empty, since ({0}, Nr) € S(U). Pick (V,W) € S(U). By
Lemma B either F := E(V,W) C U or U C E*. In the first case V' C U, where V'
is the smallest rational invariant subspace of Ng that contains V + E. In the second
case U C W', where W' is the largest rational invariant subspace that is contained
in W N E+. Thus, exactly one of the children of (V,W) is in S(U). It follows that
S(U) is a maximal chain in T'(¢). In particular S(U) contains a leaf of T'(¢), which
has to be of the form (U, U). Hence U is a node in Tyeq(¢). It is, however, not true in
general that (V, W) is a node in T'(¢) as soon as V' C W are rational and invariant.

4.3. Invariant chambers. With each node (V, W) in T'(¢) we associate a chamber
C(V,W). The chamber C'(V, W) is an invariant open dense subset of W and is defined
recursively as follows. First let C({0}, Ng) = Nr. Then, if C(V,W) is defined and
(V! W), (V,W’) are the children of (V,W), let C(V',W) := C(V,W) \ E(V,W)+
and C(V,W’) := C(V,W) N W'. Note that C(V,W) N Ngq is a disjoint union of
C(V',W)N Nq and C(V,W')N Nq. In particular, the chambers associated with the
leaves of T'(¢) induce invariant partitions of Nq and N (but not of Ng, in general).

To the node V' in Teq(¢) associate the chamber C(V) := C(V,V). Then the
chambers C(V') provide partitions of Ng and N. More precisely, given a node V'
in Tyeq(¢), the chambers C'(V'), where V ranges over ancestors of V' in Tyeq(¢), give
partitions of V/' N Ng and V' N N. Assume that the genealogy of V' is the chain of
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nodes in Tyeq(9):
0 =V CViC - CVi=V. (4.1)
For 1 < k < s pick x, € MR, such that E(V3)* = {z; = 0}. Then

C(V)=V\|JEW)* =vn [ ){z# 0}
k=1 k=1

Observe that V is the smallest rational subspace of Ng that contains the subspaces
{E(Vi) h<h<s-

Lemma 4.4. Let V be a node in Treq(¢) and let v € C(V'). Then there is no rational
1nwvariant proper subspace U C V' containing v.

Proof. Let ([l) be the genealogy of V' in Tyeq(¢), with corresponding zj, € Mg, and
let U be the smallest rational invariant subspace of V' containing v. Pick r maximal
such that V, C U. Assume r < s. Since v € C(V), z,41(v) # 0. By arguments
as in the proof of Lemma one can show that E(V,41) C U. Since V,4; is the
smallest rational invariant subspace of V' that contains V, + E(V,41), V41 C U,
which contradicts the maximality of ». Hence U = V', which proves the lemma. [

The chamber C(V') admits a further decomposition into 2° connected components.
Given 21,...,x5 € Mg and n = (n1,...,75) € {£1}%, let C(V,n) := VN {njz; >
0}; we will refer to n as a sign vector. Then the C(V,n) are clearly disjoint and
C(V) = U, eqze1y: €(V,n). Hence the chamber components C(V,7), where V' ranges
over the nodes in Ty.q(¢) and 1 over possible sign vectors, provide partitions of N
and Nq. Moreover, if the eigenvalues of ¢ are positive, then each C'(V,n) is invariant
under ¢. If V' is an ancestor of V', say V' = Vy, we will refer to ' :== (n1,...,n¢) as
the truncation of n = (M1,..., Ny Ns'41y- -+ Ns)-

For each (V,n), let E(V,n) := E(V)NC(V,n) and let e(V,n) € Nr be a generator
for the ray E(V,n).

4.4. Adapted systems of cones. We define an adapted system of cones to be a
collection of simplicial cones o(V,n), where V' runs over the vertices in Tyeq(¢) and
1 over possible sign vectors, that satisfies the following conditions
(A1) Into(V,n) C C(V,n) and o(V,n) spans V
(A2) if V! C V is the parent of V in Tyeq(¢), and 7 : V. — V/V' is the natural
projection, then o(V,n) NV’ = o(V’ 1), where 1/ is the truncation of 7, and
m(e(V,n)) € Intw(o(V, 7).
We say that the system is rational if all cones o(V,n) are rational, and invariant
(under ¢) if each cone is invariant (under ¢).

Lemma 4.5. Let S = {o(V,n)} be an adapted system of cones and v € N. Then
there exists ng = no(v) € N such that for n > ng, ¢"(v) € a(V,n) for some o(V,n) €
S. More precisely, if v e C(V,n), then ¢"(v) € a(V,n) for n > ny.

Proof. From Section we know that v is contained in a unique chamber C(V,n).
Let 0 = 0(V,n) be the corresponding cone in S. Assume that [ is the genealogy
of V in Tieq(¢). Write ey, := e(Vi,n*) and oy, := o(Vi, n*), where n* is the truncation
of 7. Then for 1 < k < s the cone o € S is of the form o = op_1 + Z;nz’“l Rvy,
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where 09 = {0}, my, := dimV}, — dim V4, and v ; € C(Vi,n*), so that ¢ = o5 =
> or=1 2 Ryvy ;. Moreover, mi(ex) € Intmy(3 7% Ry ;), where mp @ Vi —
Vie/Vi—1 is the natural projection.

For 1 < k < s, choose x, € V* such that (xy,ej) = ;. We identify (V/Vi_1)*
with {£& € V* | {|y,_, = 0}. Then ¢* induces a self-mapping on (V/Vj_1)* and
if (¢,ex) > 0, then ¢*"¢ — Rixp when n — oo. Indeed, the subspace Rz C
(V/Vi—1)* is the one with the largest eigenvalue.

The dual cone ¢* of ¢ is of the form ¢* = >}, Z;n:kl R &y, where &, €
ker(V* — V) = (V/Vip—1)* and (& j,ex) > 0; in particular, ¢*"&, ; — Ryxy.

Since v € C(V,n), (xg,v) > 0 for 1 < k < s. By continuity, there is an ng =
no(v) € N such that (& ;,¢"(v)) = (¢*"E&kj,v) > 0for 1 <k <s,1<j <my and
n > ng. Thus ¢"(v) € Into for n > ny. O

Remark 4.6. As can be seen from the proof, the first part of Lemma L0 remains valid
if some of the eigenvalues (u;)i", of ¢ are negative as long as |p1| > -+ > |pm| > 0.
In general, if v € C(V), then, for n > ng, ¢"(v) € o(V,n) for some sign vector n. O

Lemma 4.7. Let S = {o(V,n)} be an adapted system of cones. Then there exists
ng € N, such that S is invariant under ¢"™ for n > ng.

Proof. To each node V' in Tieq(¢), we will associate ng(V') € N, such that ¢™(o(V,n)) C
o(V,n) for all sign vectors n and n > ng(V'); this is done by induction over Tyeq(¢).

Set no({0}) = 0. Let V be a node in Tyeq(¢), such that ng(V’) is defined, where
V' is the parent of V. Pick a sign vector n and let ' be the truncation. Then
o(V,n) is of the form o(V,n) = o(V',n/) + ZT:ll R v; for some v; € C(V,7n) and
m' = dimV — dimV’. From Lemma we know that for 1 < j < m/, there
is a ng(v;) € N, such that ¢"(v;) € Into(V,n) for n > ng(vj). Let no(V,n) =
maxi<j<m 10(v;), and let ng(V') := max(no(V’), max, no(V,7)).

Finally, set ng := maxyer,_,(¢) 0(V). Then ng has the desired properties. O

Remark 4.8. Following the proof of Lemma L, one can prove that if the eigenvalues
of ¢ satisfy |u1| > -+ > |um| > 0, then there exists ny € N, such that, for n > ng,
¢"™ maps each o(V,n) into o(V,n') for some sign vector 7'. O

The idea of the proofs of Theorems A and A’ is to refine A so that it contains an
invariant (under ¢ and ¢", respectively) adapted system of rational cones. Then the
results follow by applying Corollary E23l First we need a few preliminary results on
adapted systems of cones.

Lemma 4.9. Let A be a fan in N and write V. = Ngr. Gwen o' € A, let V' =
spano’, and let m : V. — V/V' be the natural projection. Then for each v € V/V’,
there exists at most one o, such that o 2 ¢’ and v € Int w(o). If A is complete, there
s a unique such o.

Proof. Let Star(c’) :={oc € A| o 2 o'}. Then A, :={n(0) | o € Star(c’)} is a fan
in N/N’, where N’ is the sublattice of N generated by o/ N N, see [Fill, Section 3.1].
If A is complete, then so is A,. Moreover, there is a one-to-one correspondence
between the cones in Star(c’) and A,/. In particular there is a most one cone in
Star(c’), such that m(o) contains v, and if A is complete there exists such a . O
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Lemma 4.10. Any fan A admits at most one rational adapted system of cones.

Proof. Let V be a node in Tyeq(¢) and let n be a sign vector. Note that the collection
of cones in A that are contained in V form a fan. Suppose that ¢’ € A spans V' C V.
Then, by Lemma EET, there is at most one cone o € A, such that ¢/ C ¢ C V and
such that Int (o) 3 w(e(V,n)), where 7 is the projection 7 : V. — V/V'. Thus there
is at most one cone o(V,n) satisfying (A1) and (A2). O

Lemma 4.11. Let A be a fan in N that contains an adapted system of cones, and
let A’ be a refinement of A. Assume that for every invariant rational subspace V
of NR, there is a subfan of A" whose support equals V. Then A’ contains a unique
adapted system of cones.

Proof. Uniqueness follows from Lemma Assume that A and A’ satisfy the
assumption of the lemma and let S = {o(V,7n)} denote the adapted system of cones
in A.

We will inductively find cones 7(V,n) € A’ that satisfy (Al) and (A2). Let
7({0},n) := {0}. Let V be a node in Tyeq(¢), with parent V', and n a sign vector.
Assume that we have found 7" = 7(V’, 1), where 7/ is the truncation of 7. Note that
o(V',n') then is the smallest cone in A that contains 7/. Let 7 : V — V/V’ be the
natural projection. Since there is a subfan of A’ with support V', Lemma asserts
that there is a unique cone 7 C V, that contains 7" and satisfies that w(e(V,n)) €
Int 7(7). In particular, there is v € 7, such that 7w(v) = 7w(e(V,n)), that is, v =
e(V,n) + v for some v' € V'. Thus span 7 contains F (V') and since it also contains
V' and is rational, it follows that span7 contains V. Hence 7 spans V.

It remains to show Int 7 C C(V,n). Let X be the collection of cones in A’ that are
contained in o(V,7n) and that contain 7/. Using the notation of the proof Lemma FE9,
note that {7 (o) | o € ¥} is a subfan of A/ whose support equals 7(c(V,7)). Arguing
as in that proof, since 7(e(V,n)) € w(c(V,n)), there is a unique cone & in ¥ such
that 7(e(V,n)) € Intw(5). On the other hand, by Lemma B3 7 is the unique
cone in A’ that satisfies 7(e(V,n)) € Int7(r). Hence 7 = & C o(V,n) and, since
spanT = spano(V,n), Int7 C Into(V,n) € C(V,n). To conclude, 7(o,V) := 7
satisfies (A1) and (A2).

]

Lemma 4.12. There exists a rational adapted system of cones.

Proof. We will construct rational cones o(V,n) inductively. First let o({0},n) = {0}.
Now let V' # {0} be a node in Tieq(¢) and 7 a sign vector. Assume that o(V', 1)
is constructed, where V' is the parent of V in Tyq(¢) and 7' is the truncation of
n. Moreover, assume that the genealogy of V' = V; is given by ([Il). Write m’ :=
dimV —dim V' and V = V' +V, and pick # € Mg, such that E(V)L = {z = 0} and
z(e(V,n)) > 0. For 1 <i < m/, pick §; € V, such that e(V,7) € Int 2?11 R, 3; and
x(8;) > 0. Next, let v; be a rational perturbation of

e(vla 771) + -+ e(‘/s—la T]s_l) + 6(‘/8, TIS) + gia (42)

where n* are truncations of = n°. Since V is rational, we can find arbitrarily
small such perturbations. Note that, provided the perturbation is small enough,
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v; € C(V,n). Finally, let o(V,n) :=a(V', 1) + ZZI R v;. If the perturbations v; of
([£2) are small enough, then o(V,n) satisfies properties (A1) and (A2). O

4.5. Invariant adapted systems of real cones. In this section we will construct
a real (not necessarily rational) invariant adapted system of cones G = {I'(V,n)}.
Later, in Section EE8, we will perturb the cones in G into rational cones.

Let (Tl be the genealogy of V' in Tieq(¢) and pick a sign vector n € {%1}°.
For 1 < k < s, let #* be the truncation of 1, e, := e(Vi,n*) with corresponding
eigenvalue vy, and my, := dim V}, — dim V;,_1. Moreover, choose nonzero eigenvectors
ek, labeled so that v 1 > -+ > v, and e = €1, and Vj, = Vi1 @ Vk, where
Vi = @;1]‘1 Re;m.

Given parameters d1,02,...,0s > 0 and €9,...,65 > 0, let 74 := 1 and ~; :=
€9 ---¢p for k > 2. Further, for 1 <k <sand 1 <17 < my set

V1, = el + 0101 (4.3)

Uk =e1+ 2  en + o+ 22 Py jensy + 22 Py (e + Oklny) ik >1 0 (4.4)

where
- {ek2+---+ek,i—ek7,~+1 if 1 <i<my

€2+t epmy if ¢ = my
Here 9y, 1 should be interpreted to be equal to —ey, 2 if mj > 2 and 0 otherwise. Note
that vy ; € Vi and 0 ; € TN/k Also note that vy ; and vy ; depend on the sign vector
n, since ey, do. Finally note that > "% Ry (ey + dx0x ;) is a simplicial real cone in Vi
of dimension m;, = dim Vk containing ey in its interior.

Now let
k my my
T(Vion™) :=> Y Rywj; =T(Vec, 1" ) + > Ruvg; C Vi
i=1i=1 i=1

Observe that T'(Vy, n*) N Vi_1 = T'(Vi—1, n* 1), since the coefficients of e, in Uk are
positive for 1 <1 < my.

To show that I'(V,n) = I'(Vs, n®) satisfies properties (A1)-(A2), let us give a dual
description of I'(V,n) in V' = V,. Let {zy;}1<r<s1<j<m, be the basis of V* dual
to {ek,it1<k<si<i<m,, S0 that (z¢;,er;) = 1if £ =k and j =i and (¢ ;,er;) = 0
otherwise. Write x; := /1.

For1</<j<s, letay;= 6£_+11 : --ej_l, and let

€rj =070+ w0 — (appi1Teer + -+ agsas),
where
: Tpo+2xps+ o+ 2 2wy — 2 ey 1< G <my
g&j = . mg—2 3 —
Tgo+2rp3+ -+ 2 To,my, if j =my
Here &71 should be interpreted as —xy o if my > 2 and 0 otherwise.
A computation yields that (& j,vx;) > 0if £ = k and i« = j and (& j,vk:) = 0
otherwise, so that the dual cone I'(V,n)* =>"7_, z;n’:fl R & ;(n).
We claim that ¢ maps the open rays R vy 1,...,Rivsm, into IntT'(V, 7).
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To prove the claim, observe first that

<§8,j7 ¢(U8,i)> = 22_8'78(”8 + (és,jy ¢(7~)s,i)>)7 (4.5)
where
Vs + 4 2™ 2 if i = j = m,
(Esjr 0(Us)) = & Vs + o+ 27 g if i = j < m

Vso+ -+ 21_211371 — 21_111371_,_1 if i # j; here I = min(i, j)

Here the second line should be interpreted as 0 if i = j = 1. Now, the right hand
side of (BCH) is strictly positive, since vg > vg59 > -+ > v . Moreover, for £ < s,

(&0, d(vsi)) = 22y (g — 27wy — - = 26FISy ) - 2fF LTS ),

which is strictly positive since v; > -+ > vs.

To conclude, (& ;,¢(vs;)) > 0 for 1 < ¢ < sand 1 < j < my, and thus we have
proved that ¢(R%v,;) lies in the interior of I'(V,7). In particular, by induction,
I'(V,n) is invariant under ¢.

4.6. Preparation of the fan. In order to prove Theorems A and A’, we first refine
A so that for each rational invariant subspace V', that is, each node in Tyq(¢), there
is a subfan of A whose support is V. In particular, A is complete. This is possible
to do since the rational rays are dense in V.

Next, we refine A so that it contains an adapted system of cones. This can be
done as follows. Let S be a rational adapted system of cones; its existence being
guaranteed by Lemma Let Ag be the fan generated by the cones in S, and
let A’ be a fan that refines both A and As. Then by Lemma EETI, A’ contains an
adapted system of cones.

Finally, by Lemma [[2] we can refine A’ so that it becomes regular and projective.
The resulting fan will contain a unique adapted system of cones by Lemma EETTl

4.7. Proof of Theorem A’. Let A’ be the refined fan in Section EEH and let
S = {o(V,n)} denote the unique adapted system of cones. Consider p € A’(1). Ac-
cording to Lemma and Remark EEQ there is ng(p) € N, such that, for n > ng(p)
Int ¢"(p) € Int o(V, ) for some o(V,n) € S. Let ng := max,eas(1) n0(p)-

Moreover, according to Lemma and Remark L8 for n > ng (with ngy possibly
replaced by a larger number), V' a node in Tyq(¢), and 1 a sign vector, ¢"(co(V,n)) C
a(V,n') for some sign vector 7. Now Corollary and Remark 4] assert that ™ :
X (A") --» X(A') is 1-stable for n > ng, which concludes the proof of Theorem A’.

4.8. Incorporation of cones. We will now prove Theorem A. Given a fan A in N,
replace A by the refined fan in Section and let S = {o(V,n)} be the (unique)
adapted system of cones in A. We will construct and incorporate into A a rational
invariant adapted system of cones 7 = {7(V,n)}. This will be done inductively over
the reduced tree Tieq(¢). In fact, the cones in 7 will be perturbations of the cones
in the real invariant adapted system G constructed in Section

Let V be a node in Tieq(¢), with genealogy [EI). We will construct and in-
corporate cones 7(V,n) for all possible sign vectors n by inductively constructing
and incorporating cones 7, = 7(Vj,n*) for 1 < k < s and all possible choices
of sign vectors n*. Let us use the notation from Section EEH, and write I' :=
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I'(Vi, k). Moreover, let wy := e + 27 1yeq + -+ + 227 Py, _jep_1 + 22 Fyep and
ug :=e; + -+ 22_kfyk_1ek_1 + 21_kfykek, so that wp = up_1 + 22_kfykek.

Write o1 := o(V1, 771). Note that w; = e; € Int oq1. By continuity we can choose d;
so that v1; = wy + 0171, € Int oy for 1 <4 < my. Moreover, since the rational rays
are dense in V; we can find rational perturbations ¢ ; of vy ;, such that t;; € Int oy
for 1 < i < my. Write t~17i = 11 — V14- Now let 71 = Z?lll R+t17i. Then 7
is a perturbation of I'y and if tNLZ- are small enough, then ¢(Int7y) C Int7y, since
¢(IntT';) C IntT'y. Also, 7 satisfies properties (Al) and (A2) in Section EE4l and
uy € Int 7y. By Lemmas[[Tland [L3 we can find a simplicial and projective refinement
A’ of A, such that 7 € A’ and all cones in A that do not contain o are in A’. Replace
A by A’, and S by the unique adapted system of cones in A’. Such a system exists
by Lemma ETT1

Write oy := o(Va,1?), let m; : Nr — Nr/Vi be the natural projection, and let
Star(m) :== {0 € A | o D 11}. Since uy € Int 7y, | Star(7)| contains a neighborhood
of uy in Ngr. In particular, wy = uj + 72e2 is in the interior of some cone in Star(7y)
if 7 is small enough and since 7 (e2) € m1(02) this cone has to be os.

By continuity, we can choose 3 small enough so that ve ; = wa+027202,; € Int oo for
1 <7 < mgy. Furthermore, we can replace vy ; by rational perturbations t2; € Int o9;
write 75271- = v —t2;. Now let 7 := 7y —I—Z?fl Rty ;. Since the rays vp; are mapped
into the interior of I'y, ¢(t2,;) € Int 75 if 2?271- are small enough. Hence 7 is invariant.
If #5; are small enough, T satisfies properties (A1) and (A2) in Section B4l and
up = €1 + 27 'y9ey € Int 7. Since to; € Intog, dop N 0o = 71, which is a face of
both o9 and 75. Thus, according to Lemmas [Tl and [[3] we can find a simplicial and
projective refinement A’ of A, such that 7, € A’ and that the cones in A that do
not contain o9 are in A’. Replace A by such a refinement and S by the new adapted
system.

Inductively assume that we have constructed and incorporated 7;_1 so that ug_1 =
e+ -+ 22 Fy sen_o + 227 Py, _1ep_1 € Int7,_1; here e9,...,e5_1, and hence
Y2, .-, Yk—1, are chosen along the way. By arguments as above we can choose ¢, and
hence vy, such that wy = ug_1 +22_k7kek € Int o, where oy, := o(Vj, nk). Moreover,
we can choose d; and Ek,i so that t;; == v, + Ekn’ are rational and contained in oy.
Now, let 7, := 11+ > oot Rty If t~k7i are small enough 7 is invariant and satisfies
properties (A1) and (A2) in Section B4l and uy € Int7g. Since do N O = Tp_q is
a face of both o and 7, we can incorporate 7 into A according to Lemma [LT] and
the resulting fan will have a unique adapted system of cones. By Lemma [[3 we can
choose the resulting fan projective.

We need to show that when incorporating a cone 7(V,7n) € T into A we do not
affect the cones in 7' already created and incorporated.

Assume that 7 := 7(V,7n) is in A. We claim that 7 is not affected when incor-
porating 7. By Lemma [Tl it suffices to show that 7 does not contain o. If V=V
but 7 = (71,...,7s) # n, then 7 2 o, since Int 7 C C(V,7) and Into C C(V,n) are
contained in different components of C'(V).

Therefore assume that V # V. Let {0} = Vo - Vi - V. = V be the genealogy
of V. By assumption we have constructed and incorporated cones T(T?k,ﬁk) for
1 < k < r and all possible sign vectors #*. Thus V is not among the XA/k By
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construction, 7 is of the form 7 = Y ;_; > "% R+fk,2-, where fk,i € C(Vk) l*jrom
Lemma B4 we know that the smallest rational invariant subspace containing ¢;; is
Vj. Thus, the smallest rational invariant subspace of Ng containing a given face of

7 is among the ‘A/k Since the smallest rational invariant subspace containing o is V,
we conclude that ¢ is not a face of 7. The claim is proved.

4.9. Incorporation of rays. Let A be the fan in Section and let 7 be the
rational adapted systems of cones. We claim that we can find a further refinement
A’ of A such that if p is a ray in A’ and n > 1, then either ¢"(p) € A'(1) or ¢"(p)
is contained in a cone in 7. By Corollary f: X(A") --» X(A') is then 1-stable,
which proves Theorem A.

It remains to prove the claim. Since, by Lemma LD, every ray in A is eventually
mapped into one of the cones in 7 it is sufficient the add to A the finitely many rays
of the form ¢"(p), where p € A(1) and ¢"(p) is not contained in any of the cones
in 7.

Let p/ = ¢"(p) be such a ray, and let ¢’ be the unique cone in A, such that
Int o’ C Into’. By Lemma [[Jl we can find a refinement A’ of A, such that p/ €
A'(1), (A'(1)\ p/) € A(1), and such that if 0 € A does not contain ¢’, then o €
A’. Moreover, by Lemma [[3, A’ can be chosen projective. Note that since p’ by
assumption is not contained in any cone in 7, ¢’ cannot be a face of a cone in 7.
Thus all cones in 7 are in A’.

This proves the claim and thus concludes the proof of Theorem A.

5. PROOF OF THEOREM B

Let £ C Ng be the one-dimensional eigenspace of ¢ associated with p;, choose
x € Mg such that E+ = {z = 0}, and let e be a generator of E, such that z(e) > 0.

By techniques as in Sections and we can choose v1,...,v,,, € N, such that
z(v;) > 0 for 1 < j < m, e lies in the interior of the cone o := 377" | Ryvj, and o
is invariant. Let A := {Z;nzl R.€jvjte;efo,—1,41)»- Then A is a complete simplicial
fan. The cones o and Z;n:l R, (—vj) are invariant and all rays in A are mapped into
one of these cones. Thus Corollary asserts that f : X(A) --» X(A) is 1-stable.
Also, A admits a strictly convex A-linear support function of the form max; ]v;], SO
X (A) is projective, see Section This completes the proof of Theorem B.

We have the following partial analogue of Theorem A’.

Theorem B’. Let f : (C*)™ — (C*)™ be a monomial map. Suppose that the
associated eigenvalues satisfy |pi| > |p2| > |pus| > -+ > |pm| > 0. Then there

exist a complete simplicial fan A’ and ng € N, such that X(A') is projective and
[ X(A) --» X(A) is 1-stable for n > ny.

Proof. Let E, e, and = be as in the proof of Theorem B. Choose v1,...,v,, € N,
such that z(v;) > 0 and e € Int 377"} Ry v;, and construct a fan A as in the proof of
Theorem B. Then there is an ng € N, such that, for n > ng, the union of ZTzl Rv;
and Z;n:l R, (—vj;) is invariant under ¢"; in particular ¢" maps all rays in A into
one of these cones. Now Theorem B’ follows from Corollary O
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Remark 5.1. If we could find a regular refinement of A’, not containing any rays
in £+, then we would get a smooth toric variety on which f™ would be 1-stable in
Theorem B’. However, when regularizing A’ it seems difficult to control where the
new rays appear; compare Section Bl O

By slightly modifying the proof of Theorem A, we could solve the problem of
making f : X(A) --» X(A) 1-stable in more general situations than the one in
Theorem A. Let us mention a result in the same vein as Theorem B.

Proposition 5.2. Let A be a (complete) simplicial fan in a lattice N, and let f :
X(A) --» X(A) be a monomial map. Assume that the associated eigenvalues satisfy
H1 > g = e 2 gy > 0.

Let E be the one-dimensional eigenspace of ¢ associated with py, and let e be a
generator of E. Assume that there are cones o*,0~ € A(m), such that E+ No* =
{0} and +e € Into™®, and moreover that E+ contains no rays of A. Then there
exists a simplicial refinement A" of A such that f: X(A') --» X(A') is 1-stable. If
A is projective, then A’ can be chosen projective.

Proof. Following Sections and we can find rational invariant simplicial cones
77 and 7~ of dimension m, such that 7* C ¢* and +e € Int 7. By Lemma [Tl we
can incorporate 7% into A without adding extra rays.

Since, by assumption, E+ contains no rays of A, all rays of A are eventually
mapped into 7 or 7. Following Section we can incorporate the rays ¢"(p),
where p € A and ¢"(p) is not contained in 7%, into A. More precisely, we can find a
simplicial refinement A’ of A, such that 7 € A’ and each ray in A’ is either mapped
onto another ray in A’ or into 7 or 77. Now f : X(A’) --» X(A') is 1-stable by
Corollary

By Lemma X (A') in Proposition can be chosen projective, provided that
A is projective, cf. Section O

Observe, in light of the above proof, that the way of constructing the fan A’ in
the proof of Theorem A is in general far from being optimal in the sense that in
general we refine A more than necessary. Indeed, if we would follow the strategy in
Section Bl we would typically start out by adding rays inside the hyperplane E+, see
Section

6. EXAMPLES

We now illustrate our method for proving Theorem A in dimensions 2 and 3. We
also give examples illustrating the difficulties when the eigenvalues have different
signs.

Let p be an eigenvalue of ¢ : N — N. Recall that either u € Z or u ¢ Q. Suppose
that p is a simple eigenvalue, with corresponding one-dimensional eigenspace F. If
u € Z, then E and E' are rational. On the other hand if u ¢ Q, then E is not
rational.

Example 6.1. Let N = Z? and let ¢ : N — N be a Z-linear map with eigenvectors
w1 > pe > 0 and corresponding eigenspaces Fq, Es. Then either pi,pue € Z or
11, o ¢ Q. In the first case, 1 and Es are both rational and thus 7'(¢) and Tyeq ()
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are given by:

(‘/@7‘/12) Vo
(V1,Vi2) (Vo, V2) and %1 Vo,

- N

(Viz, Vi2) (Vi,W1) (Va, Va) Vo, Vo) Via

respectively. Here V7 = ., E; for 7 C {1,2}; in particular Vj = {0} and V12 = Ngr.
In the second case, neither £ nor FEjs is rational and so the trees are given by:

(Vo, V12) Vo
(Vi2, V12) (Vo V) Via
In the first case the associated chambers are given by C(V}) = {0}, C(V;) = V;\ {0},

and C'(Vi2) = Nr \ (V1 UV2), In the second case, C'(Vp) = {0} and C(Vi2) = Nr '\ Va.
Note that NN C(Vi2) = N\ {0}. O

Example 6.2. Let N = Z3 and let ¢ : N — N be a Z-linear map with eigenvalues
p1 > po > ps > 0. Depending on whether or not the eigenvalues are rational, there
are five possibilities of Tyeq(¢), of which three are the following

Vi Vo Vo (6.1)
Vo V3
Via3 Vi Vas Via3

Vig Vs Viags
Here we have used the notation from Example Bl The first tree in (1)) is obtained
when all eigenvalues are integers, the second when 3 is the unique integer eigenvalue,
and the last tree when all eigenvalues are irrational. If u; or uo is the unique integer
eigenvalue we get a tree of the same structure as the second tree, but with Viq
replaced by V7 or Vig, respectively, and V3 replaced by Vas or Vs, respectively. O

Via

Vi

If some of the eigenvalues of ¢ are negative, stabilization may not be possible, as
the following example shows.

Example 6.3. Let N = Z3 and assume that ¢ : N — N is a Z-linear map with real,
irrational eigenvalues satisfying p; > —pe > —ps > 0 and py + p2 + p3 < 0. Then
there is no simplicial fan A on which ¢ is torically stable.

Indeed, let A be any complete simplicial fan and let o1 € A be a cone containing
a nonzero eigenvector associated to the eigenvalue p; in its interior. Assume that
¢ is torically stable on A. It follows from Corollary that ¢(o1) C o1. Since the
only invariant rational subspaces of Ng are are {0} and Ng, 01 must have dimension
three. By Proposition Bl this contradicts the assumption g1 + ps + p3 < 0. O
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A concrete example is given by ¢ associated to the matrix A = Ay = { [1) —12
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Then py ~ 3.1997, ps =~ —3.0855, and us ~ —1.1142.
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