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Abstract. We prove global effective versions of the Briançon-Skoda-Huneke theo-
rem. Our results extend, to singular varieties, a result of Hickel on the membership
problem in polynomial ideals in Cn, and a related theorem of Ein and Lazarsfeld
for smooth projective varieties. The proofs rely on known geometric estimates and
new results on multivariable residue calculus.

1. Introduction

Let V be a reduced algebraic subvariety of CN of pure dimension n. If F1, . . . , Fm
are polynomials in CN with no common zeros on V , then by the Nullstellensatz there
are polynomials Qj such that

∑
FjQj = 1 on V . It was proved by Jelonek, [23], that

if Fj have degree at most d, then one can find Qj such that

deg (FjQj) ≤ cmdµdegV

on V , where cm = 1 if m ≤ n, cm = 2 if m > n, degV means the degree of the
closure of V in PN , and, throughout this paper,

µ := min(m,n).

This result generalizes Kollár’s theorem1, [24], for V = Cn and does not require any
smoothness assumptions on V . The bound is optimal2 when m ≤ n and almost
optimal when m > n. However, in view of various known results in the case when
V = Cn, one can expect sharper degree estimates if the common zero set of the
polynomials Fj behaves nicely at infinity in PN .

More generally one can take arbitrary polynomials Fj of degree at most d and look
for a solution Qj to

(1.1) F1Q1 + · · ·+ FmQm = Φ

on V with good degree estimates, provided that the polynomial Φ belongs to the
ideal (Fj) generated by the Fj on V . It follows from a result of Hermann, [20], that
one can choose Qj such that deg (FjQj) ≤ deg Φ + C(d,N), where C(d,N) is like

2(2d)2N−1 for large d, thus doubly exponential. It is shown in [28] that this estimate
cannot be substantially improved for V = Cn. However, under additional hypotheses
on Φ and the common zero set of the Fj , much sharper estimates are possible. In the
extreme case when the polynomials Fj have empty common zero set, even at infinity,
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a classical result of Macaulay, [27], states that when V = Cn, one can solve (1.1)
with polynomials Qj such that degFjQj ≤ max(deg Φ, d(n+1)−n), cf. Example 1.3
below.

By homogenization, this kind of effective results can be reformulated as geometric
statements: Let z = (z0, . . . , zN ), z′ = (z1, . . . , zN ), let fi(z) := zd0Fi(z

′/z0) be the d-

homogenizations of Fi, and let ϕ(z) := zdeg Φ
0 Φ(z′/z0). Then there is a representation

(1.1) on V with deg (FjQj) ≤ ρ if and only if there are (ρ − d)-homogeneous forms
qi on PN such that

(1.2) f1q1 + · · ·+ fmqm = zρ−deg Φ
0 ϕ

on the closure X of V in PN . As usual, we can consider fj as holomorphic sections of

(the restriction to X of) the line bundle O(d)→ PN , zρ−deg Φ
0 ϕ as a section of O(ρ),

etc, so that (1.2) becomes a statement about sections of line bundles.

In this paper we present global effective versions of the Briançon-Skoda-Huneke
theorem:

Let V be a germ of a reduced analytic set of pure dimension n at the origin in CN .
There is a number µ0 such that if a1, . . . , am, φ are germs of holomorphic functions
at 0, ` ≥ 1, and |φ| ≤ C|a|µ+µ0+`−1 in a neighborhood of 0 in V, where C is a positive
constant and |a|2 = |a1|2+· · ·+|am|2, then φ belongs to the ideal (a1, . . . , am)` ⊂ O0.3

If V is smooth, then one can take µ0 = 0; this is the classical Briançon-Skoda
theorem, [13]. The general case was proved by Huneke, [22], by purely algebraic
methods. An analytic proof appeared in [7].

Given polynomials F1, . . . , Fm on V , let fj denote the corresponding sections of
O(d)|X , and let Jf be the coherent analytic sheaf onX generated by fj . Furthermore,
let c∞ be the maximal codimension of the so-called distinguished varieties of the sheaf
Jf , in the sense of Fulton-MacPherson, that are contained in

X∞ := X \ V,
see Section 5. If there are no distinguished varieties contained in X∞, then we
interpret c∞ as −∞. It is well-known that the codimension of a distinguished variety
cannot exceed the number m, see, e.g., Proposition 2.6 in [16], and thus

(1.3) c∞ ≤ µ.

We let Zf denote the zero variety of Jf in X.
Our first result involves the so-called (Castelnuovo-Mumford) regularity, regX, of

X ⊂ PN , see Section 2.9 for the definition.

Theorem A. Assume that V is a reduced algebraic subvariety of CN of pure dimen-
sion n and let X be its closure in PN .

(i) There exists a number µ0 such that if F1, . . . , Fm are polynomials of degree ≤ d
and Φ is a polynomial and

(1.4) |Φ|/|F |µ+µ0 is locally bounded on V,

then there are polynomials Q1, . . . , Qm such that (1.1) holds on V and

(1.5) deg (FjQj) ≤ max
(
deg Φ+(µ+µ0)dc∞degX, (d−1) min(m,n+1)+regX

)
.

3Often in the literature µ+µ0 is replaced by a constant independent of the number of generatorsm.
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(ii) If V is smooth, then there is a number µ′ such that if F1, . . . , Fm are polynomials
of degree ≤ d and Φ is a polynomial and

(1.6) |Φ|/|F |µ is locally bounded on V,

then there are polynomials Q1, . . . , Qm such that (1.1) holds on V and

(1.7) deg (FjQj) ≤ max
(
deg Φ + µdc∞degX + µ′, (d− 1) min(m,n+ 1) + regX

)
.

If X is smooth, then one can take µ′ = 0.

There are analogous results for powers (Fj)
` of (Fj), see Theorem 6.6.

Note that if there are no distinguished varieties of Jf contained in X∞, then dc∞ = 0.

If Zf ∩Xsing = ∅, then the conclusion in (i) holds with µ0 = 0, see Remark 6.3.

Remark 1.1. The number µ0 that appears in the proof of Theorem A below only
depends on the intrinsic variety X and not on the particular embedding i : X → PN ,
cf. Remark 6.5.

�

Example 1.2. If we apply Theorem A to Nullstellensatz data, i.e., Fj with no common
zeros on V and Φ = 1, we get back the optimal result of Jelonek, except for the
annoying factor µ + µ0 in front of dc∞ . On the other hand, (µ + µ0)dc∞ < dµ if
c∞ < µ and d is large enough. �

Example 1.3. If fj have no common zeros on X (so that in particular dc∞ = 0), then
we can find a solution to F1Q1 + · · ·+ FmQm = 1 on V such that

degFjQj ≤ max(deg Φ, (d− 1)(n+ 1) + regX).

If X = Pn, then regX = 1 and hence we get back the Macaulay theorem, cf.,
above. �

Remark 1.4. Assume that X ⊂ PN is Cohen-Macaulay; for instance, X is a complete
intersection or even X = PN . Then regX ≤ degX−(N−n), see, [18, Corollary 4.15].
If in addition m ≤ n, then the last entries in (1.5) and (1.7) can be omitted, i.e., we
get the sharper estimates deg (FjQj) ≤ deg Φ + (m+µ0)dc∞degX and deg (FjQj) ≤
deg Φ +mdc∞degX +µ′ in (i) and (ii), respectively, see the comment right after the
proof of Theorem A in Section 6.

�

Remark 1.5. If X is smooth, then

regX ≤ (n+ 1)(degX − 1) + 1;

this is Mumford’s bound, see [26, Example 1.8.48]. �

Example 1.6. For V = Cn, Theorem A gives the estimate

(1.8) deg (FjQj) ≤ max
(
deg Φ + µdc∞ , dmin(m,n+ 1)− n

)
.

This estimate was proved by Hickel, [21], but with the term min(m,n+ 1)dµ rather
than our µdc∞ . The ideas in [21] are similar to the ones used in [16]. If one applies the
geometric estimate in [16], rather than the (closely related) so-called refined Bezout
estimate by Fulton-MacPherson that is used in [21], one can replace the exponent µ
by c∞. This refinement was pointed out already in Example 1 in [16]. �
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We have the following more abstract variant of Theorem A. It is a generalization
to nonsmooth varieties of the geometric effective Nullstellensatz of Ein-Lazarsfeld
in [16] (Theorem 7.1 below). Let X be a reduced projective variety. Recall that
if L → X is an ample line bundle, then there is a (smallest) number νL such that
H i(X,L⊗s) = 0 for i ≥ 1 and s ≥ νL, cf., [26, Ch. 1.2]. When X is smooth, by
Kodaira’s vanishing theorem, νL is less than or equal to the least number σ such
that Lσ ⊗K−1

X is strictly positive, where KX is the canonical bundle. In particular,
if V = Cn, i.e., X = Pn, then νO(1) = −n.

Theorem B. Let X be a reduced projective variety of pure dimension n. There is
a number µ0, only depending on X, such that the following holds: Let f1, . . . , fm be
global holomorphic sections of an ample Hermitian line bundle L→ X, and let φ be
a section of L⊗s, where

(1.9) s ≥ νL + min(m,n+ 1).

If

(1.10) |φ| ≤ C|f |µ+µ0 ,

then there are holomorphic sections qj of L⊗(s−1) such that

(1.11) f1q1 + · · ·+ fmqm = φ.

If X is smooth we can choose µ0 = 0, see Theorem 7.1.

Let Jf be the ideal sheaf generated by fj and assume that the associated distin-
guished varieties Zk have multiplicities rk, cf., Section 5. If we assume that φ is in

∩kJ (Zk)
rk(µ+µ0), where J (Zk) is the radical ideal associated with the distinguished

variety Zk, then (1.10) holds, and hence we have a representation (1.11).

Example 1.7. Let X be the cusp {z2
1z
p−2
0 − zp2 = 0} ⊂ P2, where p > 2 is odd. Then

the sections f = z2 of L := O(1)|X and φ = zs−1
0 z1 of L⊗s satisfy |φ| ≤ C|f |

p−1
2 on X

as soon as s ≥ 2. However, φ is not in (f) on X at the singular point {z1 = z2 = 0}
nor at {z0 = z2 = 0} (unless p = 3).

One can check that γp = (p− 1)/2 is the smallest integer such that, for any choice
of tuples g1, . . . , gm of holomorphic germs at {z1 = z2 = 0}, |ψ| ≤ C|g|1+γp implies
that the germ ψ is in the local ideal (gj) at {z1 = z2 = 0}, in other words γp is
the Briançon-Skoda number at {z1 = z2 = 0}. Moreover, one can check that the

Briançon-Skoda number at {z0 = z2 = 0} is d (p−3)(p−1)
p−2 e, where dae denotes the

smallest integer ≥ a, see, e.g., [31]. Therefore, µ0 must be at least

ap := max

(
p− 1

2
,
⌈(p− 3)(p− 1)

p− 2

⌉)
.

In fact, in view of [31, Section 2] and the proof below one finds that Theorem B holds
with µ0 = ap in this case.

From [18, Proposition 4.16] we know that νL ≤ regX − 2 = p− 2. Since µ0 ≥ ap,
it follows that if our given f and φ satisfy (1.10), then s ≥ p − 1 ≥ νL + 1, so the
hypothesis (1.9) in Theorem B is vacuous in this case.

�

In particular, Example 1.7 shows that µ0 can be arbitrarily large.

The starting point for the proofs of Theorems A and B is the framework for solving
division problems using residue theory introduced in [2], and further developed in
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[5, 32, 33]: Assume that X is a smooth projective variety and that f1, . . . , fm are
sections of an ample line bundle L→ X with common zero set Zf . From the Koszul
complex generated by the fj one defines a current Rf with support on Zf and taking
values in a direct sum of negative powers of L. If φ is a section of L⊗s such that
the current Rfφ vanishes, and if in addition L⊗s is positive enough, so that certain
cohomology classes on X vanish, and thus a certain sequence of ∂̄-equations can be
solved on X, one ends up with a holomorphic solution q = (q1, . . . , qm) to (1.11).

The main novelty in this paper is an extension of this framework to singular X,
see Section 4. Given an embedding i : X → Y of X into a smooth manifold Y and
a locally free resolution on Y of OY /JX , where JX is the ideal sheaf associated
with X, we construct an intrinsic principal value current ω on X, following [6],
and a “product current” Rf∧ω. If L, fj , and φ admit extensions to Y , which is
the situation in Theorem A with Y = PN , we can proceed basically as before: If
Rf∧ωφ = 0, which is indeed an intrinsic condition on X, and certain cohomology
classes on Y vanish, we end up with a holomorphic solution to (1.11); this is how we
prove Theorem A. By a small variation one can make this procedure more intrinsic
and assume vanishing of cohomology classes on X rather than on Y .

For the proof of Theorem B we cannot use this strategy directly, since we have
no a priori extensions of L, fj , and φ to a smooth manifold Y . However, for a fixed
L it is possible to find an embedding i : X → Y such that L extends. Given such
an embedding, without assuming holomorphic extensions of fj and φ, we construct

a variant R̃ ∧ ω on X of Rf∧ω, again with the property that if R̃∧ωφ = 0 and the
crucial cohomology classes vanish on X we get a holomorphic solution to (1.11).

To verify that the currents Rf ∧ ωφ and R̃∧ωφ vanish we need to analyse the
singularities of ω. For Theorem A it is enough to consider a fixed ω, coming from the
embedding of X in PN and a choice of resolution of OY /JX , whereas for Theorem B
we need to control the singularities for ω coming from any possible embedding i :
X → Y . To this end we need a new uniform estimate, Proposition 2.5.

In Section 2 we provide necessary background on residue currents. The proofs of
our main theorems together with some further results and comments are gathered in
Sections 5 to 7.

Acknowledgement: We would like to thank the referee for careful reading and
many valuable comments and suggestions that have substantially improved the ex-
position of the paper.

2. Some preliminaries on residue theory

Most of the results in this section can be found in the papers [1, 4, 6, 7, 8, 9].
More precisely, the material in Section 2.1 is taken from [9, Sections 2-3]. Sections
2.2-2.4 are mostly based on the first three sections in [8] and Section 2.9 is based on
Section 6 in loc. cit. For Section 2.5, see [4, Section 4], and for Sections 2.6 and 2.8,
see Sections 1 and 3, respectively, in [6]. Finally Section 2.7 is based on [7, Section 4].
Proposition 2.5 is new; the proof is given in Section 3.

Throughout this paper X is a reduced projective variety of pure dimension n. The
sheaf C`,k of currents of bidegree (`, k) on X is by definition the dual of the sheaf
En−`,n−k of smooth (n − `, n − k)-forms on X. If i : X → Y is an embedding in a
smooth manifold Y of dimension N , then En−`,n−k can be identified with the quotient

sheaf EYn−`,n−k/Ker i∗, where Ker i∗ is the sheaf of forms ξ on Y such that i∗ξ vanish
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on Xreg. It follows that the currents τ in C`,k can be identified with currents τ ′ = i∗τ
on Y of bidegree (N − n+ `,N − n+ k) that vanish on Ker i∗.

Given a holomorphic function f on X, we have the principal value current [1/f ],
defined for instance as the limit

lim
ε→0

χ(|f |2/ε) 1

f
,

where χ(t) is the characteristic function of the interval [1,∞) or a smooth approxi-
mand of it. The existence of this limit for a general f relies on Hironaka’s theorem

that ensures that there is a modification π : X̃ → X such that π∗f is locally a mono-
mial. It also follows that the function λ→ |f |2λ(1/f), a priori defined for Reλ� 0,
has a current-valued analytic continuation to Reλ > −ε, and that the value at λ = 0
is precisely the current [1/f ], see, for instance, [11] or [12]. Although less natural at
first sight, it turns out that this latter definition via analytic continuation is often
much more convenient. The same idea will be used throughout this paper. For the
rest of this paper we skip the brackets and just write 1/f . It is readily checked that

(2.1) f
1

f
= 1, f ∂̄

1

f
= 0.

2.1. Pseudomeromorphic currents. In [9] we introduced the sheaf PM of pseu-
domeromorphic currents on X in the case X is smooth. The definition when X
is singular is identical. In this paper we will use the slightly extended definition
introduced in [6]: We say that a current of the form

ξ

sα1
1 · · · s

αn−1

n−1

∧∂̄ 1

sαn
n
,

where s is a local coordinate system and ξ is a smooth form with compact support, is
an elementary pseudomeromorphic current. The sheaf PM consists of all possible (lo-
cally finite sums of) push-forwards under a sequence of maps Xm → · · · → X1 → X,
of elementary pseudomeromorphic currents, where Xm is smooth, and each mapping

is either a modification, a simple projection X̂ × Y → X̂, or an open inclusion, i.e.,
Xj is an open subset of Xj−1.

The sheaf PM is closed under ∂̄ (and ∂) and multiplication by smooth forms. If
τ is in PM and has support on a subvariety V and η is a holomorphic form that
vanishes on V , then η∧τ = 0. We also have the
Dimension principle: If τ is a pseudomeromorphic current on X of bidegree (∗, p)
that has support on a variety V of codimension > p, then τ = 0.

If τ is in PM and V is a subvariety of X, then the natural restriction of τ to the
open set X\V has a canonical extension as a principal value to a pseudomeromorphic
current 1X\V τ on X: Let h be a holomorphic tuple with common zero set V . The

current-valued function λ 7→ |h|2λτ , a priori defined for Reλ � 0, has an analytic
continuation to Reλ > −ε and its value at λ = 0 is by definition 1X\V τ . One
can also take a smooth approximand χ of the characteristic function of the interval
[1,∞) and obtain 1X\V τ as the limit of χ(|h|2/ε)τ when ε → 0. It follows that
1V τ := τ − 1X\V τ is pseudomeromorphic and has support on V . Notice that if α is

a smooth form, then 1V α∧τ = α∧1V τ. Moreover, If π : X̃ → X is a modification, τ̃

is in PM(X̃), and τ = π∗τ̃ , then

(2.2) 1V τ = π∗
(
1π−1V τ̃

)
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for any subvariety V ⊂ X. There is actually a reasonable definition of 1W τ for any
constructible set W , and

(2.3) 1W1W ′τ = 1W∩W ′τ.

Recall that a current is semi-meromorphic if it is the quotient of a smooth L-valued
form and a holomorphic section of L, for some line bundle L. We say that a current

τ is almost semi-meromorphic in X if there is a modification π : X̃ → X and a semi-
meromorphic current τ̃ such that τ = π∗τ̃ , see [6, Section 2]. Analogously we say
that τ is almost smooth if τ = π∗τ̃ and τ̃ is smooth. Any almost semi-meromorphic
(or smooth) τ is pseudomeromorphic.

2.2. Residues associated with Hermitian complexes. Assume that

(2.4) 0→ EM
fM−→ . . .

f3−→ E2
f2−→ E1

f1−→ E0 → 0

is a generically exact complex of Hermitian vector bundles over X and let Z be
the subvariety where (2.4) is not pointwise exact. The bundle E = ⊕Ek gets a
natural superbundle structure, i.e., a Z2-grading, E = E+ ⊕ E−, E+ and E− being
the subspaces of even and odd elements, respectively, by letting E+ = ⊕2kEk and
E− = ⊕2k+1Ek. This extends to a Z2-grading of the sheaf C•(E) of E-valued currents,
so that the degree of ξ ⊗ e is the sum of the current degree of ξ and the degree of
e, modulo 2. An endomorphism on C•(E) is even if it preserves degree and odd
if it switches degrees. The mappings f :=

∑
f j and ∂̄ are then odd mappings on

C•(E). We introduce ∇ = ∇f = f − ∂̄; it is just (minus) the (0, 1)-part of Quillen’s
superconnection D − ∂̄. Since the odd mappings f and ∂̄ anti-commute, ∇2 = 0.
Moreover, ∇ extends to an odd mapping ∇End on C•(EndE) so that

(2.5) ∇(αξ) = ∇Endα · ξ + (−1)degαα∇ξ
for sections ξ and α of E and EndE, respectively, and then ∇2

End = 0. In X \ Z we
define, following [8, Section 2], a smooth EndE-valued form u such that

∇Endu = I,

where I = IE is the identity endomorphism on E. We have that

u =
∑
`

u` =
∑
`

∑
k≥`+1

u`k,

where u`k is in E0,k−`−1(Hom(E`, Ek)) over X \ Z. Following [8]4 we define a pseu-
domeromorphic current extension U of u across Z, as the value at λ = 0 of the
current-valued analytic function

λ 7→ Uλ := |F |2λu,
a priori defined for Reλ � 0, where F is the tuple f1. In the same way we define
the residue current R associated with (2.4) as the value at λ = 0 of

λ 7→ Rλ := (1− |F |2λ)I + ∂̄|F |2λ∧u.

The existence of the analytic continuations follows from a suitable resolution X̃ → X,
see [8], see also Section 5 below. The current R clearly has support on Z, and

R =
∑
`

R` =
∑
`

∑
k≥`+1

R`k,

4The definition is the same when X is singular.
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where R`k is a Hom(E`, Ek)-valued (0, k − `)-current. The currents U ` and U `k are
defined analogously. Notice that U has odd degree and that R has even degree.
By the dimension principle, R`k vanishes if k − ` < codimZ. In particular, R0

0 =

(1 − |F |2λ)IE0 |λ=0 is zero, unless some components W of Z has codimension 0, in
which case R0

0 is the characteristic function for W times the identity IE0 on E0.
However, when we define products of currents later on, all components of Rλ may
play a role.

Since ∇EndU
λ = I −Rλ and ∇EndR

λ = 0 when Reλ� 0, we conclude that

(2.6) ∇EndU = I −R, ∇EndR = 0.

In particular, if ξ is a section of E, then

∇(Uξ) = ξ −R∧ξ.

Also, (2.6) means that, cf. (2.5),

f1U0
1 = IE0 , fk+1U0

k+1 − ∂̄U0
k = R0

k; k ≥ 1.

Notice that when φ is a section of E0, then R0φ = Rφ and U0φ = Uφ, and we will
often skip the upper indices.

Example 2.1 (The Koszul complex). Let f1, . . . , fm be holomorphic sections of a
Hermitian line bundle L → X. Let Ej be disjoint trivial line bundles with basis
elements ej and define the rank m bundle

E = (L−1 ⊗ E1)⊕ · · · ⊕ (L−1 ⊗ Em)

over X. Then f :=
∑
fje
∗
j , where e∗j is the dual basis, is a section of the dual bundle

E∗ = L⊗ (E1)∗⊕ · · ·⊕L⊗ (Em)∗. If S → X is a Hermitian line bundle we can form
a complex (2.4) with

E0 = S, Ek = S ⊗ ΛkE,

where all the mappings fk in (2.4) are interior multiplication δf by the section f .
Notice that

Ek = S ⊗ L−k ⊗ Λk(E1 ⊕ · · · ⊕ Em).

The superstructure of ⊕kEk in this case coincides with the natural grading of the
exterior algebra ΛE of E modulo 2.

Let us recall how the currents U0 and R0 are defined in this case. For simplicity
we suppress the upper indices throughout this example. We have the natural norm

|f |2 =
∑
j

|fj |2L

on E∗. Let σ be the section of E over X \ Z of pointwise minimal norm such that
f · σ = δfσ = 1, i.e.,

(2.7) σ =
∑
j

f∗j ej

|f |2
,

where f∗j are the sections of L−1 of minimal norm such that fjf
∗
j = |fj |2L.

Let us consider the exterior algebra over E ⊕ T ∗(X) so that dz̄j∧e` = −e`∧dz̄j
etc. Then, e.g., ∂̄σ is a form of positive degree. We have the smooth form

(2.8) u =
∑

uk, uk = σ∧(∂̄σ)k−1
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in X \ Z, and it admits a natural current extension U across Z, e.g., defined as the
analytic continuation of Uλ = |f |2λu to λ = 0. Furthermore, the associated residue
current R is obtained as the evaluation at λ = 0 of

Rλ := 1− |f |2λ + ∂̄|f |2λ∧u =

1− |f |2λ + ∂̄|f |2λ∧u1 + · · ·+ ∂̄|f |2λ∧umin(m,n) =: Rλ0 +Rλ1 + · · ·+Rλmin(m,n).

The current R was introduced in [1] in this form, much inspired by [29] where the
coefficients appeared. �

2.3. The associated sheaf complex. Given the complex (2.4) we have the asso-
ciated complex of locally free sheaves

(2.9) 0→ O(EM )
fM−→ . . .

f3−→ O(E2)
f2−→ O(E1)

f1−→ O(E0).

In this paper E0 is always a line bundle so that J := Im f1 is a coherent ideal sheaf
over X.

Consider the double sheaf complex M`,k := C0,k(E`) with mappings f and ∂̄. We
have the associated total complex

. . .
∇f−→Mj

∇f−→Mj−1
∇f−→ . . . ,

where Mj = ⊕`−k=jM`,k. If X is smooth, then M`,k is exact in the k-direction
except at k = 0, and the kernels there are O(E`). Notice that if φ is in O(E`) and
f `φ = 0, then also ∇fφ = 0. We therefore have a natural mapping

(2.10) Hj(O(E•))→ Hj(M•).
By standard homological algebra, (2.10) is in fact an isomorphism. We can also
consider the corresponding sheaf complexesME`,k := E0,k(E`),MEj = ⊕`−k=jME`,k of

smooth sections, and the analogue of (2.10) is then an isomorphism as well.

Lemma 2.2. Assume that X is smooth. If φ is a holomorphic section of E0 that
annihilates R, i.e., Rφ = 0, then φ is in J .

Proof. In fact, by (2.6) we have that

∇f (Uφ) = φ−Rφ = φ.

Since X is smooth, (2.10) is an isomorphism, and thus locally φ = f1ψ for some
holomorphic ψ, i.e., φ is in J . �

The smoothness assumption is crucial, as the following example shows.

Example 2.3. Let f be one single function. Then the residue condition Rφ = 0 means
that ∂̄(φ/f) = 0. Thus ψ = φ/f is in the Barlet-Henkin-Passare class, cf., [19] and
[6]; however in general ψ is not (strongly) holomorphic, i.e., in general φ is not in
J = (f). �

We shall now see that if X is smooth and there is a global current solution to
∇W = φ, then there is also a global smooth solution. For further reference however
we need a slightly more general statement about the associated complex of global
sections. LetM`,k(X) andME`,k(X) be the double complexes of global current valued

and smooth sections, respectively, and letM•(X) andME• (X) be the associated total
complexes. Notice that we have natural mappings

(2.11) Hj(ME• (X))→ Hj(M•(X)), j ∈ Z.
The following result is standard, but we include a proof for the reader’s convenience.
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Proposition 2.4. If X is smooth, then the mappings (2.11) are isomorphisms.

Proof. By the de Rham theorem, the natural mappings

(2.12) Hk(E0,•(X,E`))→ Hk(C0,•(X,E`)), k ∈ Z,

are isomorphisms; these spaces are in fact naturally isomorphic to the cohomology
groups Hk(X,O(E`)). The short exact sequence

0→ME• (X)→M•(X)→M•(X)/ME• (X)→ 0

gives rise to, for each fixed `, the long exact sequence

. . .→ Hk−1(E0,•(X,E`))→ Hk−1(C0,•(X,E`))→

Hk−1(C0,•(X,E`)/E0,•(X,E`))→ Hk(E0,•(X,E`))→ . . . ,

and since (2.12) are isomorphisms the cohomology in the k-direction ofM`,k(X)/ME`,k(X)
is zero. By a simple homological algebra argument, using that the double complexes
involved are bounded, it follows that

Hj(M•(X)/ME• (X)) = 0

for each j. The proposition now follows from the long exact sequence

. . .→ Hj−1(ME• (X))→ Hj−1(M•(X))→
Hj−1(M•(X)/ME• (X))→ Hj(ME• (X))→ . . . .

�

2.4. BEF-varieties and duality principle. We now consider the case when the
locally free complex (2.9) is exact, i.e., a resolution of the sheaf O(E0)/J . We will
refer to a (locally free) resolution O(E0)/J together with a choice of Hermitian met-
rics on the corresponding vector bundles Ek as a Hermitian (locally free) resolution.
Let Zbef

k be the set where the mapping fk does not have optimal rank. Then

· · ·Zbef
k+1 ⊂ Zbef

k ⊂ · · · ⊂ Zbef
1 = Z,

and these sets are independent of the choice of resolution; we call them the BEF
varieties5. It follows from the Buchsbaum-Eisenbud theorem that codimZbef

k ≥ k.
If moreover J has pure dimension, for instance J is the radical ideal sheaf of a
pure-dimensional subvariety, then codimZbef

k ≥ k + 1 for k ≥ 1 + codimJ , see [17,
Corollary 20.14].

Since (2.9) is exact, by [8, Theorem 3.1], we have that R` = 0 for each ` ≥ 1,
i.e., R = R0. Moreover, there are almost semi-meromorphic Hom(Ek, Ek+1)-valued
(0, 1)-forms αk+1, that are smooth outside Zbef

k+1, such that

Rk+1 = αk+1Rk

there, see [8, Section 3]. From [8, Theorem 1.1] we also have the

Duality principle: If X is smooth and (2.9) is a resolution of the sheaf O(E0)/J ,
then φ ∈ J if and only if Rφ = 0.

5The sets Zbef
k are the zero varieties of certain Fitting ideals associated with a free resolution

of OX/J ; the importance of these sets (ideals) was pointed out by Buchsbaum and Eisenbud in
the 70’s. We have not seen any notion for these sets in the literature, and “Buchsbaum-Eisenbud
varieties” is already occupied for another purpose, so we stick to BEF as an acronym for Buchsbaum-
Eisenbud-Fitting.
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That is, the annihilator ideal sheaf of the residue current R is precisely the ideal
sheaf J generated by f1.

If for instance f1 = (f1, . . . , fm) defines a complete intersection, i.e, codimZ = m,
then the Koszul complex is a resolution of J and hence the duality principle states
that the annihilator of the residue current in Example 2.1 is the ideal itself.

2.5. Tensor products of complexes. Assume that (Eg• , g) and (Eh• , h) are Her-

mitian complexes. We can then define a complex (Ef• = Eg• ⊗ Eh• , f), where

Efk =
⊕
i+j=k

Egi ⊗ E
h
j ,

and f = g + h, or more formally f = g ⊗ IEh + IEg ⊗ h, such that

(2.13) f(ξ ⊗ η) = gξ ⊗ η + (−1)deg ξξ ⊗ hη.

Notice that Ef0 is the line bundle Eg0 ⊗ Eh0 . If g1O(Eg1) = Jg and h1O(Eh1 ) = Jh,

then f1O(Ef1 ) = Jg + Jh. One extends (2.13) to current-valued sections ξ and η,
and deg ξ then means total degree. We write ξ · η, or sometimes ξ∧η to emphasize
that the sections may be form- or current-valued, rather than ξ ⊗ η, and define

(2.14) η · ξ = (−1)deg ξdeg ηξ · η.

Notice that

∇f (ξ · η) = ∇gξ · η + (−1)degξξ · ∇hη.
Let ug and uh be the corresponding End(Eg)-valued and End(Eh)-valued forms, cf.,
Section 2.2. Then uh∧ug is a End(Ef )-valued form defined outside Zg∪Zh. Following
the proof of Proposition 2.1 in [9] we can define End(Ef )-valued pseudomeromorphic
currents

Uh∧Rg := Uh,λ∧Rg|λ=0, Rh∧Rg := Rh,λ∧Rg|λ=0.

We have that, cf., (2.6) and [4, Section 4],

∇End,f (Uh∧Rg + Ug) = IEf −Rh∧Rg.

In general, the current Rh∧Rg will change if we interchange the roles of g and h.
In particular we can form the product Eh• ⊗ Eh• of Eh• by itself. In this case we

consider (2.14) as an identification, so that, for instance,

(Eh• ⊗ Eh• )1 = Eh1 ⊗̇Eh0 , (Eh• ⊗ Eh• )2 = Eh2 ⊗̇Eh0 + Λ2Eh1 ,

etc, where ⊗̇ denotes symmetric tensor product. In general, ξ · ξ = 0 if ξ has odd
(total) degree.

We can just as well form a similar product of more than two complexes, and in
particular, we can form the product (Eh)⊗k = Eh⊗Eh⊗· · ·⊗Eh of a given complex
by itself.

2.6. The structure form ω on a singular variety. Let i : X → Y be an embed-
ding of X in a smooth projective manifold Y of dimension N , let JX be the radical
ideal sheaf associated with X in Y , and let S → Y be an ample Hermitian line

bundle. Moreover, let Ejk be disjoint trivial line bundles over Y with basis elements
ek,j . There is a (possibly infinite) resolution, see, e.g., [26, Ch.1, Example 1.2.21],

(2.15) . . .
g3−→ O(E2)

g2−→ O(E1)
g1−→ O(E0)
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of O(E0)/JX = OX , where Ek is of the form

Ek =
(
E1
k ⊗ S−d

1
k
)
⊕ · · · ⊕

(
Erkk ⊗ S

−drkk
)
, E0 = E0

0 ' C,

Eik are trivial line bundles, and

gk =
∑
ij

gkijek−1,i ⊗ e∗k,j

are matrices of sections

gkij ∈ O(Y, Sd
j
k−d

i
k−1);

here e∗k,j are the dual basis elements. There are natural induced norms on Ek.

The associated residue current6 R is annihilated by all smooth forms ξ such that
i∗ξ = 0. Let Ω be a global nonvanishing (dimY, 0)-form with values in K−1

Y . By
[6, Proposition 16] there is a (unique) almost semi-meromorphic current ω on X,
smooth on Xreg, such that

(2.16) i∗ω = R∧Ω.
We say that ω is a structure form on X.

As an immediate consequence of the existence of ω, the product α∧R is well-
defined for all (sufficiently) smooth forms α on X. If α = i∗a, we let α∧R := a∧R.
This product only depends on α, since if i∗a = 0, then a∧R∧Ω = i∗(i

∗a∧ω) = 0 and
hence a∧R = 0 since Ω 6= 0.

Let Xk be the BEF varieties of JX , and define

X0 = Xsing, X` = XN−n+`, ` ≥ 1.

Since JX has pure dimension it follows that

(2.17) codimXk ≥ k + 1,

and in particular, Xn = ∅. These sets X` are actually independent of the choice of
embedding of X, cf., the comment after Lemma 3.1.

Let g` be the restriction to X of gN−n+`, and let ∇g = g − ∂̄ on X. Let E` =
EN−n+`|X . Then ω = ω0+ω1+· · ·+ωn, where ω` is a (n, `)-form onX taking values in
E`, and ∇gω = 0 on X. There are almost semi-meromorphic Hom(E`, E`+1)-valued
(0, 1)-forms α`+1 such that

(2.18) ω`+1 = α`+1ω`

there. In fact, α` is the pullback to X of the form αN−n+` associated with a resolution
of OY /JX in Y , cf., Section 2.4.

Since ω is almost semi-meromorphic, it has the the standard extension property,
SEP on X, which means that 1Wω = 0 for all varieties W ⊂ X of positive codimen-
sion.

The singularities of a structure form ω only depend on X, in the following sense:

Proposition 2.5. Let X be a projective variety. There is a smooth modification

τ : X̃ → X and a holomorphic section η of a line bundle S → X̃ such that the
following holds: If X → Y is an embedding of X in a smooth manifold Y ,

(
O(Eg•), g

)
is a Hermitian locally free resolution of OY /JX , and ω is the associated structure

form on X, then ητ∗ω is smooth on X̃. We can choose η to be nonvanishing in

X̃ \ τ−1Xsing.

6The fact that (2.15) may be infinite causes no problem, since, for degree reasons, U and R only
contain a finite number of terms.
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After further resolving we may assume that η is locally a monomial in X̃.
The proof is postponed to Section 3. Since ω is almost semi-meromorphic, the

pullback τ∗ω is well-defined; this follows from the proof below, cf., also the remark
after Definition 12 in [6].

2.7. Local division problems on a singular variety. Still assume that we have
the embedding i : X → Y , where Y is smooth, and the complex (Eg• , g) over Y

corresponding to a Hermitian locally free resolution of OY /JX . If (Ef• , f) is an
arbitrary Hermitian complex over Y we have the complex EF = Ef ⊗ Eg with
mappings F = f + g as in Section 2.5. Let F k = F |Ek

. Since Rf∧Rg = Rf,λ∧Rg|λ=0

and Uf∧Rg = Uf,λ∧Rg|λ=0, cf., Section 2.6, these currents only depend on the values
of f on X. From Section 2.5 we also have that

(2.19) ∇End,FU = I −Rf∧Rg

if U = Uf∧Rg + Ug. If Φ is a (locally defined) holomorphic function in Y and
Rf∧RgΦ = 0, then, following the proof of Lemma 2.2, there is a local holomorphic

solution v = vf + vg in EF1 = Ef1 ⊗E
g
0 +Ef0 ⊗E

g
1 to g1vf + f1vg = F 1v = Φ. Notice

that in fact Rf∧RgΦ only depends on the class φ of Φ in OY /JX = OX , so Rf∧Rgφ
is well-defined for φ in OX . We can define the intrinsic residue current

Rf∧ω := Rf,λ∧ω|λ=0

on X. Since i∗R
f,λ∧ω = Rf,λ∧Rg∧Ω when Reλ� 0, we conclude that

i∗R
f∧ω = Rf∧Rg∧Ω.

Since Ω is nonvanishing, Rf∧ωφ = 0 implies that Rf∧Rgφ = 0 and thus we have:

Proposition 2.6. Assume that (Ef• , f) is a Hermitian complex on X. If φ is a

holomorphic section of Ef0 on X such that Rf∧ωφ = 0, then locally φ is in the image
of f1 on X.

2.8. A fine resolution of O on X. It was proved in [6], see [6, Theorem 2], that
there exist sheaves Ak of (0, k)-currents on X with the following properties:
(i) Ak is equal to E0,k on Xreg,
(ii) A = ⊕kAk is closed under multiplication by smooth (0, ∗)-forms,
(iii) ∂̄ maps Ak to Ak+1 and if E is any vector bundle over X, then the sheaf complex

0→ O(E)→ A0(E)
∂̄−→ A1(E)

∂̄−→ A2(E)
∂̄−→ . . .

is exact.

By standard sheaf theory we have canonical isomorphisms

Hk(X,O(E)) =
Ker

(
Γ(X,Ak(E))

∂̄→ Γ(X,Ak+1(E))
)

Im
(
Γ(X,Ak−1(E))

∂̄→ Γ(X,Ak(E))
) , k ≥ 1.

2.9. Subvarieties of PN . Let X be a subvariety of Y = PN , S = O(1), and let
(O(E•), g) be a resolution of O(E0)/JX as in (2.15). Then, see [8, Section 6],

Ek =
(
E1
k ⊗O(−d1

k)
)
⊕ · · · ⊕

(
Erkk ⊗O(−drkk )

)
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and gk = (gkij) are matrices of homogeneous forms with deg gkij = djk − dik−1. We
choose the Hermitian metrics so that

|ξ(z)|2Ek
=

rk∑
j=1

|ξj(z)|2|z|2d
j
k

if ξ = (ξ1, . . . , ξrk) is a section of Ek. Moreover,

Ω = const×
∑

(−1)jzjdz0∧ . . .∧d̂zj∧ . . .∧dzN

in PN .
Let JX denote the homogeneous ideal in the graded ring S = C[z0, . . . , zN ] that

is associated with X, and let S(`) denote the module S where all degrees are shifted
by `. Then (O(E•), g) corresponds to a free resolution

(2.20) . . .→ ⊕iS(−dik)→ . . .→ ⊕iS(−di2)→ ⊕iS(−di1)→ S

of the module S/JX . Conversely, any such free resolution corresponds to a sheaf
resolution (O(E•), g).

Notice that the ideal JX has pure dimension in S, so that in particular the ideal
associated to the origin is not an associated prime ideal. From Corollary 20.14 in [17],
applied to S, it follows that the BEF-variety of dimension zero must vanish; therefore
the depth of S/JX is at least 1, and hence a minimal free resolution of S/JX has
length ≤ N . Recall that the (Castelnuovo-Mumford) regularity of a homogeneous
module with free graded resolution (2.20) is defined as maxk,i(d

i
k − k), see, e.g., [18,

Ch. 4]. The regularity regX of X ⊂ PN is defined as the regularity of the ideal JX ,
which is, cf., [18, Exercise 4.3], equal to reg (S/JX) + 1; note that regX depends
on the embedding of X in PN . If the minimal free resolution of S/JX has length
M ≤ N we conclude that

(2.21) regX = max
k≤M

(dik − k) + 1.

The regularity of X is also equal to the (Castelnuovo-Mumford) regularity of the
sheaf IX , see again [18, Exercise 4.3].

3. Singularities of the structure form

In this section we provide a proof of Proposition 2.5. Let i : X → Y be an embed-
ding where Y is projective and smooth of dimension N . Recall that the kth Fitting
ideal (sheaf) of OY /JX , Fitt0g

k, is the ideal generated by the rk-minors of (the
matrix) gk in a locally free resolution

(
O(Eg•), g

)
of OY /JX , where rk is the generic

rank of gk, see, e.g., [17]. It is well-known that these ideals are independent of the
resolution

(
O(Eg•), g

)
; the zero variety of Fitt0g

k is just the BEF-variety Zbef
k , cf.,

Section 2.4. Since X has pure dimension, Fitt0g
k is trivial when k ≥ N , cf., (2.17).

Let p = N − n be the codimension of X in Y . For ` = 1, . . . , n − 1, let a` be the
pullback (restriction) of Fitt0g

p+` to X. It follows that these ideals only depend on
the embedding i : X → Y . We call them the structure ideals on X associated with
the given embedding.

Given a Hermitian resolution
(
O(Eg•), g

)
of OY /JX , let σk be the pointwise mini-

mal inverse of gk. If (after resolution of singularities) Fitt0g
k is principal, generated

by the holomorphic section s, Lemma 2.1 in [8] asserts that sσk is smooth. Thus
i∗σp+k =: σk is well-defined and semi-meromorphic on X.
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Lemma 3.1. Assume that a` and a′` are the structure ideals associated with the
embeddings i : X → Y and i′ : X → Y ′, respectively. Then for each ` ≥ 1,

(3.1) a` · · · an−1 ⊂ a′`.

Since the zero set of ak+1 is contained in the zero set of ak it follows that the zero
set of a`, which is X` as defined in Section 2.6, coincides with the zero set of a′`. It

follows that X` is independent of the embedding.

Proof. Given i : X → Y and a point x ∈ X there is a neighborhood V ⊂ X such that
the restriction to V of i factorizes as

(3.2) V j→ Ω̂
ι→ Ω̂× BM =: Ω,

where j is a minimal (and therefore basically unique) embedding at x, BM ⊂ CMw
is a ball centered at 0, ι is the trivial embedding z 7→ (z, 0) if z are coordinates in

Ω̂, and Ω is a neighborhood of x in Y . Let now
(
O(E ĝ•), ĝ

)
be a minimal Hermitian

resolution of OΩ̂/JV at x in Ω̂ and assume that p̂ is the codimension of V in Ω̂. Thus
p = p̂+M , where as before p is the codimension of X in Y .

Let (Ew, δw) be the Koszul complex generated by w = (w1, . . . , wM ), cf., Exam-
ple 2.1. The sheaf complex associated with the product complex E ĝ ⊗ Ew with
mappings g = ĝ(z) + δw, cf., Section 2.5, provides a (minimal) resolution of OΩ/JX
in Ω, see [4, Remark 8]. Notice that gp+` is the mapping

(E ĝp̂+` ⊗ E
w
M )⊕ (E ĝp̂+`+1 ⊗ E

w
M−1)⊕ · · · ⊕ (E ĝp̂+`+M ⊗ E

w
0 )

ĝ(z)+δw−→

(E ĝp̂+`−1 ⊗ E
w
M )⊕ (E ĝp̂+` ⊗ E

w
M−1)⊕ · · · ⊕ (E ĝp̂+`+M−1 ⊗ E

w
0 ).

Since w = 0 on X, the restriction of gp+` to X splits into the direct sum of the
separate mappings

ĝp̂+`+j : E ĝp̂+`+j ⊗ E
w
M−j → E ĝp̂+`+j−1 ⊗ E

w
M−j , j = 0, 1, . . . ,M.

Since the optimal rank rp+` of gp+` is attained at every point on Xreg, it follows that

rp+` = r̂p̂+` + r̂p̂+`+1 + · · ·+ r̂p̂+M , where r̂k is the generic rank of ĝk. Therefore, the

restriction to X of Fitt0g
p+` is equal to (the restriction to X of) the product ideal

Fitt0ĝ
p̂+` · Fitt0ĝ

p̂+`+1 · · ·Fitt0ĝ
p̂+`+M .

Since X has pure dimension, Fitt0ĝ
k is trivial for k ≥ p̂+ n = dim Ω̂, and thus if â`

are the structure ideals associated with j : V → Ω̂,

(3.3) a` = â` · · · âmin(n−1,`+M).

Hence

(3.4) â` · · · ân−1 ⊂ a` ⊂ â`.

By the same argument, since i′ factorizes as V j→ Ω̂
ι′→ Ω̂ × BM ′ , at least if V is

small enough, a′` = â` · · · âmin(n−1,`+M ′), and so (3.4) holds at x for a′` instead of a`.
Combining we see that (3.1) holds in a neighborhood of x. Since x ∈ X is arbitrary,
the inclusion holds globally on X. �

Lemma 3.2. There is a smooth modification τ : X̃ → X and a holomorphic section

η0 of a line bundle S0 → X̃, which is nonvanishing in X̃\τ−1Xsing, with the following
properties: If i : X → Y is an embedding, dimY = N , p = N − n, and

(
O(Eg•), g

)
is

a Hermitian locally free resolution of OY /JX , then:
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(i) all the ideals τ∗a`, ` = 1, . . . , n− 1, are principal,

(ii) the subbundles Im τ∗i∗gp+` ⊂ τ∗i∗Ep+`−1, ` = 1, . . . , n− 1, a priori defined over

X̃ \ τ−1X`, all have holomorphic extensions to X̃,

(iii) if ω = ω0 + · · ·+ ωn is the induced structure form, then η0τ
∗ω0 is smooth.

For the proof we will need the following, probably well-known, result.

Lemma 3.3. Let E,Q be holomorphic vector bundles over X and let g : E → Q
be a holomorphic morphism. Let Z ⊂ X be the analytic set where g does not have

optimal rank. There is a (smooth) modification π : X̃ → X such that the subbundle

π∗Im g ⊂ π∗Q, a priori defined in X̃ \ π−1Z, has a holomorphic extension to X̃.

Proof. Let G : Q → F be a morphism such that F is a direct sum of line bundles,
say S1, . . . , Sr, and

O(F ∗)
G∗−→ O(Q∗)

g∗−→ O(E∗)

is exact, cf., [6, Proposition 3.3]; we write G = (G1, . . . , Gr), where Gj : Q→ Sj . It
then follows that

(3.5) E
g−→ Q

G−→ F

is pointwise exact in X \ Z. Therefore,

Im g = KerG = ∩jKer (Q
Gj→ Sj)

on X \ Z.
To prove that KerG has a holomorphic extension, let us first assume that F has

rank 1, so that G defines an ideal sheaf JG ⊂ OX . Also, let us assume that X
is connected; if not we just consider each connected component separately. If G is

identically zero we define K := Q. Otherwise let π : X̃ → X be the blow-up of
X along JG, let D be the corresponding divisor, and let O(−D) be the line bundle

defined by D. Then (the pullback to X̃ of) G is of the form G0G′, where G′ is a
nonvanishing mapping Q → F ⊗ O(−D) and G0 : F ⊗ O(−D) → F is generically
invertible. Thus K := KerG′ is a holomorphic subbundle of Q, and it generically
coincides with π∗KerG.

For the general case, we proceed by induction: We let K1 be an extension of KerG1

as above. Then we let K2 ⊂ K1 be an extension of the kernel of G2|K1 : K1 → S2.
Proceeding in this way we find subbundles Kr ⊂ · · · ⊂ K1 ⊂ Q, such that Kj

generically coincides with KerG1∩· · ·∩KerGj on X. In particular Kr coincides with
Im g generically on X, and so we have found a holomorphic extension of Im g. �

Proof of Lemma 3.2. Let us first fix an embedding i : X → Y and a Hermitian locally

free resolution
(
O(Eg•), g

)
, and show that there are τ : X̃ → X and η0 such that

(i) − (iii) hold. To begin with, by resolution of singularities, we can find a smooth

modification τ̂ : X̂ → X such that all τ̂∗a` are principal, so that (i) holds. Next,

by repeated use of Lemma 3.3 we can find a modification τ : X̃ → X̂ so that the
subbundles Im τ∗τ̂∗i∗gp+` have holomorphic extensions.

Let us now consider (iii). According to Proposition 3.3 in [6], ω0 is of the form

ω0 = σGh,

where h is holomorphic in the Barlet-Henkin-Passare sense, i.e., ∂̄h = 0 on X, G is
a holomorphic map from Ep to a vector bundle F , and σG : F → Ep is the inverse of
G in X \X1 with pointwise minimal norm, vanishing on the orthogonal complement



GLOBAL EFFECTIVE VERSIONS OF THE BRIANÇON-SKODA-HUNEKE THEOREM 17

of ImG. After further resolving we may assume that τ is chosen so that also (the

pullback of) the ideal aG is principal in X̃, say, generated by the section sG. Then,
by [8, Lemma 2.1], sGσG is smooth, cf., the text preceding Lemma 3.1. Since h is

meromorphic, there is a section η0 of a line bundle S0 → X̃ such that η0τ
∗ω0 is

smooth. We may also assume that τ−1Xsing is a divisor, so that τ∗h is meromorphic
with poles contained in τ−1Xsing. Since the variety of aG is contained in Xsing it

follows that we can choose η0 to be nonvanishing in X̃ \ τ−1Xsing.

We will prove that with the choice of τ : X̃ → X and η0 above, (i) − (iii), in
fact, hold for any choice of embedding and Hermitian resolution. We first keep the
embedding i : X → Y and vary the Hermitian resolution. Pick a Hermitian locally

free resolution
(
O(E g̃•), g̃

)
of OY /JX , fix a point x ∈ X, and choose a minimal

Hermitian locally free resolution resolution
(
O(Eg

′
• ), g′

)
at x.

Claim 1: (i)− (iii) hold for
(
O(E g̃•), g̃

)
at x if and only if they hold for

(
O(Eg

′
• ), g′

)
at x.
Since the choices of

(
O(E g̃•), g̃

)
and x are arbitrary, it follows that (i)− (iii) hold for

any Hermitian resolution since they hold for
(
O(Eg•), g

)
.

Proof of Claim 1. It is well-known that (Eg
′
• , g

′) is a direct summand in (E g̃• , g̃), i.e.,

there is a decomposition (E g̃• = Eg
′
• ⊕Eg

′′
• , g̃ = g′⊕g′′), where the complex (Eg

′′
• , g

′′) is
pointwise exact, see, e.g., [17, Theorem 20.2]. Since Im g̃p+` = Im (g′)p+`⊕Im (g′′)p+`

it follows that (the pullback to X̃ of) Im g̃p+` has a holomorphic extension if and
only if Im (g′)p+` has one, for ` ≥ 1, i.e., (ii) holds at x for one of the Hermitian

resolutions
(
O(E g̃•), g̃

)
and

(
O(Eg

′
• ), g′

)
if and only if it holds for the other one. From

this decomposition it also follows immediately that Fitt0g̃
p+` = Fitt0(g′)p+`, so that

the structure ideals a` are independent of the Hermitian resolution, cf. the beginning
of this section. In particular, (i) holds for one of the resolutions if and only if it holds
for the other one.

Let ω̃ and ω′ be the structure forms associated with
(
O(E g̃•), g̃

)
and

(
O(Eg

′
• ), g′

)
,

respectively. Then ω′ can be considered as a structure form associated with
(
O(E g̃•), g̃

)
but with a Hermitian metric that respects the direct sum, cf., [8, Section 4] and
(2.16). Moreover ω̃0 = πω′0, where π is the orthogonal projection onto the orthogo-
nal complement (with respect to the first metric) of Im g̃p+1 in Ep|X over X \X1, and
ω′0 = π′ω̃0, where π′ is the orthogonal projection onto the orthogonal complement
(with respect to the second metric) of Im (g′)p+1 in Ep|X over X \X1, cf., the proof
of Theorem 4.4 in [8]. If (ii) holds for (at least one of) the resolutions, then τ∗π and
τ∗π′ are smooth and it follows that η0τ

∗ω0 is smooth if and only if η0τ
∗ω′0 is, i.e.,

(iii) holds for one of the resolutions if and only if it holds for the other one.
�

Next, we will vary the embedding of X. Pick an embedding i] : X → Y ] and
x ∈ X. Then, in a neighborhood V of x, i] factorizes as (3.2), where now Ω is a
neighborhood of x in Y ].
Claim 2: (i) − (iii) hold for Hermitian resolutions of OΩ/JX at x if and only if

they hold for Hermitian resolutions of OΩ̂/JX at x.
Since i] and x are arbitrary and all embeddings of X factor through the minimal
embedding j in a small neighborhood of x it then follows that (i)− (iii) hold for any
embedding of X.
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Proof of Claim 2. Let
(
O(E ĝ•), ĝ

)
be a Hermitian minimal resolution of OΩ̂/JX .

Then, using the notation from the proof of Lemma 3.1,
(
O(E ǧ) := O(E ĝ)⊗Ew, ĝ+

δw =: ǧ
)

is a (minimal) resolution of OΩ/JX . From Claim 1 we know that it suffices

to show that (i)− (iii) hold for
(
O(E ĝ•), ĝ

)
if and only if they hold for

(
O(E ǧ•), ǧ

)
.

The residue current associated to
(
O(E ǧ•), ǧ

)
is equal to Rĝ(z) ∧ Rw, see [4, Re-

mark 4.6]. Since a product of local ideals is principal if and only each of its factors
is principal it follows from (3.3) that τ∗ǎ` are principal for ` = 1, . . . , n − 1 if and
only if τ∗â` are principal for ` = 1, . . . , n − 1, where ǎ` denotes the structure ideal

associated with i], i.e., (i) holds for
(
O(E ĝ•), ĝ

)
if and only if it holds for

(
O(E ǧ•), ǧ

)
.

Moreover, since the restriction of ǧp+` to X is a direct sum of restrictions of ĝp̂+`+j ,

cf., the proof of Lemma 3.1, it follows that (the pull-back to X̃ of) Im ǧp+`, ` ≥ 1,
have holomorphic extensions if and only if Im ĝp̂+`, ` ≥ 1, have, so that (ii) holds for

one of the resolutions
(
O(E ĝ•), ĝ

)
and

(
O(E ǧ•), ǧ

)
if and only if it holds for the other

one.
Since w are just the coordinate functions in CM , the Poincaré-Lelong formula

asserts that

RwM∧dw1∧ . . .∧dwM = (2πi)M [w = 0],

where [w = 0] is the current of integration over the affine set {w = 0}. Let N̂ =

dim Ω̂, and let ω̂ denote the structure form in V associated with Rĝ(z), so that
j∗ω̂ = Rĝ∧dz1∧ . . .∧dzN̂ . Then,

i∗ω̂ = ι∗R
ĝ∧dz1∧ . . .∧dzN̂ = Rĝ∧dz1∧ . . .∧dzN̂∧[w = 0] ∼

Rĝ∧Rw∧dw1∧ . . .∧dwM∧dz1∧ . . .∧dzN̂ ,

where ∼ denotes “equal to a nonzero constant times”. We conclude, cf., (2.16), that ω̂
is also a structure form associated with a Hermitian resolution of OΩ/JX . From the
proof of Claim 1 we know that that if we have two Hermitian resolutions of OΩ/JX ,
and that (ii) holds (for at least one of the resolutions), then (iii) holds for one of
the resolutions if and only it holds for the other resolution. Thus, provided that (ii)
holds, η0τ

∗ω̌0 is smooth if and only if η0τ
∗ω̂0 is, where ω̌0 denotes the structure form

associated with
(
O(E ǧ•), ǧ), i.e., (iii) holds for

(
O(E ĝ•), ĝ

)
if and only if it holds for(

O(E ǧ•), ǧ
)
.

�

This concludes the proof of Lemma 3.2: With the choice of τ : X̃ → X and
η0 made above, (i) − (iii) hold for all embeddings i : X → Y and all Hermitian
resolutions of OY /JX .

�

We can now conclude the proof of Proposition 2.5. Let τ : X̃ → X and η0 be
as in Lemma 3.2. Fix an embedding i′ : X → Y ′ and let s′1, . . . , s

′
n−1 be sections

on X̃ defining (the pull-back to X̃ of) the ideals a1, . . . , an−1. Let η` = s′` · · · s′n−1,

` ≥ 1, and η = η0η1 · · · ηn−1. Note that s′` is nonvanishing outside τ−1Xsing so that

η is nonvanishing in X̃ \ τ−1Xsing if η0 is. We claim that ητ∗ω is smooth for any
structure form ω on X. To see this, let ω be the structure form associated with an
embedding i : X → Y and a Hermitian locally free resolution

(
O(Eg•), g

)
. Assume

that (the pullbacks of) the corresponding structure ideals are defined by sections
s1, . . . , sn−1. Outside X`, ω` = α`ω`−1, where α` = 1Xreg ∂̄σ

`, cf., (2.18) and (the
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notation in) [8, Section 2]. By [8, Lemma 2.1], s`τ
∗σ` is smooth in X̃. Thus, since ω`

has the SEP, η0s1 · · · s`ω` is smooth, and so η0s1 · · · sn−1ω is smooth. By Lemma 3.1,
s` divides η` and hence the claim follows. This concludes the proof of Proposition 2.5.

Remark 3.4. Let ω′ be a structure form on X associated with a given embedding
i′ : X → Y ′. From the proof above, using the notation in the proof, it follows that
the section η′ := η0s

′
1 · · · s′n satisfies that η′τ∗ω′ is smooth. If i′ : X → Y ′ is the fixed

embedding in the last part of the proof, then

η = η0(s′1) · · · (s′`)` · · · (s′n−1)n−1 = (s′2) · · · (s′`)`−1 · · · (s′n−1)n−2η′.

In particular, η divides (η′)n−1.
�

4. Global division problems and residues

In this section we will discuss a method for solving division problems on X us-
ing residue theory, which originates from [2]. Throughout the section, (2.4) is a
generically exact Hermitian complex over X and φ is a global holomorphic section
of E0.

Let us first assume that X is smooth and that Rfφ = 0. As we have seen in
Section 2, then ∇f (Ufφ) = φ. If the double complex M`,k = C0,k(X,E`) is exact
in the k-direction except at k = 0, then it follows, cf., (2.10), that there is a global
holomorphic solution to f1q = φ. Let us see more precisely what is needed. Notice

that Ufmin(M,n+1)φ is automatically ∂̄-closed. Since X is smooth, by the Dolbeault

isomorphism for currents it is possible to successively solve the equations

∂̄wmin(M,n+1) = Ufmin(M,n+1)φ, ∂̄wk = Ufk φ− f
k+1wk+1, 1 ≤ k < min(M,n+ 1),

if

(4.1) Hk−1(X,O(Ek)) = 0, 1 ≤ k ≤ min(M,n+ 1).

Then
q := Uf1 φ− f

2w2

is a holomorphic solution to f1q = φ. To sum up we have

Proposition 4.1. Assume that X is smooth and φ is a holomorphic section of E0.
If Rfφ = 0 and (4.1) holds, then there is a global holomorphic section q of E1 such
that f1q = φ.

Remark 4.2. The essence in Proposition 4.1 is that the vanishing of Rfφ not only
implies that φ belongs to the sheaf Jf ⊗ E0 but is in the image of Γ(X,E1) →
Γ(X,Jf ⊗ E0), provided that (4.1) is fulfilled. In general this map is not surjective
even if (4.1) is fulfilled. �

We will now look for analogous results when X is nonsmooth. Since we have no
access to a ∂̄-theory for currents on X, we need to embed X in a smooth (projective)
manifold. We start by considering a special case that is needed for the proof of

Theorem A, namely the case when X is embedded in PN , (Ef• , f) is the Koszul
complex generated by homogeneous forms fj of degree d, i.e., global sections of
O(d) → PN , and φ is a section of O(ρ) → PN . Let (Eg• , g) be an exact Hermitian
complex on PN associated to X as in Section 2.9 of length ≤ N . If Rf∧Rgφ = 0, then
v = (Ug + Uf∧Rg)φ is a global current solution to ∇v = φ in PN , see Section 2.7,
and, provided that we can solve a sequence of ∂̄-equations on PN , we get a global
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solution to f · q+ g · q′ = φ on PN , and thus a solution q to f · q = φ on X. However,
see, e.g., [15],

(4.2) Hk(PN ,O(`)) = 0 if ` ≥ −N or k < N

so the only possible obstruction is the equation

(4.3) ∂̄W = UN+1φ,

where U = Uf∧Rg+Ug. Since (Eg• , g) ends at level N , UgN+1 = 0. Moreover, Rgk = 0
for k < N − n by the dimension principle, so

(4.4) UN+1 =

min(m,n+1)∑
k=1

Ufk ∧R
g
N+1−k,

cf., Section 2.5. The term corresponding to k takes values in a direct sum of line
bundlesO(−dk−diN+1−k). In view of (4.2), one can solve (4.3) if ρ ≥ dk+diN+1−k−N
for all i and k = 1, 2, . . . ,min(m,n+ 1). Notice that, cf., (2.21),

dk + diN+1−k −N = dk +
(
diN+1−k − (N + 1− k)

)
+ 1− k ≤ (d− 1)k + regX.

It follows that (4.3) is solvable as soon as

(4.5) ρ ≥ (d− 1) min(m,n+ 1) + regX.

Summing up we have:

Lemma 4.3. If ρ satisfies (4.5) and φ is a section of O(ρ) on PN such that Rf∧Rgφ =
0, then there are global sections qj of O(ρ−d) such that f1q1 + · · ·+fmqm = φ on X.

Remark 4.4. To be more precise, only terms where N + 1 − k ≤ M occur in (4.4),
where M is the length of (Eg• , g). If for instance X is Cohen-Macaulay, i.e., the ring
S/JX is Cohen-Macaulay, and (Eg• , g) is of minimal length, then M = N −n so that
k ≥ n + 1. If in addition m ≤ n thus UN+1 vanishes, so there is no cohomological
obstruction at all. �

In general it is not possible to find an embedding of X into a smooth manifold Y

such that (Ef• , f) and ϕ extend holomorphically to Y . For our next result (Theo-

rem 4.6), we will still assume that (Ef• , f) extends. As a substitute for a holomorphic
extension of φ we will use a ∇g-closed extension Φ of φ to Y . If i : X → Y is an
embedding of X into a projective manifold Y ,

(
O(Eg•), g

)
is a Hermitian resolution

of OY /JX , and φ is a global holomorphic section on X of a line bundle S → Y ,
then we say that a global smooth section Φ =

∑
`≥0 Φ` of ⊕`E0,`(E

g
` ⊗ S) on Y is a

∇g-closed extension of φ if ∇gΦ = 0 on Y and i∗Φ0 = φ. Recall that Eg0 ' C is a
trivial line bundle.

Lemma 4.5. (i) Any φ admits a ∇g-closed extension.

(ii) Φ is a ∇g-closed extension of φ if and only if

(4.6) Φ−Rgφ = ∇gw
for some current w.

One can obtain a ∇g-closed extension Φ of φ quite elementarily by piecing together
local holomorphic extensions, due to the exactness of

(
O(Eg•), g

)
. However, we prefer

an argument that also relates to residue calculus as in (ii), and we also think that
Lemma 4.5 (ii) may be of independent interest.
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Proof of Lemma 4.5. As noted in Section 2.7, Rgφ is a well-defined ∇g-closed current
in Y . In view of Proposition 2.4 there is a smooth ∇g-closed Φ such that (4.6) holds
for some current w. Thus (i) follows from (ii).

Assume that Φ is a smooth extension of φ as in (i). From (2.6) we have that
∇g(Ug∧Φ) = Φ − Rg∧Φ. Since

(
O(Eg•), g

)
is exact, (Rg)` = 0 for ` ≥ 1, cf.,

Section 2.4, and hence Rg∧Φ = RgΦ0 = Rgφ, since Φ0 = φ on X, i.e., i∗Φ0 = φ on
X. Thus

∇g(Ug∧Φ) = Φ−Rgφ.
Conversely, assume that Φ is smooth and (4.6) holds. Then clearly ∇gΦ = 0. We

have to prove that Φ0 = φ on X. Notice that this is a local statement. Given a point
on X there is a neighborhood U where we have holomorphic extension φ̂ of φ. Then
∇g(Ugφ̂) = φ̂−Rgφ̂ = φ̂−Rgφ in U . Thus ∇g(w−Ugφ̂) = Φ− φ̂. By Proposition 2.4

there is a smooth ξ such that ∇gξ = Φ− φ̂. It follows that g1ξ1 = Φ0 − φ̂ and hence

Φ0 = φ̂ = φ in U ∩X. �

We have the following analogue of Proposition 4.1.

Theorem 4.6. Let i : X → Y be an embedding of X in a projective manifold Y , let(
O(Eg•), g

)
be a locally free Hermitian resolution of OY /JX in Y , and let ω be an

associated structure form on X.
Let (2.4) be a Hermitian complex over (an open neighborhood U of X in) Y , and

let Rf∧ω be the associated residue current. Moreover let φ be a global section of E0

on X.

(i) If Rf∧ωφ = 0, then there is a global smooth solution W on X to

(4.7) ∇fW = φ.

(ii) If (4.7) has a global smooth solution on X and (4.1) holds, then there is a global
holomorphic section q of O(E1) such that f1q = φ on X.

With minor modifications of the proof below we get the following more general
version of Theorem 4.6:

With the general hypotheses of Theorem 4.6, assume that φ is a global holomorphic
section of E` such that f `φ = 0.

(i) If R`∧ωφ = 0 then there is a smooth global solution to (4.7).

(ii) If (4.7) has a smooth solution and

H0,k−1−`(X,O(Ek)) = 0, `+ 1 ≤ k ≤ min(M,n+ 1 + `),

then there is a global holomorphic section q of E`+1 such that f `+1q = φ.

Remark 4.7. If we just have a current solution to ∇fT = φ on X it does not follow
that there is a holomorphic solution, not even locally. In fact, if X is non-normal,
there are holomorphic f and φ such that ∂̄(φ/f) = 0 but U = φ/f is not holomorphic.
Thus (f − ∂̄)U = φ but φ is not in the ideal (f). If X is normal but nonsmooth,
there are similar examples with more generators, see [25]. �

Proof of Theorem 4.6. Recall from Section 2.7 thatRf∧ωφ = 0 implies thatRf∧Rgφ =
0. Let Φ be a ∇g-closed smooth extension of φ, as in Lemma 4.5 (i), to Y . As in the

proof of Lemma 4.5, Rg∧Φ = RgΦ0 = Rgφ. It follows that Rf∧Rg ∧Φ = Rf∧Rgφ =
0. Hence, from (2.19) we get, cf., Section 2.7,

∇F [(Uf∧Rg + Ug) ∧ Φ] = Φ.
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By Proposition 2.4 we have a smooth solution Ψ to ∇FΨ = Φ in Y ; i.e.,

F 1Ψ1 = Φ0, F k+1Ψk+1 − ∂̄Ψk = Φk, k ≥ 1.

If we let lower indices (i, j) denote values in Efi ⊗E
g
j , and notice that Φk = Φ0,k, we

see that

(4.8) f1Ψ1,0 + g1Ψ0,1 = Φ0, fk+1Ψk+1,0 + g1Ψk,1 − ∂̄Ψk,0 = 0, k ≥ 1.

Since Ψ is smooth we can define the forms Wk = i∗Ψk,0 on X, and (4.8) then implies
that

f1W1 = φ, fk+1Wk+1 − ∂̄Wk = 0, k ≥ 1.

Thus (i) follows.

The proof of (ii) is similar to the case when X is smooth, cf. the beginning of
Section 4: Assume that W is a global smooth solution to (4.7). Then Wmin(M,n+1)

is automatically ∂̄-closed, and thus if (4.1) is satisfied we can successively solve the
equations

∂̄ηmin(M,n+1) = Wmin(M,n+1), ∂̄ηk = Wk − fk+1ηk+1, 1 ≤ k < min(M,n+ 1),

where ηk is in Ak, see Section 2.8. Then q := W1 − f2η2 is a holomorphic solution
to f1q = φ.

�

Note that the proof of (ii) above only depends on X and not on the embedding
i : X → Y .

It should be possible to express the ∇F -exactness of Φ in Y by means of Čech
cohomology, then make the restriction to X, and rely on the vanishing of the relevant
Čech cohomology groups on X. In this way one could avoid the reference to the
sheaves Ak over X.

5. Integral closure, distinguished varieties and residues

Let f1, . . . , fm be global holomorphic sections of the ample Hermitian line bundle
L→ X, and let Jf be the coherent ideal sheaf they generate. Let

ν : X+ → X

be the normalization of the blow-up of X along Jf , and let W =
∑
rjWj be the

exceptional divisor; here Wj are irreducible Cartier divisors. The images Zj := ν(Wj)
are called the (Fulton-MacPherson) distinguished varieties associated with Jf . If
f = (f1, . . . , fm) is considered as a section of E∗ := ⊕m1 L, then ν∗f = f0f ′, where
f0 is a section of the line bundle O(−W ) defined by W , and f ′ = (f ′1, . . . , f

′
m) is

a nonvanishing section of ν∗E∗ ⊗ O(W ), where O(W ) = O(−W )−1. Furthermore,
ωf := ddc log |f ′|2 is a smooth first Chern form for ν∗L⊗O(W ).

Recall that (a germ of) a holomorphic function φ belongs to the integral closure
Jf,x of Jf,x at x if ν∗φ vanishes to order (at least) rj on Wj for all j such that x ∈ Zj .
This holds if and only if |ν∗φ| ≤ C|f0| (in a neighborhood of the relevant Wj), which

in turn holds if and only if |φ| ≤ C|f | in some neighborhood of x. Let Jf denote the
integral closure sheaf. It follows that

(5.1) |φ| ≤ C|f |` if and only if φ ∈ J `f .
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If X is smooth it follows that φ is in the integral closure, if for each j, φ vanishes to
order rj at a generic point on Zj . See [26, Section 10.5] for more details (e.g., the
proof of Lemma 10.5.2). We will use the geometric estimate

(5.2)
∑

rjdeg LZj ≤ deg LX

from [16], see also [26, (5.20)].

Lemma 5.1. There is a number µ0, only depending on X, such that if

(5.3) |φ| ≤ C|f |µ+µ0 ,

then Rf∧ωφ = 0 if ω is a structure form of X and Rf is the residue current obtained
from the Koszul complex of f . If X is smooth one can take µ0 = 0.

This proposition (and its proof) is analogous to Proposition 4.1 in [7]; the im-
portant novelty here is that µ0 can be chosen uniform in ω, which is ensured by
Proposition 2.5. However, for the readers convenience and future reference we dis-
cuss the proof.

Proof. Let us first assume that X is smooth and µ0 = 0, and that φ satisfies (5.3).
Then ω is smooth so we have to show that Rfφ = 0. If f ≡ 0 on (a component of) X,
then Rf ≡ 1 and φ ≡ 0, and thus Rfφ = 0. Let us now assume that codimZf ≥ 1.

Then Rf0 = 0 by the dimension principle. Let ν : X+ → X be the normalization of the
blow-up along Jf as above, so that ν∗f = f0f ′. Using the notation in Example 2.1,
then ν∗σ = (1/f0)σ′, where 1/f0 is a meromorphic section of O(W ) and σ′ is a
smooth section of ν∗E ⊗O(−W ). It follows that

ν∗(σ∧(∂̄σ)k−1) =
1

(f0)k
σ′∧(∂̄σ′)k−1,

and hence

ν∗Rf,λk = ∂̄|f0f ′|2λ∧ 1

(f0)k
σ′∧(∂̄σ′)k−1,

when k ≥ 1. Since f ′ is nonvanishing, the value at λ = 0 is precisely, see, e.g., [1,
Lemma 2.1],

(5.4) R+
k := ∂̄

1

(f0)k
∧σ′∧(∂̄σ′)k−1.

Notice that

(5.5) ν∗R
+
k = Rfk .

Since φ satisfies (5.3) for µ0 = 0, |ν∗φ| ≤ C|f0|µ and, since X+ is normal it follows
that ν∗φ contains a factor (f0)µ. Therefore,

(5.6) ν∗φ∂̄
1

(f0)k
= 0, k ≤ µ,

because of (2.1). Moreover, since σ′∧(∂̄σ′)k−1 is smooth on X+, it follows from (5.6)

and (5.4) that R+
k ν
∗φ = 0. Therefore, cf., (5.5), Rfkφ = ν∗(R

+
k ν
∗φ) = 0.

Notice that we could have used any normal modification π : X̃ → X such that π∗f
is of the form f0f ′ in the proof so far.

Now consider a general X. Let us take a smooth modification τ : X̃ → X as in
Proposition 2.5, so that, for each structure form ω on X, τ∗ω is semi-meromorphic
with a denominator that divides the section η, and so that η is locally a monomial
in suitable coordinates sj .
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Let ω be a structure form on X. In this proof it is convenient to use the regular-
ization

Rf = lim
ε→0

Rf,ε, Rf,ε := 1− χ(|f |2/ε) + ∂̄χ(|f |2/ε)∧u,

where u is the form (2.8) and χ is a smooth approximand of the characteristic function
of [1,∞), cf., the beginning of Section 2, so that all the approximands Rf,ε are

smooth. If f ≡ 0 on a component X̃j of X̃, then Rf,ε ≡ 1 on X̃j and if φ satisfies

(5.3) for any µ0, then φ ≡ 0 on X̃j ; here we have suppressed the notation τ∗ for

simplicity. Hence 1
X̃j
Rf,ε∧ωφ = 0 and so 1

X̃j
Rf∧ωφ = 0. We can therefore assume

that f 6≡ 0 on X̃. Thus the action of Rf,ε∧ωφ on a test form is, via a partition of
unity, a sum of integrals like∫

X̃

ds1∧ · · · ∧dsn
sα1+1

1 · · · sαn+1
n

∧Rf,εφ∧ξ,

where αj are nonnegative integers and ξ is a smooth form. Following [7, Section 3]
one can integrate by parts |α| := |α1|+ · · ·+ |αn| times, and get a constant times

(5.7)

∫
X̃

ds1∧ · · · ∧dsn
s1 · · · sn

∧∂αs
(
Rf,εφ∧ξ

)
,

where ∂αs = ∂|α|/∂sα1
1 · · · ∂sαn

n .
Let ut consider ∂`s(R

f,εφ). Assume that the metric on L is locally given so that
|fj |2 = fj f̄ja, where a is nonvanishing. Then

σ =

∑
f̄jaej
|f |2

,

cf. (2.7), and so

∂

∂sk
σ =

∑
f̄j

∂a
∂sk

ej

|f |2
−
(∑

f̄jaej
)(∑

f̄ja
∂fj
∂sk

)
|f |4

=
1

a

∂a

∂sk
σ −

( ∂f
∂sk
· σ
)
σ,

i.e., ∂σ/∂sk is of the form

(5.8)
∂

∂sk
σ = (γ · σ)σ,

where γ is smooth. By iterated used of (5.8), since σ ∧ σ = 0, we get that

(5.9) ∂κs (σ ∧ (∂̄σ)k−1) = σ ∧ (∂̄σ)k−1 ∧ (γ1 · σ) ∧ · · · ∧ (γ|κ| · σ),

where γj are smooth. If we take a smooth modification π : X̂ → X̃ such that

π∗f = f0f ′ as above, then π∗σ = smooth/f0 and thus π∗(∂κs u) is like 1/(f0)µ+|κ|.

Moreover ∂κs ∂̄χ(|f |2/ε) is like 1/|f ||κ|+1 and with support where |f |2 ∼ ε, see [7].

Thus ∂κsR
f,ε is like 1/|f |µ+|κ|+1 and with support where |f |2 ∼ ε; here we have

suppressed π∗ for simplicity. Next, assume that µ0 ≥ µ+ |α|+ 1 and that φ satisfies

(5.3). Then by the smooth Briançon-Skoda theorem, locally in X̃, φ is in the ideal

(f)µ+|α|+1, and therefore,

|∂κs φ| ≤ C|f |µ+|α|−|κ|+1.

Hence ∂`s(R
f,εφ) is bounded and with support where |f |2 ∼ ε for |`| ≤ |α|. It follows

by dominated convergence that (5.7) tends to zero when ε→ 0, cf. [7, Section 4].
We finally choose µ0 so that µ0 ≥ n + |α| + 1 for all local representations η =

sα1+1
1 · · · sαn+1

n . Then Rf∧ωφ = 0 for all choices of f if φ satisfies (5.3).
�
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Note that the explicitness of µ0 in the proof above is directly related to the ex-

plicitness of the modification τ : X̃ → X. See [31] for a complete description of the
optimal µ0 in the case of plane curves.

6. Proofs of Theorem A and variations

Throughout this section we will use the notation from Theorem A. For the proof
of Theorem A, besides the basic Lemma 5.1, we also need

Lemma 6.1. Assume that V ⊂ CN is smooth, and let ω be a structure form on X.

Then there is a number µ′ such that zµ
′

0 ω is almost smooth on X.

Proof. Let τ : X̃ → X be as in Proposition 2.5. Then ω̃ := τ∗ω is a semi-
meromorphic form whose denominator locally is a monomial whose zeros are con-
tained in τ−1Xsing. Since V is smooth, Xsing ⊂ X∞ ⊂ {z0 = 0}, and it follows

that τ∗(zµ
′

0 )τ∗ω is smooth for some large enough number µ′. Hence zµ
′

0 ω is almost
smooth. �

Proof of Theorem A. Let fj be the d-homogenizations of Fj , let Rf be the residue

current constructed from the Koszul complex (Ef• , δf ) generated by f1, . . . , fm, and
let φ be the ρ-homogenization of Φ, with

(6.1) ρ = max(deg Φ + (µ+ µ0)dc∞degX, (d− 1) min(m,n+ 1) + regX),

where µ0 is chosen as in Lemma 5.1; in particular, µ0 = 0 if X is smooth. Note that
µ0 only depends on X and not on the embedding i : X → PN . Throughout this
proof we will use the notation from Section 5.

The assumption (1.4) implies that ν∗φ vanishes to order (µ + µ0)rj on each Wj

such that ν(Wj) is not contained in X∞. Now consider Wj such that ν(Wj) ⊂ X∞.
If Ω is a first Chern form for O(1)|X , e.g., Ω = ddc log |z|2, then dΩ is a first Chern
form for L = O(d)|X on X (notice that d denotes the degree and not the differential).
By (5.2) we therefore have that

rj

∫
Zj

(dΩ)dimZj ≤
∫
X

(dΩ)n,

which implies that

(6.2) rj ≤ dcodimZjdegX.

By the choice (6.1) of ρ, φ is of the form z
(µ+µ0)dc∞degX
0 times a holomorphic section,

and thus ν∗φ vanishes to order at least (µ + µ0)rj on Wj for each j. Hence (5.3)

holds, cf., (5.1), and it follows from Lemma 5.1 that Rf∧ωφ = 0.
Since ρ ≥ (d − 1) min(m,n + 1) + regX it follows from Lemma 4.3 that we have

a global q such that f · q = φ on X. After dehomogenization we get a tuple of
polynomials Qj such that (1.1) holds and degFjQj ≤ ρ. Thus part (i) of Theorem A
is proved.

For the second part choose

ρ = max(deg Φ + µdc∞degX + µ′, (d− 1) min(m,n+ 1) + regX),

where µ′ is chosen as in Lemma 6.1, and let φ and φ′ be the ρ- and (deg Φ +
µdc∞degX)-homogenizations of Φ, respectively. Then, by Lemma 6.1,

Rf∧ωφ = Rf∧βφ′,
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where β is almost smooth, and by (1.6) and (6.2),

(6.3) |φ′| ≤ C|f |µ.

Now take a smooth modification π : X̃ → X such that β = π∗β̃, where β̃ is smooth,
and f = f0f ′, where f0 is a section of a line bundle and f ′ is nonvanishing. Then
Rf∧ωφ is the push-forward under π of a finite sum of currents like

(π∗φ′)∂̄
1

(f0)µ
∧smooth,

cf., (5.4), (5.5), and in view of (6.3) they must vanish. Thus Rf ∧ ωφ = 0 and (ii) is
proved as (i). If X is smooth even at infinity, then ω is smooth on X so that we can
choose µ′ = 0 in Lemma 6.1.

�

The statement in Remark 1.4 follows as in the proof above, using Remark 4.4.

Remark 6.2. An alternative way of finding polynomials Qj such that (1.1) holds
would be to first solve the division problem f · q = φ on X by means of Theorem 4.6
and then extend the solution to PN . This was indeed done in an earlier version of
this paper, see [10, Theorem 1.1]. The degree estimate so obtained coincides with
(1.5), except that the last entry in the max is slightly different; in [10, Section 6],
however, we show that it is bounded by dmin(m,n+ 1) + regX−1. Thus, expressed
in regX the estimate in [10] is somewhat less sharp than (1.5). Note that in [10]
we used the non-standard convention that regX is regS/JX instead of reg JX , cf.
Section 2.9.

�

Remark 6.3. If

(6.4) codim (Zf ∩X`) ≥ µ+ `+ 1, ` ≥ 0,

where X` are as in Section 2.6, thus either Xsing ∩ Zf = ∅ or m < n, then one can
find polynomials Qj such that (1.1) holds and (1.5) holds with µ0 = 0. To see this,

take ρ ≥ deg Φ +µdc∞degX in the proof of Theorem A. Then Rfφ = 0 on Xreg, and

thus Rf ∧ ωφ has support on Zf ∩X0. Since Rf ∧ ω0φ has bidegree at most (n, µ)
and codim (Zf ∩X0) ≥ µ + 1 by (6.4), it follows from the dimension principle that
Rf∧ω0φ = 0. Thus Rf∧ω1φ = Rf∧α1ω0φ vanishes outside X1, so again by (6.4)
and the dimension principle we find that Rf∧ω1φ vanishes identically. By induction,
Rf∧ωφ = 0. �

Example 6.4. In light of the following example due to Masser, Philippon, Brownawell,
and Kollár, see [14, page 578] or [24, Example 2.3], one can see that the power c∞
in Theorem A cannot be improved: Let X = Pn and let m be an integer with
2 ≤ m ≤ n. Consider the m polynomials

zd1 , z1z
d−1
m − zd2 , . . . , zm−2z

d−1
m − zdm−1, zm−1z

d−1
m − 1,

in Cn. The associated projective variety {z0 = z1 = · · · = zm−1 = 0} ⊂ X∞ has
codimension m, and hence c∞ = m, cf., (1.3). It follows from Theorem A that
we have a representation (1.1) with Φ = 1 and degFjQj ≤ mdm (if d is not too
small). However, if Qj are any polynomials so that (1.1) holds with Φ = 1, then by
considering the curve

t 7→ (td
m−1−1, td

m−2−1, . . . , td−1, 1/t, 0, . . . , 0),

one can conclude that Q1 must have degree at least dm−d so that degF1Q1 ≥ dm. �
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Remark 6.5. In the proof above µ0 is derived from the section η in Proposition 2.5.
Since we have a fixed embedding X → PN we can get a slighly sharper constant µ′0.
In fact, if ω′ is an associated structure form we can replace η in the proof by a section
η′ such that η′τ∗ω′ is smooth, cf., Remark 3.4. If A′ is the highest degree of the (in
local coordinates) monomial τ∗η′ then µ′0 = 1 + A′. If A is the maximal degree of
τ∗η then A ≤ (n − 1)A′. It follows that µ0 ≤ (n − 1)µ′0 so we can however gain at
most a factor n− 1 by considering the special embedding. �

In [3] is used a slight generalization of the Koszul complex to deal with a positive
power J `f of Jf , cf. [16, p. 439]; this complex is a special case of the Eagon-Northcott

complex, see, e.g., [17, Appendix 2.6]. The first mapping in the complex is the natural
mapping E⊗` → C induced by the fj . The associated residue current is the push-
forward of currents like

∂̄
1

(f0)k
∧smooth

for ` ≤ k ≤ µ+ `− 1. By an analogous proof we get the following generalization of
Theorem A.

Theorem 6.6. With the notation in Theorem A, if

|Φ|/|F |µ+µ0+`−1 is locally bounded on V,

then Φ ∈ (Fj)
` and there are polynomials QI such that

Φ =
∑

I1+···+Im=`

F I11 · · ·F
Im
m QI

and

deg (F I11 · · ·F
Im
m QI) ≤

max
(
deg Φ+(µ+µ0+`−1)dc∞degX, d(min(m,n+1)+`−1)−min(m,n+1)+regX

)
.

There is also an analogous generalization of part (ii) of Theorem A.

7. Proofs of Theorem B and variations

We first look at the case when X is smooth, which is due to Ein-Lazarsfeld [16].

Theorem 7.1. Let X be a smooth projective variety, let L → X be an ample Her-
mitian line bundle, and let A → X be a line bundle that is either ample or big and
nef. Moreover, let f1, . . . , fm be global holomorphic sections of L, and let φ be a
global section of

L⊗s ⊗KX ⊗A,
where s ≥ min(m,n+ 1). If

(7.1) |φ| ≤ C|f |µ

on X, then there are holomorphic sections qj of L⊗(s−1) ⊗KX ⊗A such that

(7.2) f1q1 + · · ·+ fmqm = φ.

Let Jf be the ideal sheaf generated by fj and assume that the associated distin-
guished varieties Zk have multiplicities rk, cf., Section 5. If φ vanishes to (at least)
order rkµ at a generic point on Zk for each k, then (7.1) holds, cf., Section 5, and
thus we have
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Corollary 7.2. If φ vanishes to order rkµ at a generic point on Zk, for each k, then
we have a representation (7.2).

This corollary is precisely part (iii) of the main theorem in [16, p. 430], except for
that we have µrk rather than (n + 1)rk, cf., the discussion in Example 1.6. Using
(5.2) one gets the estimate rk ≤ deg LX.

Proof of Theorem 7.1. Let (Ef• , δf ) be the Koszul complex generated by f1, . . . , fm,

as in Example 2.1, tensorized with L⊗s ⊗ A ⊗ KX , and let Rf be the associated
residue current on X. From the hypothesis (7.1) and Lemma 5.1 we conclude that

Rfφ = 0. The bundle Ek is a direct sum of line bundles L⊗(s−k) ⊗ A ⊗KX and so
all the relevant cohomology groups (4.1) vanish by Kodaira’s vanishing theorem, or,
at the top degree, by the Kawamata-Viehweg vanishing theorem if A is nef and big.
Thus Theorem 7.1 follows from Proposition 4.1. �

Proof of Theorem B. Let (Ef• , δf ) be the Koszul complex generated by f1, . . . , fm
tensorized with L⊗s, see Example 2.1. The choice of s guarantees that (4.1) is
satisfied and thus by Theorem 4.6 (ii) we get the desired holomorphic solution to
(1.11) as soon as we have a smooth solution to

(7.3) ∇fW = φ

on X. Indeed, recall that Theorem 4.6 (ii) only depends on X and not on the
embedding i : X → Y . Hence to prove the theorem it suffices to show that there is a
µ0 such that we can find a smooth solution to (7.3) for each global section φ of L⊗s

that satisfies (1.10). As in the proof of Theorem A the strategy will be to show that
φ annihilates a certain residue current, which gives a smooth solution to (7.3). Note
that we cannot apply Theorem 4.6 (i), since a priori L and the sections fj are only
defined on X.

Let us start by giving an overview of the proof below. First, there is an embedding
of X into a smooth manifold Y so that L extends to Y . We cannot assume that f
extends holomorphically to Y but in view of Lemma 4.5, if

(
O(Eh• ), h

)
is a Hermitian

resolution of OY /JX , then there is a ∇h-closed extension f̃ . Given f̃ we construct

a Koszul complex (EH• ⊗ Λ•E, δf̃ ) that extends (Ef• , δf ), and following the ideas in

Example 2.1 we construct a residue current R̃ ∧ Rg, where
(
O(Eg•), g

)
is again a

resolution of OY /JX . From the construction it follows that if

(7.4) R̃ ∧Rgφ = 0,

then there is a current solution to

(7.5) ∇W = Φ,

where ∇ = g+δf̃ +h− ∂̄. From such a solution we obtain a smooth solution to (7.5),

which in turn implies that there is a smooth solution to (7.3). Finally we show that
there is a µ0, only depending on X, such that (7.4), and thus (7.3), holds as soon as
φ satisfies (1.10).

We first discuss the extension of L. If M is large enough, there are embeddings
ij : X → PNj , j = 1, 2, such that O(1)PN1 |X = LM and O(1)PN2 |X = LM+1. If
πj : PN1 × PN2 → PNj , then L := π∗2O(1)PN2 ⊗ π∗1O(−1)PN1 is a line bundle over
Y := PN1 ×PN2 and its restriction to X ' ∆X×X ⊂ Y is precisely L. This argument
was communicated to us by R. Lazarsfeld.
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Let
(
O(Eh• ), h

)
be a Hermitian resolution of OY /JX in Y as in Section 2.6. In

view of Lemma 4.5, we can choose smooth ∇h-closed extensions f̃j ∈ ⊕iE0,i(E
h
i ⊗L)

of fj to Y , as defined in Section 4. Let E1, . . . , Em be (extensions to Y of) the trivial

line bundles used to define (Ef• , δf ) as in Example 2.1, with basis elements e1, . . . , em,

respectively, and let f̃ be the section f̃ := f̃je
∗
j of Eh•⊗E∗, where E :=

⊕m
j=1 L−1⊗Ej

and e∗j are the dual basis elements. Note that each f̃j has even degree so that f̃ has
odd degree.

We next want to construct a Koszul complex of f̃ as an extension of (Ef• , δf ). To

this end we will need to take products of sections of Eh• . We therefore introduce
EH• :=

⋃
k≥1(Eh• )⊗k, where the tensor products (Eh• )⊗k are as in Section 2.5. Since

Eh0 is the trivial line bundle, (Eh• )⊗k is a natural subcomplex of (Eh• )⊗(k+1) and thus
the definition makes sense. Next consider the tensor product complexes EH• ⊗ ΛkE,

see Section 2.5 and let δf̃ : EH• ⊗ΛkE → EH• ⊗Λk−1E be contraction with f̃ , i.e., for

a section ξ =
∑

I={i1,...,ik} ξI · eI , where ξI takes values in EH• and eI = ei1 ∧ · · · ∧ eik ,

of EH• ⊗ ΛkE, δf̃ξ =
∑

I(−1)deg ξI ξI
∑

j(−1)j−1f̃ij · eI\ij . Note that δf̃ is an anti-

derivation. As long as we restrict to X we can write f̃ = f − f ′, where f :=
∑
fje
∗
j

and f ′ has positive form degree. Let δf and δf ′ be defined analogously to δf̃ ; note

that, restricted to X, δf is just the differential in the regular Koszul complex (Ef• , δf ).

Inspired by Example 2.1 we now construct the residue current R̃ ∧ Rg. We start
by defining an (EH• ⊗Λ•E)-valued form ũ which will play the role of u; in fact ũ will
take values in (Eh• )⊗n⊗ΛkE. First, let σ be the section of E over X \Z of pointwise
minimal norm such that δfσ = 1 there, cf. Example 2.1. Then

δf̃σ = δfσ − δf ′σ = 1− δf ′σ

on X \Z. Notice that δf ′σ has even degree, and form bidegree at least (0, 1), so that

1

1− δf ′σ
= 1 + δf ′σ + (δf ′σ)2 + · · ·+ (δf ′σ)n

is a form on X \ Z with values in EH• ⊗ Λ•E. Let σ̃ := σ/(1− δf ′σ) on X \ Z; then
δf̃ σ̃ = 1 on X \ Z. Next, let

ũ =
σ̃

(δf̃ +∇h)σ̃
=
∑
k≥1

σ̃ ∧ (−∇hσ̃)k−1,

cf., Example 2.1 and [1]; now ∇h plays the role of −∂̄. Note that δf̃ anti-commutes

with (the extension to EH• ⊗ Λ•E of) ∇h, i.e., δf̃ ◦ ∇h = −∇h ◦ δf̃ . It follows that

(δf̃ +∇h)2 = 0 and so

(δf̃ +∇h)ũ = 1

on X \ Z, cf. Section 2.2.
Let

(
O(Eg•), g

)
be a Hermitian resolution of OY /JX in Y , let Rg be the residue

current associated with the resolution
(
O(Eg•), g

)
, and let ω be the associated struc-

ture form. Recall from Section 2.6 that if α is a (sufficiently) smooth form on X, then
α ∧ Rg is a well-defined current in Y ; in particular, χ(|f |2/ε)ũ∧Rg is a well-defined
current in Y with values in EH• ⊗ Λ•E ⊗ Eg• . Letting

(7.6) ∇ = g + δf̃ +∇h = g + δf̃ + h− ∂̄,
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note that ∇2 = 0 and that

(7.7) ∇
(
χ(|f |2/ε

)
ũ∧Rg + Ug) = I − R̃ε∧Rg,

where R̃ε = I − χ(|f |2/ε)I + ∂̄χ(|f |2/ε) ∧ ũ.
We claim that χ(|f |2/ε)ũ∧Rg has a limit when ε→ 0. To see this, recall from Sec-

tion 2.6, using the notation from that section, that χ(|f |2/ε)ũ∧Rg∧Ω = i∗(χ(|f |2/ε)ũ∧ω).
Next, notice that

(7.8) σ̃∧(−∇hσ̃)k−1 = σ∧(∂̄σ)k−1 ∧
n∑
j=0

ckj (δf ′σ)j ,

for some numbers ckj , since σ∧σ = 0 and σ has degree 0 in Eh• . Let π : X̃ → X be
a smooth modification such that π∗ω is semi-meromorphic and π∗σ is of the form
σ′/f0, cf. Section 5. Then π∗ũ is a finite sum of terms γk/(f

0)k, where γk are smooth,
and hence limε→0 π

∗(χ(|f |2/ε)∧ũ∧ω) exists, see, e.g., [12]. Since Ω is nonvanishing
it follows that the limit of χ(|f |2/ε)ũ∧Rg exists.

Let
Ũ∧Rg = lim

ε→0
χ(|f |2/ε)ũ∧Rg, R̃∧Rg = lim

ε→0
R̃ε∧Rg.

Then by (7.7),

∇(Ũ∧Rg + Ug) = I − R̃∧Rg,
and if Φ is a smooth ∇g-closed extension of φ as in Lemma 4.5 (regarded as a section
of L⊗s ⊗ EH• ⊗ Λ•E ⊗ Eg•), it follows that

(7.9) ∇
(
(Ũ∧Rg + Ug)∧Φ

)
= Φ

in Y as soon as (7.4) is satisfied, since, as was noted in the proof of Lemma 4.5,
Rg∧Φ = Rgφ.

By a slight modification of Proposition 2.4, if we have a current solution to (7.5)
we also have a smooth solution. To see this, let EF• = Λ•E ⊗ Eg• and let M• and

ME• be defined as in Section 2.3, but for the complex EH• instead of Ef• . Then we
have the double complex

B`,k := ⊕jC0,j(E
H
j+k ⊗ EF` ) =Mk(E

F
` )

with mappings ∇h : B`,k → B`,k−1 and F := g + δf̃ : B`,k → B`−1,k; indeed note that

∇h ◦ F = −F ◦ ∇h. If Bj :=
⊕

`+k=j B`,k we get the associated total complex

. . .
∇−→ Bj

∇−→ Bj−1
∇−→ . . . ,

with ∇ as in (7.6). Analogously let BE`,k := ⊕jE0,j(E
H
j+k ⊗ EF` ) = MEk(EF` ) with

total complex BE• . Moreover, let M•(Y,EF` ), ME• (Y,EF` ), B•(Y ), and BE• (Y ) be the
associated complexes of global sections. Note that we have natural mappings

(7.10) Hj(BE• (Y ))→ Hj(B•(Y )), j ∈ Z.
Proposition 2.4 implies that the natural mappingsHk(ME• (Y,EF` ))→ Hk(M•(Y,EF` ))

are isomorphisms. Now, by repeating the proof of Proposition 2.4 with M•, ME• ,
C0,•, and E0,• replaced by B•, BE• , M•, and ME• , respectively, using that the double
complex B`,k is bounded in the `-direction, we can therefore prove that the mappings
(7.10) are in fact isomorphisms. Hence the current solution (7.9) gives a smooth
solution to (7.5).

Next we will show that a smooth solution to (7.5) gives a smooth solution to
(7.3). Let lower indices (i, j, k) denote components in L⊗s ⊗EHi ⊗ ΛjE ⊗Egk . Then
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Φ = Φ0,0,0 + Φ0,0,1 + · · ·+ Φ0,0,n, where Φ0,0,k has form bidegree (0, k). Notice that

we have the decomposition f̃ = f0 − f ′ in Y , where f0 denotes the 0-component of
f̃ and hence is a smooth extension of f to Y . If Ψ is a smooth solution to (7.5) it
follows that

hΨ1,0,0 + δf0Ψ0,1,0 + gΨ0,0,1 = Φ0,0,0,(7.11)

hΨ1,j,0 + δf0Ψ0,j+1,0 + gΨ0,j,1 − ∂̄Ψ0,j,0 = 0, j ≥ 1.(7.12)

Indeed, note that δf ′Ψi,j,k has positive degree in EH• for all nonvanishing Ψi,j,k.
Since Ψ is smooth, we can define the smooth forms Wj := i∗Ψ0,j,0 on X. Note that

L⊗s ⊗ ΛjE|X = Efj , so that Wj takes values in Efj . Since gΨ0,j,1 = g1Ψ0,j,1 and

hΨ1,j,0 = h1Ψ1,j,0 are in E(JX) and thus vanish on X, (7.11) and (7.12) implies

δfW1 = φ, δfWj+1 − ∂̄Wj = 0, j ≥ 1.

To sum up so far, we have shown that there is a smooth solution to (7.3) if (7.4)
holds.
Claim: There is a µ0, only depending on X, such that (7.4) holds as soon as φ
satisfies (1.10).
Taking the claim for granted we get that there is a µ0 such that if φ satisfies (1.10),
then there is a smooth solution to (7.3); this concludes the proof of Theorem B.

The claim is essentially Lemma 5.1, but now Rf is replaced by the current R̃. Also
the proof is analogous to the proof of the lemma and the choice of µ0 in the proof of

the lemma will do here as well; the crucial observation is that the singularities of R̃
can be controlled in a similar way to the singularities of Rf .

To prove the claim, first note that (7.4) is equivalent to that R̃∧Rg∧Ωφ = limε→0 i∗(R̃
ε∧ωφ)

vanishes, cf. Section 2.7. Let τ : X̃ → X be a smooth modification as in Proposi-
tion 2.5, so that locally τ∗ω = smooth/sα+1, where sα+1 is a local representation
of the section η, as in the proof of Lemma 5.1. Following that proof, the action of
R̃ε∧ωφ on a test form is a sum of integrals like (suppressing τ∗ for simplicity)

(7.13)

∫
X̃

ds1∧ . . .∧dsn
s1 · · · sn

∧∂αs
(
R̃εφ∧ξ

)
,

where ξ is smooth, cf. (5.7). The components of X̃ where f vanishes identically are
taken care of as in the proof of Lemma 5.1. We may therefore assume that f 6≡ 0.

In view of (7.8), R̃ε is a finite sum of terms like

∂̄χ(|f |2/ε)∧σ∧(∂̄σ)k−1∧(δf ′σ)j ,

where k + j ≤ n for degree reasons; indeed, recall that f ′ has form degree at least
(0, 1). Note that δf ′σ is of the form (γ ·σ), where γ is smooth. Thus by arguments as

in the proof of Lemma 5.1, cf. (5.8) and (5.9), we get that ∂`sR̃
ε is like 1/|f |n+|`|+1 and

with support where |f |2 ∼ ε. As in that proof, we choose µ0 so that µ0 ≥ n+|α|+1 for

all local representations η = sα+1. If φ satisfies (1.10), then |∂`sφ| ≤ C|f |n+|α|−|`|+1,
cf. the proof of Lemma 5.1. Now by dominated convergence (7.13) tends to zero when
ε → 0, and since the choice of µ0 only depends on the section η and n and not on
the embedding i : X → Y , the resolutions

(
O(Eh• ), h

)
,
(
O(Eg•), g

)
or the extension

f̃ , the claim follows.
�

Remark 7.3. If (Eh• , h) is a Koszul complex, then we just simply take EH• = Eh• ,
since he desired ”product” already exists within Eh• .



32 MATS ANDERSSON & ELIZABETH WULCAN

�

Remark 7.4. Assume that i : X → Y is an embedding such that all ample line
bundles on X extend to Y . Following the proof above we then obtain Theorem B
without relaying on the quite involved Proposition 2.5, since we can then define the
µ0 from the singularities of one fixed structure form, cf. Remark 6.5. It is of course
enough that there is a finite number of embeddings of X into smooth manifolds such
that each ample line bundle extends to at least one of them.

�

In analogy with Theorem 6.6 we also have the following generalizations of Theo-
rem 7.1 and Theorem B.

Theorem 7.5. With the notation in Theorem 7.1, if φ is a section of L⊗s⊗KX⊗A,
where s ≥ min(m,n+ 1) + `− 1, and

|φ| ≤ C|f |µ+`−1,

then there are holomorphic sections qI of L⊗(s−`) ⊗KX ⊗A, such that

(7.14) φ =
∑

I1+···+Im=`

f I11 · · · f
Im
m qI .

With the notation in Theorem B, if φ is a section of L⊗s with s ≥ νL+min(m,n+
1) + `− 1 such that

|φ| ≤ C|f |µ0+µ+`−1,

then there are holomorphic sections qI of L⊗(s−`) such that (7.14) holds.
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morphes en un point de Cn, C. R. Acad. Sci. Paris Sér. A 278 (1974), 949–951.
[14] W. D. Brownawell: Bounds for the degrees in the Nullstellensatz, Ann. of Math. 126

(1987), no. 3, 577–591.
[15] J-P Demailly: Complex Analytic and Differential Geometry, Monograph Grenoble (1997).



GLOBAL EFFECTIVE VERSIONS OF THE BRIANÇON-SKODA-HUNEKE THEOREM 33
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