PATTERN AVOIDANCE IN INVOLUTIONS

ELIZABETH WULCAN

ABSTRACT. This work concerns pattern avoidance in involutions. We
give a complete solution for the number of involutions avoiding one or
two classical 3-patterns, mainly by relating these to well known com-
binatorial structures such as Dyck paths and Young tableaux. The
results for single 3-patterns were previously obtained by Simion and
Schmidt. However, we give new proofs in most cases. We also give
some results for the number of involutions avoiding generalised pat-
terns.

CONTENTS
1. Introduction
2. Preliminaries
2.1. Permutations
2.2. Involutions
2.3. Generalised patterns
2.4. Young tableaux
2.5. Inversion tables
2.6. Dyck paths
3. Pattern avoiding involutions
3.1. Avoiding p, when p is not an involution
3.2.  Avoiding (2-1-3) or (1-3-2)
3.3. Avoiding p, when p is an increasing or decreasing sequence
4. Involutions avoiding generalised 3-patterns
5.  Multiavoidance of 3-patterns among involutions
Acknowledgement
References

1. INTRODUCTION

L Ot O i s W NN

W WN N~
DN DN Ot N OO O

Classically a k-pattern p is a permutation of [k] = {1,2,...,k} and a
permutation 7 of [n] is said to have an occurrence of p if 7 has a subword
whose letters are in the same relative order as the letters of p. If 7 has no
occurrences of p, we say that 7 avoids p. For example 7 = 52134 avoids
p = 132 whereas m = 41253 has two occurrences of p (the subwords 153
and 253).
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In the last decades there have been plenty of articles written on the
subject of patterns and in particular on pattern avoidance. One of the
earliest results worth mentioning is found in Knuth [7], where it is estab-
lished that for all 3-patterns p, the number of permutations of [n]| that
avoid p equals the nth Catalan number. In Simion and Schmidt [10], mul-
tiavoidance, that is when two or more patterns are simultaneously avoided,
was considered and a full solution for the case of double avoidance was
given. Simion and Schmidt also treated pattern-avoiding involutions, the
topic of this work. Indeed, the results of Section 3, which concern the six
classical 3-patterns, are all proven in [10]. However, we give new proofs of
some of the results.

As a further development of the concept of patterns, Babson and Ste-
ingrimsson [3] introduced generalised patterns that allow the requirement
that two adjacent letters in a pattern must be adjacent in the permuta-
tion for the pattern to occur. Avoidance of generalised patterns has been
studied by, for example, Claesson [1], Kitaev [5], [6] and Claesson and
Mansour [2]. In Section 4 we give some results for involutions avoiding
generalised patterns.

Finally, in Section 5 we investigate double avoidance and give a com-
plete solution for the number of involutions avoiding any two classical
3-patterns.

2. PRELIMINARIES

Before starting the investigation on pattern-avoiding involutions we in-
troduce the main concepts that will be used in this work. To start with,
an alphabet X is a nonempty set of letters and a word over X is a finite
sequence of letters from X. We denote the empty word, that is the word
with no letters, by €. Let x = z1x9---x, be a word over X. A subword
of z is a word v = z;, Zj, - - - T;,, Where 1 < 4 <4y < .- < g < n. A
segment is a word v = T;x; 41 - - - T;yx. We define the length of =, denoted
by |z|, to be the number of elements in z.

2.1. Permutations. Let [n] = {1,2,...,n}. A permutation 7 of [n] is a
bijection from [n]| to [n]. However, we sometimes refer to permutations
of a subset A of [n]. This should be interpreted as a bijection from A
to A. There are several different notations for the permutations, suitable
for different purposes. A permutation 7 is usually seen as the word

T=n(1)m(2)---7(n).

Another way of writing the permutation is given by the two line (or French)

notation
( 1 2 ... n )
m™ = .
a; a2 ... QGp
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This means that 1 — ay, 2 — as et cetera, hence the permutation is
unaffected by rearrangement of the columns, which makes it easy to find
the inverse of 7. Indeed

-1 __ a; Qa2 ... Qp
4 _(1 2 ... n)

Rearranging the top line in increasing order gives 7~
bottom line.

We will also use a third notation, the cycle form, where the letters in [n]
are grouped together in cycles. A cycle (ajas - - - ax) means that a; — a;11
for + < k and that ay — a;. Fixed points, that is those ¢ for which ¢ — 7,
are conventionally omitted. As will be shown in the example below, the
cycle notation is generally not unique.

We denote the set of permutations of [n] by S,.

I as a word in the

Example 1. Consider the permutation

(1 —3
2—4
3—6
4—2
5—5H

L 6 —1

We write it as the word
T = 346251,

or in the two line notation;

from which we get the inverse of 7 as
7T1:(3 46 25 1):<1 2 3 45 6)_
1 23 456 6 4 1 2 5 3
The permutation 7 could be written in cycle form as
7w = (136)(24)
but we also have
m = (24)(136) = (361)(24) = (42)(613).

This shows that the cycle notation is not unique. Note that the fixed
point 5 is not written out.

2.2. Involutions. An involution is a permutation that is its own inverse.
Thus an involution consists of cycles of length 1 or 2. We let Z,, denote
the set of all involutions of [n].
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2.3. Generalised patterns. A generalised k-pattern p is a word of
length k consisting of all the elements of [k], in which two letters may
or may not be separated by a dash. Consider 7 = ajas---a, in S,. We
say that the subword v = vyvg - - - v is a p-subword of 7 if the v;’s are in the
same relative order as the p;’s and two adjacent letters of v are adjacent
in m whenever the corresponding letters of p are not separated by a dash.
We also refer to v as an occurrence of p. If m has no occurrences of p, we
say that 7 avoids p or that 7 is p-avoiding. We define S,,(p) and Z,,(p) to be
the set of p-avoiding permutations and involutions in S,,, respectively, and
more generally we let S,,(A) = [, 4 Sn(p), just as Zn(A) = (,c4 Zu(p)- It
is convenient to regard the pattern p as a function from §,, to N where pr
is defined as the number of p-subwords of 7. Thus 7 is p-avoiding if and
only if pr = 0.

Usually the term pattern refers to the type of patterns p;-ps---- -pg
with dashes between each pair of adjacent letters, that is, no attention is
paid to whether the letters of the permutation are adjacent or not. Those
patters were the first to be defined and studied and we therefore call them
classical patterns.

Example 2. Regarded as a permutation statistic (a function from S,
to N), the pattern (1-2-3) counts the number of increasing subsequences of
length 3. For example, the longest increasing sequence of the permutation
21543 is of length two and consequently 21543 avoids (1-2-3).

The pattern (21) counts descents in a permutation, that is the number
of i’s such that a; > a;41, just as (12) counts the ascents, the number of i’s
such that a; < a;41.

The pattern p = (1-32) counts the subwords of the form a;-a;a;1; such
that a; < a;41 < aj. The permutation 25431 has two occurrences of p,
namely 254 and 243.

2.4. Young tableaux. A Young tableau P of shape (ni,ns,...n,) is an
arrangement of n distinct integers as an array of m left-justified rows,
with n; elements in row ¢, where ny > ny > n,, > 0and n1+no+---+n,, =
n. The entries of the rows and the columns must be ordered increasingly
from left to right and from top to bottom, respectively. We write P; ; for
the element in row ¢ and column j.

Example 3. We have that

314]9]

ot

‘OO@[\D!—\
-~

is a Young tableau of shape (4,2,2,1) and that P35 = 7.
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FiGURE 1. The Dyck path in Example 5

2.5. Inversion tables. Given a permutation 7 = aqas---a,, we let
t(r) = (t1,t2,...,tn), where t; = |[{j : j > ¢,a; < a;}|. That is, the ith
entry of ¢ is the number of letters following the ith letter of = that are
smaller than the ith letter.

A pair (a;, a;) is called an inversion of the permutation 7 if ¢ < j and
a; > a;. Accordingly, ¢ defined above is called the inversion table of ,
since it gives a measure of the number of inversions that each letter of 7
causes.

It is easy to see that a permutation is uniquely determined by its inver-
sion table, for a demonstration see for example Stanley [12].

Example 4. Consider m = 1327654. The corresponding inversion table is
t=1(0,1,0,3,2,1,0), because there is no element smaller than 1 and there
is exactly one element to the right of 3, namely 2, that is smaller than 3
et cetera.

2.6. Dyck paths. A Dyck path of length 2n is a lattice path from (0,0) to
(0,2n) that consists of steps (1,1) and (1,-1) and that never goes below the
z-axis. Denoting the steps (1,1) and (1,-1) by u (for up) and d (for down), a
Dyck path can be written as a word over the alphabet {u,d}. The number
of Dyck paths of length 2n is the nth Catalan number C, = n—il(Q:) We
denote the set of Dyck paths of length 2n by D,,.

Example 5. The Dyck path of length 2 -7 in Figure 3 is coded by the
word vuduuududdddud.

3. PATTERN AVOIDING INVOLUTIONS

We start our work on pattern-avoiding involutions by investigating the
avoidance of the six classical 3-patterns. For each such pattern we generate
and study Z,(p), when n is small. When counting these involutions we
obtain the first elements of the sequences that are presented in Table 1.
Our aim is to show that the results are indeed true for all n.

n/2
(Ln72j) or ([n%]), since the binomial (Z) coefficients are defined only for

For odd n, when n/2 is not an integer, it is natural to consider ( ) as
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p

2-3
3-2
1-3
3-1
1-2
2-1

~— | —| —| ~—
[N}
3
|
=

(1-
(1-
(2-
(2-
(3-
(3-

TABLE 1. Classical patterns

integer n and k. However, (Ln% J) =(,_ /2 J) = ([n72])’ so there should be
no ambiguities concerning the interpretation. Let (nT/Lz) = (Ln72 J).

It is observed that the involutions that avoid (2-3-1) are exactly the
same as those that avoid (3-1-2), at least for small n. On the other hand
we see that although |Z,(p)| = (n%) for four different patterns p, there are

no two distinct patterns p and g of these, such that Z,(p) = Z,(q). The
reader may convince himself of this by studying Z,,(p) for small n.

3.1. Avoiding p, when p is not an involution. We consider the case
when the pattern p itself is not an involution. As noticed above an invo-
lution avoids (2-3-1) if and only if it avoids (3-1-2). In this section this
will be shown to follow from the fact that the patterns are inverses of each
other. First, however, we show that Z,,(2-3-1) is counted by 2"~'.

Proposition 6. The number of involutions of [n] that avoid (2-3-1) is
2n-1,

We give a general description of the elements of Z,,(2-3-1). Note that,
if 7 = a1as - - - a, is a permutation of [n], where n is in position k, then 7
avoids (2-3-1) if and only if it can be written as 7 = ont, where o =
ajag---ax_; is a (2-3-1)-avoiding permutation of [k — 1] and
T = Qgi1Qpt2- -Gy 18 a (2-3-1)-avoiding permutation of {k,...n — 1}.
Furthermore, if 7 is an involution we see that since n is in position &, the
letter & must be in position n, and the only (2-3-1)-avoiding permuta-
tion 7 of {k,...n — 1} ending with k is 7 = (n —1)(n — 2)---(k + 1)k,
that is, these letters must be in decreasing order. Indeed, all other pos-
sible 7’s will contain at least one ascent ¢j, where 7 < j, and 75k will
then form a (2-3-1)-subword. Hence every 7 in Z,,(2-3-1) is of the form
on(n—1)---(k+ 1)k where o is in Z;_;(2-3-1). Such a 7 can be written
explicitly as

m= ki lky - (ks + ks (keoy + D)n--- (ke + 1),

In other words, the involutions can be considered as divided into segments,
such that
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(a) each letter in segment ¢ is smaller than every letter in
segment (i + 1),
(b) the elements in each segment are in decreasing order.
In order to show that |Z,(2-3-1)| = 2" ! we give four proofs, where we
construct bijections from Z,,(2-3-1) to different sets that are known to be
counted by 2"~

First proof. Let B,, be the collection of binary strings of length n. Given
a binary string r = z125---x, 1 in B, 1, a permutation 7 = ajas---a,
in &, is constructed inductively by letting 7y = 1 and then, if m; = oirT,
by letting

miy1 = oir(i+1), if ;=0

Tiy1 = oi(i+1)7, ifz; =1
That is, the permutation 7 is built up by successively placing each of
the elements 1,...,n either as the last element or just before the largest
element already placed. This procedure defines a mapping

(I)n : Bn—l — Sn,
T — .
Denote the image of B,,_; by A,. Then A, consists of all permutations of
the form
on(n-1)(n-2)...(k+ 1)k, where o € Aj_,

and is easily seen to coincide with Z,(2-3-1), according to the descrip-
tion above. Since ®,, is clearly injective we have a one-to-one correspon-

dence between the binary strings of length (n — 1) and Z,,(2-3-1), hence
|Z,(2-3-1)| = |B,, 1| = 2" . O

Example 7. Consider the binary string x = 010111 € Bg. Then ®; maps
x to m = 1327654, via m;, for 1 = 0,...,6, where

T = 1

m = 12, since x1 =0

me = 132, since x5 =1
w3 = 1324, since 23 =0
my = 13254, since x4 =1

ms = 132654, since x5 =1
m=mg = 1327654, since g = 1.

Second proof. In this proof we show the one-to-one correspondence be-
tween Z,,(2-3-1) and the binary strings of length (n — 1) by constructing
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a mapping ¥, from 7, to B,_;. Here T, is the set of inversion tables
t = (t1,t2,...,t,) defined from 7 = ajas - - - a, € I,,(2-3-1) as
t; == |{] 1] >, a; < CLZ}|

That is, the ith entry of ¢ is the number of letters following the 7th letter
of 7 that are smaller than the ith letter. From the appearance of Z,,(2-3-1)
it follows that the elements in 7, will be of the form

(ki ki —1,...,1,0,...,0, ko ko —1,...,1,0, kg ke —1,...,1,0).

For example, a decreasing sequence a;a;41 . ..a;4x of length (k + 1) will
give rise to the segment (¢;,ti11,...,t4x) = (k,(k —1),...,1,0) in the
corresponding inversion table ¢(7).

The mapping

v,: T, — B,

t:(tl,tQ,...,tn) = T =X21Ty-"Tp_1
is now defined by
_J0if4; =0,
Ti=\ 1ift; #0.

It is easy to see that W, is invertible, when restricted to (2-3-1)-avoiding
involutions. The inverse mapping is given by

[0 ifz=0,
7] s, where (s — 1) is the number of 1’s following z;, if z; = 1.

A permutation is uniquely determined by its inversion table. Hence there
is a one-to-one correspondence between B,_; and Z,(2-3-1) via the in-
version tables {T,}, and |Z,(2-3-1)| = 2" L. O

Example 8. Consider 7 = 1327654 from Example 7. The corresponding
inversion table is t = (0,1,0, 3,2, 1,0), according to Example 4. Now ¥
maps (0,1,0,3,2,1,0) onto 0101110, which is exactly the binary string z,
given by the mapping ®; in the first proof.

Third proof. Denote the set of subsets of [n] by P,. We construct 7 in
Z,(2-3-1) from A in P,_; by letting the letter i be immediately pre-
ceded by a larger letter, if and only if ¢ is in A. Because of the ap-
pearance of the elements in Z,(2-3-1) there is only one choice of the
larger letter to precede i, namely (i+ 1), and this algorithm for construct-
ing m from A therefore clearly defines a bijection. Indeed, the segment
(1t + k)@ + k — 1)--- i is contained in 7 if and only if 4, (¢ + 1), ...,
(i+k) are in A. Hence there is a one-to-one correspondence between P,,_;
and Z,,(2-3-1), so |Z,,(2-3-1)| = |P—1| =2 L. O

Example 9. Let A = {2,4,5,6}. The corresponding 7 is 1327654. In-
deed, the letter 2 is the smallest letter that is in A, and accordingly the
smallest letter to be preceded by a larger letter. From this we conclude
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that 1 is a fixed point and, since 3 is not in A, the decreasing sequence
ending with 2 must start with 3. The letter 4 is in A as well as 5 and 6,
and hence m must contain the segment 7654.

We also see from this example how to get from 7 to A. Considering
7 = 1327654 we find that exactly the letters 2, 4, 5 and 6 are preceded by
larger letters, hence A = {2,4,5,6}.

Porism 10. The number of involutions in T,(2-3-1) with ezactly k de-

scents s (";1)

Proof. Consider the bijection from P, ; to Z,(2-3-1) defined in the third
proof above. A (2-3-1)-avoiding involution is constructed from A in P,_;
by letting 7 be preceded by a larger letter if and only if 7 is in A. Hence
the number of elements in A counts the descents of w. Since there are

(") ways of choosing k letters out of [n — 1], the result follows. O

Finally, we give a proof by showing a one-to-one correspondence between
7Z,(2-3-1) and a certain type of Dyck paths, that are easily counted.

Fourth proof (of Proposition 6). Claesson [1] gives a proof of the well-
known result that S,(2-1-3) is counted by the nth Catalan number, in
which he defines recursively a bijective mapping ® from S, (2-1-3) to the
set of Dyck paths of length 2n. We mimic his proof and construct a
mapping ® from §,,(2-3-1) to the Dyck paths of length 2n.

Consider 7 = ajas - - - a, in S,(2-3-1) with the letter n in position k.
According to the discussion on page 6 we can write 7 = on7, where
0 = ajay---a 1 is a (2-3-1)-avoiding permutation of [k — 1] and 7 =
Ak+10k+2 * * * Gy 1S & (2-3-1)-avoiding permutation of {k+1, k+2,...,n—1}.

Denoting the empty word by €, we define ® () recursively by

&(r) €, if m =,
™=\ w(® o proj) (o) d(® o proj)(r), otherwise.

Here, proj(z) denotes the projection of the word z = x5 - - - z,, where
z; € N and z; # z;, onto S, defined by

proj(z) = aias - - - a,, where a; = [{j € [n].z; > z;}|.

For example proj(265) = 132.
It is easy to see that & is invertible and hence a bijection.
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F1GURE 2. The Dyck path in Example 11

Example 11. Consider 7 = 7312645 € S;(2-3-1). The corresponding
Dyck path is given by
O(n) = ud(e)dP(312645)

= uedud(312)dP(12)

= ueduud(e)d®(12)dud(1)dd(e)

= wueduuedu®(1)d®(e)duud(e)dP(e)de

= wueduueduu®(e)dededuuedede

= ueduueduuedededuuedede

= uduuduuddduudd.

When restricted to involutions we have that 7, and accordingly ®(7), is
determined by the position of n. In fact, the decreasing sequence starting
with n, that is n7, where 7 = (n — 1) - - - k, corresponds to the Dyck path

O(1) = ud(e)d®((n—1)(n—2)---k)
= udud(e)d®((n —2)(n—3)---k)

= wudud---ud.
The image of Z,,(2-3-1), denoted by D}, will therefore be
D; ={uD;_,dud---ud}.

That is, a Dyck path in D} ends with a tail of the form udud---ud,
preceding which, there are no returns to the z-axis. Removing the tail,
the down-step just before it and the first up-step of the Dyck path yields
a path with the same properties. Note that D} is the set of Dyck paths, in
which a down-step is immediately followed by at most one up-step. As a
consequence the peaks as well as the valleys are of decreasing height. An
illustration of a typical Dyck path in D} is given in Example 12 below.
From the construction, the number of D} satisfies the recursion

n—1
Dy = |D;l,
i=1
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FiGurE 3. The Dyck path in Example 12

and since D} = {ud}, we have |Dj| =1, so |D}| =21 O

Example 12. Let us return to the (2-3-1)-avoiding involution 7 = 1327654
from Example 7. We have that m corresponds to the Dyck path
O(n) = ud(132)dd(321)

= wud(1)d®(1)dud(e)d®(21)

= wuu®(e)ddud(e)dduedu®(e)d®(1)

= wuueddueddueduedud(e)dP(e)
uuuedduedduedueduede
= wuudduddududud.

Proposition 13. The number of involutions of [n] that avoid (3-1-2) is
2n-t

For the proof we need the following lemma.
Lemma 1. Let p be a pattern in S,. Then I,(p) = Z,(p1).

Proof. Consider the involution 7 written in two line notation:

(1 2 ... n)
T = ;
a as ... QA

Suppose that the subword

1 Iy ... 1
V= k
ay, Qi ... A4,

forms an occurrence of p. Then
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But since 7 is an involution, we have that 7 = 7!, so 7 contains also the

p t-subword v~!. Hence we have an occurrence of p~! if and only if we

have an occurrence of p. O

Example 14. Let p be the pattern

Then ) |
<

(2413 _
=P =\19234)7

The letters
(24538
"Z\3917

form an occurrence of the pattern p. Accordingly,

4 (3 917\ (13709
v T\l2458) 5284
forms a g-subword.

Proof of Proposition 13. We have that (3-1-2) is the inverse of (2-3-1).
The result then follows immediately from Proposition 6 and Lemma 1. [

We conclude this section by an application of Proposition 6 to a certain
set of pattern avoiding permutations. Claesson [1] shows that involutions
of [n] are in one-to-one correspondence with permutations of [n] that avoid
(1-23) and (1-32). For the proof he constructs a bijection ® between Z,,
and S,(1-23,1-32), which we describe below.

The standard form of a permutation 7 is defined by writing 7 in cycle
notation and requiring that

(a) each cycle is written with its least element first
(b) the cycles are written in decreasing order with respect to their
first elements.

The corresponding permutation 7 = ®(r) is obtained from 7 in standard
form by erasing the brackets separating the cycles. Since involutions con-
sist of cycles of length one or two, each permutation 7 in S,(1-23,1-32)
is obtained from exactly one involution, and ® is therefore a bijection.

Corollary 15. Involutions of [n] that avoid (2-3-1) are in one-to-one
correspondence with permutations in [n] that avoid (1-23), (1-32), (13-2)
and (3-214). Hence

|5, (1-23,1-32,13-2, 3-214)| = |Z,(2-3-1)| = 2" ..
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Proof. Claesson [1] proves the one-to-one correspondence between
S,(1-23,1-32) and Z,, so what is left to prove is that, given a (2-3-1)-
avoiding involution 7 we have that ®(7) avoids (13-2) and (3-214) and
vice versa.

To show that ®(I,(2 — 3 — 1)) C Su(1 — 23,1 — 32,13 — 2,3 — 214),
assume that 7 in S,(1-23,1-32) contains a (13-2)-subword. Then there
exists a segment of 7 of the form

aias---as, where a; < ay < as.

Since the cycles of involutions in standard form are of maximum length
two and are written with their least element first, 7 necessarily corresponds
to an involution 7 containing the cycle (a;,a3). It also follows that the
letter ay must be contained in a cycle (a, as), where a < ay, for otherwise as
would precede a; in 7. We now have that

Gg---ag---a---a,, wherea < a; <ay < as,

is a segment of 7, so 7 contains the (2-3-1)-subword asaza;.
Assume instead that 7 has an occurrence of (3-214), that is 7 contains
the segment

as - - - aoQ1a4, wWhere a; < as < a3 < ay.
Then (aja4) must be a 2-cycle of m. The letters ay and a3 can either be
fixed points or contained in 2-cycles.

Assuming that as and as both are fixed points implies that 7 contains
a segment of the form

Gy --Qo---a3---a;, where a; < ay < az < ay.

Here asaza; forms a (2-3-1)-subword.

If a3 is a fixed point while a4 is not, then a, will be contained in a cycle
(dy, ag) where a1 < dy < ag, once again resulting in the (2-3-1)-subword
asaszaq of .

Finally we assume that az is contained in a 2-cycle (ds,a3), where
a3 > ao (or dz > dy, if there is a cycle (da,az)). We then get the fol-
lowing possible segments of 7:

Gy -Qg---dy---a3---d3...a1, where d3 < as,
Qg+ Qg+ Qg+ ++A3***A3...0a1, where a3z < az < Qq,

Gy -Qg---dy---d3---a1...0a3, Where d3 > ay.
In all cases we get an occurrence of (2-3-1). Hence it follows that
O(I,(2—3—1)) C Su(1—23,1— 32,13 — 2,3 — 214).
To show the converse, that is

Sp(1—23,1—32,13—2,3—214) C &(I,(2 -3 — 1)),
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we consider m € I,(2-3-1). There are essentially two different ways of
constructing a (2-3-1)-subword out of three letters ai, as and ag € [n]
such that a; < ay < a3. Either we get an involution of the form

ce (a3b3) cen (G,ng) Ce (albl) caay
where
o < ag < as, b2<bg<b1, a1<b1,
or an involution of the form

[P (bQCLQ) .. (b3a3) e (albl) faay
where
a < ag < as, b2<b3<b1, a2>b2, a3 > bs.

Consider the first case. Without loss of generality we let az3 < b3 and
as < by. The special cases when as and a3 are fixed points are given
by letting ay and a3z be equal to by and bs respectively. Consider the
cycle (ij) = (biay). Clearly i < j. Let (k¢) be the cycle to the left
of (ij) (kK = £ denotes the case when k is a fixed point). If £ < j = bs,
then £ij forms a (3-214)-subword of the corresponding permutation ® (),
because £ is clearly larger than 7. Otherwise let (ij) = (k¢) and repeat the
above arguments until a (3-214)-subword is obtained. This is guaranteed
to happen, since if we have gone through all cycles between (byay) and
(bray), then with by as £ we have that £ = by < bs.

Considering the second case, without loss of generality we let a; < b.
The case when a; is a fixed point is denoted by a; = b;. The subword
(baagay) will now form an occurrence of (13-2) since by < a; < as.

This proves that

Sp(1—23,1-32,13—-2,3—-214) C®(1,(2—3-1)).
Hence
|Sn(1—23,1—-32,13-2,3 —214)| = |([,(2—-3-1)|.
O

3.2. Avoiding (2-1-3) or (1-3-2). We introduce a couple of results that
will be used in the proof of Proposition 18. First we present a well-known
property of the patterns in S3.

Proposition 16. Let p be a pattern in S3. Then |S3(p)| = C,, where

C, = #1(2:) is the nth Catalan number.

One way of proving Proposition 16 is to construct a bijection between
the pattern avoiding permutations of [n] and the set of Dyck paths of
length 2n, that are known to be counted by the nth Catalan number.
Such a bijection for the case when p = (2-3-1) is actually presented in
the fourth proof of Proposition 6 on page 9.

Next we consider a consequence of the fact that an involution is its own
inverse.
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Lemma 2. Let p be an involution of [k] and m a permutation of [n].
Then 7 avoids the pattern p if and only if 71 avoids p.

Proof. Consider 7 written in two line notation:
( 1 2 ... n )
= )
a as ... Qp
Suppose that we have an occurrence of p as the subword
- 7;1 ig .. ik '
ay, Gy ... G4,
Since p is an involution, we have that p~! = p and
vl = ( Q11 CL@ Qin )
21 9 ... 1
forms a p-subword contained in
-1 _ ap Q2 ... Qp
Tz ( 1 2 ... n > '
Hence 7 avoids p if and only if 7! avoids p. O
Example 17. Let p be the 5-pattern
(12345
P=\35142)
Clearly p is an involution. Now consider the permutation

1234567289
54912673 8)°

The subword
(1 35 7 8
U=\l5 927 3

forms an occurrence of p and accordingly
4 _ (5 49126738\ _(12345¢67289
T T\123456789)"\458216793)°

contains the p-subword
(59 273\ (235709
"“\13578)7\58173)
Proposition 18. The number of involutions of [n] that avoid (2-1-3) is

the nth central binomial coefficient (;/’2)

2
3
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Proof. First we give a general description of the elements in Z,(2-1-3).
If 7 = ajas---a, is a permutation of [n] with the letter 1 in position k,
then 7 avoids (2-1-3) if and only if it can be written as 7 = ol7, where
0 = ajay---ag_1 is a (2-1-3)-avoiding permutation of {n,(n — 1),...,
(n— k + 2)} and 7 = agy10k42 - - - ay is a (2-1-3)-avoiding permutation
of {2,3,...,(n— k + 1)}. That is, the letters preceding 1 must all be
larger than the ones following 1, and clearly all segments of 7 must be
(2-1-3)-avoiding.

When constructing a (2-1-3)-avoiding involution, 7, there are essen-
tially two different ways of positioning the letter 1. Either it can be placed
as the first letter a;, in which case o = ¢, the empty word, or it can be
placed in the second half of the word, that is in position k where k£ > 2 +1.
Namely, o, if nonempty, consists of the (k — 1) largest letters of [n], in
particular k, that is the first letter of m, because 1 is the kth letter, must
be one of the (k — 1) largest letters, so k > % + 1.

Let us now consider the permutation 7. In the first case, when 1 is
a fixed point, 7 is merely a (2-1-3)-avoiding involution of {2,3,...,n}.
In the second case though, the letters following 1, in positions larger
than k, will all be smaller than k, so an arbitrary permutation of {2, 3, ...,
(n— k+ 1)} will do as 7 as long as it avoids (2-1-3). We notice that the
first (n — k4 1) letters of 7 are uniquely determined by 7 since the letters
of 7 must all be contained in 2-cycles (7, a;), where 7 < (n —k+1). Hence
T = aias - 4y can be written as

= kr lplr,

where 7! is the inverse of 7 seen as a bijection from {2,3,...,

(n—k+1)} to{k,(k+1),...n} and where p = ap_gi20n_k+3 " Q_1.
To make sure that 7 is (2-1-3)-avoiding we must check that 77! avoids
(2-1-3) whenever 7 does, but this is exactly what is said in Lemma 2. Fi-
nally p, must be a (2-1-3)-avoiding involution of {(n—k+2), (n—k+1), ...,
(k— 1)}, on which we recursively repeat the arguments above.

The next step of the proof is to derive an expression for the number
of (2-1-3)-avoiding involutions from the above description of them. Let,
for the sake of simplicity, |Z,(2-1-3)| be denoted by A,. With 1 in po-
sition k, where & > % 4 1, the number of possible 7’s is the (n — k)th
Catalan number C), , according to Proposition 16. Independently of 7
there are Agy_,,_o ways of choosing p, so the number of (2-1-3)-avoiding
involutions with a;, = 11is Ag;_,_2C,, . Moreover, there are A,,_; possible
(2-1-3)-avoiding involutions with 1 as a fixed point. Thus

Ay =An 1+ Z Agn2Cn
k=13]+1

and A, = 0 if n < 0. This recursion is satisfied by the central binomial
coefficients [11], thus we conclude that |Z,(2-1-3)| = A4, = (n%) O
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We now turn to avoidance of (1-3-2). For this purpose we introduce
the trivial bijections on permutations.

3.2.1. Trivial bijections. Let m = aqas---a, € S,. We define the re-
verse of m as R(m) := ay, - - -asay, and the complement of © by C(7)(i) =
n+1— m(i), where i € [n]. These bijections from S, to itself and their
composition CoR are called trivial. Let ® be a trivial bijection and let 7 be
in S,(p). Then the permutation ®(7) avoids the pattern ®(p) and conse-
quently the number of permutations avoiding R(p), C(p) or Ro P(p) is the
same as the number of permutations avoiding the pattern p. Note that the
reverse of the generalised pattern (a;-asasz-aqas) is (asas-azaz-ay). Also
the dashes are “reversed”.

Example 19. Let p = 534621. It is clear that p avoids (1-3-2). The
reverse of w, R(w) = 125435, the complement of 7, C(w) = 243156
and their composition, R o C'(7) = 651342 then avoid R(p) = (2-3-1),
C(p) = (3-1-2) and R o C(p) = (2-1-3), respectively.

Lemma 3. The composition C o R, restricted to I, is a bijection from
T, to itself.

Proof. Let m be in Z,,. Then 7 consists of cycles of length 1 and 2, that
is, m(j) = k whenever 7(k) = j. The case when j is a fixed point is
denoted by k = j. Let (4, k) be a cycle of 7, then

R(m)(n+1—j) = m(n+1—(n+1-7))=7()=k,
CoR(m)(n+1—-j) = n+1—-R(r)(n+1—-j)=n+1-k.

Likewise C' o R(w)(n+1 — k) = n+ 1 — j which shows that (n+1— j,
n+1—k) is a 2-cycle of C o R(m). Hence C o R(w) is an involution, so
CoR(T,) = T, 0

Proposition 20. The number of involutions of [n] that avoid (1-3-2) is
the nth central binomial coefficient (n%)

Proof. Let m be in Z,(2-1-3). The permutation C o R(w) is in Z, by
Lemma 3 and it is clear from above that C'o R(7) avoids C o R(2-1-3) =
(1-3-2). Since C o R is a bijection from Z,, to Z, it follows that

CoR:T,(2-1-3) — T,(1-3-2)

is injective, thus |Z,,(2-1-3)| < |Z,(1-3-2)|. In order to show the converse,
note that C o R is its own inverse and hence C' o R(C o R(p)) = p. An
application of the same argument to C' o R(2-1-3) = (1-3-2) implies
the desired inequality |Z,(1-3-2)| < |Z,(2-1-3)|. Thus, it follows that
| Zn(2-1-3)| = [Z,(1-3-2)|. 0
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3.3. Avoiding p, when p is an increasing or decreasing sequence.
This section concerns avoidance of to the two remaining 3-patterns, (1-2-3)
and (3-2-1). Although we have not found any direct relation between
Z,(1-2-3) and Z,(3-2-1), it is possible to give almost analogous proofs
for them being counted by (n%) by using the RSK algorithm for Young
Tableaux, as will be seen below. We start however with a combinatorial
proof for (3-2-1)-avoidance, based on work by Kitaev and Claesson.

In Kitaev [5], which concerns multiavoidance of 3-patterns without in-
ternal dashes, it is shown that the permutations of [n] that simultaneously
avoid (123), (132) and (213) are counted by the central binomial coeffi-
cients. We will use this result to conclude that the number of (3-2-1)-
avoiding involutions of [n] is (7:;2) Thus we have to establish a relation

between Z,(3-2-1) and S, (123,132, 213).

Lemma 4. Involutions of [n] that avoid (3-2-1) are in one-to-one cor-
respondence with permutations of [n] that avoid (123), (132) and (213).
Hence

1Z,(3-2-1)| = [5,(123,132,213)|.

Proof. Claesson [1] gives a proof that there is a one-to-one correspondence
between Z, and S,(1-23,1-32) by constructing the bijection ®, which is
described in connection to Corollary 15, on page 12. Furthermore, he
observes that the dashes in the patterns are immaterial for the proof and
accordingly S,(123,132) = S§,,(1-23,1-32). We show that ® restricted to
the (3-2-1)-avoiding involutions gives exactly the permutations that avoid
(123), (132) and (213).

To show that S,(123,132,213) C ®(Z,(3-2-1)), let 7 be an involution
of [n] and let 7 be the corresponding permutation in S,,(123,132). Assume
that 7 contains a (213)-subword. There then exists a segment of 7 of the
form

asaqaz, where a1 < as < as.

Since the cycles in the standard form are of maximum length two and
are written in decreasing order with their least elements first, the only
possibility for ag to follow a; is that (ai, a3) is a cycle of m. The letter ay is
either a fixed point or contained in the 2-cycle (a, as), where a; < a3 < as.
Thus 7 contains either the segment

as---as---ay, where a1 < ag < as
or
Q3---Qy---Qy---a1, Where a; < as < ag < ag,

where aszasa; forms a (3-2-1)-subword in both cases.
In order to show that ®(Z,(3-2-1)) C S,(123,132,213) we assume that
there is an occurrence of (3-2-1) in , that is, 7 contains a segment

ag---ao---a1, where a; < as < as.
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There are essentially three different ways of constructing this out of ay, a
and as.
First, we consider the case when 7, written in cycle notation, is of the
form
e (albl) .. .(b2a2) . (b3a3) e
where
a1 < ay < ag and by < by < by.
Let a; = b; denote the case when a; is a fixed point. Consider the cycle
(ij) = (bsas). Clearly i < j. Let (kf) be the cycle to the left of (ij)
(k = ¢ denotes the case when £ is a fixed point). If £ < j = a3, then fij
forms a (213)-subword of the corresponding permutation ®(7). Otherwise
let (ij) = (k¢) and repeat the above reasoning. We realize that this
procedure will cause a (213)-subword to be formed as #ij. Indeed, if we
have gone through all cycles between ay and b3, then with ay as £ it will
be true that ¢ < £ < j, because £ is smaller than j (j > az > as = ¢) and
since the cycles are written in decreasing order it follows that ¢ is larger
than .
The next possibility is that 7 is of the form

e (arby) - (asho) - - - (aghs) - -

where
a1<a2<a3andb3<b2<b1.
Let a3 = b3 denote the special case when a3 is a fixed point. By setting
(1) = (azby), letting (k) be the cycle to the left of (i) and repeating the
arguments from the first case we get an occurrence of (213) in the corre-
sponding permutation 7. Indeed, the fact that b; is smaller than by and
consequently smaller than every j and also clearly larger than 7 guarantees
that ¢ij will form a (213)-subword for some ¢, i and j.
Finally we consider 7, when 7 is of the form

e (arby) -+ (agbs) -+ (byag) -+
where
a1 < ay < ag and by < by < by.
The special case when a; is a fixed point is denoted by as = by. A (213)-
subword is obtained by letting (ij) = (bsa3) and once again applying the
above arguments.
This proves that S,(123,132,213) = Z,(2-3-1). O

We are now prepared to conclude the following result.

Proposition 21. The number of involutions of [n] that avoid Z,,(3—2—1)
s the nth central binomial coefficient (n’}Q)

Proof. This follows immediately from Lemma 4 and the fact that
S,(123,132,213)| = (n’;Q), shown by Kitaev in [5]. O
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3.3.1. Young tableauz and involutions. Knuth [8] proves that the number
of involutions of [n] is the same as the number of Young tableaux that
can be formed from [n]. In his proof he constructs a Young tableau from
an involution by inserting the letters of the involution into an originally
empty Young tableau, using an algorithm I. Together with its inverse D,
for deleting elements from a tableau, I is called the RSK algorithm, after
its creators; Robinson, Schenstedt and Knuth.

Given a Young tableau P and an integer x that is not in P, algorithm [
creates a new tableau P’ that contains z in addition to its original ele-
ments. The tableau P’ has the same shape as P except for a new entry
added to one of the rows. When inserting the element x into P, it is first
compared to the elements in the first row of P. If x is larger than all ele-
ments in the first row it is placed as the last element in that row and the
algorithm terminates, otherwise it is placed in the position of the smallest
element larger than z. This element 2’ is then inserted into the next row
in the same way. The procedure is repeated until an element x’ is inserted
as the last element of a row.

Example 22. We illustrate the insertion algorithm I by an example. Sup-
pose that we want to insert 4 into the Young tableau P, where

1[3]6]7]
9

P =

2
1
8

First, the 4 will be placed in the entry occupied by 6, since 6 is the smallest
element larger than 4 in the first row.

113[4]7]
9

2
5
8

Element 6 is then moved down to the second row where it displaces 9.

314]|7]
6

|OO‘C)"! DO [ —

Finally 9 will be placed as the last element in the third row, since the row
contains no element larger than 9, and the procedure terminates. The
tableau P has now been transformed into P’, where

113]4]7]
216
59

8]

P =
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Note that P’ has the same shape as P except for the new square, contain-
ing 9.

With P’ and the position of the entry added when inserting z, it is
possible to get back to P by running algorithm I backwards. More gen-
erally, given a Young tableau @ and indices (s,t) such that y = Qg is
the rightmost element in row s and that column ¢ has no entries below y,
algorithm D transforms () into a Young tableau @)’ with no element in
position (s,t) but otherwise of the same shape as (). An element z is
then deleted from (). The method starts by removing the element y from
row s and inserting it into row s — 1 where it displaces the largest ele-
ment smaller than y. This element 3’ is in turn moved up to row s — 2.
This procedure continues until an element is removed from the first row.
If we apply algorithm D to the tableau P’ and the indices of the entry
that makes the difference in shape between P’ and P, we end up with the
original tableau P and the element x. Likewise, if we start with a Young
tableau @ and indices (s,t) and apply algorithm D we get a tableau @’
and an element z. Inserting z into @' according to I will get us back to Q.
In this sense the algorithms I and D are inverses of each other.

Example 23. We want to transform the Young tableau P’ from exam-
ple 22 back to its original form P. The entry that makes the difference
between the shape of P’ and that of P has the indices (3, 2), so we start by
removing the element in this position, that is 9. The element 9 is inserted
into the second row in the position of 6, since 6 is the largest element
smaller than 9. Finally 6 replaces element 4 in the first row and we get
back to P, with 4 as the deleted element.

113]4]7] 1[3]4]7] 1[3]6]/7]
,_ [2]6 219 2|9 _
P_59 —>i —>i =P
18 18 8

By considering a permutation written in two line notation, Knuth con-
structs a mapping from S, to the set of ordered pairs of Young tableaux
(P, Q) formed from the elements {1,2,...,n}, where P and @ have the
same shape. This is done by inserting the elements one by one into an ini-
tially empty Young tableau, partly by using algorithm I. This mapping is
shown to be invertible, so there is a one-to-one correspondence between S,,
and the set of ordered pairs (P, @), where P and @ are as above.

Next, Knuth shows that if the permutation

(1 2 ... n)
m =
ay Qa2 ... Qp
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corresponds to the ordered pair of tableaux (P, @), then the inverse per-
mutation
1 ay Qa2 ... Qp
= ( 1 2 ... n )

corresponds to (@, P). Hence, since the involutions are the permutations
that are their own inverses they correspond to pairs of tableaux (P, P),
and therefore the number of tableaux that can be formed from [n] equals
the number of involutions of length n. For a detailed proof we refer to [8].

A consequence of the tableau-constructing method based on algorithm I
is that the number of rows in the resulting Young tableau P corresponds
to the length of the longest decreasing sequence of the permutation. In-
deed, for the algorithm not to terminate before the kth row, the element
inserted into row ¢, where ¢ < k, has to be smaller than the largest ele-
ment of the row. That is, an element x that causes a movement down to
the kth row must have been preceded by a smaller element in the involu-
tion (now in the first row), that in turn must have been preceded by an
even smaller element (in the second row) et cetera, that is the involution
must contain a decreasing sequence of length k. On the other hand, if we
let a;, ...a; denote the lexicographically smallest decreasing sequence of
length £, it is easy to realize that when a;, has been inserted into the first
row, element a;; will be in row j for each j. Hence the Young tableau will
have k rows exactly when the longest decreasing sequence is of length k. In
particular Z,(3-2-1) will be in one-to-one correspondence with the Young
tableaux with at most two rows. It is known that the number of Young
tableaux with two or less rows is the nth central binomial coefficient. For
a proof see for example Lundin [9]. This therefore gives another proof of
Proposition 21.

As the length of the longest decreasing sequence of the involution deter-
mines the number of rows, the length of the longest increasing sequence
equals the number of columns. This can be seen from the construction
by arguments similar to those above. The set of (1-2-3)-avoiding in-
volutions will therefore be in one-to-one correspondence with the Young
tableaux with two or less columns. Taking the transpose of a Young
tableau; P;; — Pj;, that is reflecting in the NW-SE diagonal, clearly gives
a bijection from the tableaux with k rows to the tableaux with k£ columns.
Thus the number of Young tableaux with at most two columns is indeed
the nth central binomial coefficient. This proves the following proposition.

Proposition 24. The number of involutions avoiding (1-2-3) is the nth
central binomial coefficient (n%)

4. INVOLUTIONS AVOIDING GENERALISED 3-PATTERNS

So far our work has concerned avoidance of classical patterns. In this
section we extend the study to include all generalised 3-patterns.
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We start our investigation by counting the pattern-avoiding involutions

of [n], when n is small (n < 10). The results are presented in Table 2.

p Ll p»p [ZTWI] p [Z.0[] p |70
(1-2-3) [ (),) [(1-23)] A, [(12-3)] A, |(123)] B
(1-3-2) | () [(1-32)] A, [(13-2)] (},) [(132)] C,
(2-1-3) | () |(2-13)] () |(21-3)] A, [(213)| G
(2-3-1) | 2= T [(2-31)| 2T [(23-1)| 20T [ (231)| D,
(3-1-2) [ 2»7T [(3-12)| 2" [(31-2)| 2»7T |(312)| D,
3-2-1)[ (1) |(-21)] E, |(32-1)| E, [(321)| B,.

TABLE 2. Generalised patterns
Here:
A, = 1,2,3,6,11,23,46,100,213,481,...
B, = 1,2,3,7,15,38,97,271,778,2371,. ..
C, = 1,2,3,6,12,28,66,172,458,1305, ...
D, = 1,2,4,8,17,39,94,241,646,1821, ...
E, = 1,2,3,6,11,23,47,103,225,513, ...

Further we consult the On-Line Encyclopedia of Integer Sequences [11]
for information about the obtained sequences of |Z,(p)|. However, except
for the well-known (n’/LQ) and 2" ! none of them can be found in [11].
Still the enumeration of A, ..., E, is of some interest for comparison rea-
sons. For each row in the table there is a hierarchy amongst the patterns.
Namely, an occurrence of a one-dash pattern, (z-yz) or (zy-z), is a spe-
cial case of an occurrence of the classical two-dash pattern (z-y-z), and
an occurrence of the zero-dash pattern (zyz) implies an occurrence of the
one-dash patterns. This hierarchy induces a partial ordering of Z,(p) with

respect to inclusion. Accordingly

To(0-y-2) C Io(z-y2)
T, (z-y-2) C Z,(ry-z)

which implies that

Zn(z-y-2)| < |Tu(z-y2)| < [Zn(2y2)),
In(z-y-2)| < [Tn(zy-2)| < [Tn(zy2)].

Taking a look at the fourth row of Table 2 above, a consequence of
|Z,(2-3-1)| = |Z,(2-31)| = |Z,(23-1)| is seen to be that Z,(2-3-1) =
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7,(2-31) = 7,,(23-1), that is an involution avoids (2-3-1) if and only if
it avoids (2-31), which is in turn avoided if and only if (23-1) is avoided.
However, for n > 5, the sequence D,, indicates the existence of involutions
that avoid (231) even though they may contain (2-3-1)-subwords. This
is in fact the case for m = 52431.

Proposition 25. The number of involutions that avoid p, when p is equal
to (2-13) or (13-2), is (n%) Hence

T2-19) = 13,013-2) = (), ).

For the proof we use a consequence of the proof of Proposition 20.

Porism 26. [of Proposition 20] For a generalised pattern p we have that
Z.(p)| = |Zu(C o R(p))|-

Proof. Without loss of generality, the pattern p = (2-1-3) in the proof of
Proposition 20 could be replaced by any generalised pattern. O

Proof of Proposition 25. In Claesson [1] it is shown that a permutation 7
avoids (2-13) if and only if it avoids (2-1-3). In particular this is true
when 7 is an involution. Thus, recalling from Proposition 6 that the
(2-1-3)-avoiding involutions are counted by (n’/LQ), we obtain the desired

result in the first case. An application of Porism 26 to p = (13-2) =
C o R(2-13) then proves the remaining part. O

Proposition 27. An involution avoids p, where p is one of the patterns
(2-31), (31-2), (23-1) or (3-12), if and only if it avoids (2-3-1). Hence

T,(2-81)] = [T,(31-2)| = |T,(23-1)| = [T(3-12)] = 2" .

Proof. Claesson[1] partitions the twelve one dash patterns into three equidis-
tributed classes, with respect to the patterns considered as permutation
statistics. This is done on the basis of their behaviour under actions of
the trivial bijections.

As mentioned in the proof of Proposition 25, Claesson [1] shows that
a permutation avoids (2-13) if and only if it avoids (2-1-3). Due to the
properties of the trivial bijections, the corresponding results are true for
all patterns in the (2-13) class, that is (2-31), (13-2) and (31-2). In
particular, an involution avoids (2-31) if and only if it avoids (2-3-1) and
avoidance of (31-2) is equivalent to avoidance of (3-1-2), which in turn,
by Lemma 1, is equal to (2-3-1)-avoidance.

Concerning the two remaining patterns we give a proof by describing
the pattern-avoiding involutions. Let 7 = ajas - - - a, be a (23-1)-avoiding
involution with & as the first letter. The initial segment 0 = aqas - - - ay
of 7 is easily seen to be determined by k. Indeed, the letter 1 must
clearly be in position k£ and since no ascents are allowed to precede 1, the
only possibility is to let o consist of the k£ smallest letters in decreasing
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order. In the same way, the (k + 1)st letter fixes the subsequent segment,
and so forth. This procedure results in an involution of the form that
was used to describe Z,(2-3-1) in the proof of Proposition 6. Hence
Z,(23-1) C Z,,(2-3-1) and since the converse inclusion obviously holds we
conclude that Z,(23-1) = Z,,(2-3-1).

By similar arguments the description of Z,(2-3-1) is easily seen to fit
also a (3-21)-avoiding involution, so Z,(23-1) = Z,,(2-3-1). The details
are left to the reader.

We recall from Proposition 6 that the (2-3-1)-avoiding involutions are
counted by 2"~!. Thus the second part of the proposition follows accord-
ingly. O

5. MULTIAVOIDANCE OF 3-PATTERNS AMONG INVOLUTIONS

We devote this final section to the case of multiavoidance, that is when
two or more patterns are simultaneously avoided. This was first system-
atically studied for classical 3-patterns by Simion and Schmidt [10] but
has recently been extended to generalised patterns, for instance by Claes-
son [1], Kitaev [5], [6] and Claesson and Mansour [2].

Consider Z,(p1, - - - px), where p; are 3-patterns. Allowing the patterns p;
to be generalised and the number of them, &, to vary, provides us with a
huge amount of different restrictions to investigate, even though many of
them are not of much interest. Here we limit ourselves to the case of two
classical 3-patterns, denoted p and q.

As in the study of generalised patterns we start by counting the involu-
tions of [n] that avoid the pair of patterns p and ¢, when n is small. The
result is presented in Table 3, where a certain cell represents the number
of involutions that avoid simultaneously the row and the column pattern.

PNg | (1-2-3) [ (1-3-2) | (2-1-3) | (2-3-1) | (3-1-2) | (3-2-1)
(1-2-3) A, A, n n B,
(1-3-2) Ap n n Cy,
(2-1-3) n n Cy,
(2-3-1) T | Dnir
(3-1-2) Dot
(3-2-1)

TABLE 3. Double avoidance of classical patterns
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Here:
A, 1,2,2,4,4,8,8,16, 16, ...
B, = 1,2,2,2,0,0,0,0,0,...
C, 1,2,2,3,3,4,4,...
D, 1,1,2,3,5,8,13,21, ...

Note the simplicity of the sequences above, compared to those treated
earlier in this work. Also note that the sequence D, is the well known
Fibonacci numbers.

First we consider the “simplest” sequence B, = 1,2,2,2,0,0,0,...,
which counts the involutions that avoid (1-2-3) and (3-2-1). By studying
the involutions of length at most 4 it is easy to verify the first 4 B,,’s. To
realize that an involution of length larger than 4 must have a decreasing
or an increasing subsequence of length 3, we recall from the theory be-
hind the proofs of Proposition 21 and 24, that the RSK algorithm gives
a bijection between the Young tableaux with n elements and the set of
involutions of [n], where the number of rows and columns of the Young
tableau equal the length of the longest increasing and decreasing subse-
quence, respectively. It is easy to see that a Young tableau with r-c+ 1
elements must have a row containing r +1 elements or a column with c+1
elements and we conclude that all Young tableaux with 5 =2-2+1 or
more elements must have a row or a column with at least 3 elements.

An apparently different approach is to use one of the famous results in
combinatorics, proved by Erdés and Szekeres in 1935.

Theorem. (Erdds-Szekerez) Let A = (ayq,...,a,) be a sequence of n dif-
ferent real numbers. If n > sr + 1 then either A has an increasing sub-
sequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or

both).

For a proof, see for example [4]. From the theorem it follows imme-
diately that an involution of [n], where n > 5, must have a decreasing
or increasing sequence of length 3. However, to conclude this we use the
same argument as above, namely that 5 = 2 -2 + 1. In fact, what we
implicitly do above is to prove the Erdés-Szekeres Theorem in the case of
integer a;, via the RSK-algorithm.

Let us continue with the case when one of the avoided patterns is
(2-3-1) or (3-1-2). As pointed out in Lemma 1, we have that Z,(2-3-1) =
7,(3-1-2), hence Z,(p, 2-3-1) = Z,(p, 3-1-2), and consequently it suffices
to consider either of those sets. Also we conclude the obvious result that
1Z,(2-3-1,3-1-2)| = |T,,(2-3-1)| = |T,(3-1-2)| = 2» .
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Proposition 28. We have that

|17,(1-2-3,2-3-1)| = |T,(1-2-3,3-1-2)| =
|Z,(1-3-2,2-3-1)| = |T,(1-3-2,3-1-2)| =
1Z,(2-1-3,2-3-1)| = |Z,(2-1-3,3-1-2)| = n.

Proof. We recall the description of Z,(2-3-1) = Z,,(1-3-2) from the proof
of Proposition 6;

T0(2-3-1) = {ky---1ko - (ks + Dks- -~ (ke—y + 1)n -+ (ke + 1)}

That is the involutions can be considered as consisting of segments, such
that

(a) all letters in segment ¢ are smaller than all letters in
segment (i + 1),
(b) the elements in a segment are in decreasing order.
Let m = ajas---a, be such an involution. We want to investigate what
happens when we add the restriction to avoid p, where p is one of the
patterns in {(1-2-3), (1-3-2), (2-1-3)}.

The avoidance of (1-2-3) limits the number of segments of 7 to two.
Indeed, because of property (a) above, if 7 has more than two segments, a
(1-2-3)-subword will be formed as a;, a;,a;,, where a;,, a;, and a;; can be
arbitrarily chosen from the first, second and third segment respectively.
Thus it follows that 7 in Z,,(1-2-3,2-3-1) is of the form

m=k---1n---(k+1),
that is, the involution 7 is uniquely determined by the choice of k, hence
Z,(1-2-3,2-3-1)| = |Z,,(1-2-3,3-1-2)| = n.

When the patterns (1-3-2) and (2-3-1) are to be simultaneously
avoided, m can not have any “peaks”. No letter a; can be both pre-
ceded and succeeded by smaller letters. Consequently, if the letter 1 is
in position k, then 7 must consist of the £ smallest letters in decreasing
order, followed by the letters that are larger than £ in increasing order. To
use the above notation, all segments except for the first one contain only
one letter. Accordingly Z,,(1-3-2,2-3-1) consists of all permutations 7 of
the form 7 = k(k —1)---1(k + 1)---n. Again the choice of £ fixes the
remaining involution, so it follows that

Z,(1-3-2,2-3-1)| = |Z,,(1-3-2,3-1-2)| = n.

Likewise, avoiding the patterns (2-1-3) and (3-1-2) implies that there
can not be any “valleys”, so, if the letter n is in position (k + 1), it must
be preceded by the k£ smallest letters in increasing order and followed by
the larger letters in decreasing order. This time each segment but the first
one consists of a single letter, thus an involution 7 in Z,(2-1-3,3-1-2)
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can be written 7 = 12---kn(n — 1) ---(k + 1), from which we conclude
that
IZ,,(2-1-3,2-3-1)| = |T,(2-1-3,3-1-2)| = n,

since each involution is fully determined by £. O
Proposition 29. We have that

1Z,,(3-2-1,2-3-1)| = |Z,,(3-2-1,3-1-2)| = F,,1,
where F,, denotes the nth Fibonacci number.

Note that, as in the proof of Proposition 28, it suffices to study either
7,(3-2-1,2-3-1) or Z,(3-2-1,3-1-2) since the two sets are indeed the
same.

Consider 7 in Z,,(3-2-1,2-3-1). Being a (2-3-1)-avoiding involution, 7
can be described as consisting of segments, within which the letters are de-
creasingly ordered, according to the above characterization of Z,(2-3-1).
Furthermore, the avoidance of (3-2-1) implies that the decreasing se-
quences must be of length at most two, so 7 consists of fixed points and
2-cycles of consecutive letters. Hence

mo=e (k) e (kj k4 1)

gives a description of 7 in cycle form.

We prove that the involutions of the above form are counted by the Fi-
bonacci numbers, first by combining two of the proofs of Proposition 6 with
well known properties of the Fibonacci numbers and then by recursively
constructing  Z,(3-2-1,2-3-1)  from  Z, ;(3-2-1,2-3-1) and
T, 2(3-2-1,2-3-1).

First proof. We begin with a proof that refers to the first proof of Proposi-
tion 6, in which a bijection ®,, from the binary strings of length (n—1), to
7Z,(2-3-1) is constructed. Given a binary string z = x1---2, 1 in B, 1,
the corresponding involution is recursively built up from [n] by considering
the letters z;, one at at time. We recall that x; = 1 causes an inversion to
be formed as the letter i is placed before (i — 1), whereas x; = 0 implies
that ¢ is placed as the last element so far. From the construction it is eas-
ily seen that 7 contains a decreasing subsequence of length larger than 3
whenever = has two consecutive 1’s and conversely that an z with no two
consecutive 1’s maps to an involution of the form

(ki) (kA1)
Hence there is a one-to-one correspondence between Z,(3-2-1,2-3-1) and
the binary strings of length n —1 with no consecutive 1’s, which are known

to be counted by F,,;. For a reference, see for example [11]. Thus it
follows that

|Z,(3-2-1,2-3-1)| = |Z,,(3-2-1,3-1-2)| = F,,,.
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Second proof. Next we relate to the third proof of Proposition 6, in which
a bijection between P,_1, the subsets of [n — 1], and Z,,(2-3-1) is defined.
Let A be in P,_1. The corresponding involution is constructed from A by
letting 7 be preceded by a larger letter if and only if ¢ belongs to A. From
the appearance of Z,,(2-3-1) we see that there is only one choice of the
larger letter preceding i, namely i+1. Thus, 7 has an occurrence of (3-2-1)
if and only if A contains two or more consecutive integers. It is well known
that the number of subsets of [n] with no consecutive integers is the nth
Fibonacci number, see for instance [11]. Thus the result follows. g

Third proof. Finally we give a proof by induction. Recall that the Fi-
bonacci numbers are defined by

F,=F, 1+ F, 5, where F, =0, F; = 1.

We will now show that the number of (3-2-1,2-3-1)-avoiding involutions
of [n] satisfies the same recursion. Let 7 be such an involution. From the
above description of Z,(3-2-1,2-3-1) as consisting only of fixed points
and 2-cycles of consecutive letters we see that the letter n will be either
a fixed point or contained in the cycle (n — 1,n). This gives us two
ways of recursively constructing Z,(p,q) from Z,_1(p,q) and Z, o(p,q)
(for convenience we let the patterns (3-2-1) and (2-3-1) be denoted by p
and ¢). Either n is added to a (p, ¢)-avoiding involution of [n — 1] or the
cycle ((n — 1)n) is added to a (p, ¢)-avoiding involution of [n — 2]. Hence

Z.(p,q) = {br+bpan, by---by_1 € L,_1(p,q)} U
{e1---cnon(n—1), c1---ch2 € L, 2(p,q)},
SO

Zo(p, @) = [ Zn-1(p; @)| + [Zn—2(p; @) |-
Since Zy(p, ¢) = 0 and Z;(p, q) = 1, we conclude that
1Z,(3-2-1,2-3-1)| = |Z,(3-2-1,3-1-2)| = F,,.

Proposition 30. We have that
17,(1-3-2,3-2-1)| = |T,,(2-1-3,3-2-1)| = |n/2] + 1.

Proof. Consider Z,(2-1-3,3-2-1). We recall from the proof of Propo-
sition 18 that a permutation m, with 1 in position &, avoids (2-1-3) if
and only if it can be written as ol7, where 0 = ajas - - - a,_1 is a (2-1-3)-
avoiding permutation of {n, (n—1),...,(n—k+2)} and 7 = axy1ak42- - - an
is a (2-1-3)-avoiding permutation of {2,3,...,(n — k+ 1)}. Furthermore
we recall that, when 7 is an involution, the letter 1 can be either a fixed
point or in position k, where k > n/2. Let us investigate the latter case.
Clearly, the letter k is in position 1. In order to avoid (3-2-1), the re-
maining ¢ must consist of letters larger than £ in increasing order. We
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realize that this leads to absurdity whenever £ > n/2 (since there are
not enough larger letters). Thus, £ must simultaneously be larger than or
equal to n/2 and less then or equal to n/2, which is possible for integer &
only when n is even. Then k = n/2, which determines 7 to be equal to
n/2---nl---(n/2—1). When 1 is a fixed point we can recursively apply
the above reasoning to 7, so that an involution in Z,(2-1-3,3-2-1) can be
written as m = 12--- (n — 2k — 1)(n — 2k)p. Here p is the (2-1-3,3-2-1)-
avoiding involution of {(n —2k), (n —2k+1),...,n} in which the smallest
letter is in the middle position. Thus, these involutions are fully charac-
terized by the choice of &k, where k has to be less than or equal to n/2,
hence

7,,(2-1-3,3-2-1)| = |n/2] + 1.

For the (1-3-2)- and (3-2-1)-avoiding involutions the proposition can
be proved in a similar way, for which we omit the details. Let
T = aiag - - - a, be such an involution. The letter n can either be a fixed
point or, if n is even, in position n/2, in which case it determines the rest
of . By recursively repeating the arguments to the segment aias---a, 1
when n is a fixed point, we see that an (1-3-2,3-2-1)-avoiding involu-
tion 7 can be written as p(2k)(2k+1) - - - n, where p is the (1-3-2,3-2-1)-
avoiding involution of [2k — 1], in which the largest letter is in the middle
position. Again the involutions are uniquely determined by the choice
of k, hence the result follows. [l

Proposition 31. We have that
\Z,(1-2-3,1-3-2)| = |Z,(1-2-3,2-1-3)| =
T, (1-3-2,2-1-3)| = 2ln/2,

Proof. We start with the case of (1-2-3)- and (2-1-3)-avoiding involutions
of [n]. Note that the largest letter, n, has to be in position 1 or 2, because
otherwise n will be preceded by two smaller letters that are either ordered
as (1-2) or (2-1), causing occurrences of (1-2-3) and (2-1-3) respectively.
On the other hand if n is the first (or second) letter, there can not be any
(1-2-3)- or (2-1-3)-subwords containing 1 (or 2) or n, since n can not act
asa lora2, aswell as1 (or 2) in position n will not do as a 3. Therefore,
letting (1-2-3) and (2-1-3) be denoted by p and ¢, we can recursively
construct Z,(p, ¢) from Z,_»(p, q), according to

In(p7 Q) = {TLCLQ o an—l]-; pI'Oj (0,2 o a’n—l) S In—?(p: q)} U
{a1naz---an_12, proj(aias---an1) € I, 2(p,q)}

Hence we get the recursion formula

Z.(p,q)| =2 |T,,—2(p, q)|, where Z;(p,q) =1 and Zy(p, q) = 2,



PATTERN AVOIDANCE IN INVOLUTIONS 31

from which it follows that

T, (1-2-3,1-3-2)| = 2"/2],

Next we consider (1-2-3)- and (2-1-3)-avoidance. This is similar to
the above case, but now with the letter 1 playing the role of n. For
an involution 7 to be in Z,(1-2-3,2-1-3), the 1 can be placed either
as the last or the penultimate letter of m. As above, none of the two
corresponding cycles (1,7n) or (1,n — 1) can possibly contribute to the
formation of (1-2-3)- or (2-1-3)-subwords. So, letting p and ¢ denote
the patterns (1-2-3) and (2-1-3) respectively, we see that Z,(p, ¢) can be
recursively constructed from Z,,_5(p, q) as

In(pa CI) = {na? e an—lla pI'Oj(CL2 e an—l) S In—2(p7 Q)} U
{(TL - 1)0'2 Ut a'n721a'na pI‘Oj(CL2 Tt anf2a'n) S Ian(p) q)}

This will once again result in the recursion

Z,(p,q)| =2 |T,2(p,q)],

with initial conditions Z;(p,q) = 1 and Zy(p,q) = 2. Thus the result
follows.

Finally we turn to the (1-3-2)- and (2-1-3)-avoiding involutions of [n].
Let 7 be such an involution. From the proof of Proposition 18 we recall
that, in order to avoid (2-1-3), the letter 1 must be in position & > n/2+1,
or it is a fixed point. However, the simultaneous avoidance of (1-3-2)
precludes the latter alternative in all cases except the identity permutation
m = 12---n. Assume therefore that the letter 1 is in position k. According
to the proof of Proposition 18, m can be written as ol7 where 7 is a
(2-1-3)-avoiding permutation of {2,...,(n —k+1)}. We realize that the
only choice of 7 that makes 7 (1-3-2)-avoiding is in fact 7 = 23---(n —
k + 1), which corresponds to the initial segment as---ay of 7. We can
then write 7 = k(k +1)---npl2---(n — k + 1), where p is a (1-3-2)-
avoiding involution of {n — k +2,n — k + 1,...k — 1}, that is proj(p) €
Ty 2k(1-3-2,2-1-3). Accordingly, with p and ¢ denoting (1-3-2) and
(2-1-3) respectively, we can construct Z,(p, q) from {Z,, o (p,q)}, where
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k < n/2. We have that

In(p, Q) = {na2 cp—1l, proj(a2 s an—l) S In—z(p, Q)} U
{(n=1)nas---an—212, proj(as---an—2) € L_4(p,q)} U

{k(k+1) - nag_gro---ax_112---(n — k + 1),
proj(an—g+2- - 0k—1) € In—om—rit+1) (P, @)} U

12---n.
Thus |Z,(p, )| satisfies the recursion

[n/2]
‘In(pa Q)| = Z |In72k(pa Q)‘
k=1

and, since |Z;(p,q)| =1 and |Z(p, ¢)| = 2, we conclude that
T, (1-3-2, 2-1-3)| = 2[7/2],
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