PRODUCTS OF RESIDUE CURRENTS OF
CAUCHY-FANTAPPIE-LERAY TYPE

ELIZABETH WULCAN

ABSTRACT. With a given holomorphic section of a Hermitian vec-
tor bundle, one can associate a residue current by means of Cauchy-
Fantappie-Leray type formulas. In this paper we define products
of such residue currents. We prove that, in the case of a complete
intersection, the product of the residue currents of a tuple of sec-
tions coincides with the residue current of the direct sum of the
sections.

1. INTRODUCTION

Let f be a holomorphic function defined in some domain in C* and
let Y = f~1(0). Then there exists a distribution U such that fU = 1,
as shown by Schwartz [16]. For example, one can let U be the principal
value distribution [1/f], defined as

Dppn D ¢ lim ?
’ e—0 If|>e f
The existence of this limit was proven by Herrera and Lieberman, [9],
using Hironaka’s desingularization theorem. By the Mellin transform,
see for example [13], one can show that the limit is equal to the analytic
continuation to A = 0 of

(1.1) )\I—>/|f|2)‘?.

The residue current associated with f is defined as 9[1/f]; it has sup-
port on Y and its action on a test form ¢ € D,, ; is given by the
analytic continuation to A = 0 of

AH/émz*/\?

This paper concerns products of residue currents. Recall that it is in
general not possible to multiply currents (or distributions). However,

given a tuple of holomorphic functions f = (fi,..., fi), by certain
limiting processes one can give meaning to the expression
=Tl ~11
1.2 a[—}/\.../\a[—},
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as was first done by Coleff and Herrera, [7]. By the Mellin transform,
this so called Coleff-Herrera current, denoted by Ré > can be realized
as the analytic continuation to A = 0 of

Al £ 12\ 1 22
(1.3) o1l AR 0| fom| fm
In case f defines a complete intersection, that is, the codimension of
Y = f71(0) is m, then RéH has especially nice calculus properties. For
example f;R/,, = 0 for all 4, see [12], which yields one direction of
the duality theorem, due to Passare, [11], and Dickenstein-Sessa, [8],
that asserts that if f is a complete intersection, then a holomorphic
function ¢ belongs to the ideal (f) if and only if goR(’;H = 0.

In [14] Passare, Tsikh and Yger introduced an alternative approach
to multidimensional residue currents by constructing currents based
on the Bochner-Martinelli kernel. For each ordered index set Z C
{1,...,m} of cardinality k, let R} be the analytic continuation to A = 0

a|f|”AZ e fie Nage &l | Jz;ﬁ;df’q,

where |f|? = |fi> + ... + \fm\Q. Then R} is a well-defined (0, k)-
current with support on Y, that vanishes whenever £ < codimY or
k > min(m,n). If f is a complete intersection, there is only one non-

vanishing current, namely R{l which corresponds to the classical

yeeny}?
Bochner-Martinelli kernel and which we denote by R}; - Then we have
the following result.

Theorem 1.1 (Passare, Tsikh, Yger [14]). Assume that f is a complete
intersection. Then

RéM = Ré‘H'

The Bochner-Martinelli residue currents RJ have been used for in-
vestigations in the non-complete intersection case; for example, in [6],
Berenstein and Yger used them to construct Green currents.

Based on the work in [14] Andersson, [1], introduced more general
globally defined residue currents by means of Cauchy-Fantappie-Leray
type formulas. Let us briefly recall his construction. Assume that f
is a holomorphic section of the dual bundle E* of a holomorphic m-
bundle £ — X over a complex manifold X. On the exterior algebra
over E we have mappings &; : A“"'E — A’E of interior multiplication
by f, and 67 = 0. Let & (X, A‘E) be the space of smooth sections of
the exterior algebra of E* @ Tj; which are (0, k)-forms with values in
A’E, and let Dy 4 (X, A*E) be the corresponding space of currents. The

mappings 0 extend to these spaces, where it anti-commutes with 0.
Thus D}, (X, A’E) is a double complex and the corresponding total
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complex is

Y oYX, B) s £1(X,E) s

where L7(X, E) = @, Dy x(X,A7'E) and V; = 67 — 9. The exte-
rior product, A, induces a mapping

A:L7(X,E) x £5(X,E) = L7(X, E)

when possible, and V; is an antiderivation with respect to A.

If ¢ is a holomorphic function such that is ¢ = Vv for some
v € L7Y(X, E), one can prove, provided X is Stein, that there is a
holomorphic solution ¢ to the division problem ), f; = ¢. Anders-
son’s idea to find such a v was to start looking for a solution to Vju = 1.
Assume that E' is equipped with some Hermitian metric and let s be
the section of E with pointwise minimal norm such that d;s = | f|? and
let

ul =

S 8 x=SA09)7 ~sA(0s)!
st_éfs—as_z (6¢s)* _ze: | f|2¢

be the Cauchy-Fantappie-Leray form, introduced in [2] in order to con-
struct integral formulas in a convenient way. Clearly u/ € £7! is
well-defined outside Y and since Vs is of even degree the expression
s/V ;s makes sense, and it follows that V;u/ = 1 outside Y. In [1] it is
proved that the form |f|**u/ has an analytic continuation as a current
to Re A > —e. The value at A = 0, denoted by U/, yields an extension
of u/ over Y. In analogy with the one function case, we will sometimes
refer to U/ as the principal value current. Clearly, if Y # 0, U/ can
not fulfill V;U/. In fact, V;U/ =1 — R/ where R/ = 9| f|** A u/|y—o
now defines the residue current of f. It holds that Rf = R, +...+ R,,,
where R; € Dg ;(X, A7), p = codimY and p = min(m, n). Moreover,
if pR7 = 0, then v = U f yields the desired solution to V ;v = ¢ and
thus ¢ belongs to the ideal generated by f locally.

If F is a trivial bundle endowed with the trivial metric, the coeffi-
cients of R/ will actually be the Bochner-Martinelli currents RJ. If f is
a complete intersection, the only nonvanishing coefficient will be Rg M-

Our first goal is to define products of currents of the type U/ and R/.
Let us consider (1.3). If we assume that each f; is a section of the dual
bundle E} of a line bundle E; with frame e; and dual frame e, the
Cauchy-Fantappie-Leray form u/i is just e;/f;, so in fact (1.3) times
the element e; A ... A e, can be expressed as

(1.4) Ol fi A Ault AL AO|f P AU

In light of this, it is most tempting to extend this product to include
not only sections of line bundles but sections f; of bundles of arbitrary
rank. To be more accurate, we assume that f; is a section of the dual
bundle of a holomorphic m;-bundle E; — X. Further, we assume that
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each Fj; is equipped with a Hermitian metric, we let s; be the section
of E; of minimal norm such that d;,s; = |f;]?, and we let u/i be the
corresponding Cauchy-Fantappie-Leray form. Then (1.4) has meaning
as a form taking values in the exterior algebra over £ = E1 @ --- @ E,.
Thus, in accordance with the line bundle case, we can take the value
at A = 0 of (1.4) as a definition of R/t A ... A R/", provided that the
analytic continuation exists. However, this is assured by Theorem 1.2,
where products are defined also of principal value currents.

Theorem 1.2. Let f; be holomorphic sections of the Hermitian
m;-bundles Ef — X. Let ufi be the corresponding Cauchy-Fantappic-
Leray forms and let Y; = f7(0). Then

(1.5) A= [P ulm A A fopa|Pufs 1 AD| £ A Auts AL AD| 1] Au?

has an analytic continuation as a current to Re A > —e.

We define T = Ul N.. . NUSs+t AR A...AR as the value at X = 0.
Then T has support on (\;_, Yi and it is alternating with respect to the
principal value factors Ul and symmetric with respect to the residue
factors RYi.

Of course there is nothing special about the ordering that we have
chosen; we can just as well mix U’s and R’s.

If the bundle F is trivial, endowed with the trivial metric, and more-
over if f1 ®---® f, is a complete intersection, then R A ... A Rt will
consist of only one term, which can be interpreted as a product of the
corresponding Bochner-Martinelli currents RﬁM. In general, however,
there will also occur terms of lower degree.

Theorem 1.3. Let
T=U"N...NUs" AR A ... ANRD

be defined as above. Let m =mi+ ...+ m,. ThenT =T, + ...+ 1T,
where Ty € Dy (A°E), p = codim¥; N...NY, and ¢ = min(m,n).
In particular, +of f = f1 ® -+ B fr is a complete intersection, then
RI" A ... N R consists of only one term of top degree m.

Observe that Theorems 1.2 and 1.3 extend Theorem 1.1 in [1].

Our next aim is to prove a generalized version of Theorem 1.1. Since,
in the particular case when the bundles E; are all line bundles, the
current R* A ... A R is just the Coleff-Herrera current of f times
e1 A...Ae., we can formulate the equivalence in the theorem as

(1.6) RO®-®Ir = RIVA A RF

Now, the obvious question is, does this equality extend to hold for
sections of vector bundles of arbitrary rank. Our main result states
that this is indeed the case.



PRODUCTS OF RESIDUE CURRENTS... 5

Theorem 1.4. Let f; be holomorphic sections of the Hermitian m;-
bundles E} and let f be the section f1®---® f, of E*=E;®---BE}.
If f is a complete intersection, that is, codim f~1(0) = my + ...+ m,,
then

R =RNMA...AR".

That is, in a local perspective, given a tuple of functions split into
subtuples, the product of the Bochner-Martinelli currents of each sub-
tuple is equal to the Bochner-Martinelli current of the whole tuple of
functions. We give an explicit proof of Theorem 1.4 based on the exis-
tence of two V -potentials.

Theorem 1.5. Let f = f1®- D f, be a section of E* = E{®---DE}.
Assume that f is a complete intersection. Then there exists a current V
such that

(1.7) ViV=1-RN'A...AR",
and furthermore a current Uf AV such that
ViU AV)=V -U.

At first it might seem a bit peculiar to denote the second potential
by U/ AV. However, notice that on a formal level, if we were allowed to
multiply currents so that V; acted as an antiderivation on the products,
then

ViU AV)=(Q—-RHAV -U A1~ R'A...ARF),

since U/ is of odd degree. From Theorem 1.3 we know that R/ and
R A ... A RI take values in A™E, since f is a complete intersection.
But since V and U/ have positive degree in e; it is reasonable to expect
the products V A Rf and U/ A Rt A ... A R to vanish. Thus we are
left with V' — U7, and the notation is motivated.

Proof of Theorem 1.4. Recall that Vfo = 1—R’. Hence, applying \;
twice to U AV yields

0=V3U ' AV)=V,;U -V)=RI'A...AR" — R,
and thus we are done. O

The disposition of this paper is as follows. In Section 2 we give
proofs of Theorem 1.2 and Theorem 1.3. In Section 3 we prove The-
orem 1.5. Finally, in Section 4 we give an example of products of
Cauchy-Fantappie-Leray currents and also discuss a possible general-
ization of Theorem 1.4.
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2. PRODUCTS OF RESIDUE CURRENTS OF
CAUCHY-FANTAPPIE-LERAY TYPE

We start with the proof of Theorem 1.2. For further use a slightly
more general formulation is appropriate. Indeed, the proof of Theo-
rem 1.5 requires a broader definition of products of currents. We need
to allow also products of currents of sections of the bundle E, that are
not necessarily orthogonal, at least in certain cases. Thus we give a
new, somewhat unwieldy, version of Theorem 1.2 that however covers
all the currents that we will be concerned with.

By the notion that a form (or current) is of degree k in dZ;, we will
just mean that it is a (e, k)-form. In the same manner, we will say that
a form is of degree £ in e; when it takes values in A*E.

Proposition 2.1. Let f = f1 & ... @ f. be a holomorphic section of
the bundle E* = E{ @& ... ® E}, where E} is a Hermitian m;-bundle.
For a subset I = {I,...,1,} of {1,...,r}, let fr denote the section
Jn®...®0 fr, of E] = E}, ®...® E7, let u/t be the corresponding
Cauchy-Fantappié-Leray form, let Y; = f;'(0), and let m; = my, +
oo mg,. If TN, I are subsets of {1,...,7}, then

(2.1)

A= | fre P ufrt AL A fraa | Pulr NG| frs P2 AuTT AL AD| fn |2 Al

has an analytic continuation to Re A > —e.

We define T = Ufrt A ... ANUtstt A RIS A ... AN R as the value
at X\ = 0. Then T has support on (\;_, Y= and it is alternating with
respect to the principal value factors U and commutative with respect
to the residue factors R.

Note that Theorem 1.2 corresponds to the particular case when
each I’ is just a singleton. The proof of Proposition 2.1 is very much
inspired by the proof of Lemma 2.2 in [14] and Theorem 1.1 in [1].
It is based on the possibility of resolving singularities by Hironaka’s
theorem, see [3], and the following lemma, which is proven essentially
by integration by parts.

Lemma 2.2. Let v be a strictly positive smooth function in C, ¢ a test
function in C, and p a positive integer. Then

d ds
A / s Pp(s) BA

spP

and
Sl |2 ds
A= [ O(vs| )/\gp(s);
both have meromorphic continuations to the entire plane with poles
at rational points on the negative real axis. At X\ = 0 they are both
independent of v, and the second one only depends on the germ of ¢ at

the origin. Moreover, if p(s) = 5¥(s) or ¢ = ds A, then the value of
the second integral at A = 0 s zero.
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Proof of Proposition 2.1. We may assume that the bundle £ = E; &
--- @ FE, is trivial since the statement is clearly local. Note that
fi = X_ fijei;, where € is the trivial frame. The proof is based on
the possibility to resolve singularities locally using Hironaka’s theorem.
Given a small enough neighborhood U of a given point in X there exist
a n-dimensional manifold ¢ and a proper analytic map Il : U — U
such that if Z = {[[, ; fi; =0} and Z = I, ' (Z), then 11 : U\Z — U\Z
is biholomorphic and such that moreover Z has normal crossings in U.
This implies that locally in ¢ we have that II} f; ; = a; ;1 ;, where a; ;
are non-vanishing and ; ; are monomials in some local coordinates 7.
Further, given a finite number of monomials y; ..., 4, in some coor-
dinates 7, defined in an n-dimensional manifold f;, there exists a toric
variety U; and a proper analytic map II;: U; — U, such that II; is bi-
holomorphic outside the coordinate axes and moreover, locally it holds
that, for some i, IT}y; divides all II;y;, see [5] and [10]. Clearly, if p;
divides p; in U, then IIfp; divides I}y, in U;. Thus after a number,
say g, of such toric resolutions II;, we can locally consider each sec-
tion fr; as a monomial times a non-vanishing section. More precisely
we have that II* fri = p;fy;, where II = Il o--- oIl oIl,, p; is a
monomial and f}l is a non-vanishing section of E7;.

Let ¢ be a test form with compact support. After a partition of
unity we may assume that it has support in a neighborhood U as above.
Then, since II is proper, the support of 11} ¢ can be covered by a finite
number of neighborhoods in which it holds that II} ¢ = a; ju; ;. If 9
is a test form with support in such a neighborhood, then the support
of IIj % can be covered by finitely many neighborhoods in which we
have the desired property that the pull-back of one monomial divides
some of the other ones, and so on. Thus, for Re A > 2 max; m:, (2.1)
is in L! . and since II is biholomorphic outside a set of measure zero

loc?
we have that

/ | fre[Pufet AL A from [Pufest AD| frs |22 AT AL A fa [P Audt A

is equal to a finite number of integrals of the form
(2.2)

/H*(lf[t 22T AL A fra |Pu e A frs P AW AL AD| i [P AUIT)A &

Here

o= PtqHIq(- oo py LG, (pnlL4(6))),
where the p,’s are functions from some partitions of unity, so that
the test form qg has support in a neighborhood where it holds that
II* fri = pify:. In such a coordinate neighborhood the pullback of sy
is fi; times a smooth form, so that IT*(s;s A (9sp:) 1) is jif times a
smooth form. Moreover IT*| f1i|? = |u;|?a;, where a; is a strictly positive
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smooth function. Thus

4
| _|2€ : : £

where «; ¢ are smooth forms taking values in A*E, and so (2.2) is equal
to a finite sum of integrals

@ Q
(2:3) /Iut\”a?;—f A A gy [Pad, =it
t

£s+1
s+1
_ (6% — (6 ~
Olus|?ad) A =22 AL A O [Pad) A =5 A B
Hs® M1

Expanding each factor 9(|u;[**a}) by Leibniz’ rule results in a finite

sum of terms. Letting 0 fall only on the monomials j; yields integrals
of the form

(2.4) /a>‘|u'|2’\%/\6|035|2)‘/\.../\8|0§“|2>‘/\q3,

where o; is one of the coordinate functions 7; that divide u;, a =
a;---ay is a strictly positive smooth function, p; = pft - p% is a
monomial in 7;, y' is a monomial in 7; not divisible by any o; and
ar = Cage, N ... A iy, is a smooth form, where C' is just a constant
that depends on the relation between ¢; and the number of o;’s in y;.
The remaining integrals, that arise when 0 falls on any of the a;, vanish
in accordance with Lemma 2.2. Indeed, consider one of the integrals
obtained when 0 falls on a,

A /aWPA% Ao P A . A B|o% [ A Bay A G
1299

This is just A times an integral of the form (2.4), so provided that we
can prove the existence of an analytic continuation of (2.4), it must
clearly vanish at A = 0.

Now an application of Lemma 2.2 for each 7, that divides any of
the p1,’s gives the desired analytic continuation of (2.4) to Re A > —e.
Note that for oy,...,0, we get integrals of the second type, for the
remaining 7; integrals of the first type, so that the value at A =0 is a
current with support on {o; = 0} N...N {1 = 0}. Thus the value of
(2.3) at A = 0 has support on

{ps=0}N..0{p =0} =Yun...N¥Yp,

where Y, = II"'Y,, and accordingly U/t A... AU s+t ARI= A AR
is a current with support on Yz N...N Y.

Since the form (2.1) is alternating with respect to the factors | fr:|**u/ri
and symmetric with respect to the factors 0| f1:|** Aufri, it follows that
Uit A ... ANUTsvt A R A ... A R/ is alternating with respect to
the principal value factors and symmetric with respect to the residue
factors. O
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We continue with the proof of Theorem 1.3.

Proof of Theorem 1.3. Notice that T, is the analytic continuation to
A = 0 of the terms

(25) |felPufr A A fasaPult ABIFIP Al AL AP Al
where _

fi S; A (aSi)ei_l

£ |fi‘2£i
and the total degree in dz; (thatis ¢, +...4+ 4, —r +s) is L.

Following the proof of Proposition 2.1, a term of the form (2.5),
integrated against a test form ¢, is equal to a sum of terms like

Q. ) (0% +1,0
26) [ 10k A P, S
T

£s
/j’ s—:—l1
3 22 Ay A Dsibs 5 22 2 A Ya 7
O(| s aS)/\—,uﬁs Ao ANO(Jua | at) A e Ao,

where the «;4,’s are smooth forms of degree ¢; in e;, the a;’s are non-
vanishing functions, the y;’s are monomials in some local coordinates 7;
and ¢ is as in the previous proof. We can find a toric resolution such
that locally one of yuy, ..., us divides the other ones, so without loss of
generality we may assume that p; divides po, . . ., ;.

We expand 0(|u1|**a}) by Leibniz’ rule. Observe that when 0 falls
on a} the integral vanishes as in the proof of Proposition 2.1, and thus it
suffices to consider the case when 0 falls on one of the 7; that divide y,,
say on |o|?*. If £ < p, we claim that this part of (2.6) vanishes when
integrating with respect to o. In fact, we may assume that ¢ = ¢;Adzy,
where ¢; is an (n, 0)-form and dz; = dz;, A... Adz;,_,. Now dz; van-
ishes on the variety Y1 N...NY; of codimension p for degree reasons.
Consequently IT*(dz;) vanishes on Y; N...NYj, and in particular on
{o = 0}. However, this is a form in d7; with antiholomorphic coeffi-
cients since Il is holomorphic, and therefore each of its terms contains
a factor do or a factor . Indeed, if ¥(7) is a form in d7; with anti-
holomorphic coefficients we can write

V(1) =9'(1) Ade + ¥"(7),

where U”(7) does not contain dg. The first term clearly vanishes on
{0 = 0} since do does. If ¥(r) vanishes on {c = 0}, then ¥"(r)
does, and hence it contains a factor ¢ due to antiholomorphicity. In
both cases the o-integral, and thereby (2.6), vanishes according to
Lemma 2.2. U

3. THE COMPLETE INTERSECTION CASE

Our way of proving Theorem 1.4, that is, via Theorem 1.5, is in-
spired by Proposition 4.2 in [1], in which potentials were used to prove
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Theorem 1.1. The proof is self-contained and we hope that this con-
struction of potentials will be of use for further investigations in the
case of a non-complete intersection.

Proof of Theorem 1.5. We let

V=Ut+UPARN+UBANRPARN +. ..+ U AR AL AR,
To motivate this choice of V', note that on a formal level

(3.1) V(U AR AL ARy = Rl AL AR —REA...ARM,

so that
ViV=1-R"A...ARM

Indeed, observe that V; acts on U’ just as Vy,, so that V,U/i =
1 — R%i. Thus, to prove the first claim of the theorem we have to make
this computation legitimate.

First, notice that if a form A()\), depending on a parameter A, has
an analytic continuation as a current to A = 0, then clearly V;A(\)
has one. The action on a test form ¢ is given by

:I:/A()\) AV 6.

However, by integration by parts with respect to Vy and due to the
uniqueness of analytic continuations, this is equal to

/ VAN A 6.

To be able to perform the integration by parts in a stringent way we
have to regard the currents T € Dj,(A‘E) as functionals on

Dyn—i(A" ¢E A A"E*). So far we have been a little sloppy about this.
Thus, to compute V V' we consider the form
v = | fi|P et o2 A0 fi|PA At 4L
N |fr|2)\ufr A 5|fr—1|2)\ A Ufr_l AL A ({§|f1|2)‘ AN ufl,
since, by definition, v*|,2o = V, and accordingly V;V = (Vv*)|r=0.
More precisely, to verify (3.1), let us consider (recall that Vjufi = 1)
V(I filP2u AO|fisa | Aulit AL A fLP AUt =
—O|filPA Auft AOIfi 1| ATt AL A DA Aul
fi120| fic A Aufi=t AL ADfPA AU + R,
where R is a sum of terms of the form
fiPufi AB|fia P At A LB FIP A DS P AL ABIfP A,

that arise when V; falls on any uli, 5 < 4. The value at A = 0 of
the first term is just —R/i A Rfi-t A ... A R/1, and it follows from
Lemma 3.1 that the second term has an analytic continuation to A = 0
equal to R/t A ... A R'. The remaining terms, R, vanish according
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to Lemma 3.3. Thus (1.7) is proved, and thereby the first part of the
theorem.
Furthermore, let

U'ANV =U AU + U AU AR
U ANUBANRPARN + .. 4+ U AU AR A ... AR

We compute V; of each term. To do this we use a form as above
whose analytic continuation to A = 0 is equal to this particular current.
Now, we actually need the extended version of Theorem 1.2, that is
Proposition 2.1. Indeed, consider

Vi(lF1Pud A i uft A0 fia |2 Al AL A f|P Ault) =
—Olf|1PA Aud APl A O i P AT AL A O P A w4
P fil P uft A O fica A Aufimt A LA B P A
|F1Pul A O fi Audi AD|fic P2 Aufi=t AL A fuPA At
— FPuf AFIPA A fici P Aufit AL AP Al

|f*uf AR.

The first term corresponds to —R/ AU ARfi-1 A...AR/1. Since f is a
complete intersection and R/ therefore is of top degree in dz; according
to Theorem 1.3, it is most reasonable to expect also this product to be
of top degree in dz;, but because of the factor U/t € L£L71(E;) that is
apparently not possible unless the product vanishes. This is indeed the
case, as follows from Lemma 3.2. The second, third and fourth terms
have analytic continuations as U ARfi~t A. . . AR, UIARiA.. AR
and —U/ ARF=1 A...AR", respectively, by Lemma, 3.1. The remaining
terms vanish according to Lemma 3.3. Hence

ViU AV)=) U AR AL ARD

i=1

~Y WU/ ANRF AL AR U AR AL AR =
=1
VU +U AR A...AR".

Finally, the term U/ A R/ A... A R’ vanishes by Lemma 3.4, and thus
taking the lemmas 3.1 to 3.4 for granted, the theorem is proved. [

What remains is the technical part, to prove the lemmas. We have
tried to put them as simply as possible. Still the formulations may
seem a bit strained. Hopefully, the remarks will shed some light on
what matters. We will use the word codegree for the difference between
the dimension n of X and the degree.
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Lemma 3.1. Let f = f1®--- & f, be a section of E* = Ef&®---® E;.
Assume that f is a complete intersection. Let s <r and s < r' <r. If
h=f, orif h=f; for some 1 > s, then

(3.2) |A2A [Pl AL A for PPuls A £ PA AU AL AD| f1 P Al

has an analytic continuation to Re A > —e, which for A =0 is equal to
the current U N ... ANUSs+t ARIs A ... AR,
Moreover,
(3.3)
|B|PAF 12Ul A fr| P2 ud A A fopr [P ul A fo PP AuT AL AD| A Audt

has an analytic continuation to Re A\ > —e, which for A =0 is equal to
the current U AU N ... ANUFs+t ARFs A ... AR

Remark 1. The crucial point is that inserting a factor |h|?*, where h
is any tuple of holomorphic functions and |- | is any Hermitian metric,
has no effect on the value at A = 0, as long as

codim{h=0}NY;N...NY; >codimY;N...NY7,

since then all possibly “dangerous” contributions to the current will
vanish for degree reasons as in the proof of Theorem 1.3. That the
currents are unaffected by the factor |h|** is closely related to them
being their own standard extensions in the sense of Barlet [4]. O

Proof. We give a proof of the first claim of the lemma. The second one,
concerning (3.3), can be proved along the same lines.
For a compactly supported test form ¢, we consider

/|h|2'\|fT,|2Aufr'/\.../\|fs+1\2*ufs+1Aé\fs\”/\ufw\...Aé\fﬂ”/\ufl/\(p.

After a resolution of singularities as described in the proof of Proposi-
tion 2.1, for Re A large enough, this integral is equal to a sum of

Qsy1,0,
) [ PP 2 TN APl e

£s+1
r! :U’s—|—1

Qs 9 LY
(\us\%i) AZEE A ADnPad) A G,
1t Hq

where the a;’s are strictly positive functions, the p;’s are polynomials
in some local coordinates 7;, the 4, ’s are smooth forms and é is as in
the proof of Proposition 2.1. The existence of the analytic continuation
to Re A > —e follows from Lemma 2.2 as before.

Our aim is to prove that the factor |h|** does not affect the value
at A = 0. Let o be one of the coordinate functions 7, that divides
pin- When expanding each factor 9(|u;**a}) by Leibniz’ rule we get
two different types of terms, integrals with an occurrence of a factor
O|o®|** for some «, and integrals with no such factors. In the second
case the extra factor |o|** does no harm, since, in fact, the value at
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A = 0 is independent of the number of |¢|?*’s in the numerator as long
as there is no ¢ in the denominator. Furthermore, we claim that each
integral of the first kind actually vanishes at A = 0. The argument is
analogous to the one in the proof of Theorem 1.3. Let us first consider
the case when h = f. Observe that the terms in (3.2) are of degree at
most my +...+my —1r'+5 < m—1in dz;, where m =my +...+m,.
The crucial term -1 appears because of the (at least for the proof)
necessary condition that r > s, that is that we have at least one factor
U. Thus, it is enough to consider test forms of codegree in dz at most
m — 1. We assume that ¢ = ¢; A dz;, where ¢; is a smooth (n, 0)-form
and dz; = dz;, A ... Adzg, where p>n—(my+...4+m,) + 1. Now,
dz; vanishes on the variety Y = f~1(0), since it has codimension m,
and accordingly II*(dz;) vanishes on Y = IV, and in particular on
{o = 0}. Since it is a form in d7; with antiholomorphic coefficients,
each of its terms contains a factor & or da, see the proof of Theorem 1.3,
and so in both cases the o-integrals vanish according to Lemma 2.2.
In the second case, when h = f;, the proof becomes slightly more
complicated. We want to prove that the o-integral vanishes due to the
occurrence of a factor ¢ or do as above, but now the desired factors &
and do do not necessarily divide the test form ¢. We need to look at
a “larger” form than ¢, in fact at the “largest” possible “o-free” form.
Without loss of generality we may assume that, for some numbers s’ and
1 <s <s<r"<r' odivides pgy1,...,ps and pggq, ..., e but
neither fir, ..., fy 1OT figy1, ..., ppr. Recall that uli = 3, v/ /| fil%,

where vgj = 5; A (0s;)% 1. Let the smooth form

vt A AR N P Ay AL AL AE A

be denoted by Fj, and let

YI:{fS’-I-l:"-:fs:fr”-l-l:"':fr’:hzo}'

As above we may assume that ¢ consists of only one term ¢; A dZ;.
Then, by inspection, the form F; A dZ; is of codegree at most

Myp1+...tMmg+Mmpri1+...+mp—1 +7"
in dz;, which is strictly less than
codimY’' =mgy 1 +...+mg+ Mgy + ...+ mp +my,
because of the assumptions of complete intersection. Consequently
Fy A dzr vanishes on Y’ and thus IT*(F; A dzr) vanishes on IT-'Y”, and

in particular on {o = 0}. Since it is a form in d7; with antiholomorphic
coefficients, each of its terms contains a factor & or a factor do. Using
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that 9| f|* = M| f|?A=19|f|?, we can write (3.4) as

e (ST URR WY
2 20 A T by 22 A opll 41
j:/\uh\ || P ap—= A N e [P —— = A
:u"r’

W
— a — a ’+1,£
a(|ﬂs|2>\a;‘) A S—Zs AN A a(|/~‘s’+1|2>\ai\) A STSII“/\
s Msf—:—l
[ Pad P} g Pal T - [PaY _
I (Fe) Ao
[ [P+ | g g [P PRECEDFNHECE ‘ )

where the sign depends on the relation between 7', r"” s and s’. Now
the only way a factor & in the numerator (more precisely in II*(F}) A
q~5) could be cancelled out when A is small is by the occurrence of a
factor & in one of 4, ..., sy, but that would obviously contradict the
assumption made above. Hence each term in the integral must contain
a factor ¢ or do independently of the value of A and thus the o-integral
vanishes according to Lemma 2.2. O

Lemma 3.2. Let f = f1®---® f, be a section of E* = E}®---® E} of
rank m and let h = f & f', where f' is a section of the dual bundle of a
holomorphic m'-bundle E'. Assume that h is a complete intersection.
If r > s, then

(3.5)

O|hPA AUl A foPud A A fopn [Pust AD| fo| A Aufs AL AD| f1A Audt

has an analytic continuation to Re A > —e that vanishes at A = 0.

Remark 2. Notice that the value at A = 0 corresponds to the current
RMAUT AL AU+t ARSs AL .. AR, Since h is a complete intersection,
R" is of degree m +m’ in dz; according to Theorem 1.3, and therefore
it is reasonable to expect also the product to be of degree m+m' in dz;.
However, since the product contains at least one principal value factor,
the degree in e; must be strictly larger than the degree in dz;, and so,
the product must vanish. We will see that the assumption that r > s
is crucial also for the proof. O

Proof. After a resolution of singularities as described in the proof of
Proposition 2.1, we can write (3.5) integrated against a test form ¢ as
a sum of terms of the type

a (07 W/ 7 Qsi1,
[P 5 A P A P, S A

T eS
Iu’h, 'u'ﬁ ru‘s—:_ll
/) Q s /) & ) 7
(| s a3) A 7 A ANO(Pad) A /jgll A @,
] 1

where the «;4,’s are smooth forms of degree ¢; in e;, the a;’s are non-
vanishing functions and the pu;’s are monomials in some local coordi-
nates 7, and ¢ is as in the previous proofs.
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We expand the factor (|un|**a}) by Leibniz’ rule and consider the
term obtained when 0 falls on |o|?*, where o is one of the 7;’s that
divide py. We prove that this term vanishes when integrating with
respect to . The term that arises when 0 falls on aj clearly vanishes
as before, see the proof of Proposition 2.1. Since the rank of F &
E' is m + m/, the terms in (3.5) are of degree at most m + m' —
1 in dz, since we have at least one U-factor. Thus it is enough to
consider test forms of codegree in dz at most m + m' — 1. As in the
previous proofs we may assume that ¢ = ¢; A dz;. It follows that dz;
vanishes on Y = h~1(0) for degree reasons, and thus IT*(dz;) vanishes
on IT"'Y. Since this is a form in d7; with antiholomorphic coefficients,
each of its terms contains a factor & or dé and consequently the o-
integral vanishes according to Lemma 2.2. (]

Lemma 3.3. Let f = f1®---® f, be a section of E* = E{&®---® E;.
Assume that f is a complete intersection and let s < r. Then

(3.6)

|f P2 A A o Pl AD| fo P2 Auds AL ADL AN AD P At

and

(3.7) 112 A PP AN | fepa| P ut A D f P A ude A
G ANOfPA AN AP A

have analytic continuations to Re A > —e that vanish at A = 0.

Remark 3. Morally, what this lemma says is that when applying Leib-
niz’ rule to V; acting on a product of principal value and residue cur-
rents, there will be no contributions from V; falling on a residue factor.
Of course this is expected, since the residue currents are Vy-closed. [

Proof. For (3.6) the result follows from Lemma 3.1 after an integration
by parts with respect to V;. (Recall that ¢ is a form taking values in
A" E A A"E*.) Note that 9|f,|** = —V|f;|**. By Stokes’ theorem,

/|fr\”uﬂ A A foprPul A O f A Aul AL

CAVARIPA A APA AU A g =

- /(|ft‘2)\ N 1)Vf(‘fr|2)‘ufr VAN ‘fs+1‘2)‘ufs+1/\

Ol fs| Auls A AOIF|P Ault A @),

so it is enough to prove that this expression vanishes at A = 0. Now,
applying Leibniz’ rule to

V(I folPulm A A foPultt ADFo P Al AL A fiPA Autt A g)

gives a sum of terms, of which the ones arising when V falls on a factor
uft for 1 < t < r will vanish for degree reasons, whereas the others will



16 ELIZABETH WULCAN

be precisely as in the hypothesis of Lemma 3.1. Moreover f; is an h of
the second kind, so according to Lemma 3.1 the factor |f;|** does not
have any effect on the value at A = 0. Thus we are done.

In the case of (3.7), after an integration by parts, we have to prove
that

/('ft|2)‘ - 1)Vf(|f|2)\uf A |fr|2/\ufr JARRA |fs+1|2>‘ufs+1/\

O|fs|* Aufs A AO|fiP* Ault A @)

vanishes at A = 0. The term when V; falls on the factor |f|*u/ is
of the type in Lemma 3.2. It is easy to see from the proof that the
factor | f;|** does not affect the value at A = 0 and so this term vanishes.
The remaining part is as in the hypothesis of the latter statement of
Lemma 3.1, thus the result follows as above. U

Lemma 3.4. Let f = f1®--- D f, be a section of E* = E}®--- D E}.
Assume that f is a complete intersection. Let h = fr, @---® f1,, where
I=A{L,....,I,} C{1,...,r}. Then

(3.8) \B|22uP A O |22 Audm AL A O] A U
has an analytic continuation to Re A > —e that vanishes at A = 0.

Remark 4. The value at A = 0 corresponds to the current U? A Rt A
... A RJ". Since the R-part is of top degree according to Theorem 1.3

this product should formally vanish by arguments similar to those in
Remark 2. n

Proof. As in the proofs of the previous lemmas we start by a resolution
of singularities. Thus, the form (3.8) integrated against a test form ¢
is equal to a sum of terms of the type
Che 3 Qr.g, 3 an, 7
/ P ap = A O [Pad) A= A A (P ad) A= A D,
/'Lh /’1/7‘ /“Ll

where «;4,, a;, p; and ¢ are as above. Further, we can find a reso-
lution to a certain toric variety so that locally one of the monomials

M1, - .-,y divides the other ones. Without loss of generality we may
assume that p; divides all y;’s. We expand 9(|u;/**a?) by Leibniz’
5 A

rule. The term obtained when 0 falls on af vanishes as in the proof of
Proposition 2.1, so it is enough to consider the terms that arise when 0
falls on |o|**, where o is one of the coordinates in .

We claim that the o-integral vanishes at A = 0. As usual, we observe
that the terms of (3.8) are of degree at most m —1 in dz;, where the -1
in this case is due to the factor U, so it suffices to consider test forms
of codegree at most m —1. We assume that ¢ = ¢;AdZr, where ¢ is an
(n, 0)-form and dz; = dzr, A ... ANdZ,, where p <n—m+ 1. Then dz;
vanishes on the variety Y = f~1(0) for degree reasons, and accordingly
I1*(dz) vanishes on IT"'Y", and in particular on {o; = 0}. By arguments
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as in the proof of Theorem 1.3 it follows that I1*(dz) must contain a
factor @ or do since it is a form in d7; with antiholomorphic coefficients,
and hence the o-integral vanishes as before. (|

Remark 5. If f = f1, fo defines a complete intersection, then
= 1 = 1
A=) s [ BIAPN L ABRP A
f1 f2

is holomorphic at A = 0, see [13], as was first proven by Berenstein
and Yger. The result has been claimed to extend to any finite number
of functions f;, but we have found no proofs in the literature. It was
recently verified to be true in the case of three functions by Samuels-
son [15]. His proof shows that, in the three- (or more-) dimensional
case, the question of analyticity becomes a global problem in the reso-
lutions, which makes it much more involved.

Provided the Mellin transform of the residue integral is shown to be
analytic in A = (Ay,..., A;), most likely, similar arguments could be
used to prove that

tA) == 0|2 Aulm AL AD AP AUt

is analytic in A\. Note that ¢((\,...,\))|x=0 by definition is our current
R A ... AR, Presuming t(\) to be analytic, we can give a soft proof
of Theorem 1.4, based on Theorem 1.1. Indeed, let

té‘FL()‘) = 5|f|2)\ A Ufa

and
1

fm’
where CF'L and C'H of course stand for Cauchy-Fantappie-Leray and
Coleft-Herrera, respectively. With this notation the equality in Theo-
rem 1.1 can be expressed as
(3.9) then(Ma=o = thr (A Ia=o-

Now let f and g be sections of the bundles ET and Ej, respectively,
and assume that f @ ¢ is a complete intersection. By definition,

RI AR = téFL(/\) A thFL(/\)‘)\:Oﬂ

_ 1 _
%AM=mm”EAmAmmW

and
RI®9 = 3% (M) r=0,
so we need to prove that
téFL(/\) A t%‘FL(/\)‘)\ZO = tée??gL()‘)h:O-
If Re A is large enough, tZ,., (\2) is in Lj. ., and so by (3.9)

loc»

thpr () A tepr (A2) hazo = thy (M) A tepr (A2) o,

and analogously, if Re A; is large enough

thr () At (M2) razo =t (A1) At (Me) [rs—o-
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Now, by assumption
(A A2) = (A1) A2(Ny),

where e stands for either CFL or C'H, is holomorphic at the origin,
and thus it follows that

téFL()‘) A t%‘FL()‘)b\:O = téH()\) A t!(JJH()‘)l/\:()a

but the right hand side is, by (3.9), equal to /2% (\)|x=o, and so we
obtain Theorem 1.4 for r = 2. However, the argument easily extends
to arbitrary r, since

) A AL (N A A () a0 =
) A AEEE ) A A (M) a=o

by (3.9) if A;, j # ¢ are large enough.

We should mention that the above method actually gives a proof of
Theorem 1.4 in the special case when f is of rank 2 and g is of rank 1.
It follows from Samuelsson’s result, [15], and the fact that ¢(\) indeed
is holomorphic if » = 2. The latter statement is not hard to verify, see
for example [17]. O

4. AN EXAMPLE

We conclude this paper with an explicit computation, by which
we enlighten the possibility of extending Theorem 1.4 to a slightly
weaker notion of complete intersection. Indeed, when generalizing The-
orem 1.1, or rather its line bundle formulation (1.6), to sections of bun-
dles of arbitrary rank, it is not obvious how one should interpret the
assumption of f being a complete intersection. In the formulation of
Theorem 1.4 we require the codimension of f~'(0) to be equal to the
rank of the bundle E. A less strong hypothesis would be to just demand
the f;’s to intersect properly, that is, that codim f~'(0) = p;+...+p, if
p; = codim f;. However, the following example shows that Theorem 1.4
does not extend to this case.

Ezample 1. Let fi = 22, fo = 2125 and g = 2923. Then

Vi=f10)={a=0}, Y,=9¢"0)={z=0}U{zs=0}
and Y =Y;NY, ={xn =2=0}U{zxn =2 =0}
Note that Y and Y}, have codimension 1, and that ¥ has codimension 2.
Thus f and g intersect properly, although they do not define a complete
intersection.
Let us compute (RS A RY),. Adopting the trivial metric we get
sl = fier + faes = Z1(Z1e1 + Zoen) and |f* = |21[*(|21]” + | 22)),

so that _ _
f Z1€1 + 2969
1

— z(|m)? A+ 22)?)

u
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Let ¢ be a test form of bidegree (3,1) with support outside {z, = 0}.
Then R/ A RY.¢ is given by

zZie1 + Zgeo = 2\ €3
ANO|zoz3| " AN——A¢|r—0 =
z1([21]2 + [22]?) [222] 2923 Plr-o

=71 1 =71
~ [ L[] no[L] neanesne
Z1 Z9 z3
Note that the support of the current is on the z,-axis, as expected

since ¢ has support outside the z3-axis.
To deal with test forms with support intersecting {zo = 0} we need

to resolve the singularity of f at the z3-axis. Let U be the blow-up of C?
along the z3-axis and let IT : &/ — C2 be the corresponding proper map.
We can cover U by two coordinate charts,

[ 822+ 0

O = {(r1,7,23); (11,1172, 23) =2 € C}}

and QQ = {(0'1,0'2,2’3); (0'10'2,0'1,23) =z € (Cz}

In Ql
e + e
H*u{ = — 1 2 22 ,
(1 + [m)?)
and thus
€1 +7_'262

RH*‘f A RH*g = 5‘7'1‘4)‘ A A 5|7'1T223|2/\ A

€3 ‘

(1 + |m?) T1Toz3 IA=0
2 =11 e1 + Teey = 1
PN TNV PO
3 L} (1 + |72[?) T923 “

Let ¢ be a test form of bidegree (3,1); we can write ¢ as ¢; Adz, where
dz = dzy A dzy A dzs and ¢ = ©'(2)dz; + ¢*(2)dZ + ¢3(2)dz3. Now
SRIARIANG = [7RVI ARTIAT*¢. To compute the contribution
from the chart €24, let ¢ = xII*¢, where x is a function of some partition
of unity with support in ;. We may without loss of generality assume
that x only depends on |7;| and also that x(0,0, z3) = 1. Then we get

that R/ A RU9.¢ is equal to

2 11 Tl 1
5/8[7_—13}/\61/\8 [T—J [2—3]/\63/\)4/)3(71,717'2, 23) dZsAdTi ANd(T172)ANdz3 =

2 1
27mi)2= 903 0,0,23)—e; Aes Adzz ANdzz =
3 ! z3

2 f-r1 _rlr1
——/8[—2] /\8[—] [—} Aei Aes A,
3 23 294 Lzg
where we have used the well known fact that

/Zé[zip] Ab(2)dz = %%¢(0).
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Computing R/ A R™9 in Q, gives yet another contribution. Alto-

gether we get

(R ARY), = —5[%} BJ /\5[%] Aeg Aes
- gé[%} /\é[i] [l] AeiAes+ %5[% /\é[i} [l} Aeg A €.

22 29l Lz3 21 221 Lz

Similar computations yield

w0 = o[ L) o[ ][] mesnes 8 1][ 2] n0[ L] nesnes

21 Z9 z3 Z1 Z5 z3

For details, we refer to [17]. See also Theorem 5.2 in [18].

To conclude, R/ A R # R’®9 and hence Theorem 1.4 does not

generalize to the case of proper intersections. O
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