SOME VARIANTS OF MACAULAY'S AND MAX NÖTHER'S THEOREMS

ELIZABETH WULCAN

Abstract

We use residue currents on toric varieties to obtain bounds on the support of solutions to polynomial ideal membership problems. Our bounds depend on the Newton polytope of the polynomial system and are therefore well adjusted to sparse systems of polynomials. We present variants of classical results due to Macaulay and Max Nöther.

Dedicated to Ralf Fröberg on the occasion of his 65th birthday

1. Introduction

Let F_{1}, \ldots, F_{m}, and Φ be polynomials in \mathbb{C}^{n}. Assume that Φ vanishes on the common zero set of the F_{j}. Then Hilbert's Nullstellensatz asserts that there are polynomials G_{1}, \ldots, G_{m} such that

$$
\begin{equation*}
\sum_{j=1}^{m} F_{j} G_{j}=\Phi^{\nu} \tag{1.1}
\end{equation*}
$$

for some integer ν large enough. The following bound of the degrees of the F_{j} and ν was obtained by Kollár, [19], for $d \neq 2$, and by Jelonek, [18], for $d=2$ and $m \leq n$:
Assume that deg $F_{j} \leq d$. Then one can find G_{j} so that (1.1) holds for some $\nu \leq d^{\min (m, n)}$ and

$$
\begin{equation*}
\operatorname{deg}\left(F_{j} G_{j}\right) \leq(1+\operatorname{deg} \Phi) d^{\min (m, n)} ; \tag{1.2}
\end{equation*}
$$

for $d=2$ and $m \geq n+1$, the best bound is due to Sombra, [26]: the factor $d^{\min (m, n)}$ in (1.2) should then be replaced by 2^{n+1}. Kollár's and Jelonek's bounds are sharp; the original formulations also take into account different degrees of the F_{j}. In many cases, however, one can do much better. Classical results due to Max Nöther, [23], and Macaulay, [22], show that the bounds can be substantially improved if (the homogenizations of) the F_{j} have no zeros at infinity. The aim of this note is to use multidimensional residue on toric varieties to obtain some variants of these results.

Multidimensional residues have been used as a tool to solve polynomial ideal membership problems by several authors, see for example [7].

[^0]In [2] Andersson used residue currents on manifolds to obtain effective solutions; in particular, Macaulay's and Max Nöther's results follow by applying his methods to complex projective space.

Recall that the support $\operatorname{supp} F$ of a polynomial $F=\sum_{\alpha \in \mathbb{Z}^{n}} c_{\alpha} z^{\alpha}=$ $\sum_{\alpha \in \mathbb{Z}^{n}} c_{\alpha} z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$ in \mathbb{C}^{n} is defined as supp $F=\left\{\alpha \in \mathbb{Z}^{n}\right.$ such that $c_{\alpha} \neq$ $0\}$ and that the Newton polytope $\mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)$ of polynomials F_{1}, \ldots, F_{m} is the convex hull of $\bigcup_{j} \operatorname{supp} F_{j}$ in \mathbb{R}^{n}. In particular, a polynomial of degree d has support in $d \Sigma^{n}$, where Σ^{n} is the n-dimensional simplex in \mathbb{R}^{n} with the origin and the unit lattice points $e_{1}=(1,0, \ldots, 0), e_{2}=$ $(0,1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$ as vertices.

Using techniques from toric geometry Sombra [26] obtained a sparse effective Nullstellensatz, which improves Kollár's result when the system of polynomials is sparse, meaning that $\mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)$ is small compared to $d \Sigma^{n}$. In [28] the author used the residue current techniques developed in [2] applied to toric varieties in order to obtain certain sparse effective versions of polynomial ideal membership problems. This note, in which we focus on the case when F_{j} have no common zeros at infinity, can be seen as an addendum to [28]. We will specify in Section 4 how no common zeros at infinity should be interpreted.

We work on toric varieties associated with the Newton polytopes or the support of the F_{j}. Given a lattice polytope \mathcal{P}, i.e., a polytope in \mathbb{R}^{n} with vertices in \mathbb{Z}^{n}, one can construct a toric variety $X_{\mathcal{P}}$ and a line bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)$ on $X_{\mathcal{P}}$ whose global sections correspond to polynomials with support in \mathcal{P}, see Section 3. The toric variety $X_{\mathcal{P}}$ is smooth if for each vertex v of \mathcal{P} the smallest integer normal directions of the facets of \mathcal{P} containing v form a base for the \mathbb{Z}^{n}, see [16, p. 29]. We then say that the lattice polytope \mathcal{P} is smooth (or Delzant) with respect to the lattice \mathbb{Z}^{n}.

The following sparse version of Macaulay's Theorem is due to Castryck-Denef-Vercauteren [10].

Theorem 1.1. Let F_{1}, \ldots, F_{m}, and Φ be polynomials in \mathbb{C}^{n}. Assume that the F_{j} have no common zeros even at infinity, and that supp $\Phi \subseteq$ $e \mathcal{N P}\left(F_{1}, \ldots, F_{m}\right)$, where $e \mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)$ is a lattice polytope. Then there are polynomials G_{j} that satisfy

$$
\begin{equation*}
\sum_{j=1}^{m} F_{j} G_{j}=\Phi \tag{1.3}
\end{equation*}
$$

and

$$
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \max (n+1, e) \mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)
$$

In particular, one can find polynomials G_{j} that satisfy

$$
\begin{equation*}
\sum_{j=1}^{m} F_{j} G_{j}=1 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq(n+1) \mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right) \tag{1.5}
\end{equation*}
$$

Macaulay's Theorem, [22], corresponds to the case when $\mathcal{P}=d \Sigma^{n}$, i.e., $\operatorname{deg} F_{j} \leq d$. Then (1.5) reads $\operatorname{deg}\left(F_{j} G_{j}\right) \leq(n+1) d$, which is slightly worse that Macaulay's original result:
Assume that F_{j} have no common zeros even at infinity (in \mathbb{P}^{n}). Then one can find G_{j} that satisfy (1.4) and $\operatorname{deg}\left(F_{j} G_{j}\right) \leq(n+1) d-n$.

Theorem 1.1 can be seen as a special case of the following sparse version of Max Nöther's Theorem, [23]. Let (F) denote the ideal generated by F_{1}, \ldots, F_{m}.

Theorem 1.2. Let F_{1}, \ldots, F_{m} be polynomials in \mathbb{C}^{n} and let \mathcal{P} be a smooth lattice polytope that contains the origin and the support of the F_{j} and the coordinate functions z_{1}, \ldots, z_{n}. Assume that the F_{j} have no common zeros at infinity. Then there is a number ν_{F}, such that if $\Phi \in(F)$ satisfies that supp $\Phi \subseteq e \mathcal{P}$, where $e \mathcal{P}$ is a lattice polytope, then there are polynomials G_{j} that satisfy (1.3) and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \max \left(\nu_{F}, e\right) \mathcal{P} \tag{1.6}
\end{equation*}
$$

In fact, Theorem 1.2 is a sparse version of a result in the forthcoming paper [6]. As Theorem 1.2 is stated above the common zero set of the F_{j} has to be discrete. It is, however, possible to replace the assumption that the F_{j} lack common zeros at infinity by a less restrictive assumption, see Remark 4.2.

The reason that we require \mathcal{P} to be smooth in Theorem 1.2 is that we need a certain line bundle to be ample, see Section 4. For example, $\mathcal{P}=d \Sigma^{n}$ is smooth; with this choice (1.6) reads $\operatorname{deg}\left(F_{j} G_{j}\right) \leq$ $\max \left(\nu_{F} d, \operatorname{deg} \Phi\right)$.

Theorem 1.2 is a variant of Max Nöther's Theorem, [23], in the sense that Φ is assumed to be in (F) and the F_{j} are assumed to have no zeros at infinity. In the original formulation, F_{1}, \ldots, F_{m} are moreover assumed to form a complete intersection, i.e., the codimension of $\left\{F_{1}=\ldots=F_{m}=0\right\}$ is m :
Assume that the zero-set of F_{1}, \ldots, F_{n} is discrete and contained in \mathbb{C}^{n} and that $\Phi \in(F)$. Then there are G_{j} that satisfy (1.3) and $\operatorname{deg}\left(F_{j} G_{j}\right) \leq \operatorname{deg} \Phi$.
Note that if supp Φ (or $\operatorname{deg} \Phi$) is large enough, then the bound (1.6) coincides with Max Nöther's bound; indeed ν_{F} only depends on the F_{j}. In [28, Theorem 1.2] was presented a sparse versions of Nöther's Theorem, which essentially says, that if the F_{j} are a complete intersection, then Theorem 1.2 holds with $\nu_{F}=0$. To be precise, the polytope $e \mathcal{P}$ has to satisfy an additional condition.

If the F_{j} lack common zeros, then Theorem 1.1 says that we can choose $\nu_{F}=n+1$. In general, we do not have an explicit description of ν_{F}; see the discussion after the proof of Theorem 1.2.

Recall that the polynomial Φ lies in the integral closure of (F) if Φ satisfies a monic equation $\Phi^{r}+H_{1} \Phi^{r-1}+\cdots+H_{r}=0$, where $H_{j} \in(F)^{j}$ for $1 \leq j \leq r$ or, equivalently, if Φ locally satisfies $|\Phi| \leq C|F|$, where $|F|^{2}=\left|F_{1}\right|^{2}+\cdots+\left|F_{m}\right|^{2}$. If Φ is in the integral closure of (F), then the Briançon-Skoda Theorem , [9], asserts that one can solve (1.1) with $\nu=\min (m, n)$. Our next result is a sparse effective Briançon-Skoda Theorem, which also can be seen as a generalization of Macaulay's Theorem. Indeed, when the F_{j} have no common zeros, the assumption below that \mathcal{P} contains the origin is automatically satisfied and then any polynomial Φ is in the integral closure of (F).

Theorem 1.3. Let F_{1}, \ldots, F_{m}, and Φ be polynomials in \mathbb{C}^{n} and let \mathcal{P} be a lattice polytope that contains the origin and the support of the F_{j}. Assume that the F_{j} have no common zeros at infinity. Moreover assume that Φ is in the integral closure of (F) and that supp $\Phi \subseteq e \mathcal{P}$, where $e \mathcal{P}$ is a lattice polytope. Then there are polynomials G_{j} that satisfy

$$
\begin{equation*}
\sum_{j=1}^{m} F_{j} G_{j}=\Phi^{n} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \max (n+1, n e) \mathcal{P} \tag{1.8}
\end{equation*}
$$

The assumption that the F_{j} have no common zeros at infinity could be replaced by a less restrictive assumption, see Remark 4.2. If $\mathcal{P}=$ $d \Sigma^{n}$, then (1.8) reads $\operatorname{deg}\left(F_{j} G_{j}\right) \leq \max ((n+1) d, n \operatorname{deg} \Phi)$.

Morally, Theorems 1.2 and 1.3 say that when the F_{j} have no zeros at infinity and $\operatorname{supp} \Phi$ is large enough compared to $\operatorname{supp} F_{j}$, then the bounds on $\operatorname{supp}\left(F_{j} G_{j}\right)$ in (1.3) and (1.7) are as good as possible; in fact, $\operatorname{supp}\left(F_{j} G_{j}\right)$ is then bounded by supp Φ and $\operatorname{supp} \Phi^{n}$, respectively. Andersson-Götmark, [3, Thm 1.3], and Hickel [17, Thm 1.1] proved effective Max Nöther's and Briançon-Skoda Theorem's, respectively, in which they allow common zeros at infinity. Then typically terms of size d^{n} appear, cf. (1.2).

Let us sketch the idea of the proofs of our results. A standard way of reformulating the kind of division problems we consider is the following. There are polynomials G_{j} that satisfy (1.1) and $\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq c \mathcal{P}$ if and only if there are sections g_{j} of line bundles $\mathcal{O}\left(D_{(c-1) \mathcal{P}}\right)$ over $X_{\mathcal{P}}$ such that

$$
\begin{equation*}
\sum_{j=1}^{m} f_{j} g_{j}=\psi \tag{1.9}
\end{equation*}
$$

where f_{j} and ψ are sections of line bundles $\mathcal{O}\left(D_{\mathcal{P}}\right)$ and $\mathcal{O}\left(D_{c \mathcal{P}}\right)$ over $X_{\mathcal{P}}$ corresponding to F_{j} and Φ^{ν}, respectively. Now there is a local solution to (1.9) on $X_{\mathcal{P}}$ if ψ annihilates a certain residue current, see Section 2. To obtain a global solution to (1.9) the constant c has to be large enough so that certain Dolbeault cohomology on $X_{\mathcal{P}}$ vanishes. By analyzing when these conditions are satisfied we obtain our results.

The proofs of Theorem 1.1-1.3 occupy Section 4. In sections 2 and 3 we provide some necessary background on residue currents and toric varieties, respectively.

2. Residue currents

Let f_{1}, \ldots, f_{m} be holomorphic functions whose common zero set $V_{f}=$ $\left\{f_{1}=\ldots=f_{m}=0\right\}$ has codimension m. Then the Coleff-Herrera product, introduced in [11],

$$
R_{C H}^{f}=\bar{\partial}\left[\frac{1}{f_{1}}\right] \wedge \cdots \wedge \bar{\partial}\left[\frac{1}{f_{m}}\right]
$$

represents the ideal (f) generated by the f_{j} in the sense that it has support on V_{f} and moreover a holomorphic function ψ is in (f) if and only if the current $\psi R_{C H}^{f}$ vanishes, see [13, 24].

When codim $V_{f}<m$, there is no such canonical residue current associated with f_{1}, \ldots, f_{m}. Passare-Tsikh-Yger, [25], constructed residue currents by means of the Bochner-Martinelli kernel that generalize the Coleff-Herrera product to when the codimension of V_{f} is arbitrary. Their construction was later developed by Andersson, [1], and by Andersson and the author, [4].

Theorem 2.1. Assume that $E_{0}, E_{1}, \ldots, E_{N}$ are Hermitian holomorphic vector bundles over a complex manifold X of dimension n and assume that E_{0} has rank 1. Moreover assume that the complex

$$
\begin{equation*}
0 \longrightarrow E_{N} \xrightarrow{f^{N}} \ldots \xrightarrow{f^{3}} E_{2} \xrightarrow{f^{2}} E_{1} \xrightarrow{f^{1}} E_{0}, \tag{2.1}
\end{equation*}
$$

is exact outside an analytic set Z of positive codimension. Then one can construct an $\operatorname{End}\left(\bigoplus_{k} E_{k}\right)$-valued residue current R on X, which has support on Z and satisfies the following:
(a) If ψ is a holomorphic section of E_{0} that annihilates R, i.e., the current $R \psi$ vanishes, then ψ is in the ideal sheaf $\operatorname{Im} f^{1}$ generated by the image of f^{1}.
(b) If the associated complex of locally free sheaves of \mathcal{O}-modules of sections of E_{k}

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}\left(E_{N}\right) \xrightarrow{f^{N}} \ldots \xrightarrow{f^{2}} \mathcal{O}\left(E_{1}\right) \xrightarrow{f^{1}} \mathcal{O}\left(E_{0}\right) \tag{2.2}
\end{equation*}
$$

is exact, then $\psi \in \operatorname{Im} f^{1}$ if and only if $R \psi=0$.
(c) Assume that f is a holomorphic section of a Hermitian vector bundle E of rank m over X and that (2.1) is the Koszul complex of f, i.e., $E_{k}=\Lambda^{k} E^{*}$ and f^{k} is contraction (interior multiplication) with f. Moreover assume that ψ locally satisfies that

$$
|\psi| \leq C|f|^{\min (m, n)}
$$

for some constant C. Then $R \psi=0$.
The idea of the proof of Theorem 2.1 is that outside Z one can obtain a local holomorphic solution to the division problem

$$
\begin{equation*}
f^{1} g=\psi \tag{2.3}
\end{equation*}
$$

by means of (2.1); here ψ is a section of E_{0} and g a section of E_{1}. The residue current $R \psi$ appears as an obstruction when one tries to extend the solution from $X \backslash Z$ to X; we refer to [1] and [4] for details.

The explicitness of the current R of course directly depends on the explicitness of (2.1). If (2.1) is the Koszul complex of f, then R has support on the zero locus V_{f} of f and locally the coefficients of R are the residue currents introduced by Passare-Tsikh-Yger, [25]. In particular, if codim $V_{f}=m$, then R is locally a Coleff-Herrera product. Note that in this case $\operatorname{Im} f^{1}$ is the ideal sheaf $\mathcal{J}(f)$ generated by f.

Morally, the residue current R is the obstruction to solve (2.3) locally. To obtain a global solution one also needs certain $\bar{\partial}$-cohomology on X to vanish. The construction of the currents in [4] implies the following, cf. [4, Prop. 6.1]:

Theorem 2.2. Let L be a line bundle over X. Assume that

$$
\begin{equation*}
H^{0, q}\left(X, L \otimes E_{q+1}\right)=0 \tag{2.4}
\end{equation*}
$$

for $1 \leq q \leq \min (N-1, n)$. Let ψ be a holomorphic section of $L \otimes E_{0}$. If $R \psi=0$, then there is a global section g of $L \otimes E_{1}$ that satisfies (2.3).

The current R allows for multiplication with characteristic functions of varieties and more generally constructible sets in such a way that ordinary calculus rules hold, see [5]. In particular, if $V \subseteq X$ is a variety, then $R \psi=0$ if and only if $\mathbf{1}_{V} R \psi=0$ and $\mathbf{1}_{X \backslash V} R \psi=0$. Moreover R is said to have the Standard Extension Property (SEP) in the sense of Björk, [8], if $\mathbf{1}_{W} R=0$ for all subvarieties $W \subset V_{f}$ of positive codimension.

3. Toric varieties from polytopes

For a general reference on toric varieties, see [16]. A toric variety can be constructed from a fan Δ, which is a certain collection of \mathbb{Z}^{n} cones, by gluing together copies of \mathbb{C}^{n} corresponding to the n-dimensional cones of Δ; we denote the resulting toric variety by X_{Δ}. Let \mathcal{P} be a lattice polytope in \mathbb{R}^{n}. Then \mathcal{P} determines a fan $\Delta_{\mathcal{P}}$, the so-called normal fan of \mathcal{P}, whose rays correspond to the normal directions of
the faces of maximal dimension of \mathcal{P}. The corresponding toric variety $X_{\mathcal{P}}=X_{\Delta_{\mathcal{P}}}$ is projective, see [15, Section VII.3].

A toric variety X_{Δ} is smooth if and only if each cone in Δ is generated by a part of a basis for the lattice \mathbb{Z}^{n}. Such a fan is said to be regular. The fan $\Delta_{\mathcal{P}}$ is regular precisely when \mathcal{P} is smooth, cf. the introduction. For each fan Δ there exists a refinement $\widetilde{\Delta}$ of Δ such that $X_{\widetilde{\Delta}} \rightarrow X_{\Delta}$ is a resolution of singularities. Also if Δ_{1} and Δ_{2} are two different fans, there exists a regular fan $\widetilde{\Delta}$ that refines both Δ_{1} and Δ_{2}. If Δ is a refinement of $\Delta_{\mathcal{P}}$ we say that Δ and \mathcal{P} are compatible.

Assume that \mathcal{P} is compatible with Δ. Then \mathcal{P} defines a divisor $D_{\mathcal{P}}$ on X_{Δ}, such that the global holomorphic sections of the line bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)$ correspond precisely to the polynomials with support in \mathcal{P}, see [16, p. 66]. Moreover $\mathcal{O}\left(D_{\mathcal{P}}\right)$ is generated by its sections, and if $\Delta=\Delta_{\mathcal{P}}$, then $\mathcal{O}\left(D_{\mathcal{P}}\right)$ is ample, see [16, p. 73]. Also, $\mathcal{O}\left(D_{\mathcal{P}}\right) \otimes \mathcal{O}\left(D_{\mathcal{Q}}\right)=$ $\mathcal{O}\left(D_{\mathcal{P}+\mathcal{Q}}\right)$.

If Δ is compatible with a polytope and L is a line bundle over X_{Δ} that is generated by its sections, then $H^{0, q}\left(X_{\Delta}, L\right)=0$ for all $q \geq 1$.

In the situation of Theorems 1.2 and 1.3 we want to consider toric varieties that are compactifications of \mathbb{C}^{n}. Assume that Δ contains the first orthant σ_{0} as an n-dimensional cone; observe that if $\mathcal{P} \subseteq \mathbb{R}_{+}^{n}$ contains the origin, then one can find such a Δ, which is regular and compatible with \mathcal{P}. Then we can identify the corresponding affine chart $\mathcal{U}_{\sigma_{0}}$ with \mathbb{C}^{n}; we refer to the complement $X_{\Delta} \backslash \mathcal{U}_{\sigma_{0}}$ as the variety at infinity and denote it by V_{∞}. If \mathcal{P} is compatible with Δ and moreover contains the origin, then in local coordinates in $\mathcal{U}_{\sigma_{0}}=\mathbb{C}^{n}$, a section ψ of $\mathcal{O}\left(D_{\mathcal{P}}\right)$ coincides with the corresponding polynomial Ψ in \mathbb{C}^{n}, so that ψ can really be seen as a homogenization of Ψ, see [12] and also [28, Section 3.4].

4. Proofs

In Theorem 1.1 the F_{j} are assumed to have no common zeros even at infinity. This should be interpreted as that the corresponding sections f_{j} of $\mathcal{O}\left(D_{\mathcal{P}}\right)$ lack common zeros in X_{Δ}, where Δ is compatible with $\mathcal{P}=$ $\mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)$. Observe that whether the f_{j} have common zeros in X_{Δ} in fact only depends on \mathcal{P} and not on the particular choice of Δ, as long as it is compatible with \mathcal{P}. In Theorems 1.2 and 1.3, \mathcal{P} is assumed to contain the origin. It follows that Δ can be chosen compatible with \mathcal{P} so that it contains the first orthant as a cone. The assumption that the f_{j} lack common zeros at infinity should be interpreted as that, given such a Δ, the corresponding sections of $\mathcal{O}\left(D_{\mathcal{P}}\right)$ lack common zeros at V_{∞} in X_{Δ}.

Consider polynomials F_{j} with support in polytopes \mathcal{P}_{j}. Whether or not the F_{j}, or rather the corresponding sections f_{j} of line bundles $\mathcal{O}\left(D_{\mathcal{P}_{j}}\right)$, have common zeros (at infinity) clearly depends on the polytopes \mathcal{P}_{j}. Assume that f_{j} are sections of a line bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)$ over
X_{Δ}, where Δ is compatible with \mathcal{P}. Then the f_{j} do have common zeros unless $\mathcal{P}=\mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)$ and they have common zeros at infinity unless \mathcal{P} is the convex hull of the Newton polytope and the origin. On the other hand, any generic choice of $n+1$ sections of $\mathcal{O}\left(D_{\mathcal{P}}\right)$ will lack common zeros and any choice of n polynomials with support in \mathcal{P} will lack common zeros at V_{∞}, see for example [28, Section 6.2] or [27, Lma 4.1]. Thus the sparse versions of Macaulay's and Max Nöther's results generalize their classical counterparts in the sense that they apply to more general situations.

Theorem 1.1 is a consequence of the following more general result, which is due to Tuitman [27]; we include a proof for completeness. Recall that the polytope \mathcal{Q} is a summand of the polytope \mathcal{P} if there exist another a polytope \mathcal{S} such that $\mathcal{P}=\mathcal{Q}+\mathcal{S}$.

Theorem 4.1. [Tuitman [27]/ Let F_{1}, \ldots, F_{m}, and Φ be polynomials in \mathbb{C}^{n}. Let \mathcal{P}_{j} and \mathcal{P} be polytopes that contain the support of the F_{j} and Φ, respectively. Assume that the F_{j} have no common zeros even at infinity, meaning that the corresponding sections of line bundles $\mathcal{O}\left(D_{\mathcal{P}_{j}}\right)$ over a toric variety lack common zeros. Assume that $\mathcal{P}_{j_{1}}+\cdots+\mathcal{P}_{j_{q}}$ is a summand of \mathcal{P} for all $1 \leq q \leq \min (m, n+1)$ and $\mathcal{J}=\left\{j_{1}, \ldots, j_{q}\right\} \subseteq$ $\{1, \ldots, m\}$. Then there are polynomials that satisfy (1.3) and

$$
\begin{equation*}
\operatorname{supp}\left(F_{j} G_{j}\right) \subseteq \mathcal{P} \tag{4.1}
\end{equation*}
$$

In particular, we can let $\mathcal{P}=\sum_{j=1}^{m} \mathcal{P}_{j}$. Also, if we choose \mathcal{P} as $\max (n+1, e) \mathcal{N} \mathcal{P}\left(F_{1}, \ldots, F_{m}\right)$ we get back Theorem 1.1.

Proof. Let Δ be a regular fan that is compatible with $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m}$, and \mathcal{P}, let E be the bundle $\mathcal{O}\left(D_{\mathcal{P}_{1}}\right) \oplus \cdots \oplus \mathcal{O}\left(D_{\mathcal{P}_{m}}\right)$ over X_{Δ}, and let L be the line bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)$. We identify polynomials with support in \mathcal{P}_{j} and \mathcal{P} with sections of $\mathcal{O}\left(D_{\mathcal{P}_{j}}\right)$ and L, respectively. Accordingly, let f_{j}, f, and ψ be the sections of $\mathcal{O}\left(D_{\mathcal{P}_{j}}\right), E$, and $\mathcal{O}\left(D_{\mathcal{P}}\right)$ corresponding to F_{j}, the tuple F_{1}, \ldots, F_{m}, and Φ, respectively.

Let (2.1) be the Koszul complex of f and let R be the associated residue current. By assumption, the f_{j} have no common zeros, and hence $R=0$.

Now

$$
\begin{equation*}
L \otimes E_{Q}=L \otimes \Lambda^{q} E^{*}=\bigoplus_{|\mathcal{J}|=q} \mathcal{O}\left(D_{\mathcal{P}}-\left(D_{\mathcal{P}_{j_{1}}}+\cdots+D_{\mathcal{P}_{j_{q}}}\right)\right) \tag{4.2}
\end{equation*}
$$

Since for each term in the right hand side of (4.2), $\mathcal{P}_{j_{1}}+\cdots+\mathcal{P}_{j_{q}}$ is a summand of $\mathcal{P}, \mathcal{O}\left(D_{\mathcal{P}-\left(\mathcal{P}_{j_{1}}+\cdots+\mathcal{P}_{j_{q}}\right)}\right)$ is generated by its sections, see Section 3. Hence (2.4) holds for $1 \leq q \leq n$, cf. (the proof of) Theorem 4.1 in [28].

Now Theorem 2.2 asserts that we can find a section $g=\left(g_{1}, \ldots, g_{m}\right)$ of $L \otimes E^{*}$ that satisfies (2.3), and thus polynomials G_{j} that satisfy (1.3) and (4.1).

The original proof by Tuitman is very similar to our proof. In fact, the residue current does not really play a role in our proof, since it trivially vanishes.

Theorem 1.3 is proved along the same lines as Theorem 1.1, using residue currents constructed from the Koszul complex. It would be possible to give a more general formulation of Theorem 1.3, that would take into account that the F_{j} might have different supports, as was done in Theorem 4.1.

Proof of Theorem 1.3. Let Δ be a regular fan that is compatible with \mathcal{P} and that contains the first orthant as cone. Moreover, let E be the vector bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)^{\oplus m}$ over X_{Δ}, and let L be the line bundle $\mathcal{O}\left(D_{\max (n+1, n e) \mathcal{P}}\right)$. Let f_{j}, f, and ψ be the sections of $\mathcal{O}\left(D_{\mathcal{P}}\right), E$, and L corresponding to F_{j}, the tuple F_{1}, \ldots, F_{m}, and Φ^{n}, respectively.

Let (2.1) be the Koszul complex of f and let R be the associated residue current. By assumption, the f_{j} have no common zeros at infinity, and hence $\mathbf{1}_{V_{\infty}} R=0$. Moreover, since Φ is in the integral closure of (F) in $\mathbb{C}^{n}, \mathbf{1}_{\mathbb{C}^{n}} R \psi=0$ by Theorem 2.1 (c) and the end of Section 3.

By Section 3, $L \otimes E_{q}=L \otimes \Lambda^{q} E^{*}$ is a direct sum of line bundles $\mathcal{O}\left(D_{(\max (n+1, n e)-q) \mathcal{P}}\right)$, and since $\mathcal{O}\left(D_{c \mathcal{P}}\right)$ is generated by its sections if $c \geq 0$, by Section 3, (2.4) holds for $1 \leq q \leq n$.
Now Theorem 2.2 asserts that we can find a section $g=\left(g_{1}, \ldots, g_{m}\right)$ of $L \otimes E^{*}$ that satisfies (2.3), and thus polynomials G_{1}, \ldots, G_{m} in \mathbb{C}^{n} that satisfy (1.7) and (1.8).

Proof of Theorem 1.2. Let E be the vector bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)^{\oplus m}$ over $X_{\mathcal{P}}$, and let f be the section of E corresponding to F_{1}, \ldots, F_{m}. Let E_{0} be the trivial bundle of rank 1 over $X_{\mathcal{P}}$, let $E_{1}=E^{*}$, and let f^{1} be multiplication with f. Since $X_{\mathcal{P}}$ is projective, $E_{1} \xrightarrow{f^{1}} E_{0}$ can be continued to a complex (2.1), such that the associated complex (2.2) is exact, see for example [20, Ex. 1.2.21]. Since, by assumption, \mathcal{P} is smooth, the line bundle $\mathcal{O}\left(D_{\mathcal{P}}\right)$ over $X_{\mathcal{P}}$ is ample and thus for some large enough number $\nu_{F}, H^{0, q}\left(X_{\mathcal{P}}, \mathcal{O}\left(D_{\mathcal{P}}\right)^{\otimes \nu} \otimes E_{q+1}\right)=0$ for $1 \leq q \leq$ $\min (N-1, n)$ and $\nu \geq \nu_{F}$. In particular, $L:=\mathcal{O}\left(D_{\max \left(\nu_{F}, e\right) \mathcal{P}}\right)$ satisfies (2.4) for $1 \leq q \leq \min (N-1, n)$.

The assumption that \mathcal{P} contains the origin and the support of the coordinate functions z_{1}, \ldots, z_{n} implies that the first orthant in \mathbb{R}^{n} is a cone of $\Delta_{\mathcal{P}}$. Let R be the residue current associated with (2.1) and let ψ be the section of L corresponding to Φ. By assumption, the f_{j} have no common zeros at infinity, and hence $\mathbf{1}_{V_{\infty}} R=0$. Moreover, since (2.2) is exact and $\Phi \in(F)$ in $\mathbb{C}^{n}, \mathbf{1}_{\mathbb{C}^{n}} R \psi=0$ by Theorem 2.1 (b) and the end of Section 3.

Now Theorem 2.2 asserts that we can find a section $g=\left(g_{1}, \ldots, g_{m}\right)$ of $L \otimes E_{1}=L \otimes E^{*}$ that satisfies (2.3), and thus polynomials G_{1}, \ldots, G_{m} in \mathbb{C}^{n} that satisfy (1.3) and (1.6).

The constant ν_{F} in Theorem 1.2 depends on the degrees of the mappings in the resolution (2.1), which are closely related to the CastelnuovoMumford regularity of (F), see [14, Chapter 20.5].

Remark 4.2. Observe that the proofs of Theorems 1.2 and 1.3 only use that R vanishes along V_{∞}, i.e., $\mathbf{1}_{V_{\infty}} R=0$. In fact, this allows us to replace the assumptions that the F_{j} lack common zeros at infinity by less restrictive assumptions.

Let Z_{k} be the set where the mapping f^{k} in (2.1) does not have optimal rank. When (2.2) is exact R admits a decomposition $R=$ $\sum_{k} \mathbf{1}_{Z_{k} \backslash Z_{k-1}} R$, where $\mathbf{1}_{Z_{k} \backslash Z_{k-1}} R$ has support on and the SEP with respect to Z_{k}, see [5, Ex. 7]. Thus in Theorem 1.2 we could replace the assumption that the F_{j} lack common zeros at infinity by the assumption that the Z_{k} have no irreducible components contained in V_{∞}.

Let $\left\{V_{j}\right\}$ be the set of so-called distinguished subvarieties of $\mathcal{J}(f)$, see [21, p. 263], and let R be the residue current constructed from the Koszul complex of f. It follows from the construction that R admits a decomposition $R=\sum \mathbf{1}_{V_{j}} R$, where $\mathbf{1}_{V_{j}} R$ has support on and the SEP with respect V_{j}, see for example [3]. Hence in Theorem 1.3 we could replace the assumption that F_{j} lack common zeros at infinity by the assumption that $\mathcal{J}(f)$ has no distinguished subvarieties contained in V_{∞}.

Thanks to the referee for many helpful suggestions.

References

[1] M. Andersson: Residue currents and ideals of holomorphic functions, Bull. Sci. Math. 128 (2004) no. 6 481-512.
[2] M. Andersson: The membership problem for polynomial ideals in terms of residue currents, Ann. Inst. Fourier 56 (2006), 101-119.
[3] M. Andersson \& E. Götmark: Explicit representation of membership of polynomial ideals, Preprint, available at arXiv:0806.2592.
[4] M. Andersson \& E. Wulcan: Residue currents with prescribed annihilator ideals, Ann. Sci. École Norm. Sup. 40 (2007) 985-1007.
[5] M. Andersson \& E. Wulcan: Decomposition of residue currents, J. Reine Angew. Math. 638 (2010) 103-118.
[6] M. Andersson \& E. Wulcan: On the membership problem on algebraic varieties, In preparation.
[7] C. A. Berenstein \& R. Gay \& A. Vidras \& A. Yger: Residue currents and Bezout identities, Progress in Mathematics 114 Birkhäuser Verlag (1993).
[8] J-E. BJöRk: Residues and D-modules, The legacy of Niels Henrik Abel, 605-651, Springer, Berlin, 2004.
[9] J. Briançon, H. Skoda : Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de \mathbb{C}^{n}, C. R. Acad. Sci. Paris Sér. A 278 (1974) 949-951.
[10] W. Castryck, J. Denef \& F. Vercauteren: Computing zeta functions of nondegenerate curves, IMRP Int. Math. Res. Pap. 2006, Art. ID 72017, 57 pp.
[11] N. Coleff \& M. Herrera: Les courants résiduels associcés à une forme méromorphe, Lecture Notes in Mathematics 633 Springer Verlag, Berlin, 1978.
[12] D. Cox: The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17-50.
[13] A. Dickenstein \& C. Sessa: Canonical representatives in moderate cohomology, Invent. Math. 80 (1985), 417-434.
[14] D. Eisenbud: Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995.
[15] G. Ewald: Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, 168. Springer-Verlag, New York, 1996.
[16] W. Fulton: Introduction to toric varieties, Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993.
[17] M. Hickel: Solution d'une conjecture de C. Berenstein-A. Yger et invariants de contact à l'infini, Ann. Inst. Fourier 51 (2001), 707-744.
[18] Z. Jelonek: On the effective Nullstellensatz, Invent. Math. 162 (2005), no. 1, 1-17.
[19] J. Kollár: Sharp effective Nullstellensatz, J. Amer. Math. Soc. 1 (1988), 963-975.
[20] R. Lazarsfeld: Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Springer-Verlag, Berlin, 2004.
[21] R. Lazarsfeld: Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Springer-Verlag, Berlin, 2004.
[22] F. S. Macaulay: The algebraic theory of modular systems, Cambridge University Press, Cambridge, 1916.
[23] M. Nöther: Über einen Satz aus der Theorie der algebraischen Functionen, Math. Ann. 6 (1873), no. 3, 351-359.
[24] M. Passare: Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), no. 1, 75-152.
[25] M. Passare \& A. Tsikh \& A. Yger: Residue currents of the BochnerMartinelli type, Publ. Mat. 44 (2000), 85-117.
[26] M. Sombra: A sparse effective Nullstellensatz, Adv. in Appl. Math. 22 (1999) 271-295.
[27] J. Tuitman: A Refinement of a Mixed Sparse Effective Nullstellensatz, IMRN, to appear.
[28] E. Wulcan: Sparse effective membership problems via residue currents, Math. Ann. to appear.

Dept of Mathematics, University of Michigan, Ann Arbor, MI 481091043, USA

E-mail address: wulcan@umich.edu

[^0]: Date: November 26, 2010.
 The author was partially supported by the Swedish Research Council and NSF grant DMS-0901073.

