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Abstract. We study the residue current Rf of Bochner-Martinelli
type associated with a tuple f = (f1, . . . , fm) of holomorphic germs
at 0 ∈ C

n, whose common zero set equals the origin. Our main
results are a geometric description of Rf in terms of the Rees val-
uations associated with the ideal (f) generated by f and a charac-
terization of when the annihilator ideal of Rf equals (f).

1. Introduction

Residue currents are generalizations of classical one-variable residues
and can be thought of as currents representing ideals of holomorphic
functions. In [21] Passare-Tsikh-Yger introduced residue currents based
on the Bochner-Martinelli kernel. Let f = (f1, . . . , fm) be a tuple of
(germs of) holomorphic functions at 0 ∈ Cn, such that V (f) = {f1 =
. . . = fm = 0} = {0}. (Note that we allow m > n.) For each ordered
multi-index I = {i1, . . . , in} ⊆ {1, . . . , m} let

(1.1) Rf
I = ∂̄|f |2λ ∧ cn

n∑

ℓ=1

(−1)ℓ−1
fiℓ

∧
q 6=ℓ dfiq

|f |2n

∣∣∣∣
λ=0

,

where cn = (−1)n(n−1)/2(n − 1)!, |f |2 = |f1|
2 + . . . + |fm|

2, and α|λ=0

denotes the analytic continuation of the form α to λ = 0. Moreover,
let Rf denote the vector-valued current with entries Rf

I ; we will refer
to this as the Bochner-Martinelli residue current associated with f .
Then Rf is a well-defined (0, n)-current with support at the origin and

gRf
I = 0 if g is a holomorphic function that vanishes at the origin. It

follows that the coefficients of the Rf
I are just finite sums of holomorphic

derivatives at the origin.
Let On

0 denote the local ring of germs of holomorphic functions at 0 ∈
Cn. Given a current T let annT denote the (holomorphic) annihilator
ideal of T , that is,

annT = {h ∈ On
0 , hT = 0}.
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Our main result concerns annRf =
⋂

annRf
I . Let (f) denote the ideal

generated by the fi in On
0 . Recall that h ∈ On

0 is in the integral closure

of (f), denoted by (f), if |h| ≤ C|f |, for some constant C. Moreover,
recall that (f) is a complete intersection ideal if it can be generated by
n = codimV (f) functions. Note that this condition is slightly weaker
than codimV (f) = n = m.

Theorem A. Suppose that f is a tuple of germs of holomorphic func-
tions at 0 ∈ Cn such that V (f) = {0}. Let Rf be the corresponding
Bochner-Martinelli residue current. Then

(1.2) (f)n ⊆ annRf ⊆ (f).

The left inclusion in (1.2) is strict whenever n ≥ 2. The right inclusion
is an equality if and only if (f) is a complete intersection ideal.

The new results in Theorem A are the last two statements. The
left and right inclusions in (1.2) are due to Passare-Tsikh-Yger [21]
and Andersson [1], respectively. Passare-Tsikh-Yger defined currents

Rf
I also when codimV (f) < n. The inclusions (1.2) hold true also

in this case; one even has (f)min(m,n) ⊆ annRf ⊆ (f). Furthermore,
Passare-Tsikh-Yger showed that annRf = (f) if m = codimV (f).

More precisely, they proved that in this case the only entry Rf
{1,...,m} of

Rf coincides with the classical Coleff-Herrera product

Rf
CH = ∂̄

[
1

f1

]
∧ · · · ∧ ∂̄

[
1

fm

]
,

introduced in [13]. The current Rf
CH represents the ideal in the sense

that annRf
CH = (f) as proved by Dickenstein-Sessa [14] and Pas-

sare [20]. This so-called Duality Principle has been used for various
purposes, see [9]. Any ideal of holomorphic functions can be repre-
sented as the annihilator ideal of a (vector valued) residue current.
However, in general this current is not as explicit as the Coleff-Herrera
product, see [6].

Thanks to their explicitness Bochner-Martinelli residue currents have
found many applications, see for example [4], [5], [8], and [23]. Even
though the right inclusion in (1.2) is strict in general, annRf is large
enough to in some sense capture the “size” of (f). For example (1.2) (or
rather the general version stated above) gives a proof of the Briançon-
Skoda Theorem [11], see also [1]. The inclusions in (1.2) are central
also for the applications mentioned above.

The proof of Theorem A has three ingredients. First, we use a result
of Hickel [17] relating the ideal (f) to the Jacobian determinant of
f . Second, we rely on a result by Andersson, which says that under
suitable hypotheses, the current he constructs in [1] is independent of
the choice of Hermitian metric, see also Section 2.
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The third ingredient, which is of independent interest, is a geometric
description of the Bochner-Martinelli current, and goes as follows. Let
π : X → (Cn, 0) be a log-resolution of (f), see Definition 3.1. We say
that a multi-index I = {i1, . . . , in} is essential if there is an exceptional
prime E ⊆ π−1(0) of X such that the mapping [fi1 ◦ π : . . . : fin ◦ π] :
E → CPn−1 is surjective and moreover ordE(fik) ≤ ordE(fℓ) for 1 ≤
k ≤ n, 1 ≤ ℓ ≤ m, see Section 3.3 for more details. The valuations
ordE are precisely the Rees valuations of (f).

Theorem B. Suppose that f is a tuple of germs of holomorphic func-
tions at 0 ∈ Cn such that V (f) = {0}. Then the current Rf

I 6≡ 0 if and
only if I is essential.

As is well known, one can view Rf as the pushforward of a current
on a log-resolution of (f). The support on the latter current is then
exactly the exceptional components associated with the Rees valuations
of (f), see Section 4.

Recall that if (f) is a complete intersection ideal, then (f) is in fact
generated by n of the fi. This follows for example by Nakayama’s
Lemma.

Theorem C. Suppose that f is a tuple of germs of holomorphic func-
tions at 0 ∈ Cn such that V (f) = {0} and such that (f) is a complete
intersection ideal. Then I = {i1, . . . , in} is essential if and only if
fi1 , . . . fin generates (f). Moreover

(1.3) Rf
I = CI ∂̄

[
1

fi1

]
∧ · · · ∧ ∂̄

[
1

fin

]
,

where CI is a constant, which is nonzero if and only if I is essential.

Theorems B and C generalize previous results for monomial ideals.
In [24] an explicit description of Rf is given in case the fi are monomi-
als; it is expressed in terms of the Newton polytope of (f). From this
description a monomial version of Theorem A can be read off. Also, it
follows that in the monomial case annRf only depends on the ideal (f)
and not on the particular generators f . This motivates the following
question.

Question D. Let f be a tuple of germs of holomorphic functions such
that V (f) = {0}. Let Rf be the corresponding Bochner-Martinelli
residue current. Is it true that annRf only depends on the ideal (f)
and not on the particular generators f?

Computations suggest that the answer to Question D may be pos-
itive; see Remark 8.4. If codimV (f) < n, then annRf may in fact
depend on f even though the examples in which this happens are some-
what pathological, see for example [1, Example 3]. A positive answer
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to Question D would imply that we have an ideal canonically associ-
ated with a given ideal; it would be interesting to understand this new
ideal algebraically.

This paper is organized as follows. In Sections 2 and 3 we present
some necessary background on residue currents and Rees valuations,
respectively. The proof of Theorem B occupies Section 4, whereas
Theorems A and C are proved in Section 5. In Section 6 we discuss
a decomposition of Rf with respect to the Rees valuations of (f). In
the last two sections we interpret our results in the monomial case and
illustrate them by some examples.

Acknowledgment: We would like to thank Mats Boij and Håkan
Samuelsson for valuable discussions. This work was partially carried
out when the authors were visiting the Mittag-Leffler Institute.

2. Residue currents

We will work in the framework from Andersson [1] and use the fact

that the residue currents Rf
I defined by (1.1) appear as the coeffi-

cients of a vector bundle-valued current introduced there. Let f =
(f1, . . . , fm) be a tuple of germs of holomorphic functions at 0 ∈ Cn.
We identify f with a section of the dual bundle V ∗ of a trivial vector
bundle V over Cn of rank m, endowed with the trivial metric. If {ei}

m
i=1

is a global holomorphic frame for V and {e∗i }
m
i=1 is the dual frame, we

can write f =
∑m

i=1 fie
∗
i . We let s be the dual section s =

∑m
i=1 f̄iei of

f .
Next, we let

u =
∑

ℓ

s ∧ (∂̄s)ℓ−1

|f |2ℓ
,

where |f |2 = |f1|
2 + . . .+ |fm|

2. Then u is a section of Λ(V ⊕ T ∗
0,1(C

n))
(where ej ∧ dz̄i = −dz̄i ∧ ej), that is clearly well defined and smooth
outside V (f) = {f1 = . . . = fm = 0}, and moreover

∂̄|f |2λ ∧ u,

has an analytic continuation as a current to Reλ > −ǫ. We denote
the value at λ = 0 by R. Then R has support on V (f) and R =
Rp + . . . + Rµ, where p = codimV (f), µ = min(m,n), and where
Rk ∈ D′

0,k(C
n,ΛkV ). In particular if V (f) = {0}, then R = Rn.

We should remark that Andersson’s construction of residue currents
works for sections of any holomorphic vector bundle equipped with
a Hermitian metric. In our case (trivial bundle and trivial metric),

however, the coefficients of R are just the residue currents Rf
I defined

by Passare-Tsikh-Yger [21]. Indeed, for I = {i1, . . . , ik} ⊆ {1, . . . , m}

let sI be the section
∑k

j=1 f̄ijeij , that is, the dual section of fI =∑k
j=1 fije

∗
ij
. Then we can write u as a sum, taken over subsets I =
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{i1, . . . , ik} ⊆ {1, . . . , m}, of terms

uI =
sI ∧ (∂̄sI)

k−1

|f |2k
.

The corresponding current,

∂̄|f |2λ ∧ uI|λ=0

is then merely the current

Rf
I := ∂̄|f |2λ ∧ ck

k∑

ℓ=1

(−1)ℓ−1
fiℓ

∧
q 6=ℓ dfiq

|f |2k

∣∣∣∣
λ=0

,

where ck = (−1)k(k−1)/2(k−1)!, times the frame element eI = eik ∧· · ·∧
ei1 ; we denote it by RI . Throughout this paper we will use the nota-

tion Rf for the vector valued current with entries Rf
I , whereas R and

RI (without the superscript f), respectively, denote the corresponding
ΛnV -valued currents.

Let us make an observation that will be of further use. If the section s
can be written as µs′ for some smooth function µ we have the following
homogeneity:

(2.1) s ∧ (∂̄s)k−1 = µks′ ∧ (∂̄s′)k−1,

that holds since s is of odd degree.
Given a holomorphic function g we will use the notation ∂̄[1/g] for

the value at λ = 0 of ∂̄|g|2λ/g and analogously by [1/g] we will mean
|g|2λ/g|λ=0, that is, the principal value of 1/g. We will use the fact that

(2.2) vλ|σ|2λ
1

σa

∣∣∣∣
λ=0

=

[
1

σa

]
and ∂̄(vλ|σ|2λ)

1

σa

∣∣∣∣
λ=0

= ∂̄

[
1

σa

]
,

if v = v(σ) is a strictly positive smooth function; compare to [1,
Lemma 2.1].

2.1. Restrictions of currents and the Standard Extension Prop-

erty. In [7] the class of pseudomeromorphic currents is introduced.
The definition is modeled on the residue currents that appear in vari-
ous works such as [1] and [21]; a current is pseudomeromorphic if it can
be written as a locally finite sum of push-forwards under holomorphic
modifications of currents of the simple form

[1/(σ
aq+1

q+1 · · ·σan

n )]∂̄[1/σa11 ] ∧ · · · ∧ ∂̄[1/σaq

q ] ∧ α,

where σj are some local coordinates and α is a smooth form with com-
pact support. In particular, all currents that appear in this paper are
pseudomeromorphic.

An important property of pseudomeromorphic currents is that they
can be restricted to varieties and, more generally, constructible sets.
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More precisely, they allow for multiplication by characteristic functions
of constructible sets so that ordinary calculus rules holds. In particular,

(2.3) 1V (β ∧ T ) = β ∧ (1V T ),

if β is a smooth form. Moreover, suppose that S is a pseudomero-
morphic current on a manifold Y , that π : Y → X is a holomorphic
modification, and that A ⊆ X is a constructible set. Then

(2.4) 1A(π∗S) = π∗(1π−1(A)S).

A current T with support on an analytic variety V (of pure dimen-
sion) is said to have the so-called Standard Extension Property (SEP)
with respect to V if it is equal to its standard extension in the sense
of [10]; this basically means that it has no mass concentrated to sub-
varieties of V . If T is pseudomeromorphic, T has the SEP with respect
to V if and only if 1WT = 0 for all subvarieties W ⊂ V of smaller
dimension than V , see [3]. We will use that the current ∂̄[1/σai ] has
the SEP with respect to {σi = 0}; in particular, ∂̄[1/σai ]1{σj=0} = 0.
If S and π are as above and we moreover assume that S has the SEP
with respect to an analytic variety W ⊂ Y , then π∗S has the SEP with
respect to π(W ).

3. Rees valuations

3.1. The normalized blowup and Rees valuations. We will work
in a local situation. Let On

0 denote the local ring of germs of holomor-
phic functions at 0 ∈ Cn, and let m denote its maximal ideal. Recall
that an ideal a ⊂ On

0 is m-primary if its associated zero locus V (a) is
equal to the origin.

Let a ⊂ On
0 be an m-primary ideal. The Rees valuations of a are

defined in terms of the normalized blowup π0 : X0 → (Cn, 0) of a. Since
a is m-primary, π0 is an isomorphism outside 0 ∈ Cn and π−1

0 (0) is the
union of finitely many prime divisors E ⊂ X0. The Rees valuations of
a are then the associated (divisorial) valuations ordE on On

0 : ordE(g)
is the order of vanishing of g along E.

The blowup of an ideal is defined quite generally in [15, Ch.II, §7].
We shall make use of the following more concrete description, see [22,
p. 332]. Let f1, . . . , fm be generators of a and consider the rational
map ψ : (Cn, 0) 99K Pm−1 given by ψ = [f1 : · · · : fm]. Then X0 is
the normalization of the closure of the graph of ψ, and π0 : X0 →
(Cn, 0) is the natural projection. Denote by Ψ0 : X0 → Pm−1 the other
projection. It is a holomorphic map. The image under Ψ0 of any prime
divisor E ⊂ π−1

0 (0) has dimension n− 1.

3.2. Log resolutions. The normalized blowup can be quite singular,
making it difficult to use for analysis. Therefore, we shall use a log-
resolution of a, see [19, Definition 9.1.12].
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Definition 3.1. A log-resolution of a is a holomorphic modification
π : X → (Cn, 0), where X is a complex manifold, such that

• π is an isomorphism above Cn \ {0}:
• a · OX = OX(−Z), where Z = Z(a) is an effective divisor on X

with simple normal crossings support.

The simple normal crossings condition means that the exceptional
divisor π−1(0) is a union of finitely many prime divisors E1, . . . , EN ,
called exceptional primes, and at any point x ∈ π−1(0) we can pick
local coordinates (σ1, . . . , σn) at x such that π−1(0) = {σ1 · · · · ·σp = 0}
and for each exceptional prime E, either x 6∈ E, or E = {σi = 0} for
some i ∈ {1, . . . p}.

If we write Z =
∑N

j=1 ajEj, then the condition a · OX = OX(−Z)

means that (the pullback toX of) any holomorphic germ g ∈ a vanishes
to order at least aj along each Ej . Moreover, in the notation above, if
x ∈ π−1(0) and Ejk = {σk = 0}, 1 ≤ k ≤ p are the exceptional primes
containing x, then there exists g ∈ a such that g = σa11 . . . σ

ap
p u, where

u is a unit in OX,x, that is, u(x) 6= 0.
The existence of a log-resolution is a consequence of Hironaka’s the-

orem on resolution of singularities. Indeed, the ideal a is already prin-
cipal on the normalized blowup X0, so it suffices to pick X as a desin-
gularization of X0. This gives rise to a commutative diagram

X

̟
��

π

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}

Ψ

��
??

??
??

??
??

??
??

??
??

?

X0π0

wwooooooooooooo Ψ0

''OOOOOOOOOOOOO

(Cn, 0)
ψ

//______________ Pm−1

Here Ψ : X → Pm−1 is holomorphic.
Every exceptional prime E of a log resolution π : X → (Cn, 0) of

a defines a divisorial valuation ordE , but not all of these are Rees
valuations of a. If ordE is a Rees valuation, we call E a Rees divisor.
From the diagram above we see:

Lemma 3.2. An exceptional prime E of π is a Rees divisor of a if and
only if its image Ψ(E) ⊂ Pm−1 has dimension n− 1.

For completeness we give two results, the second of which will be
used in Example 8.2.

Proposition 3.3. Let E be an exceptional prime of a log resolution
π : X → (Cn, 0) of a. Then the intersection number ((−Z(a))n−1 · E)
is strictly positive if E is a Rees divisor of a and zero otherwise.

Proof. On the normalized blowupX0, we may write a·OX0
= OX0

(−Z0),
where −Z0 is an ample divisor. Then a · OX = OX(−Z), where
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Z = ̟∗Z0. It follows that ((−Z)n−1 · E) = ((−Z0)
n−1 · ̟∗E). The

result follows since −Z0 is ample and since E is a Rees divisor if and
only if ̟∗(E) 6= 0. �

Corollary 3.4. In dimension n = 2, the Rees valuations of a product
a = a1 · · · · · ak of m-primary ideals is the union of the Rees valuations
of the factors ai.

Proof. Pick a common log-resolution π : X → (Cn, 0) of all the ai.
Then ai · OX = OX(−Zi) and a · OX = OX(−Z), where Z =

∑
i Zi.

Fix an exceptional prime E. By Proposition 3.3 we have (Zi · E) ≤ 0
with strict inequality if and only if E is a Rees divisor of ai. Thus
(Z ·E) =

∑
i(Zi ·E) ≤ 0 with strict inequality if and only E is a Rees

divisor of some ai. The result now follows from Proposition 3.3. �

3.3. Essential multi-indices. In our situation, we are given an m-
primary ideal a as well as a fixed set of generators f1, . . . , fm of a.

Consider a multi-index I = {i1, . . . , in} ⊆ {1, . . . , m}. Let πI :
Pm−1 \ WI → Pn−1, where WI := {wi1 = · · · = win = 0} ⊂ Pm−1,
be the projection given by [w1 : · · · : wm] → [wi1 : · · · : win ]. Define
ΨI : X 99K Pn−1 by ΨI := πI ◦ Ψ.

Definition 3.5. Let E ⊂ X be an exceptional prime. We say that I is
E-essential or that I is essential with respect to E if Ψ(E) 6⊂ WI and
if ΨI|E : E 99K Pn−1 is dominant, that is, ΨI(E) is not contained in a
hypersurface. We say that I is essential if it is essential with respect
to at least one exceptional prime.

If I is E-essential, then E must be a Rees divisor of a, so, in fact,
I is essential if it is essential with respect to at least one Rees divisor.
Conversely, if E is a Rees divisor of a, then there exists at least one
E-essential multi-index I. Observe, however, that I can be essential
with respect to more than one E, and conversely that there can be
several E-essential multi-indices; compare to the discussion at the end
of Section 7 and the examples in Section 8.

Consider an exceptional prime E of π and a point x ∈ E not lying
on any other exceptional prime. Pick local coordinates (σ1, . . . , σn) at
x such that E = {σ1 = 0}. We can write fi = σa1f

′
i , for 1 ≤ i ≤ m,

where a = ordE(a) and f ′
i ∈ OX,x. The holomorphic functions f ′

i can
be viewed as local sections of the line bundle OX(−Z) and there exists
at least one i such that f ′

i(x) 6= 0.

Lemma 3.6. A multi-index I = {i1, . . . , in} is E-essential if and only
if the form

(3.1)
n∑

k=1

(−1)k−1f ′
ik
df ′
i1
∧ · · · ∧ d̂f ′

ik
∧ · · · ∧ df ′

in

is generically nonvanishing on E.
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Remark 3.7. Observe in particular that

(3.2) ordE(fi1) = . . . = ordE(fin) = ordE(a)

if I is E-essential.

Proof. Locally on E (where f ′
j 6= 0) we have that

ΨI =

[
f ′

1

f ′
j

: . . . :
f ′
j−1

f ′
j

:
f ′
j+1

f ′
j

: . . .
f ′
n

f ′
j

]
.

Note that ΨI is dominant if (and only if) Jac(ΨI) is generically non-
vanishing, or equivalently the holomorphic form

(3.3) ∂

(
f ′

1

f ′
j

)
∧ . . . ∧ ∂

(
f ′
j−1

f ′
j

)
∧ ∂

(
f ′
j+1

f ′
j

)
∧ . . . ∧ ∂

(
f ′
n

f ′
j

)

is generically nonvanishing. But (3.3) is just a nonvanishing function
times (3.1). �

4. Proof of Theorem B

Throughout this section let a denote the ideal (f). Let us first prove

that Rf
I 6≡ 0 implies that I is essential. Let π : X → (Cn, 0) be a log-

resolution of a. By standard arguments, see [21], [1] etc., the analytic
continuation to λ = 0 of

(4.1) π∗(∂̄|f |2λ ∧ u)

exists and defines a globally defined current on X, whose push-forward

by π is equal to R; we denote this current by R̃, so that R = π∗R̃.
Indeed, provided that the analytic continuation of (4.1) exists, we get
by the uniqueness of analytic continuation

(4.2) π∗R̃ · Φ = π∗(π
∗(∂̄|f |2λ ∧ u)) · Φ|λ=0 =

π∗(∂̄|f |2λ ∧ u) · π∗Φ|λ=0 = ∂̄|f |2λ ∧ u · Φ|λ=0 = R · Φ.

In the same way we define currents

R̃I = π∗(∂̄|f |2λ ∧ uI)|λ=0,

where

uI =
sI ∧ (∂̄sI)

n−1

|f |2n
.

Let E be an exceptional prime and let us fix a chart U in X such that
U ∩ E 6= ∅ and local coordinates σ so that the pull-back of f is of
the form π∗f = µf ′, where µ is a monomial, µ = σa11 · · ·σan

n and f ′

is nonvanishing, and moreover E = {σ1 = 0}, see Section 3.2. Then
π∗sI = µs′I for some nonvanishing section s′I and π∗|f |2 = |µ|2ν, where
ν = |s′|2 is nonvanishing. Hence, using (2.1)

R̃I = ∂̄(|µ|2λνλ)
s′I ∧ (∂̄s′I)

n−1

µnνn

∣∣∣
λ=0
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which by (2.2) is equal to
n∑

i=1

[
1

σna11 · · ·σ
nai−1

i−1 σ
nai+1

i+1 · · ·σnan
n

]
∂̄

[
1

σnai

i

]
∧
s′I ∧ (∂̄s′I)

n−1

νn
.

Thus R̃ and R̃I are pseudomeromorphic in the sense of [7] and so it
makes sense to take restrictions of them to subvarieties of their support,
see Section 2.1.

Lemma 4.1. Let E be an exceptional prime. The current R̃I1E van-

ishes unless I is essential with respect to E. Moreover R̃I1E only
depends on the fk which satisfy that ordE(fk) = ordE(a).

Proof. Recall (from Section 2.1) that ∂̄[1/σai ] has the standard exten-
sion property with respect to E = {σi = 0}. Thus

(4.3) R̃I1E =

[
1

σna22 · · ·σnan
n

]
∂̄

[
1

σna11

]
∧
s′I ∧ (∂̄s′I)

n−1

νn
1E.

It follows that R̃I1E vanishes unless

s′I ∧ (∂̄s′I)
n−1

1E 6≡ 0,

which by Lemma 3.6 is equivalent to I being E-essential. Indeed, note
that the coefficient of f ′

I ∧ (∂f ′
I)
n−1 is (n− 1)! times (3.1).

For the second statement, recall that ν = |s′|2 =
∑

|π∗f̄k/σ̄
a1
1 |2.

Note that π∗f̄k/σ̄
a1
1 1E = 0 if and only if π∗f̄k/σ̄

a1
1 is divisible by σ̄1,

that is, ordE(fk) > ordE(a). Hence R̃I1E only depends on the fk for
which ordE(fk) = ordE(a), compare to (4.3). �

Remark 4.2. In light of the above proof, R̃1E has the SEP with respect

to E. This follows since R̃1E is of the form (4.3) and ∂̄[1/σa1 ] has the
SEP with respect to E = {σ1 = 0}, see Section 2.1.

Next, let us prove that Rf
I 6≡ 0 as soon as I is essential. In order

to do this we will use arguments inspired by [2]. Throughout this

section let M̃I denote the current R̃I ∧ π∗(dfI/(2πi))
n/n! on X. Here

e∗i1 ∧ · · · ∧ e∗in ∧ ein ∧ · · · ∧ ei1 = e∗I ∧ eI should be interpreted as 1 so

that in fact π∗(M̃I) = Rf
I ∧ dfin ∧ · · · ∧ dfi1/(2πi)

n.

Lemma 4.3. The (n, n)-current M̃I is a positive measure on X whose
support is precisely the union of exceptional primes E for which I is
E-essential.

Proof. Note that Lemma 4.1 implies that the support of M̃I is con-
tained in the union of exceptional primes for which I is E-essential.
Let E be such a divisor and let us fix a chart U and local coordinates
σ as in the proof of Lemma 4.1. Then R̃I1E is given by (4.3). We can
always write s′I ∧ (∂̄s′I)

n−1 as

s′I ∧ (∂̄s′I)
n−1 = (β̄d̂σ̄1 + dσ̄1 ∧ γ̄) ∧ eI ,
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where d̂σ̄1 denotes dσ̄2∧· · ·∧dσ̄n, β is a holomorphic function, and γ is
a holomorphic form. Moreover, since I is E-essential, s′I∧(∂̄s′I)

n−1|E =

β|Ed̂σ̄1 ∧ eI is generically nonvanishing by Lemma 3.6 (in particular,
β|E is generically nonvanishing).

Moreover, with ej interpreted as e∗j , we have

π∗(dfI)
n = π∗(∂s̄I)

n = ∂(s̄I ∧ (∂s̄I)n−1) =

∂(σna11 · · ·σnan

n (βd̂σ1 + dσ1 ∧ γ)) ∧ e
∗
I =

na1σ
na1−1
1 (σna22 · · ·σnan

n β + σ1δ)dσ ∧ e∗I ,

where δ is some holomorphic function, dσ denotes dσ1 ∧ · · · ∧ dσn, and
e∗I = e∗i1 ∧ · · · ∧ e∗in.

Hence, using (2.3), we get

(4.4) M̃I1E = R̃I1E ∧

(
π∗(dfI)

2πi

)

n

=

1

(2πi)n
1

n!

[
1

σna22 · · ·σnan
n

]
∂̄

[
1

σna11

]
∧
β̄ d̂σ̄1

|f ′|2n
1E

∧ na1σ
na1−1
1 [σna22 · · ·σnan

n β + σ1δ]dσ ∧ e∗I ∧ eI =

na1

(2πi)n
∂̄

[
1

σ1

]
|β|2

|f ′|2n
d̂σ̄1 ∧ dσ1E .

The right hand side of (4.4) is just Lebesgue measure on E times a

smooth, positive, generically nonvanishing function. Hence M̃I is a
positive current whose support is precisely the union of exceptional
primes E for which I is E-essential. �

Remark 4.4. It follows from the above proof that M̃1E is absolutely
continuous with respect to Lebesgue measure on E.

To conclude, the only if direction of Theorem B follows immediately

from Lemma 4.1. Lemma 4.3 implies that π∗(M̃I) = RI ∧ dfin ∧ · · · ∧
dfi1/(2πi)

n is a positive current with strictly positive mass if I is essen-

tial. In particular, Rf
I 6≡ 0, which proves the if direction of Theorem B.

Hence Theorem B is proved.

5. Annihilators

We are particularly interested in the annihilator ideal of Rf . Recall
from Theorem B that Rf

I 6≡ 0 if and only if I is essential. Hence

(5.1) annRf =
⋂

I essential

annRf
I .

In this section we prove Theorem A, which gives estimates of the size of
annRf . We also prove Theorem C, which gives an explicit description
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of Rf in case (f) is a complete intersection ideal. In fact, Theorems A
and C are consequences of Theorem 5.1 and Proposition 5.5 below.

Theorem 5.1. Suppose that f = (f1, . . . , fm) generates an m-primary

ideal a ⊂ On
0 . Let Rf = (Rf

I) be the corresponding Bochner-Martinelli
residue current. Then annRf = a if and only if a is a complete inter-
section ideal, that is, a is generated by n germs of holomorphic func-
tions.

Moreover if a is a complete intersection ideal, then for I = {i1, . . . , in} ⊆
{1, . . . , m}

(5.2) Rf
I = CI ∂̄

[
1

fi1

]
∧ · · · ∧ ∂̄

[
1

fin

]
,

where CI is a non-zero constant if fi1, . . . , fin generate a and zero oth-
erwise.

For I = {i1, . . . , in} ⊆ {1, . . . , m}, let fI denote the tuple fi1, . . . , fin ,
which we identify with the section

∑
i∈I fie

∗
i of V . To prove (the first

part of) Theorem 5.1 we will need two results.
The first result is a simple consequence of Lemma 4.3. Given a

tuple g of holomorphic functions g1, . . . , gn ∈ On
0 , let Jac(g) denote the

Jacobian determinant det | ∂gi

∂zj
|i,j.

Lemma 5.2. We have that Jac(fI) ∈ annRf
I if and only if Rf

I ≡ 0.

Proof. The if direction is obvious. Indeed if Rf
I ≡ 0, then annRf

I = On
0 .

For the converse, suppose that Rf
I 6≡ 0. From the previous section

we know that this implies that Rf
I ∧ dfin ∧ · · · ∧ dfi1 6≡ 0. However

the coefficient of dfin ∧ · · · ∧ dfi1 is just ±Jac(fI) and so Jac(fI) /∈
annRf

I . �

The next result is Theorem 1.1 and parts of the proof thereof in [17].
Recall that the socle Soc(N) of a module N over a local ring (R,m)
consists of the elements in N that are annihilated by m, see for exam-
ple [12].

Theorem 5.3. Assume that g1, . . . , gn generate an ideal a ⊂ On
0 . Then

Jac(g1, . . . , gn) ∈ a if and only if codimV (a) < n.
Moreover, if codimV (a) = n, then the image of Jac(g) under the

natural surjection On
0 → On

0 /a generates the socle of On
0 /a.

Lemma 5.4. If Rf
I 6≡ 0 and codimV (fI) = n, then annRf

I ⊆ (fI).

Proof. We claim that it follows that every m-primary ideal J ⊂ On
0

that does not contain Jac(fI) is contained in (fI). Applying the claim

to annRf
I 6∋ Jac(fI) (if Rf

I 6≡ 0) proves the lemma.
The proof of the claim is an exercise in commutative algebra; how-

ever, we supply the details for the reader’s convenience. Suppose that
J ⊂ On

0 is an m-primary ideal such that Jac(fI) /∈ J , but that there is
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a g ∈ J such that g /∈ (fI). The latter condition means that 0 6= g̃ ∈ J̃ ,

where g̃ and J̃ denote the images of g and J , respectively, under the
surjection On

0 → On
0 /(fI). Then, for some integer ℓ, m

ℓg̃ 6= 0 but
m
ℓ+1g̃ = 0 in A := On

0 /(fI); in other words m
ℓg̃ is in the socle of A.

According to Theorem 5.3, the socle of A is generated by Jac(fI) and so

it follows that Jac(fI) ∈ J̃ . This, however, contradicts the assumption
made above and the claim is proved. �

Proof of Theorem 5.1. We first prove that annRf = a implies that a is
a complete intersection ideal. Let us therefore assume that annRf = a.

We claim that under this assumption, codimV (fI) = n as soon
as I is essential. To show this, assume that there exists an essential
multi-index I = {i1, . . . , in} ⊆ {1, . . . , m} such that codimV (fI) < n.
Then by Theorem 5.3, Jac(fI) ∈ (fI) ⊆ a. However, by Lemma 5.2,

Jac(fI) /∈ annRf
I . Thus we have found an element that is in a but not

in annRf , which contradicts the assumption. This proves the claim.
Next, let us consider the inclusion

(5.3)
⋂

I essential

(fI) ⊆ a.

Assume that the inclusion is strict. By the claim above codimV (fI) =
n if I is essential and so by Lemma 5.4

annRf =
⋂

I essential

annRf
I ⊆

⋂

I essential

(fI)  a,

which contradicts the assumption that annRf = a. Hence equality
must hold in (5.3), which means that a is generated by fI , whenever I
is essential. (Note that there must be at least one essential multi-index
if Rf 6≡ 0.) To conclude, we have proved that annRf = a implies that
a is a complete intersection ideal.

It remains to prove that if a is a complete intersection ideal, then
Rf

I is of the form (5.2) if fI generates a and zero otherwise. Indeed, if

Rf
I is given by (5.2), then annRf

I = (fI) = a by the classical Duality

Principle; see the Introduction. This means that annRf
I is either a or

(if Rf
I ≡ 0) On

0 and so annRf =
⋂

annRf
I = a.

Assume that a is a complete intersection ideal. Then, by Nakayama’s
Lemma, a is in fact generated by n of the fi, compare to the discussion
just before Theorem C. Assume that a is generated by f1, . . . , fn; then
fℓ =

∑n
j=1 ϕ

ℓ
jfj for some holomorphic functions ϕℓj . (Note that ϕℓj = δj,ℓ

for ℓ ≤ n.)

We will start by showing that Rf
I , where I = {1, . . . , n}, is of the

form (5.2). Recall from Section 2 that

(5.4) RI = ∂̄|f |2λ ∧
sI ∧ (∂̄sI)

n−1

|f |2n

∣∣∣∣
λ=0

.
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Let us now compare (5.4) with the current R(fI), that is, the residue

current associated with the section fI of the sub-bundle Ṽ of V gen-
erated by e∗1, . . . , e

∗
n. Since codimV (fI) = n, the current R(fI) is

independent of the choice of Hermitian metric on Ṽ according to [1,
Proposition 2.2]. More precisely,

R(fI) = ∂̄|g|2λ ∧
s̃I ∧ (∂̄s̃I)

n−1

‖fI‖2n

∣∣∣∣
λ=0

,

where ‖ · ‖ is any Hermitian metric on Ṽ , s̃I is the dual section of fI
with respect to ‖ · ‖, and g is any tuple of holomorphic functions that
vanishes at {fI = 0} = {0}; in particular, we can choose g as f .

Let Ψ be the Hermitian matrix with entries ψi,j =
∑m

ℓ=1 ϕ
ℓ
iϕ̄

ℓ
j . Then

Ψ is positive definite and so it defines a Hermitian metric on Ṽ by
‖

∑n
i=1 ξiei‖

2 =
∑

1≤i,j≤n ψi,jξiξ̄j. Observe that ‖fI‖
2 = |f1|

2 + · · · +

|fm|
2 and moreover that s̃I =

∑
1≤i,j≤n ψi,j f̄jei. A direct computation

gives that s̃I ∧(∂̄s̃I)
n−1 = det(Ψ)sI∧(∂̄sI)

n−1. It follows that R(fI) =
CRI , where C = det(Ψ(0)) 6= 0. By [1, Theorem 1.7] R(fI) = ∂̄[1/f1]∧
· · · ∧ ∂̄[1/fn] ∧ en ∧ · · · ∧ e1, and so we have proved that Rf

I is of the
form (5.2).

Next, let L be any multi-index {ℓ1, . . . , ℓn} ⊆ {1, . . . , m}. By ar-
guments as above sL ∧ (∂̄sL)n−1 = det(Φ̄L)sI ∧ (∂̄sI)

n−1, where ΦL is

the matrix with entries ϕℓij . Hence RL = CLR
f
Ieℓn ∧ · · · ∧ eℓ1, where

CL = det(Φ̄L(0)). Note that CL is non-zero precisely when f1, . . . , fn
can be expressed as holomorphic combinations of fℓ1, . . . , fℓn, that is,
when fℓ1 , . . . , fℓn generate a. Hence RL is of the form (5.2) if fL gen-
erates a and zero otherwise, and we are done. �

Proposition 5.5. Suppose that f = (f1, . . . , fm) generates an m-primary
ideal a ⊂ On

0 , where n ≥ 2. Let Rf be the corresponding Bochner-
Martinelli residue current. Then the inclusion

a
n ⊆ annRf

is strict.

Observe that Proposition 5.5 fails when n = 1. Then, in fact, a =
annRf = a.

Proof. We show that annRf \ a
n is non-empty. Consider multi-indices

J = {j1, . . . , jn},L = {ℓ1, . . . , ℓn} ⊆ {1, . . . , m}. By arguments as in
the proof of Lemma 4.3 one shows that

dfj1 ∧ · · · ∧ dfjn ∧Rf
L = Jac(fJ )dz1 ∧ · · · ∧ dzn ∧R

f
L

either vanishes or is equal to a constant times the Dirac measure at
the origin. Thus zkJac(fJ )Rf

L = 0 for all coordinate functions zk. It
follows that mJac(fI) ⊆ annRf for all multi-indices I = {i1, . . . , in}.



ON BOCHNER-MARTINELLI RESIDUE CURRENTS... 15

Next, suppose that I = {i1, . . . , in} is essential with respect to a
Rees divisor E of a. Then a direct computation gives that ordE(dfi1 ∧
. . . ∧ dfin) = nordE(a) and ordE(dz1 ∧ . . . ∧ dzn) ≥

∑n
i=1 ordE(zi) − 1.

Note that ordE(zk) ≥ 1 for 1 ≤ k ≤ n. Since dfi1 ∧ · · · ∧ dfin =
Jac(fI)dz1 ∧ · · · ∧ dzn it follows that

ordE(zkJac(fI)) ≤ n ordE(a) − n+ 1 = ordE(an) − n + 1

for 1 ≤ k ≤ n. Hence, if n ≥ 2, there are elements, for example
zkJac(fI), in mJac(fI) that are not in a

n. This concludes the proof. �

Proofs of Theorems A and C. Theorem A is an immediate consequence
of (the first part of) Theorem 5.1 and Proposition 5.5.

Suppose that (f) is a complete intersection ideal. Then by Theo-
rem B and (the second part of) Theorem 5.1 we have

I essential ⇔ Rf
I 6≡ 0 ⇔ fI generates (f).

Moreover Theorem 5.1 asserts that in this case Rf
I is of the form (1.3).

�

Remark 5.6. Let us conclude this section by a partial generalization
of Theorem 3.1 in [24]. Even though we cannot explicitly determine
annRf we can still give a qualitative description of it in terms of the
essential multi-indices.

The current Rf
I is a Coleff-Herrera current in the sense of Björk [10],

which implies that annRf
I is irreducible, meaning that it cannot be

written as an intersection of two strictly bigger ideals. Thus (5.1)
yields an irreducible decomposition of annRf , that is, a representation
of the ideal as a finite intersection of irreducible ideals, compare to [25,
Corollary 3.4]. An ideal a in a local ring A always admits an irreducible
decomposition and the number of components in a minimal such is
unique; if a is m-primary it is equal to the minimal number of generators
of the socle of A/a, see for example [16]. In light of (5.1) we see that
the number of components in a minimal irreducible decomposition of
annRf is bounded from above by the number of essential multi-indices.

In fact Lemma 4.3 gives us even more precise information: if I is es-
sential then Soc(On

0 /annRf
I) is generated by the image of Jac(fI) under

the natural surjection On
0 → On

0 /annRf
I . It follows that Soc(On

0 /annRf)
is generated by the images of {Jac(fI)}I essential under the natural sur-
jection On

0 → On
0 /annRf .

6. A geometric decomposition

In this section we will see that the current Rf admits a natural
decomposition with respect to the Rees valuations of a = (f1, . . . , fm).

Given a log-resolution π : X → (Cn, 0) of a, recall from Section 4 that

the analytic continuation of (4.1) defines a ΛnV -valued current R̃ on
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X, such that π∗R̃ = R. Let R̃f denote the corresponding vector-valued

current, that is, the current with the coefficients of R̃ as entries. From
Lemma 4.1 and Remark 4.2 we know that R̃f has support on and the

SEP with respect to the Rees divisors associated with a. Hence R̃f can

naturally be decomposed as
∑

E Rees divisor
R̃f

1E. Given a Rees divisor

E in X, let us consider the current RE := π∗(R̃
f
1E).

Lemma 6.1. The current RE is independent of the log-resolution.

Proof. Throughout this proof, given a log-resolution π : X → (Cn, 0),

let R̃X denote the current R̃ on X, that is, the value of (4.1) at λ = 0,
and let EX denote the divisor on X associated with the Rees valuation
ordE.

Any two log-resolutions can be dominated by a third, see for exam-
ple [19, Example 9.1.16]. To prove the lemma it is therefore enough to

show that π∗(R̃X1EX
) = π∗̟∗(R̃Y 1EY

) for log-resolutions

Y
̟

−→ X
π

−→ (Cn, 0)

of a.
We will prove the slightly stronger statement that R̃X1EX

= ̟∗(R̃Y 1EY
).

Observe that R̃X = ̟∗R̃Y ; compare to (4.2). Moreover note that
̟−1(EX) = EY ∪

⋃
E ′, where each E ′ is a divisor such that ̟(E ′) is a

proper subvariety of EX (whereas ̟(EY ) = EX). Let AY = EY \
⋃
E ′

and AX = ̟(AY ). Then AX and AY are Zariski-open sets in EX and

EY , respectively, and ̟−1(AX) = AY . By Remark 4.2 R̃ has the SEP
with respect to the exceptional divisors, and so, using (2.4) we can now
conclude that

R̃X1EX
= R̃X1AX

= ̟∗(R̃Y 1AY
) = ̟∗(R̃Y 1EY

).

�

Proposition 6.2. Suppose that f = (f1, . . . , fm) generates an m-primary
ideal a ⊂ On

0 . Let Rf be the corresponding Bochner-Martinelli residue
current. Then

(6.1) Rf =
∑

RE,

where the sum is taken over Rees valuations ordE of a and RE is defined
as above. Moreover each summand RE is 6≡ 0 and depends only on the
fj for which ordE(fj) = ordE(a).

Proof. Assume that E is a Rees divisor. By Section 3.3 there is at least
one E-essential multi-index; let I be such a multi-index. Then, by (the

proof of) Theorem B the current π∗(R̃I1E) 6≡ 0, which means that RE

has at least one nonvanishing entry.
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We also get that R̃f has support on the union of the Rees divisors.

Moreover, by Remark 4.2 R̃f
1E has the SEP with respect to E. Thus

R̃f = R̃f
1

S

E Rees divisor
E =

∑

E Rees divisor

R̃f
1E ,

which proves (6.1).
The last statement follows immediately from the second part of

Lemma 4.1. �

7. The monomial case

Let a ⊂ On
0 be an m-primary monomial ideal generated by mono-

mials za
j

, 1 ≤ j ≤ m. Recall that the Newton polyhedron NP(a) is
defined as the convex hull in Rn of the exponent set {aj} of a. The
Rees-valuations of a are monomial and in 1-1 correspondence with the
compact facets (faces of maximal dimension) of NP(a). More precisely
the facet τ with normal vector ρ = (ρ1, . . . , ρn) corresponds to the
monomial valuation ordτ (z

a1
1 · · · zan

n ) = ρ1a1 + . . .+ ρnan, see for exam-
ple [18, Theorem 10.3.5].

Let us interpret our results in the monomial case. First, consider
the notion of essential multi-indices. Note that a monomial za ∈ a

satisfies that ordτ (z
a) = ordτ (a) precisely if a is contained in the facet

τ . Thus in light of (3.2) a necessary condition for I = {i1, . . . , in} ⊆
{1, . . . , m} to be Eτ -essential (if Eτ denotes the Rees divisor associated
with τ) is that {ai}i∈I are all contained in τ . Moreover, for (3.1)
to be nonvanishing the determinant |ai| has to be non-zero; in other
words {ai}i∈I needs to span Rn. In [24] an exponent set {ai}i∈I was
said to be essential if all ai are contained in a facet of NP(a) and
|ai| 6= 0. Our notion of essential is thus a direct generalization of the
one in [24]. Moreover Theorem B can be seen as a generalization of

(the first part of) Theorem 3.1 in [24], which asserts that Rf
I 6≡ 0

precisely if I is essential. In fact, Theorem 3.1 also gives an explicit
description of annRf

I . Moreover, Theorem 5.1 and Proposition 5.5 are
direct generalizations of Theorem 3.2 and Corollary 3.9, respectively,
in [24].

Concerning the decomposition in Section 6 observe that in the mono-
mial case each multi-index I can be essential with respect to at most
one Rees divisor. Indeed, clearly a set of points in Rn cannot be con-
tained in two different facets and at the same time span Rn. Hence
in the monomial case the decomposition Rf = (Rf

I) is a refinement
of the decomposition (6.1); in fact the nonvanishing entries of RE are

precisely the Rf
I for which I is E-essential. In particular,

annR =
⋂

annRE and annRE =
⋂

I E−essential

annRf
I .
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f1

f2

f3

f4

f5

Jac(f2, f3)

NP (a)

exp(a)

Figure 1. The exponent set and Newton polyhedron of
a in Example 8.1

This is however not true in general. For example, if n = m, the set
I = {1, . . . , n} is essential with respect to all Rees divisors of a (and
the number of Rees divisors can be > 1). Also, in general,

⋂
annRE is

strictly included in annR, see Example 8.5.

8. Examples

Let us consider some examples that illustrate the results in the paper.

Example 8.1. [24, Example 3.4] Let a ⊂ O2
0 be the monomial ideal

(f1, . . . , f5) = (z8, z6w2, z2w3, zw5, w6). The exponent set of a is de-
picted in Figure 1, where we have also drawn NP(a). The Newton
polyhedron has two facets with normal directions (1, 2) and (3, 2) re-
spectively. Thus there are two Rees divisors E1 and E2 associated with
a with monomial valuations ordE1

(zawb) = a + 2b and ordE2
(zawb) =

3a + 2b, respectively. Now the index sets {1, 2}, {1, 3}, and {2, 3}
are essential with respect to E1 whereas {3, 5} is E2-essential. Thus
according to Theorem B Rf , which a priori has one entry for each
multi-index {i, j} ⊆ {1, . . . , 5}, has four non-zero entries correspond-
ing to the four essential index sets. Moreover, by Lemma 5.2 and Re-
mark 5.6, we have that for these index sets Jac(fI) /∈ annRf , whereas
mJac(fI) ⊆ annRf . For example, Jac(z6w2, z2w3) = 14z7w4 /∈ annRf ,
and thus, since z7w4 ∈ a, one sees directly that annRf  a. Moreover
zJac(z6w2, z2w3) = 14z8w4 ∈ a

2 \ annRf .

Example 8.2. Let a ⊂ O2
0 be the product of the ideals a1 = (z, w2),

a2 = (z − w,w2), and a3 = (z + w,w2), each of which is monomial in
suitable local coordinates. The ideal ai has a unique (monomial) Rees-
valuation ordEi

, given by ordE1
(zawb) = 2a + b, ordE2

((z − w)awb) =
2a+ b, and ordE3

((z +w)awb) = 2a+ b, respectively. By Corollary 3.4
the Rees-valuations of a are precisely ordE1

, ordE2
, and ordE3

.
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Note that after blowing up the origin once, the strict transform of
a has support at exactly three points x1, x2, x3 on the exceptional
divisor; it follows that a is not a monomial ideal. A log-resolution
π : X → (C2, 0) of a is obtained by further blowing up x1, x2 and x3,
thus creating exceptional primes E1, E2 and E3.

Now a is generated by

{f1, . . . , f4} = {z(z−w)(z+w), z(z−w)w2, z(z+w)w2, (z−w)(z+w)w2}.

Observe that none of these generators can be omitted; hence a is not
a complete intersection ideal. Also, note that for each Rees divisor
there is exactly one essential I ⊆ {1, . . . , 4}. For example ordE1

(f1) =
ordE1

(f4) = ordE1
(a) = 4, whereas ordE1

(fk) > 4 for k = 2, 3, and so
I = {1, 4} is the only E1-essential index set. For symmetry reasons,
{1, 3} is E2-essential and {1, 2} is E3-essential.

Let us compute Rf
{1,4}. To do this, let y ∈ X be the intersection

point of E1 and the strict transform of {z = 0}. We choose coordinates
(σ, τ) at y so that E1 = {σ = 0} and (z, w) = π(σ, τ) = (σ2τ, σ). Then
π∗s{1,4} = σ̄4(1 − σ̄2τ̄ 2)(τ̄ e1 + e4) and it follows that

R̃{1,4} = − ∂̄

[
1

σ8

]
∧

dτ̄

(1 + |τ |2)2
∧ e4 ∧ e1.

Let φ = ϕdw ∧ dz be a test form at 0 ∈ Cn. Near y ∈ X we have
π∗dw ∧ dz = σ2dσ ∧ dτ and so

Rf
{1,4} · φ =

∫
∂̄

[
1

σ6

]
∧ dσ ∧

dτ̄ ∧ dτ

(1 + |τ |2)2
ϕ(σ2τ, σ) =

2πi

5!
ϕ0,5(0, 0)

∫

τ

dτ̄ ∧ dτ

(1 + |τ |2)2
=

(2πi)2

5!
ϕ0,5(0, 0) = ∂̄

[
1

z

]
∧ ∂̄

[
1

w6

]
· φ.

Hence annRf
{1,4} = (z, w6). Similarly, annRf

{1,3} = (z − w,w6) and

annRf
{1,2} = (z + w,w6), and so

annRf = (z(z − w)(z + w), w6).

Note in particular that annRf  a in accordance with Theorem 5.1.

Example 8.3. Let a ∈ O2
0 be the monomial ideal (z2, zw, w2) and let f =

f(B) be the tuple of generators: f = (f1, f2, f3) = (z2, zw + w2, Bw2).
A computation similar to the one in Example 8.2 yields that

Rf
{1,2} = C0 ∂̄

[
1

z3

]
∧ ∂̄

[
1

w

]
+ 2 C1 ∂̄

[
1

z2

]
∧ ∂̄

[
1

w2

]
,

where

Cℓ =
1

2πi

∫
|τ |2ℓdτ̄ ∧ dτ

(1 + |τ |2|1 + τ |2 + |B|2|τ |4)2
.

Note that Rf
{1,2} and its annihilator ideal depend not only on f1 and

f2 but also on f3. Indeed, a polynomial of the form Dz2 − Ew is in



20 MATTIAS JONSSON & ELIZABETH WULCAN

annRf
{1,2} if and only if D/E = 2C1/C0, but 2C1/C0 depends on the

parameter B.
However, annRf is independent of B. In fact, annRf

{1,3} = (z2, w2)

and annRf
{2,3} = (z, w3), which implies that annRf =

⋂
annRf

I =

(z3, z2w, zw2, w3).

Remark 8.4. Example 8.3 shows that the vector valued current Rf

depends on the choice of the generators of the ideal (f) in an essential
way. Still, in this example annRf stays the same when we vary f by
the parameter B. Also, we would get the same annihilator ideal if we
chose f as (z2, zw, w2), see [24, Theorem 3.1].

We have computed several other examples of currents Rf in all of
which annRf is unaffected by a change of f as long as the ideal (f)
stays the same. To be able to answer Question D in general, how-
ever, one probably has to understand the delicate interplay between
contributions to Rf and Rf

I from different Rees divisors, compare to
Example 8.5 below.

Example 8.5. Let a ∈ O2
0 be the complete intersection ideal (f1, f2) =

(z3, w2 − z2). After blowing up the origin the strict transform of a

has support at two points x1 and x2 corresponding to where the strict
transforms of the lines z = w and z = −w, respectively, meet the excep-
tional divisor. Further blowing up these points yields a log-resolution
of a with Rees divisors E1 and E2 corresponding to x1 and x2, respec-
tively.

A computation as in Example 8.2 yields that

2RE1 = −∂̄

[
1

z4

]
∧ ∂̄

[
1

w

]
+ ∂̄

[
1

z3

]
∧ ∂̄

[
1

w2

]

− ∂̄

[
1

z2

]
∧ ∂̄

[
1

w3

]
+ ∂̄

[
1

z

]
∧ ∂̄

[
1

w4

]
;

RE2 looks the same but with the minus signs changed to plus signs.
Hence

Rf = RE1 +RE2 = ∂̄

[
1

z3

]
∧ ∂̄

[
1

w2

]
+ ∂̄

[
1

z

]
∧ ∂̄

[
1

w4

]
.

Note that annRf is indeed equal to a, which we already knew by the
Duality Principle. Observe furthermore that z3RE1 = −∂̄[1/z]∧∂̄[1/w],
so that z3 /∈ annRE1. Hence we conclude that in general

⋂
annRE  annRf .
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