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Abstract. Let J be a coherent ideal sheaf on a complex manifold X with zero
set Z, and let G be a plurisubharmonic function such that G = log |f | + O(1)
locally at Z, where f is a tuple of holomorphic functions that defines J . We give
a meaning to the Monge-Ampère products (ddcG)k for k = 0, 1, 2, . . ., and prove
that the Lelong numbers of the currents MJk := 1Z(ddcG)k at x coincide with
the so-called Segre numbers of J at x, introduced independently by Tworzewski,
Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that MJk satisfy
a certain generalization of the classical King formula.

1. Introduction

Let X be a complex manifold of dimension n and let J → X be a coherent
ideal sheaf with variety Z. Given a point x ∈ X, Tworzewski, [24], and Gaffney and
Gassler, [14], have independently introduced a list of numbers, e0(J , X, x), . . . , en(J , X, x),
that we, following [14], call the Segre numbers at x. They are a generalization of the
classical local intersection number at x in case the ideal Jx is a complete intersection.
The definition in both papers is based on a local variant of the Stückrad-Vogel pro-
cedure, [23]. In [1, 2] is given an algebraic definition of these numbers generalizing
the classical Hilbert-Samuel multiplicity of J at x.

In this paper we show that if J is generated by global bounded functions there
is a canonical global representation of the Segre numbers of J as the Lelong num-
bers (of restrictions to Z) of Monge-Ampère masses of the Green function G = GJ
with poles along J . This function was introduced by Rashkovskii-Sigurdsson in [20,
Definition 2.2] as a generalization of the classical Green function Ga with pole at
a point a ∈ X. It is defined as the supremum over the class FJ of all negative
psh (plurisubharmonic) functions u on X that locally satisfy u ≤ log |f |+ C, where
f = (f1, . . . , fm) is a tuple of local generators of J and C is a constant.

Note that even if X is hyperconvex there might not exist non-trivial functions
in FJ . For example, if X is the ball in C, and J is the radical ideal of functions
vanishing at points a1, a2, . . . ∈ X, then there are negative psh functions with poles
at aj if and only if aj satisfy the the Blaschke condition. However, if J is globally
generated by bounded functions fj , then log |f |+C is itself in FJ for some constant
C. Then locally G is of the form

(1.1) G = log |f |+ h,
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where h is locally bounded, see [20, Theorem 2.8]. In particular, the unbounded
locus of G equals Z and thus the Monge-Ampère type products

(1.2) (ddcG)k, k ≤ p := codimZ

are well-defined, see, e.g., [9, Theorem III.4.5]. Here and throughout dc = (i/2π)(∂̄−
∂). By Demailly’s comparison formula for Lelong numbers, [10, Theorem 5.9],

(1.3) `x(ddcG)k = `x(ddc log |f |)k

for x ∈ X, where `x denotes the Lelong number at x. Moreover, recall that King’s
formula, [15], asserts that (ddc log |f |)p admits the Siu decomposition, [21],

(1.4) (ddc log |f |)p =
∑

βj [Z
p
j ] +R,

cf. [10, Section 6]. Here [Zpj ] are the currents of integration along the irreducible

components Zpj of codimension p of Z, βj are the generic Hilbert-Samuel multiplicities

of f along Zpj , see, e.g. [13, Chapter 4.3]. In fact, the remainder term R has integer

Lelong numbers, see, e.g. [4, Theorem 1.1], and therefore the set where R has
positive Lelong numbers is an analytic set of codimension > p. From (1.3) and (1.4)
one deduces that

(1.5) (ddcG)p =
∑

βj [Z
p
j ] +R,

where βj and Zpj are as above, and R has the same Lelong numbers as R in (1.4),

cf. the proof of Theorem 2.8 in [20]. In particular, if Z is a point a, then (ddcG)n =∑
β[a] + R, where [a] is the point evaluation at a and β is the Hilbert-Samuel

multiplicity of J . This generalizes the fact that (ddcGa)
n = [a], [11, page 520]. The

(Lelong numbers of the) Monge-Ampère products (1.2) are related to the integrability
index of G (and thus the log-canoncial threshold of J ), see, e.g., [12, 19, 22]; in
particular, Demailly-Pham [12] recently gave a sharp estimate of the integrability
index of G in terms of the Lelong numbers of (1.2) for all k ≤ p.

Recall that (1.2) can be defined inductively as

(1.6) ddc(G(ddcG)k−1).

In this paper we give meaning to (ddcG)k for any k if G is any psh function of the
form (1.1): Inductively we show that

G1X\Z(ddcG)k−1

has locally finite mass and define

(ddcG)k := ddc(G1X\Z(ddcG)k−1),

see Proposition 4.1. When k ≤ p it follows from the dimension principle for closed
positive currents, cf. Lemma 3.1 below, that 1Z(ddcG)k−1 = 0 and so our definition
coincides with the classical one for k ≤ p. Our definition is modeled on the paper [3]
by the first author, in which currents (ddc log |f |)k are defined for all k inductively
as above. In fact, (ddc log |f |)k can also be defined as a certain limit of smooth forms
coming from regularizations of log |f |:

(1.7) lim
ε→0

(ddc log(|f |2 + ε)1/2)k = (ddc log |f |)k

for any k, see [3, Proposition 4.4]. However, one cannot hope for such a suggestive
definition of (ddcG)k in general, cf. Example 4.2. Also, our definition of (ddcG)k

does not coincide with the non-pluripolar product of ddcG, as introduced in [6, 7],
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since our (ddcG)k charges pluripolar sets in general, cf. the text after the proof of
Proposition 4.1.

Our main result is the following generalization of (1.5). Let π+ : X+ → X be the
normalization of the blow-up of X along J and let Wj be the various irreducible
components of the exceptional divisor in X+. Recall that the (Fulton-MacPherson)
distinguished varieties of J are the subvarieties π+(Wj) of X, see, e.g., [16, Chap-
ter 10.5]. In particular, the distinguished varieties of codimension p are precisely the
irreducible components of Z of codimension p.

Theorem 1.1. Let X be an n-dimensional complex manifold, let J be a coherent
ideal sheaf on X generated by global bounded functions, and let G be the Green
function with poles along J . Moreover, let Z be the variety of J and Zkj the Fulton-
MacPherson distinguished varieties of J of codimension k. Then

(1.8) MJk := 1Z(ddcG)k =
∑
j

βkj [Zkj ] +NJk =: SJk +NJk ,

where the βkj are positive integers and the NJk are positive closed currents. The

numbers nk(J , X, x) := `x(NJk ) are nonnegative integers that only depend on the
integral closure class of J at x, and the set where nk(J , X, x) ≥ 1 has codimension
at least k + 1.

The Lelong numbers at x of MJk and 1X\Z(ddcG)k are precisely the Segre number
ek(J , X, x) and the polar multiplicity mk(J , X, x), respectively, of Jx.

For the notion of polar multiplicities see Section 2. Notice that MJk = 0 if k <

codimZ and that NJp = 0, cf., Lemma 3.1 below. Also, notice that (1.8) is the Siu

decomposition, [21], of MJk .

Remark 1.2. If J is generated by a global tuple f , then Theorem 1.1 holds with G
replaced by any psh function of the form (1.1). �

The analogous statement to Theorem 1.1 when G is replaced by log |f |, where f
is a tuple of global generators, was proved by the authors and Samuelsson Kalm and
Yger in [4, Theorem 1.1]. The case k = p corresponds to the classical King formula,
(1.4). The main idea in the proof of Theorem 1.1 is to prove that for any psh G of
the form (1.1),
(1.9)

`x(1Z(ddcG)k) = `x(1Z(ddc log |f |)k), `x(1X\Z(ddcG)k) = `x(1X\Z(ddc log |f |)k)
for x ∈ X, see Lemma 6.1 below. Using this the theorem follows from the correspond-
ing result in [4]. In some sense, (1.9) can be seen as a generalization of Demailly’s
comparison formula, (1.3), to higher k, but for the very special class of psh functions
of the form (1.1).

In [4], X is allowed to be singular. Given that there is a proper definition of G
when X is singular so that (1.1) still holds, the results in this paper will extend as
well.

Theorem 1.1 gives us a canonical representation of the Segre numbers of J in the
case when J is generated by global bounded functions. Let X be a, say hyperconvex,
domain in Cn, and let J be a coherent ideal sheaf on X. If we exhaust X by

reasonable relatively compact subsets X`, for each ` we then have currents MJ`k ,
J` = J |X`

whose Lelong numbers at each point are the Segre numbers. If for
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some reason these currents converge to currents MJk , we would have a canonical
representation of the Segre numbers of J on X, cf. Remark 4.3.

This paper is organized as follows. In Section 2 we recall the construction of Vogel
cycles and Segre numbers. In Section 4 we show that the currents (ddcG)k are well-
defined and discuss some properties. The proof of Theorem 1.1 occupies Section 6.
In Sections 3 and 5 we give some background on psh functions and positive currents
needed for the proofs.

Acknowledgment. The work on this paper started when Pascal Thomas was vis-
iting Göteborg. We are grateful to him for interesting and inspiring discussions on
the subject. We would also like to thank Zbigniew B locki and David Witt Nyström
for valuable discussions.

2. Segre numbers

We will briefly recall the construction of Segre numbers from [24, 14]. Throughout
we will assume that X is a complex manifold of dimension n and that J is a coherent
ideal sheaf on X with variety Z. Fix a point x ∈ X. A sequence h = (h1, h2, . . . , hn)
in the local ideal Jx is called a Vogel sequence of J at x if there is a neighborhood
U ⊂ X of x where the hj are defined, such that

(2.1) codim
[
(U \ Z) ∩ (|H1| ∩ · · · ∩ |Hk|)

]
= k or ∞, k = 1, . . . , n;

here |H`| are the supports of the divisors H` defined by h`. Notice that if f1, . . . , fm
generate Jx, any generic sequence of n linear combinations of the fj is a Vogel
sequence at x. Set X0 = X, let XZ

0 denote the irreducible components of X0 that

are contained in Z, and let X
X\Z
0 be the remaining components1 so that

X0 = XZ
0 +X

X\Z
0 .

By the Vogel condition (2.1), H1 intersects X
X\Z
0 properly. Set

X1 = H1 ·XX\Z
0

and decompose analogously X1 into the components XZ
1 contained in Z and the

remaining components X
X\Z
1 , so that X1 = XZ

1 +X
X\Z
1 . Define inductively Xk+1 =

Hk+1 ·X
X\Z
k , XZ

k+1, and X
X\Z
k+1 . Then

V h := XZ
0 +XZ

1 + · · ·+XZ
n

is the Vogel cycle2 associated with the Vogel sequence h. Let V h
k denote the com-

ponents of V h of codimension k, i.e., V h
k = XZ

k . The irreducible components of V h

that appear in any Vogel cycle, associated with a generic Vogel sequence at x, are
called fixed components in [14]. The remaining ones are called moving. It turns out
that the fixed Vogel components of J coincide with the distinguished varieties of J ,
see, e.g., see [14] or [4].

1Since we assume X is smooth and connected, XZ
0 is empty unless J = 0, in which case it

equals X.
2If J is the pullback to X of the radical sheaf of an analytic set A, this is precisely Tworzewski’s

algorithm, [24]. The notion Vogel cycle was introduced by Massey [17, 18]. For a generic choice
of Vogel sequence the associated Vogel cycle coincides with the Segre cycle introduced by Gaffney-
Gassler, [14], see Lemma 2.2 in [14].
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It is proved in [14] and in [24] that the multiplicities ek(J , X, x) := multxV
h
k and

mk(J , X, x) := multxX
X\Z
k are independent of h for a generic h, where however

“generic” depends on x, cf., Remark 2.1; these numbers are called the Segre numbers
and polar multiplicities, respectively.

Remark 2.1. Recall that if W is an analytic cycle in X, then the Lelong number at
x ∈ X of the current of integration [W ] along W is precisely the multiplicity multxW
of W at x.

Assume that x is a point for which nk(J , X, x) ≥ 1 for some k, where we use the
notation from Theorem 1.1. Moreover, let V h be a generic Vogel cycle such that
multxV

h
k = ek(x). Then V h

k = SJk +W , where we have identified SJk in Theorem 1.1
with the corresponding cycle and W is a positive cycle of codimension k, such that
multxW = nk(J , X, x). Since nk(J , X, y) ≥ 1 only on a set of codimension ≥ k+ 1,

at most points y on V h
k we have that ek(J , X, y) = multy(S

J
k ) and hence multyV

h
k >

ek(J , X, y). As soon as there is a moving component at x it is thus impossible to
find a Vogel cycle that realizes the Segre numbers in a whole neighborhood of x. �

In [4] Theorem 1.1 with G replaced by log |f | was proved by showing that Mf
k :=

1Z(ddc log |f |)k can be seen as a certain average (of currents of integration) of Vogel

cycles. The fixed Vogel components then appear as the leading part SJk in the Siu

decomposition of Mf
k , whereas the remainder term Nf

k is a mean value of the moving
parts.

3. Preliminaries

Let µ be a positive closed current on X. Recall that if W is any subvariety,
then 1Wµ and 1X\Wµ are positive closed currents as well; this is the Skoda-El Mir
theorem, see, e.g., [9, Chapter III.2.A].

Lemma 3.1. Let µ be a positive closed current of bidegree (p, p) that has support
on a subvariety of codimension k. If k > p then µ = 0. If k = p, then µ =
α1[W1] + · · ·+ αν [Wν ] where Wj are the irreducible components of W and αj ≥ 0.

We refer to the first part of Lemma 3.1 as the dimension principle. A proof can
be found in [9, Chapter III.2.C].

If b is psh and locally bounded and T is any positive closed current, then T∧(ddcb)k

is a well-defined positive current for any k, and if bj is a decreasing sequence of
bounded psh functions converging pointwise to b, then

(3.1) T∧(ddcb)k = lim
j
T∧(ddcbj)

k, T∧b(ddcb)k = lim
j
T∧bj(ddcbj)k, k ≤ n.

See, e.g., [9, Theorem III.3.7]. The case T ≡ 1 was first proved by Bedford and
Taylor, [5].

Proposition 3.2. Assume that v, b are psh and that b is (locally) bounded.
(i) For k ≤ n− 1,

v(ddcb)k

has locally finite mass; more precisely, for any compact sets L,K, such that L ⊂
int(K), we have

(3.2) ‖v(ddcb)k‖L ≤ CK,L‖v‖K(sup
K
|b|)k.
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(ii) Moreover, if the unbounded locus of v has Hausdorff dimension < 2n− 1, then

(3.3) ddc(v(ddcb)k) = ddcv∧(ddcb)k.

If vj is a decreasing sequence of psh functions converging pointwise to v, then

(3.4) vj(dd
cb)k → v(ddcb)k,

and

(3.5) ddcvj∧(ddcb)k → ddcv∧(ddcb)k

in the current sense.

The first part of Proposition 3.2 follows immediately from Proposition 3.11 in [9,
Chapter III]. Moreover, Proposition 4.9 in loc. cit. applied to u1 = v and uj = b
implies (3.4) and (3.5). If we choose vj smooth, then

ddc(vj(dd
cb)k) = ddcvj∧(ddcb)k.

Thus (3.3) follows from (3.4) and (3.5). In fact, the assumption about the Haus-
dorff dimension is not necessary; an elegant and quite direct argument has been
communicated to us by Z. B locki, [8].

Corollary 3.3. If b is psh and (locally) bounded on X and W is an analytic variety
of positive codimension, then for each k ≥ 0,

(3.6) 1W (ddcb)k = 0.

Proof. It is enough to consider the case when W is a smooth hypersurface. The
general case follows by stratification. Since it is a local statement, we may choose
coordinates z = (z′, w) so that W = {w = 0}. Notice that in a set |w| ≤ r, |z′| ≤ r′,
we have that 1W (ddcb)k is the value at λ = 0 of

−(|w|2λ − 1)(ddcb)k.

Since |w|2λ− 1 is psh, (3.6) follows from (3.2) since the total mass of |w|2λ− 1 tends
to 0 when λ→ 0. �

Lemma 3.4. If b is psh and (locally) bounded on X and i : Y → X is a smooth
submanifold, then for k ≤ n,

(3.7) [Y ]∧(ddcb)k = i∗(dd
ci∗b)k, [Y ]∧b(ddcb)k = i∗

(
i∗b(ddci∗b)k

)
.

Proof. First assume that b is smooth. Then∫
X

[Y ]∧(ddcb)k∧ξ =

∫
Y

(ddci∗b)k∧i∗ξ =

∫
X
i∗
(
(ddci∗b)k

)
∧ξ

and similarly ∫
X

[Y ]∧b(ddcb)k∧ξ =

∫
X
i∗
(
i∗b(ddci∗b)k

)
∧ξ,

so that (3.7) holds in this case. Now let b be bounded and psh and let bj be a
decreasing sequence of smooth psh functions converging pointwise to b. Now (3.7)
follows from the smooth case and (3.1). �
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4. Higher Monge-Ampère products

Let G be a psh function of the form (1.1). We will give meaning to

(4.1) (ddcG)k

by inductively defining it as (ddcG)0 = 1 and

(4.2) (ddcG)k := ddc
(
G1X\Z(ddcG)k−1

)
, k ≥ 1.

Proposition 4.1 below asserts that this definition makes sense and that (ddcG)k are
positive and closed. As pointed out in the introduction this definition coincides with
the iterative definition (1.6) for k ≤ p.

Proposition 4.1. Let X be a complex manifold of dimension n, let f be a tuple
of global functions of X, let G be a psh function of the form (1.1), and let Gj be a
decreasing sequence of smooth psh functions in X converging pointwise to G. Assume
that (4.1) is inductively defined via (4.2) for a fixed k. Then

G1X\Z(ddcG)k := lim
j
Gj1X\Z(ddcG)k

has locally finite mass and does not depend on the choice of sequence Gj. Moreover

(ddcG)k+1 = ddc(G1X\Z(ddcG)k) is positive and closed.

The proof below relies heavily on the fact that G is of the form (1.1). It could
be interesting to investigate whether Proposition 4.1 holds for a wider class of psh
functions G with unbounded locus Z.

Proof. Let π : X̃ → X be a smooth modification such that π∗J is principal and its
divisor is of the form

(4.3) D =
∑

αjDj ,

where Dj are smooth hypersurfaces with normal crossings. In particular, then π∗f =
f0f ′, where f0 is a section of the line bundle LD that defines D and f ′ is a non-
vanishing tuple of sections of L−1D .

Locally on X̃ we can choose a frame for LD and in this frame we have, cf. (1.1),

(4.4) π∗G = log |f0|+ log |f ′|+ π∗h =: log |f0|+ b.

Since log |f0| is pluriharmonic outside

|D| := ∪jDj

it follows that
b = log |f ′|+ π∗h

is psh there; furthermore it is locally bounded at |D|. By a standard argument b
has a unique (bounded) psh extension B across |D|. Notice that ddcB is a global

positive closed current on X̃ and

ddcπ∗G = [D] + ddcB.

Let Gj be a decreasing sequence of smooth psh functions converging pointwise to
G. Since

ddcGj = π∗(dd
cπ∗Gj)→ π∗

(
ddcπ∗G

)
= π∗

(
[D] + ddcB

)
it follows that

ddcG = π∗
(
[D] + ddcB

)
.
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Let us now assume that we have proved Proposition 4.1 as well as the equality

(4.5)
(
ddcG

)`
= π∗

(
[D]∧(ddcB)`−1 + (ddcB)`

)
for ` ≤ k. We are to see that then:

(i) G1X\Z(ddcG)k := limj Gj1X\Z(ddcG)k has locally finite mass.

(ii) If

(ddcG)k+1 := ddc
(
G1X\Z(ddcG)k

)
,

then (4.5) holds for ` = k + 1.

As soon as (i) and (ii) are verified, Proposition 4.1 follows.

Notice that if µ is a closed positive current, then

(4.6) 1Zπ∗µ = π∗(1|D|µ).

In view of Corollary 3.3 we have that

(4.7) 1|D|(dd
cB)k = 0.

From the induction hypothesis (4.5), (4.6) and (4.7) we get

(4.8) 1X\Z
(
ddcG

)k
= π∗(dd

cB)k.

By Proposition 3.2, (π∗G)(ddcB)k has locally finite mass, and

(π∗Gj)(dd
cB)k → (π∗G)(ddcB)k

if Gj is any decreasing sequence of psh functions that tends to G. If Gj are smooth
we have by (4.8) that

Gj1X\Z(ddcG)k = π∗
(
(π∗Gj)(dd

cB)k
)
,

which tends to

(4.9) G1X\Z(ddcG)k = π∗
(
(π∗G)(ddcB)k

)
,

which has locally finite mass. Thus (i) is verified.
We now consider (ii). We claim that

(4.10) ddc
(
π∗G∧(ddcB)k

)
= [D]∧(ddcB)k + (ddcB)k+1.

Recall that locally π∗G = v+B, where v = log |f0| and B is psh and bounded. Take
smooth psh vj that decrease to v. Then vj + B are psh and decrease to v + B and
thus, by Proposition 3.2,

vj(dd
cB)k +B(ddcB)k = (vj +B)(ddcB)k → (v +B)(ddcB)k.

It follows that

(v +B)(ddcB)k = v(ddcB)k +B(ddcB)k.

From Proposition 3.2 we get that

ddc
(
v(ddcB)k

)
= [D]∧(ddcB)k,

which proves the claim. In view of (4.9) and (4.10) the statement (ii) now follows. �
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For future reference we notice that

(4.11) MJk = π∗
(
[D]∧(ddcB)k−1

)
, 1X\Z(ddcG)k = π∗(dd

cB)k.

In fact 1X\Z(ddcG)k equals the non-pluripolar product 〈ddcG〉k as defined in [6, 7].

It follows from the proof above and Proposition 3.2 that if Gj is any decreasing

sequence of psh functions converging pointwise to G, then Gj1X\Z(ddcG)k−1 →
G1X\Z(ddcG)k−1 and

ddc(Gj∧1X\Z(ddcG)k−1) = ddcGj∧1X\Z(ddcG)k−1 → (ddcG)k.

Recall that if Gj are psh functions that decrease to G, then

lim
j

(ddcGj)
k = (ddcG)k, k ≤ p,

see, e.g., [9, Proposition III.4.9]. However, for k > p one cannot hope for a definition

of (ddcG)k that is robust in this sense. In fact, even if Gj and G̃j are sequences

of smooth psh functions decreasing to G and (ddcGj)
k and (ddcG̃j)

k converge to

positive closed currents T and T̃ , respectively, T might be different from T̃ , as is
illustrated by the following example.

Example 4.2. Let ϕ = (w, zw). Then

ddc log |ϕ| = ddc log |w|+ ddc log(1 + |z|2)1/2 = [w = 0] + ddcα,

where [w = 0] denotes the current of integration along {w = 0} and α = log(1 +

|z|2)1/2. Thus by (4.2),

(ddc log |ϕ|)2 = [w = 0] ∧ ddcα.

Let Gε = log(|ϕ|2 + ε)1/2 and G̃ε = log(|w|2 + ε)1/2 +α. Then Gε and G̃ε are smooth
psh functions that decrease towards log |ϕ| as ε tends to 0. On the one hand, by
(1.7),

lim
ε→0

(ddcGε)
2 = (ddc log |ϕ|)2.

On the other hand, again using (1.7), but now for (ddc log |w|)2,

(ddcG̃ε)
2 = (ddc log(|w|2 + ε)1/2)2 + 2ddc log(|w|2 + ε)1/2∧ddcα −→ 2[w = 0] ∧ ddcα.

�

Remark 4.3. Assume that X` is an exhaustion of X by relatively compact subsets
such that the restriction J` of J to X` is generated by global bounded functions.
It would be interesting to know whether, or under what assumptions, the currents

MJ`k then converge. Convergence would give us a global canonical representation of
the Segre numbers of J .

Assume that J is indeed generated by global bounded functions and let G` denote
the Green function with poles along J`. Then, arguing as in the proof of Proposition
4.1 and using the notation from that proof,

π∗G` = log |f0|+B`,

where B` is psh and bounded, and moreover

(ddcG`)
k = π∗([D] ∧ (ddcB`)

k−1 + (ddcB`)
k).

Assume that G` decrease towards G. Then B` decrease towards B, as defined in
(4.4), and thus lim`(dd

cG`)
k = (ddcG)k in light of (3.1) and (4.5). �
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5. Lelong numbers

Let T be a positive closed (k, k)-current. If k = n, following [4, Section 5], we let

M ξ
0∧T := 1{x}T.

Otherwise

M ξ
n−k∧T := 1{x}

(
(ddc log |ξ|)n−k∧T

)
;

here we inductively define

(ddc log |ξ|)`∧T :=

ddc
(

log |ξ|∧(ddc log |ξ|)`−1∧T
)

= lim
j
ddc
(
vj∧(ddc log |ξ|)`−1∧T

)
,

where vj is a decreasing sequence of smooth psh functions converging pointwise to
log |ξ|. Because of the dimension principle it is not necessary to insert 1X\{x} in this
definition, cf., Section 4. See Remark 5.1 below for another possible definition of

M ξ
n−k∧T . Clearly M ξ

n−k∧T is an (n, n)-current with support at x, and it is in fact
equal to α[x], where α is the Lelong number of T at x, see, e.g, [4, Lemma 2.1].

Remark 5.1. As is pointed out in [4, Section 5] one can define M ξ∧T as the value at
λ = 0 of the current-valued analytic function

λ 7→ ∂̄|ξ|2λ∧∂|ξ|2

2πi|ξ|2
∧(ddc log |ξ|)n−k−1∧T.

�

6. Proof of Theorem 1.1

We will prove the slightly more general formulation of Theorem 1.1 stated in
Remark 1.2, i.e., we let G be any psh function of the form (1.1).

We still assume that π : X̃ → X is a smooth modification and use the notation
from the proof of Proposition 4.1. Notice that LD has a Hermitian metric such that
|f0|LD

= |π∗f |. By the Poincaré-Lelong formula,

(6.1) ddc log |π∗f | = [D] + ωf ,

where ωf is the first Chern form for L−1D .
Let us fix a local holomorphic frame so that log |f ′| is a well-defined function as

above. Since

log |π∗f | = log |f0|+ log |f ′|,
from (6.1) we have that

(6.2) ωf = ddc log |f ′|.

Let b be the psh bounded function outside |D| defined in (4.4). If we choose another
local frame for LD, then log |f ′| is changed to log |f ′|+ α where α is pluriharmonic,

and b is thus changed to b̃ := b+α. Moreover B̃ := B+α is the unique psh extension
of b̃ across |D|, cf. the proof of Proposition 4.1. It follows that A, locally defined as

(6.3) A := B − log |f ′|,
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is a global upper semicontinuous extension of π∗h across |D|. Notice also that

A(ddcB)` is well-defined on X̃ and, in light of (6.2) and (6.3), that

(ddcB)k−1 − ωk−1f = ddc
(
A

k−2∑
`=0

(ddcB)`∧ωk−2−`f

)
.

Assume now that Y ⊂ X̃ is a smooth submanifold and that i : Y → X̃ is the natural
inclusion. Then i∗B is psh and bounded, i∗ log |f ′| is smooth, and, in the same way
as above, i∗A is a global upper semi-continuous function on Y and

(6.4) (ddci∗B)k−1 − i∗ωk−1f = ddc
(
i∗A

k−2∑
`=0

(ddci∗B)`∧i∗ωk−2−`f

)
.

In view of Lemma 3.4, (6.4) implies that

[Y ]∧
(

(ddcB)k−1 − ωk−1f

)
= ddci∗

(
i∗A

k−2∑
`=0

(ddci∗B)`∧i∗ωk−2−`f

)
.

The currents (ddc log |f |)k and Mf
k are defined in a completely analogous way as

(ddcG)k and MJk , just replacing G by log |f |, cf., the introduction and the end of
Section 2 and also [4]. Arguing as in the proof of Proposition 4.1, we get, cf., (4.11),
that

Mf
k = π∗([D]∧ωk−1f ), 1X\Z(ddc log |f |)k = π∗ω

k
f

Lemma 6.1. The currents MJk and Mf
k have the same Lelong number at each point

x ∈ X. Moreover, the currents 1X\Z(ddcG)k and 1X\Z(ddc log |f |)k have the same
Lelong number at each point x ∈ X.

Proof. Let us fix a point x ∈ X and let ξ be a tuple of functions that defines the

maximal ideal mx at x. We can choose the modification π : X̃ → X so that also π∗mx

is principal, i.e., π∗ξ = ξ0ξ′, where ξ0 is a section of a line bundle LE that defines
the exceptional divisor E, and ξ′ is a non-vanishing tuple of sections of L−1E . Let us
assume that

(6.5) E =
∑
κ

βκEκ,

where Eκ are irreducible with simple normal crossings and βκ are integers. We may
also assume that, for each j, cf., (4.3), either Dj ⊂ |E| or all Eκ intersect Dj properly
and that

E
Dj
κ := Eκ ∩Dj

are smooth. Let ωξ be the first Chern form of L−1E with respect to the metric induced
by ξ, so that

ωξ = ddc log |ξ′|,
cf., (6.2), and

ddc log |π∗ξ| = [E] + ωξ.

Let ij : Dj → X̃ be the injection of Dj as a submanifold of X̃. It follows from
(4.3), (4.11) and Lemma 3.4 that

(6.6) MJk =
∑
j

αjπ∗(ij)∗
(
(ddc(ij)

∗B)k−1
)
.
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In order to prove the first part of the lemma, it is enough to consider one single term
in (6.6) and verify that

TJk := π∗i∗
(
(ddci∗B)k−1

)
and

T fk := π∗i∗
(
i∗ωk−1f

)
have the same Lelong numbers, where we write D = Dj and i = ij for simplicity.

Let us first assume that k = n. If D ⊂ |E|, then TJn and T fn both have support at
x. In view of (6.4), with Y = D, we have that

TJk − T
f
k = ddcπ∗i∗

(
i∗A

k−2∑
`=1

(ddci∗B)`∧i∗ωk−2−`f

)
=: dW,

where W has support at x. By Stokes’ theorem thus∫
(TJn − T fn ) =

∫
dW = 0,

which means that TJn and T fn have the same Lelong number at x. If D is not
contained in E, then i−1E has positive codimension in D and therefore,

1{x}T
J
n = π∗i∗(1|i−1E|(dd

ci∗B)n−1) = 0

by Corollary 3.3. In the same way we see that 1{x}T
f
n = 0.

Let us now assume that k < n. If D ⊂ |E|, then TJk and T fk are positive closed
(k, k)-currents with support at x, so by the dimension principle they both vanish.
We can therefore assume that i∗π∗ξ does not vanish identically on D; by assumption
it then defines a smooth divisor ED on D. Locally on D,

log |i∗π∗ξ| = log |i∗ξ0|+ log |i∗ξ′|,

and thus

(6.7) ddc log |i∗π∗ξ| = [ED] + i∗ωξ,

where [ED] is the Lelong current on D associated to ED. If vj are as in Section 5,
then

ddci∗π∗vj → [ED] + i∗ωξ.

Now

ddc(vjT
J
k ) = π∗i∗

(
ddci∗π∗vj∧(ddci∗B)k−1

)
so that

ddc log |ξ|∧TJk = π∗i∗
(
([ED] + i∗ωξ)∧(ddci∗B)k−1

)
by Proposition 3.2 and (6.7). Moreover, since π∗i∗

(
[ED]∧(ddci∗B)k−1

)
has support

at x, by the dimension principle,

ddc log |ξ|∧TJk = π∗i∗
(
i∗ωξ∧(ddci∗B)k−1

)
.

By induction we get

(ddc log |ξ|)n−k∧TJk = π∗i∗
(
([ED] + i∗ωξ)∧i∗ωn−k−1ξ ∧(ddci∗B)k−1

)
.

Therefore, by Corollary 3.3,

M ξ
n−k∧T

J
k = 1{x}(dd

c log |ξ|)n−k∧TJk = π∗i∗
(
[ED]∧i∗ωn−k−1ξ ∧(ddci∗B)k−1

)
.
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Let ικ : EDκ → D be the natural injection. By (6.5) and Lemma 3.4 we have that

M ξ
n−k∧T

J
k =

∑
κ

βκπ∗i∗(ικ)∗
(
(ικ)∗i∗ωn−k−1ξ ∧(ddc(ικ)∗i∗B)k−1

)
.

By analogous arguments,

M ξ
n−k∧T

f
k =

∑
κ

βκπ∗i∗(ικ)∗
(
(ικ)∗i∗ωn−k−1ξ ∧(ικ)∗i∗ωk−1f

)
.

For simplicity in notation let us assume that ED has just one irreducible component
and let ι : ED → D be the natural injection. By (6.4) applied to ED we have that

M ξ
n−k∧T

J
k −M

ξ
n−k∧T

f
k =

ddcπ∗i∗ι∗

(
ι∗i∗A ι∗i∗ωn−k−1ξ ∧

k−2∑
`=0

(ddcι∗i∗B)`ι∗i∗ωk−1−`f

)
=: dW,

where W has support at x. It follows by Stokes’ theorem that the integral of this

current is zero, and thus the Lelong numbers at x of TJk and T fk coincide. Thus the
first part of the lemma is proved.

By analogous arguments we get that π∗(dd
cB)k and π∗(ωf )k have the same Lelong

number at x, which proves the second part of the lemma, cf. (4.11) and (6.5).
�

We can now conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Let D`
j be the irreducible components of D such that π(D`

j)
have codimension `. Then

MJk = π∗
(
[D]∧(ddcB)k−1

)
= π∗

(∑
`≤k

∑
j

([D`
j ]∧(ddcB)k−1

)
since terms with ` > k vanish because of the dimension principle. We claim that

(6.8) MJk = π∗
(∑

j

([Dk
j ]∧(ddcB)k−1

)
+ π∗

(∑
`<k

∑
j

([D`
j ]∧(ddcB)k−1

)
=: SJk +NJk

is the Siu decomposition of MJk . First notice that since

π∗
(
[Dk

j ]∧(ddcB)k−1
)

is a (k, k)-current with support on the set Z := π(Dk
j ) of codimension k it must be

of the form α[Z] where α is a constant, see Lemma 3.1.

It is now enough to see that if W is a subvariety of codimension k, then 1WN
J
k = 0,

i.e.,

1Wπ∗
(
[D`

j ]∧(ddcB)k−1
)

= 0

if ` < k. Let i : D`
j → X̃ be the natural injection. By Lemma 3.4 we have

1Wπ∗
(
[D`

j ]∧(ddcB)k−1
)

= 1W (π∗i∗
(
ddci∗B)k−1

)
= π∗i∗

(
1(π◦i)−1(W )(dd

ci∗B)k−1
)
.

Notice that since π(D`
j) is irreducible and not contained inW it follows that π−1(W )∩

D`
j has positive codimension in D`

j , and hence 1(π◦i)−1(W )(dd
ci∗B)k−1 = 0 in view of

Corollary 3.3.

Thus (6.8) is the Siu decomposition. Since MJk and Mf
k have the same Lelong

number at each point by Lemma 6.1 and the set where NJk and Nf
k have positive
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Lelong number have codimension > k we conclude that SJk = Sfk , see Remark 2.1.

Since also 1X\Z(ddcG)k and 1X\Z(ddc log |f |)k have the same Lelong numbers at x

by Lemma 6.1, Theorem 1.1 follows from the analogous result, Theorem 1.1, for Mf

in [4].
�
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