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Abstract. In this paper we use recently developed calculus of residue currents
together with integral formulas to give a new explicit analytic realization, as well as
a new analytic proof, of Serre duality on any reduced pure n-dimensional paracom-
pact complex space X. At the core of the paper is the introduction of certain fine
sheaves Bn,q

X of currents on X of bidegree (n, q), such that the Dolbeault complex
(Bn,•

X , ∂̄) becomes, in a certain sense, a dualizing complex. In particular, if X is
Cohen-Macaulay then (Bn,•

X , ∂̄) is an explicit fine resolution of the Grothendieck
dualizing sheaf.

1. Introduction

Let X be a complex n-dimensional manifold and let F → X be a complex vector
bundle. Let E0,q(X,F ) denote the space of smooth F -valued (0, q)-forms on X and
let En,qc (X,F ∗) denote the space of smooth compactly supported (n, q)-forms on X
with values in the dual vector bundle F ∗. Serre duality, [29], can be formulated
analytically as follows: There is a non-degenerate pairing

(1.1) Hq
(
E0,•(X,F ), ∂̄

)
×Hn−q (En,•c (X,F ∗), ∂̄

)
→ C,

([ϕ]∂̄ , [ψ]∂̄) 7→
∫
X
ϕ ∧ ψ,

provided that Hq(E0,•(X,F ), ∂̄) and Hq+1(E0,•(X,F ), ∂̄) are Hausdorff considered as
topological vector spaces. If we set F := O(F ) and F ∗ := O(F ∗) and let Ωn

X denote
the sheaf of holomorphic n-forms on X, then one can, via the Dolbeault isomorphism,
rephrase Serre duality more algebraically: There is a non-degenerate pairing

(1.2) Hq(X,F )×Hn−q
c (X,F ∗ ⊗ Ωn

X)→ C,

realized by the cup product, provided that Hq(X,F ) and Hq+1(X,F ) are Hausdorff.
In this formulation Serre duality has been generalized to complex spaces, see, e.g.,
Hartshorne [19], [20], and Conrad [15] for the algebraic setting and Ramis-Ruget
[27] and Andreotti-Kas [11] for the analytic. In fact, if X is a pure n-dimensional
paracompact complex space that in addition is Cohen-Macaulay, then again there is
a perfect pairing (1.2) if we construe Ωn

X as the Grothendieck dualizing sheaf that
we will get back to shortly. If X is not Cohen-Macaulay things get more involved
and Hn−q

c (X,F ∗ ⊗ Ωn
X) is replaced by Ext−qc (X; F ,K•), where K• is the dualizing

complex in the sense of Ramis-Ruget [27], that is a certain complex of OX -modules
with coherent cohomology.
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To our knowledge there is no such explicit analytic realization of Serre duality as
(1.1) in the case of singular spaces. In fact, verbatim the pairing (1.1) cannot realize

Serre duality in general since the Dolbeault complex (E0,•
X , ∂̄)1 in general does not

provide a resolution of OX . In this paper we replace the sheaves of smooth forms by
certain fine sheaves of currents A 0,q

X and Bn,n−q
X that are smooth on Xreg and such

that (1.1) with E0,• and En,• replaced by A 0,• and Bn,•, respectively, indeed realizes
Serre duality.

We will say that a complex (D•X , δ) of fine sheaves is a dualizing Dolbeault com-
plex for a coherent sheaf F if (D•X , δ) has coherent cohomology and if there is
a non-degenerate pairing Hq(X,F ) × Hn−q(D•c (X), δ) → C. The relation to the
Ramis-Ruget dualizing complex is not completely clear to us, but we still find this
terminology convenient. For instance, (Bn,•

X , ∂̄) is a dualizing Dolbeault complex for
OX .

At this point it is appropriate to mention that Ruget in [28] shows, using Coleff-
Herrera residue theory, that there is an injective morphism K•X → C n,•

X , where C n,•
X

is the sheaf of germs of currents on X of bidegree (n, •).
—

Let X be a reduced complex space of pure dimension n. Recall that every point
in X has a neighborhood V that can be embedded into some pseudoconvex domain
D ⊂ CN , i : V → D, and that OV

∼= OD/JV , where JV is the radical ideal sheaf
in D defining i(V ). Similarily, a (p, q)-form ϕ on Vreg is said to be smooth on V if
there is a smooth (p, q)-form ϕ̃ in D such that ϕ = i∗ϕ̃ on Vreg. It is well known that
the so defined smooth forms on V define an intrinsic sheaf Ep,qX on X. The currents
of bidegree (p, q) on X are defined as the dual of the space of compactly supported
smooth (n−p, n−q)-forms onX. More concretely, given a local embedding i : V → D,
for any (p, q)-current µ on V , µ̃ := i∗µ is a current of bidegree (p+N −n, q+N −n)
in D with the property that µ̃.ξ = 0 for every test form ξ in D such that i∗ξ|Vreg = 0.
Conversely, if µ̃ is a current in D with this property, then it defines a current on V
(with a shift in bidegrees). We will often suggestively write

∫
µ ∧ ξ for the action of

the current µ on the test form ξ.
A current µ on X is said to have the standard extension property (SEP) with

respect to a subvariety Z ⊂ X if for all open U ⊂ X, χ(|h|/ε)µ|U → µ|U as ε → 0,
where µ|U denotes the restriction of µ to U , χ is a smooth regularization of the
characteristic function of [1,∞) ⊂ R, and h is any holomorphic tuple that does not
vanish identically on any irreducible component of Z ∩ U . If Z = X we simply say
that µ has the SEP on X. In particular, two currents with the SEP on X are equal
on X if and only if they are equal on Xreg.

We will say that a current µ on X has principal value-type singularities if µ is
locally integrable outside a hypersurface and has the SEP on X. Notice that if µ has
principal value-type singularities and h is a generically non-vanishing holomorphic
tuple such that µ is locally integrable outside {h = 0}, then the action of µ on a test
form ξ can be computed as

lim
ε→0

∫
X
χ(|h|/ε)µ ∧ ξ,

where the integral now is an honest integral of an integrable form on the manifold
Xreg.

1See below for the definition of Ep,qX ; the sheaf of smooth (p, q)-forms on X.
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By using integral formulas and residue theory, Andersson and the second author
introduced in [6] fine sheaves A 0,q

X (i.e., modules over E0,0
X ) of (0, q)-currents with

the SEP on X, containing E0,q
X , and coinciding with E0,q

Xreg
on Xreg, such that the

associated Dolbeault complex yields a resolution of OX , see [6, Theorem 1.2]. Notice
that it follows that Hq(A 0,•(X), ∂̄) ' Hq(X,OX). Moreover, by a standard con-
struction it then follows that each cohomology class in Hq(A 0,•(X), ∂̄) has a smooth
representative; cf. Section 7 below. Similar to the construction of the A -sheaves in
[6] we introduce our sheaves Bn,q

X of (n, q)-currents and show that these currents
have the SEP on X, that En,qX ⊂ Bn,q

X , and that Bn,q
X coincides with En,qX on Xreg; cf.

Proposition 4.3. Moreover, by Theorem 4.4, ∂̄ : Bn,q
X → Bn,q+1

X , where of course ∂̄ is
defined by duality:

∫
∂̄µ ∧ ξ := ±

∫
µ ∧ ∂̄ξ for currents µ and test forms ξ on X. By

adapting the constructions in [6] to the setting of (n, q)-forms we get the following
semi-global homotopy formula for ∂̄.

Theorem 1.1. Let V be a pure n-dimensional analytic subset of a pseudoconvex
domain D ⊂ CN , let D′ b D, and put V ′ = V ∩D′. There are integral operators

Ǩ : Bn,q(V )→ Bn,q−1(V ′), P̌ : Bn,q(V )→ Bn,q(V ′),

such that if ψ ∈ Bn,q(V ), then the homotopy formula

ψ = ∂̄Ǩ ψ + Ǩ (∂̄ψ) + P̌ψ

holds on V ′.

The integral operators Ǩ and P̌ are given by kernels k(z, ζ) and p(z, ζ) that are
respectively integrable and smooth on Reg(Vz) × Reg(V ′ζ ) and that have principal

value-type singularities at the singular locus of V ×V ′. In particular, one can compute
Ǩ ψ and P̌ψ as

Ǩ ψ(ζ) = lim
ε→0

∫
Vz

χ(|h(z)|/ε)k(z, ζ)∧ψ(z), P̌ψ(ζ) = lim
ε→0

∫
Vz

χ(|h(z)|/ε)p(z, ζ)∧ψ(z),

where χ is as above, h is a holomorphic tuple such that {h = 0} = Vsing, and where
the limit is understood in the sense of currents. We use our integral operators to
prove the following result.

Theorem 1.2. Let X be a reduced complex space of pure dimension n. The coho-
mology sheaves ωn,qX := H q(Bn,•

X , ∂̄) of the sheaf complex

(1.3) 0→ Bn,0
X

∂̄−→ Bn,1
X

∂̄−→ · · · ∂̄−→ Bn,n
X → 0

are coherent. If X is Cohen-Macaulay, then

(1.4) 0→ ωn,0X ↪→ Bn,0
X

∂̄−→ Bn,1
X

∂̄−→ · · · ∂̄−→ Bn,n
X → 0

is exact.

In fact, our proof of Theorem 1.2 shows that if V ⊂ X is identified with an
analytic codimension κ subset of a pseudoconvex domain D ⊂ CN , then ωn,qV

∼=
Ext κ+q(OD/JV ,ΩN

D ), where ΩN
D is the canonical sheaf on D. Hence, we get a con-

crete analytic realization of these Ext -sheaves.
The sheaf ωn,0V of ∂̄-closed currents in Bn,0

V is in fact equal to the sheaf of ∂̄-closed
meromorphic currents on V in the sense of Henkin-Passare [21, Definition 2], cf.
[6, Example 2.8]. This sheaf was introduced earlier by Barlet in a different way in
[12]; cf. also [21, Remark 5]. In case X is Cohen-Macaulay Ext κ(OD/JV ,ΩN

D ) is by
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definition the Grothendieck dualizing sheaf. Thus, (1.4) can be viewed as a concrete
analytic fine resolution of the Grothendieck dualizing sheaf in the Cohen-Macaulay
case.

—

Let ϕ and ψ be sections of A 0,q
X and Bn,q′

X respectively. Since ϕ and ψ then are
smooth on the regular part of X, the exterior product ϕ|Xreg ∧ ψ|Xreg is a smooth
(n, q + q′)-form on Xreg. In Theorem 5.1 we show that ϕ|Xreg ∧ ψ|Xreg has a natural
extension across Xsing as a current with principal value-type singularities; we denote
this current by ϕ ∧ ψ. Moreover, it turns out that the Leibniz rule ∂̄(ϕ ∧ ψ) =
∂̄ϕ ∧ ψ + (−1)qϕ ∧ ∂̄ψ holds. Now, if q′ = n− q and ψ (or ϕ) has compact support,
then

∫
ϕ ∧ ψ (i.e., the action of ϕ ∧ ψ on 1) gives us a complex number. Since the

Leibniz rule holds we thus get a pairing, a trace map, on cohomology level:

Tr : Hq
(
A 0,•(X), ∂̄

)
×Hn−q (Bn,•

c (X), ∂̄
)
→ C,

T r([ϕ]∂̄ , [ψ]∂̄) =

∫
X
ϕ ∧ ψ,

where A 0,q(X) denotes the global sections of A 0,q
X and Bn,q

c (X) denotes the global
sections of Bn,q

X with compact support. It causes no problems to insert a locally free
sheaf: If F → X is a vector bundle, F = O(F ) the associated locally free sheaf, and
F ∗ = O(F ∗) the dual sheaf, then the trace map gives a pairing F ⊗A 0,q(X)×F ∗⊗
Bn,n−q
c (X)→ C.

Theorem 1.3. Let X be a paracompact reduced complex space of pure dimension
n and F a locally free sheaf on X. If Hq(X,F ) and Hq+1(X,F ), considered as
topological vector spaces, are Hausdorff (e.g., finite dimensional), then the pairing

Hq
(
F ⊗A 0,•(X), ∂̄

)
×Hn−q (F ∗ ⊗Bn,•

c (X), ∂̄
)
→ C, ([ϕ], [ψ]) 7→

∫
X
ϕ ∧ ψ

is non-degenerate.

Since the A -cohomology has smooth representatives, it follows that ifX is compact
and ψ is a smooth ∂̄-closed (n, q)-form on X, then there is a u ∈ Bn,q−1(X) (in
particular u is smooth on Xreg) such that ∂̄u = ψ if and only if

∫
X ϕ ∧ ψ = 0 for all

smooth ∂̄-closed (0, n− q)-forms ϕ.

Notice also that, by [6, Theorem 1.2], the complex (F⊗A 0,•
X , ∂̄) is a fine resolution

of F and so, via the Dolbeault isomorphism, Theorem 1.3 gives us a non-degenerate
pairing

Hq(X,F )×Hn−q(F ∗ ⊗Bn,•
c (X), ∂̄)→ C.

The complex (F ∗⊗Bn,•
X , ∂̄) is thus a concrete analytic dualizing Dolbeault complex

for F . If X is Cohen-Macaulay, then (F ∗ ⊗ Bn,•
X , ∂̄) is, by Theorem 1.2 above,

a fine resolution of the sheaf F ∗ ⊗ ωn,0X and so Theorem 1.3 yields in this case a
non-degenerate pairing

Hq(X,F )×Hn−q
c (X,F ∗ ⊗ ωn,0X )→ C.

In Section 7 we show that this pairing also can be realized as the cup product in
Čech cohomology.

Remark 1.4. By [27, Théorème 2] there is another non-degenerate pairing

Hq
c (X,F )× Ext−q(X; F ,K•X)→ C
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if Hq
c (X,F ) and Hq+1

c (X,F ) are Hausdorff. In view of this we believe that one can
show that, under the same assumption, the pairing

Hq
(
F ⊗A 0,•

c (X), ∂̄
)
×Hn−q (F ∗ ⊗Bn,•(X), ∂̄

)
→ C, ([ϕ], [ψ]) 7→

∫
X
ϕ ∧ ψ

is non-degenerate but we do not pursue this question in this paper.

Acknowledgment: We would like to thank Mats Andersson for valuable discus-
sions and comments that have simplified some proofs significantly. We would also
like to thank the referee for many important comments.

2. Preliminaries

Our considerations here are local or semi-global so let V be a pure n-dimensional
analytic subset of a pseudoconvex domain D ⊂ CN . Throughout we let κ = N − n
denote the codimension of V .

2.1. Pseudomeromorphic currents on a complex space. In Cz the principal
value current 1/zm can be defined, e.g., as the limit as ε→ 0 in the sense of currents
of χ(|h(z)|/ε)/zm, where χ is a smooth regularization of the characteristic function
of [1,∞) ⊂ R and h is a holomorphic function vanishing at z = 0, or as the value at
λ = 0 of the analytic continuation of the current-valued function λ 7→ |h(z)|2λ/zm.
Regularizations of the form χ(|h|/ε)µ of a current µ occur frequently in this paper
and throughout χ will denote a smooth regularization of the characteristic func-
tion of [1,∞) ⊂ R. The residue current ∂̄(1/zm) can be computed as the limit of
∂̄χ(|h(z)|/ε)/zm or as the value at λ = 0 of λ 7→ ∂̄|h(z)|2λ/zm. Since tensor products
of currents are well-defined we can form the current

(2.1) τ = ∂̄
1

zm1
1

∧ · · · ∧ ∂̄ 1

zmrr
∧ γ(z)

z
mr+1

r+1 · · · z
mn
n

in Cnz , where m1, . . . ,mr are positive integers, mr+1, . . . ,mn are nonnegative integers,
and γ is a smooth compactly supported form. Notice that τ is anti-commuting in
the residue factors ∂̄(1/z

mj
j ) and commuting in the principal value factors 1/zmkk . A

current of the form (2.1) is called an elementary pseudomeromorphic current and we
say that a current µ on V is pseudomeromorphic, µ ∈ PM(V ), if it is a locally finite
sum of pushforwards π∗τ = π1

∗ · · ·π`∗τ under maps

V ` π`−→ · · · π2

−→ V 1 π1

−→ V 0 = V,

where each πj is either a modification, a simple projection V j = V j−1 × Z → V j−1,
or an open inclusion, and τ is an elementary pseudomeromorphic current on V `.
The sheaf of pseudomeromorphic currents on V is denoted PMV . Since the class
of elementary currents is closed under ∂̄ and ∂̄ commutes with push-forwards it
follows that PMV is closed under ∂̄. Pseudomeromorphic currents were originally
introduced in [9] but with a more restrictive definition; simple projections were not
allowed. In this paper we adopt the definition of pseudomeromorphic currents in [6].

Example 2.1. Let f ∈ O(V ) be generically non-vanishing and let α be a smooth
form on V . Then α/f is a semi-meromorphic form on V and it defines a semi-
meromorphic current, also denoted α/f , on V by

(2.2) ξ 7→ lim
ε→0

∫
V
χ(|h|/ε)α

f
∧ ξ,
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where ξ is a test form on V and h ∈ O(V ) is generically non-vanishing and vanishes on
{f = 0}. That (2.2) indeed gives a well-defined current is proved in [22]; the existence
of the limit in (2.2) relies on Hironaka’s theorem on resolution of singularities. Let

π : Ṽ → V be a smooth modification such that {π∗f = 0} is a normal crossings

divisor. Locally on Ṽ one can thus choose coordinates so that π∗f is a monomial.
One can then show that the semi-meromorphic current α/f is the push-forward under
π of elementary pseudomeromorphic currents (2.1) with r = 0; hence, α/f ∈ PM(V ).

The (0, 1)-current ∂̄(1/f) ∈ PM(V ) is the residue current of f . Since the action
of 1/f on test forms is given by (2.2) with α = 1 it follows from Stokes’ theorem that

∂̄
1

f
. ξ = lim

ε→0

∫
V

∂̄χ(|h|/ε)
f

∧ ξ.

�

One crucial property of pseudomeromorphic currents is the following, see, e.g., [6,
Proposition 2.3].

Dimension principle. Let µ ∈ PM(V ) and assume that µ has support on the
subvariety Z ⊂ V . If dimV − dimZ > q and µ has bidegree (∗, q), then µ = 0.

Pseudomeromorphic currents can be “restricted” to analytic subsets. In fact, fol-
lowing [9], if µ ∈ PM(V ) and Z ⊂ V is an analytic subset, then µ|V \Z has a natural
pseudomeromorphic extension to V denoted 1V \Zµ. Thus, 1Zµ := µ − 1V \Zµ is a
pseudomeromorphic current on V with support on Z. In [9], 1V \Zµ is defined as

|h|2λµ|λ=0, where h is a holomorphic tuple such that {h = 0} = Z, but it can also be
defined as limε→0 χ(|h|/ε)µ; cf. [10] and [24, Lemma 6]. It follows that if µ = π∗τ ,
then 1Zµ = π∗(1π−1(Z)τ). Notice that a pseudomeromorphic current µ has the SEP
if and only if 1Zµ = 0 for all germs of analytic sets Z with positive codimension.
We will denote by WV the subsheaf of PMV of currents with the SEP. It is closed
under multiplication by smooth forms and if π : Ṽ → V is either a modification or a
simple projection then π∗ : W(Ṽ )→W(V ).

A natural subclass of W(V ) is the class of almost semi-meromorphic currents on
V ; a current µ on V is said to be almost semi-meromorphic if there is a smooth
modification π : Ṽ → V and a semi-meromorphic current µ̃ on Ṽ such that π∗µ̃ =
µ, see [6]. Notice that almost semi-meromorphic currents are generically smooth
and have principal value-type singularities. Let µ be an almost semi-meromorphic
current. Following [10], we let ZSS(µ) (the Zariski-singular support of µ) be the
smallest Zariski-closed set outside of which µ is smooth. The following result can be
found in [10]; the last part is [6, Proposition 2.7].

Proposition 2.2. Let a be an almost semi-meromorphic current on V and let µ ∈
PM(V ). Then there is a unique pseudomeromorphic current a∧µ on V that coincides
with a ∧ µ outside of ZSS(a) and such that 1ZSS(a)a ∧ µ = 0. If µ ∈ W(V ), then
a ∧ µ ∈ W(V ).

If µ ∈ PM(Vz) and ν ∈ PM(Wζ) then we will denote the current (µ⊗1)∧(1⊗ν) on
Vz×Wζ by µ(z)∧ν(ζ), or sometimes µ∧ν if there is no risk of confusion, and refer to
it as the tensor product of µ and ν. From [10] we have that µ(z)∧ν(ζ) ∈ PM(V ×W )
and that µ(z) ∧ ν(ζ) ∈ W(V ×W ) if µ ∈ W(V ) and ν ∈ W(W ).

We will also have use for the following slight variation of [5, Theorem 1.1 (ii)].
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Proposition 2.3. Let Z ⊂ V be a pure dimensional analytic subset and let JZ ⊂ OV

be the ideal sheaf of holomorphic functions vanishing on Z. Assume that τ ∈ PM(V )
has the SEP with respect to Z and that hτ = dh ∧ τ = 0 for all h ∈ JZ . Then there
is a current µ ∈ PM(Z) with the SEP such that ι∗µ = τ , where ι : Z ↪→ V is the
inclusion.

Proof. Let i : V ↪→ D be the inclusion. By [5, Theorem 1.1 (i)] we have that i∗τ ∈
PM(D). It is straightforward to verify that i∗τ has the SEP with respect to Z
considered now as a subset of D and that hi∗τ = dh ∧ i∗τ = 0 for all h ∈ JZ , where
we now consider JZ as the ideal sheaf of Z in D. Hence, it is sufficient to show the
proposition when V is smooth. To this end, we will see that there is a current µ on
Z such that ι∗µ = τ ; then the proposition follows from [5, Theorem 1.1 (ii)].

The existence of such a µ is equivalent to that τ.ξ = 0 for all test forms ξ such that
ι∗ξ = 0 on Zreg. By, e.g., [6, Proposition 2.3] and the assumption on τ it follows that
h̄τ = dh̄ ∧ τ = hτ = dh ∧ τ = 0 for every h ∈ JZ . Using this it is straightforward to
check that if x ∈ Zreg and ξ is a smooth form such that ι∗ξ = 0 in a neighborhood
of x, then ξ ∧ τ = 0 in a neighborhood of x. Thus, if g is a holomorphic tuple in V
such that {g = 0} = Zsing, then χ(|g|/ε)τ.ξ = 0 for any test form ξ such that ι∗ξ = 0
on Zreg. Since τ has the SEP with respect to Z it follows that τ.ξ = 0 for all test
forms ξ such that ι∗ξ = 0 on Zreg. �

2.2. Residue currents. We briefly recall the the construction in [8] of a residue
current associated to a generically exact complex of Hermitian vector bundles.

Let JV be the radical ideal sheaf in D associated with V ⊂ D. Possibly after
shrinking D somewhat there is a free resolution

(2.3) 0→ O(Em)
fm−→ · · · f2−→ O(E1)

f1−→ O(E0)

of OD/JV , where Ek are trivial vector bundles, E0 is the trivial line bundle, fk are
holomorphic mappings, and m ≤ N . The resolution (2.3) induces a complex of vector
bundles

0→ Em
fm−→ · · · f2−→ E1

f1−→ E0

that is pointwise exact outside V . For r ≥ 1, let V r be the set where fκ+r : Eκ+r →
Eκ+r−1 does not have optimal rank2, and let V 0 := Vsing. Then

(2.4) · · · ⊂ V k+1 ⊂ V k ⊂ · · · ⊂ V 1 ⊂ V 0 ⊂ V.

By the uniqueness of minimal free resolutions, these sets are in fact independent of
the choice of resolution (2.3) of OV = OD/JV , i.e., they are invariants of that sheaf,
and they somehow measure the singularities of V . Since V has pure dimension it
follows from [17, Corollary 20.14] that

dimV r < n− r, r ≥ 0.

Hence, V n = ∅ and so fN has optimal rank everywhere; we may thus assume that
m ≤ N−1 in (2.3). Recall that V is Cohen-Macaulay if and only if there a resolution
(2.3) with m = κ of OV , see, e.g., [17, Chapter 18]. Notice that V r = ∅ for r ≥ 1 if
and only if V is Cohen-Macaulay.

2For j ≤ κ, the set where fj does not have optimal rank is V .
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Assuming V has positive codimension, given Hermitian metrics on the Ej , fol-
lowing [8], one can construct a smooth form u =

∑
k≥1 uk in D \ V , where uk is a

(0, k − 1)-form taking values in Ek, such that

(2.5) f1u1 = 1, fk+1uk+1 = ∂̄uk, k = 1, . . . ,m− 1, ∂̄um = 0 in D \ V.

The form u has an extension as an almost semimeromorphic current

(2.6) lim
ε→0

χ(|F |/ε)u =: U =
∑
k≥1

Uk,

where F is a holomorphic tuple in D vanishing on V and Uk is a (0, k − 1)-current
taking values in Ek; one should think of U as a generalization of the meromorphic
current 1/f in D when V = f−1(0) is a hypersurface.3 The residue current R =∑

k Rk associated with V is then defined by

(2.7) Rk = ∂̄Uk − fk+1Uk+1, k = 1, . . . ,m− 1, Rm = ∂̄Um.

Hence, Rk is a pseudomeromorphic (0, k)-current in D with values in Ek, and from
(2.5) it follows that R has support on V . By the dimension principle, thus R =
Rκ + · · · + Rm. Notice that if V is Cohen-Macaulay and (2.3) ends at level κ, then
R = Rκ and ∂̄R = 0. By [8, Theorem 1.1] we have that if h ∈ OD then

(2.8) hR = 0 if and only if h ∈ JV .

Example 2.4. Let V = f−1(0) be a hypersurface in D. Then 0→ O(E1)
f−→ O(E0)

is a resolution of O/〈f〉, where E1 and E0 are auxiliary trivial line bundles. The
associated current U then becomes (1/f) ⊗ e1, where e1 is a holomorphic frame for
E1, and the associated residue current R is ∂̄(1/f)⊗ e1.

Let g1, . . . , gκ ∈ O(D) be a regular sequence. Then the Koszul complex associated
to the gj is a free resolution of OD/〈g1, . . . , gκ〉. The associated residue current R
then becomes the Coleff-Herrera product

∂̄
1

g1
∧ · · · ∧ ∂̄ 1

gκ
,

introduced in [14], times an auxiliary frame element, see [2, Theorem 1.7]. �

2.3. Structure forms of a complex space. Assume first that V is a reduced
hypersurface, i.e., V = f−1(0) ⊂ D ⊂ CN , N = n + 1, where f ∈ O(D) and df 6= 0
on Vreg. Let ω′ be a meromorphic (n, 0)-form in D ⊂ Cn+1

z such that

df ∧ ω′ = 2πi dz1 ∧ · · · ∧ dzn+1 on Vreg.

Then ω := i∗ω′, where i : V ↪→ D is the inclusion, is a meromorphic form on V
that is uniquely determined by f ; ω is the Poincaré residue of the meromorphic form
2πidz1∧ · · · ∧dzn+1/f(z). For brevity we will sometimes write dz for dz1∧ · · · ∧dzN .
Leray’s residue formula can be formulated as

(2.9)

∫
∂̄

1

f
∧ dz ∧ ξ = lim

ε→0

∫
V
χ(|h|/ε)ω ∧ i∗ξ,

3In [9] U was originally defined as the analytic continuation to λ = 0 of |F |2λu. However, in view
of [10, Section 4] this definition coincides with (2.6), see also [24, Lemma 6].
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where ξ is a (0, n)-test form in D, the left hand side is the action of ∂̄(1/f) on dz ∧ ξ
and h is a holomorphic tuple such that {h = 0} = Vsing. If we consider ω as a
meromorphic current on V we can rephrase (2.9) as

(2.10) ∂̄
1

f
∧ dz = i∗ω.

Assume now that V
i
↪→ D ⊂ CN is an arbitrary pure n-dimensional analytic subset.

From Section 2.2 we have, given a free resolution (2.3) of OD/JV and a choice of
Hermitian metrics on the involved bundles Ej , the associated residue current R that
plays the role of ∂̄(1/f). By the following result, which is an abbreviated version of
[6, Proposition 3.3], there is an almost semi-meromorphic current ω on V such that
R ∧ dz = i∗ω; such a current will be called a structure form of V .

Proposition 2.5. Let (2.3) be a Hermitian free resolution of OD/JV in D and let R
be the associated residue current. Then there is a unique almost semi-meromorphic
current

ω = ω0 + ω1 + · · ·+ ωn−1

on V , where ωr is smooth on Vreg, has bidegree (n, r), and takes values in Eκ+r|V ,
such that

(2.11) R ∧ dz1 ∧ · · · ∧ dzN = i∗ω.

Moreover,
fκ|V ω0 = 0, fκ+r|V ωr = ∂̄ωr−1, r ≥ 1,

in the sense of currents on V , and there are (0, 1)-forms αk, k ≥ 1, that are smooth
outside V k and that take values in Hom(Eκ+k−1|V , Eκ+k|V ), such that

ωk = αkωk−1, k ≥ 1.

It is sometimes useful to reformulate (2.11) suggestively as

(2.12) R ∧ dz1 ∧ · · · ∧ dzN = ω ∧ [V ],

where [V ] is the current of integration along V .
The following result will be useful for us when defining our dualizing complex.

Proposition 2.6 (Lemma 3.5 in [6]). If ψ is a smooth (n, q)-form on V , then there
is a smooth (0, q)-form ψ′ on V with values in E∗p |V such that ψ = ω0 ∧ ψ′.

2.4. Koppelman formulas in CN . We recall some basic constructions from [1] and
[3]. Let D b CN be a domain (not necessarily pseudoconvex at this point), let k(z, ζ)
be an integrable (N,N − 1)-form in D×D, and let p(z, ζ) be a smooth (N,N)-form
in D ×D. Assume that k and p satisfy the equation of currents

(2.13) ∂̄k(z, ζ) = [∆D]− p(z, ζ)

in D×D, where [∆D] is the current of integration along the diagonal. Applying this
current equation to test forms ψ(z)∧ϕ(ζ) it is straightforward to verify that for any
compactly supported (p, q)-form ϕ in D one has the following Koppelman formula

ϕ(z) = ∂̄z

∫
Dζ

k(z, ζ) ∧ ϕ(ζ) +

∫
Dζ

k(z, ζ) ∧ ∂̄ϕ(ζ) +

∫
Dζ

p(z, ζ) ∧ ϕ(ζ).

In [1] Andersson introduced a very flexible method of producing solutions to (2.13).
Let η = (η1, . . . , ηN ) be a holomorphic tuple in D×D that defines the diagonal and let



10 JEAN RUPPENTHAL & HÅKAN SAMUELSSON KALM & ELIZABETH WULCAN

Λη be the exterior algebra spanned by T ∗0,1(D×D) and the (1, 0)-forms dη1, . . . , dηN .

On forms with values in Λη interior multiplication with 2πi
∑
ηj∂/∂ηj , denoted δη,

is defined; put ∇η = δη − ∂̄.
Let s be a smooth (1, 0)-form in Λη such that |s| . |η| and |η|2 . |δηs| and

let B =
∑N

k=1 s ∧ (∂̄s)k−1/(δηs)
k. It is proved in [1] that then ∇ηB = 1 − [∆D].

Identifying terms of top degree we see that ∂̄BN,N−1 = [∆D] and we have found a
solution to (2.13). For instance, if we take s = ∂|ζ − z|2 and η = ζ − z, then the
resulting B is sometimes called the full Bochner-Martinelli form and the term of top
degree is the classical Bochner-Martinelli kernel.

A smooth section g(z, ζ) = g0,0 + · · · + gN,N of Λη, defined for z ∈ D1 ⊂ D and
ζ ∈ D2 ⊂ D, such that ∇ηg = 0 and g0,0|∆D∩D′ = 1, where D′ := D1 ∩D2, is called
a weight in D1 ×D2. It follows that ∇η(g ∧B) = g− [∆D] and, identifying terms of
bidegree (N,N − 1), we get that

(2.14) ∂̄(g ∧B)N,N−1 = [∆D]− gN,N
in D′ ×D′. Hence (g ∧B)N,N−1 and gN,N give a solution to (2.13) in D′ ×D′.

If D is pseudoconvex and K is a holomorphically convex compact subset, then one
can find a weight g in D′ ×D for some neighborhood D′ ⊂ D of K such that z 7→
g(z, ζ) is holomorphic in D′, which in particular means that there are no differentials
of the form dz̄j , and ζ 7→ g(z, ζ) has compact support in D; see, e.g., Example 2 in
[3].

2.5. Koppelman formulas for (0, q)-forms on a complex space. We briefly
recall from [6] the construction of Koppelman formulas for (0, q)-forms on V ⊂ D.
The basic idea is to use the currents U and R discussed in Section 2.2 to construct a
weight that will yield an integral formula of division/interpolation type in the same
spirit as in, e.g., [13, 25].

Let (2.3) be a resolution of OD/JV , where as before JV is the sheaf in D associated

to V
i
↪→ D. One can find, see [3, Proposition 5.3], holomorphic Λη-valued Hefer

morphisms H`
k : Ek → E` of bidegree (k − `, 0) such that Hk

k = IEk and

(2.15) δηH
`
k = H`

k−1fk(ζ)− f`+1(z)H`+1
k , k > 1.

Let F be a holomorpic tuple in D such that {F = 0} = V , let U ε = χ(|F |/ε)u,
and let

Rε := 1−
∑

fkU
ε
k + ∂̄U ε,

so that Rε =
∑

k≥0R
ε
k, where Rε0 = 1− χ(|F |/ε) and Rεk = ∂̄χ(|F |/ε) ∧ u for k ≥ 1.

Then limε→0 U
ε = U and limε→0R

ε = R, cf. (2.6) and (2.7), and moreover

(2.16) γε :=
N∑
k=0

H0
kR

ε
k(ζ) + f1(z)

N∑
k=1

H1
kU

ε
k(ζ).

is a weight in D′×D′ for ε > 0. Let g be an arbitrary weight in D′×D′. Then γε∧g
is again a weight in D′ ×D′ and we get

(2.17) ∂̄(γε ∧ g ∧B)N,N−1 = [∆D]− (γε ∧ g)N,N

in the current sense in D′ × D′, cf. (2.14). Let us proceed formally and, also, let
us temporarily assume that V is Cohen-Macaulay and that (2.3) ends at level κ, so
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that R is ∂̄-closed. Then, multiplying (2.17) with R(z) ∧ dz and using (2.8) so that
f1(z)R(z) = 0, we get that
(2.18)

∂̄ (R(z) ∧ dz ∧ (HRε(ζ) ∧ g ∧B)N,N−1) = R(z)∧dz∧[∆D]−R(z)∧dz∧(HRε(ζ)∧g)N,N ,

where HRε =
∑N

k=0H
0
kR

ε
k, cf. (2.16). In view of (2.12) we have R(z)∧dz∧[∆D] = ω∧

[∆V ], where [∆V ] is the integration current along the diagonal ∆V ⊂ V ×V ⊂ D×D,
and formally letting ε→ 0 in (2.18) we thus get

(2.19) ∂̄
(
ω(z)∧[Vz]∧(HR(ζ)∧g∧B)N,N−1

)
= ω∧[∆V ]−ω(z)∧[Vz]∧(HR(ζ)∧g)N,N .

To see what this means we will use (2.12). Notice first that, since H, R, g, and B
takes values in Λη, one can factor out dη = dη1∧· · ·∧dηN from (HR(ζ)∧g∧B)N,N−1

and (HR(ζ) ∧ g)N,N . After making these factorization in (2.19) we may replace dη
by Cη(z, ζ)dζ, where Cη(z, ζ) = N ! det(∂ηj/ζk), since ω(z) ∧ [Vz] has full degree in
dzj . More precisely, let ε1, . . . , εN be a basis for an auxiliary trivial complex vector
bundle over D ×D and replace all occurrences of dηj in H, g, and B by εj . Denote

the resulting forms by Ĥ, ĝ, and B̂ respectively and let

(2.20) k(z, ζ) = Cη(z, ζ)ε∗N ∧ · · · ∧ ε∗1y
n∑
k=0

Ĥ0
p+kωk(ζ) ∧ (ĝ ∧ B̂)n−k,n−k−1

(2.21) p(z, ζ) = Cη(z, ζ)ε∗N ∧ · · · ∧ ε∗1y
n∑
k=0

Ĥ0
p+kωk(ζ) ∧ ĝn−k,n−k.

Notice that k and p have bidegrees (n, n − 1) and (n, n) respectively. In view of
(2.12) we can replace (HR ∧ g ∧ B)N,N−1 and (HR ∧ g)N,N with [Vζ ] ∧ k(z, ζ) and
[Vζ ] ∧ p(z, ζ) respectively in (2.19). It follows that

∂̄
(
ω(z) ∧ k(z, ζ)

)
= ω ∧ [∆V ]− ω(z) ∧ p(z, ζ)

holds in the current sense at least on Vreg × Vreg. The formal computations above
can be made rigorous, see [6, Section 5], and combined with Proposition 2.6 we get
Proposition 2.7 below; notice that ω = ω0 and ∂̄ω = 0 since we are assuming that V
is Cohen-Macaulay and that (2.3) ends at level κ.

The following result will be the starting point of the next section and it holds
without any assumption about Cohen-Macaulay.

Proposition 2.7 (Lemma 5.3 in [6]). With k(z, ζ) and p(z, ζ) defined by (2.20) and
(2.21) respectively we have

∂̄k(z, ζ) = [∆V ]− p(z, ζ)

in the sense of currents on Vreg × Vreg.

Remark 2.8. In [6] it is assumed that g is a weight in D′ ×D, where D′ b D and
ζ 7→ g(z, ζ) has compact support in D, but the proof goes through for any weight.

The integral operators K and P for forms in W0,q introduced in [6] are defined
as follows. Let g in (2.20) and (2.21) be a weight in D′×D, where D′ b D and ζ 7→
g(z, ζ) has compact support in D, cf. Section 2.4, and let µ ∈ W0,q(D). Since ω and B
are almost semi-meromorphic k(z, ζ) and p(z, ζ) are also almost semi-meromorphic
and it follows from Proposition 2.2 that k(z, ζ) ∧ µ(ζ) and p(z, ζ) ∧ µ(ζ) are in
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W(V ′×V ), where V ′ = D′ ∩V . Let π̃ : V ′z ×Vζ → V ′z be the natural projection onto
V ′z . It follows that

K µ(z) := π̃∗
(
k(z, ζ) ∧ µ(ζ)

)
,

Pµ(z) := π̃∗
(
p(z, ζ) ∧ µ(ζ)

)
,

are in W(V ′z ). The sheaves A 0,•
V are then morally defined to be the smallest sheaves

that contain E0,•
V and are closed under operators K and under multiplication with

E0,•
V . More precisely, the stalk A 0,q

V,x consists of those germs of currents which can be
written as a finite sum of of terms

ξm ∧Km

(
· · · ξ1 ∧K1(ξ0) · · ·

)
,

where ξj are smooth (0, ∗)-forms and Kj are integral operators at x of the above
form; cf. [6, Definition 7.1].

3. Koppelman formulas for (n, q)-forms

Let V be a pure n-dimensional analytic subset of a pseudoconvex domain D ⊂ CN
and let ω be a structure form on V . Let g be a weight in D × D′, where D′ ⊂ D
and let k(z, ζ) and p(z, ζ) be the kernels defined respectively in (2.20) and (2.21).
Since k and p are almost semi-meromorphic it follows from Proposition 2.2 that if
µ = µ(z) ∈ Wn,q(V ), then k(z, ζ) ∧ µ(z) and p(z, ζ) ∧ µ(z) are well-defined currents
in W(V × V ). Assume that z 7→ g(z, ζ) has compact support in D or that µ has
compact support in V . Let π : Vz × V ′ζ → V ′ζ be the natural projection, where, as

above, V ′ = D′ ∩ V , and define

(3.1) Ǩ µ(ζ) := π∗
(
k(z, ζ) ∧ µ(z)

)
(3.2) P̌µ(ζ) := π∗

(
p(z, ζ) ∧ µ(z)

)
.

It follows that Ǩ µ and P̌µ are well-defined currents inW(V ′ζ ). Notice that P̌µ is of

the form
∑

r ωr ∧ ξr, where ξr is a smooth (0, ∗)-form (with values in an appropriate
bundle) in general, and holomorphic if the weight g(z, ζ) is chosen holomorphic in ζ;
cf. (2.21). It is natural to write

Ǩ µ(ζ) =

∫
Vz

k(z, ζ) ∧ µ(z), P̌µ(ζ) =

∫
Vz

p(z, ζ) ∧ µ(z).

We have the following analogue of Proposition 6.3 in [6].

Proposition 3.1. Let µ(z) ∈ Wn,q(V ) and assume that ∂̄µ ∈ Wn,q+1(V ). Let Ǩ
and P̌ be as above. Then

(3.3) µ = ∂̄Ǩ µ+ Ǩ (∂̄µ) + P̌µ

in the sense of currents on V ′reg.

Proof. If ϕ = ϕ(ζ) is a (0, n − q)-test form on V ′reg it follows, cf. the beginning of
Section 2.4, from Proposition 2.7 that

(3.4) ϕ(z) = ∂̄z

∫
V ′ζ

k(z, ζ) ∧ ϕ(ζ) +

∫
V ′ζ

k(z, ζ) ∧ ∂̄ϕ(ζ) +

∫
V ′ζ

p(z, ζ) ∧ ϕ(ζ)
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for z ∈ V ′reg. By [6, Lemma 6.1]4 the first two terms on the right hand side are
smooth on V ′. The last term is smooth V ′ since z 7→ p(z, ζ) is smooth. Assume that
z 7→ g(z, ζ) has compact support in D. Then so have z 7→ k(z, ζ) and z 7→ p(z, ζ).
Thus each term in the right hand side of (3.4) is a test form in z, and so µ acts
on each term. Thus (3.3) follows in this case. If µ has compact support (3.3) holds
without the assumption that z 7→ g(z, ζ) has compact support.

For the general case, let h = h(z) be a holomorphic tuple such that {h = 0} = Vsing
and let χε = χ(|h|/ε). Then the proposition holds for χεµ (since k and p have
compact support in z). Since k(z, ζ) ∧ µ(z) and p(z, ζ) ∧ µ(z) are in W(V ′ × V )
it follows that Ǩ (χεµ) → Ǩ µ and that P̌(χεµ) → P̌µ in the sense of currents,
and consequently ∂̄Ǩ (χεµ) → ∂̄Ǩ µ in the current sense. It remains to see that
limε→0 Ǩ (∂̄(χεµ)) = Ǩ (∂̄µ). In fact, since by assumption ∂̄µ ∈ W(V ) it follows
that Ǩ (χε∂̄µ)→ Ǩ (∂̄µ) and so

(3.5) lim
ε→0

Ǩ (∂̄(χεµ)) = Ǩ (∂̄µ) + lim
ε→0

Ǩ (∂̄χε ∧ µ);

it also follows that

(3.6) ∂̄χε ∧ µ = ∂̄(χεµ)− χε∂̄µ→ ∂̄µ− ∂̄µ = 0.

Now, if ζ is in a compact subset of V ′reg and ε is sufficiently small, then k(z, ζ)∧∂̄χε(z)
is a smooth form times ω = ω(ζ). Since µ(z)∧ω(ζ) is just a tensor product it follows
from (3.6) that ∂̄χε(z) ∧ µ(z) ∧ ω(ζ) → 0. Hence, Ǩ (∂̄χε ∧ µ) → 0 as a current on
V ′reg and so by (3.5) we have limε→0 Ǩ (∂̄(χεµ)) = Ǩ (∂̄µ). �

4. The dualizing Dolbeault complex of Bn,q
X -currents

Let X be a reduced complex space of pure dimension n. We define our sheaves
Bn,•
X in a way similar to the definition of A 0,•

X ; see the end of Section 2.5. In a moral
sense ⊕qBn,q

X then becomes the smallest sheaf that contains ⊕qEn,qX and that is closed

under integral operators Ǩ and exterior products with elements of ⊕qE0,q
X .

Definition 4.1. We say that an (n, q)-current ψ on an open set V ⊂ X is a section
of Bn,q

X , ψ ∈ Bn,q(V ), if, for every x ∈ V , the germ ψx can be written as a finite sum
of terms

(4.1) ξm ∧ Ǩm

(
· · · ξ1 ∧ Ǩ1(ω ∧ ξ0) · · ·

)
,

where ξj are smooth (0, ∗)-forms, Ǩj are integral operators at x given by (3.1) with
kernels of the form (2.20), and ω is a structure form at x.

Notice that ω takes values in some bundle ⊕jEj so we let ξ0 take values in ⊕jE∗j
to make ω ∧ ξ0 scalar valued.

It is clear that Ǩ preserves ⊕qBn,q
X . Notice that we allow m = 0 in the definition

above so that Bn,•
X contains all currents of the form ω ∧ ξ0, where ξ0 is smooth with

values in ⊕jE∗j . Since P̌µ is of the form ω ∧ ξ for a smooth ξ, also P̌ preserves

⊕qBn,q
X .

Recall that if µ ∈ Wn,∗(V ), then Ǩ µ ∈ Wn,∗(V ′), where V ′ is a relatively compact
subset of V . Since ω ∧ ξ0 ∈ Wn,∗

X it follows that Bn,q
X is a subsheaf of Wn,q

X . In fact,
by Proposition 4.3 below we can say more.

4The proof goes through also in our setting, i.e., when g not necessarily has compact support in
Dζ but ϕ(ζ) has.
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Definition 4.2. A current µ ∈ ⊕qWn,q
X is said to be in the domain of ∂̄, µ ∈ Dom ∂̄,

if ∂̄µ ∈ ⊕qWn,q
X .

Assume that µ ∈ Wn,q
X is smooth on Xreg, let h be a holomorphic tuple such that

{h = 0} = Xsing, and, as above, let χε = χ(|h|/ε). Then ∂̄(χεµ) → ∂̄µ since µ has
the SEP. In view of the first equality in (3.6) it follows that ∂̄µ has the SEP if and
only if ∂̄χε ∧ µ → 0 as ε → 0; this last condition can be interpreted as a “boundary
condition” on µ at Xsing.

Proposition 4.3. Let X be a reduced complex space of pure dimension n. Then

(i) Bn,q
X

∣∣
Xreg

= En,qX

∣∣
Xreg

,

(ii) En,qX ⊂ Bn,q
X ⊂ Dom ∂̄.

To prove (i) we need to prove that if µ ∈ W(V ) is smooth in a neighborhood of a
given point x ∈ V ′reg, then Ǩ µ(z) is smooth in a neighborhood of x. This is proved
in the same way as part (i) of Lemma 6.1 in [6]. The proof (of the second inclusion)

of (ii) is similar to the proof that A 0,q
X ⊂ Dom ∂̄ in [6], see Section 7 and Lemmas 6.4

and 4.1 in [6]. We include a proof for the reader’s convenience.

Proof of (ii). Let ψ be a smooth (n, q)-form on X and let ω =
∑

r ωr be a structure
form. Then, by Proposition 2.6, there is smooth (0, q)-form ξ (with values in the
appropriate bundle) such that ψ = ω0 ∧ ξ and so En,qX ⊂ Bn,q

X .
To prove the second inclusion of (ii) we may assume that µ is of the form (4.1).

Let kj(w
j−1, wj), j = 1, . . . ,m, be the integral kernel corresponding to Ǩj ; w

j are
coordinates on V for each j. We define an almost semi-meromorphic current T on
V m+1 (the m+ 1-fold Cartesian product) by

(4.2) T :=
m∧
j=1

kj(w
j−1, wj) ∧ ω(w0),

and we let Tr be the term of T corresponding to ωr. Notice that π∗(ξ ∧ T ) = µ
for a suitable smooth (0, ∗)-form ξ on V m+1, where π : V m+1 → Vwm is the natural
projection. We claim that

(4.3) lim
ε→0

∂̄χ(|h(wm)|/ε) ∧ Tr = 0

for all r, where h is a holomorphic tuple such that {h = 0} = Vsing. Taking this for
granted,

lim
ε→0

∂̄χε ∧ µ = π∗
(

lim
ε→0

∂̄χ(|h(wm)|/ε) ∧ ξ ∧ T
)

= 0,

and thus µ ∈ Dom ∂̄, cf. the discussion after Definition 4.2.
We will prove that (4.3) holds for all r by double induction over m and r. If m = 0

then T = ω(w0) and, since ∂̄ωr = fr+1|V ωr+1 by (2.5), it follows that ∂̄T has the
SEP, i.e., limε→0 ∂̄χ(|h|/ε) ∧ T = 0.

Assume that (4.3) holds for m ≤ k − 1 and all r. The left hand side of (4.3),
with m = k, defines a pseudomeromorphic current τr of bidegree (∗, kn− k + r + 1)
since each kj has bidegree (∗, n − 1) and clearly supp τr ⊂ Sing(Vwm) × V m. If
wj 6= wj−1, then kj(w

j−1, wj) is a smooth form times some structure form ω̃(wj).
Thus T , with m = k, is a smooth form times the tensor product of two currents, each
of which is of the form (4.2) with m < k. By the induction hypothesis, it follows
that (4.3), with m = k, holds outside {wj = wj−1} for all j. Hence, τr has support
in {w1 = · · · = wk} ∩ (Sing(Vwm)× V m), which has codimension at least kn + 1 in
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V k+1. Since τ0 has bidegree (∗, kn − k + 1), k ≥ 1, it follows from the dimension
principle that τ0 = 0.

By Proposition 2.5, there is a (0, 1)-form α1 such that ω1 = α1ω0 and α1 is smooth
outside V 1 (cf. (2.4)) which has codimension at least 2 in V . Since τ1 = α1(w0)τ0

outside V 1
w0 and τ0 = 0 it follows that τ1 has support in {w1 = · · · = wk}∩(V 1

w0×V m).

This set has codimension at least kn+ 2 in V m+1 and τ1 has bidegree (∗, kn− k+ 2)
so the dimension principle shows that τ1 = 0. Continuing in this way we get that
τr = 0 for all r and hence, (4.3) holds with m = k. �

Theorem 4.4. Let X be a reduced complex space of pure dimension n. Then
∂̄ : Bn,q

X → Bn,q+1
X .

Proof. Let ψ be a germ of a current in Bn,q
X at some point x; we may assume that

ψ = ξm ∧ Ǩm

(
· · · ξ1 ∧ Ǩ1(ω ∧ ξ0) · · ·

)
,

see Definition 4.1.
We will prove the theorem by induction over m. Assume first that m = 0 so that

ψ = ω ∧ ξ0; recall that ξ0 takes values in ⊕jE∗j so that ψ is scalar valued. Then, by
Proposition 2.5, we have that

∂̄ψ = ∂̄ω ∧ ξ0 ± ω ∧ ∂̄ξ0 = fω ∧ ξ0 ± ω ∧ ∂̄ξ0 = ω ∧ f∗ξ0 ± ω ∧ ∂̄ξ0,

where f = ⊕nr=0fp+r|V and f∗ is the transpose of f . Hence, ∂̄ψ is in Bn,q+1
X . Assume

now that ∂̄ψ′ ∈ ⊕qBn,q
X , where

ψ′ = ξm−1 ∧ Ǩm−1

(
· · · ξ1 ∧ Ǩ1(ω ∧ ξ0) · · ·

)
.

Then ψ′ ∈ Dom ∂̄ ⊂ WX and by Proposition 4.3 ψ′ is smooth on Xreg. Thus, from
Proposition 3.1 it follows that

(4.4) ψ′ = ∂̄Ǩmψ
′ + Ǩm(∂̄ψ′) + P̌mψ

′

in the current sense on Vreg, where V is some neighborhood of x. By the induction

hypothesis, ∂̄ψ′ ∈ ⊕qBn,q
X and since Ǩm and P̌m preserve ⊕qBn,q

X and furthermore
⊕qBn,q

X ⊂ Dom ∂̄ it follows that every term of (4.4) has the SEP. Thus, (4.4) holds

in fact on V . Finally, notice that ψ = ξm ∧ Ǩmψ
′ and so, since ψ′, Ǩm(∂̄ψ′), and

P̌mψ
′ all are in ⊕qBn,q

X , it follows that ∂̄ψ ∈ Bn,q+1
X . �

Proof of Theorem 1.1. Choose a weight g in D ×D′, where D′ b D, such that z 7→
g(z, ζ) has compact support inD, cf. Section 2.4. Let k(z, ζ) and p(z, ζ) be the kernels
defined by (2.20) and (2.21), respectively, and let Ǩ and P̌ be the associated integral
operators.

Let ψ ∈ Bn,q(V ). By Proposition 3.1,

(4.5) ψ = ∂̄Ǩ ψ + Ǩ (∂̄ψ) + P̌ψ

holds on V ′reg. Since Ǩ and P̌ map ⊕qBn,q(V ) to ⊕qBn,q(V ′) it follows from
Theorem 4.4 that every term of (4.5) has the SEP. Hence, (4.5) holds on V ′ and the
theorem follows. �
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Proof of Theorem 1.2. Let V be a pure n-dimensional analytic subset of a pseudo-
convex domain D ⊂ CN , let JV be the sheaf in D defined by V , let i : V ↪→ D be
the inclusion, and, as above, let κ = N − n be the codimension of V in D. Let (2.3)
be a free resolution of OD/JV in (possibly a slightly smaller domain still denoted)
D and let ω =

∑
r ωr be an associated structure form.

Dualizing the complex (2.3) and tensoring with the invertible sheaf ΩN
D gives the

complex

(4.6) 0→ O(E∗0)⊗OD ΩN
D

f∗1−→ · · · f
∗
m−→ O(E∗m)⊗OD ΩN

D → 0.

It is well-known that the cohomology sheaves of (4.6) are isomorphic to Ext •(OD/JV ,ΩN
D )

and that Ext k(OD/JV ,ΩN
D ) = 0 for k < κ. Notice that if V is Cohen-Macaulay, i.e.,

if we can take m = κ = codimV in (2.3), then Ext k(OD/JV ,ΩN
D ) = 0 for k 6= κ.

We define mappings %k : O(E∗κ+k)⊗ ΩN
D → Bn,k

V by letting %k(hdz) = 0 for k < 0

and %k(hdz) = ωk ·h for k ≥ 0; here we let Bn,k
V := 0 for k < 0 and O(E∗k)⊗ΩN

D := 0
for k > m. We get a map

(4.7) %• :
(
O(E∗κ+•)⊗ ΩN

D , f
∗
κ+•
)
−→

(
Bn,•
V , ∂̄

)
which is a morphism of complexes since if h ∈ O(E∗κ+k), then, by Proposition 2.5,

∂̄%k(hdz) = ∂̄ωk · h = fκ+k+1ωk+1 · h = ωk+1 · f∗κ+k+1h = %k+1(f∗κ+k+1h).

Hence, (4.7) induces a map on cohomology. We claim that %• in fact is a quasi-
isomorphism, i.e., that %• induces an isomorphism on cohomology level. Given the
claim it follows that H k(Bn,•

V ) is coherent since the corresponding cohomology sheaf

of (O(E∗κ+•)⊗ ΩN
D , f

∗
κ+•) is Ext κ+k(OD/JV ,ΩN

D ), which is coherent.
To prove the claim, recall first that i∗ωk = Rk ∧ dz. Thus, by [4, Theorem 7.1]

the mapping on cohomology is injective. For the surjectivity, choose a weight g in
D × D′, where D′ b D, such that g is holomorphic in ζ and has compact support
in Dz, cf. Section 2.4, let k(z, ζ) and p(z, ζ) be the integral kernels defined by (2.20)
and (2.21), respectively, and let Ǩ and P̌ be the corresponding integral operators.
Let ψ ∈ Bn,k(V ) be ∂̄-closed. By Theorem 1.1 we get

ψ(ζ) = ∂̄

∫
Vz

k(z, ζ) ∧ ψ(z) +

∫
Vz

p(z, ζ) ∧ ψ(z)

in V ∩ D′. Hence, the ∂̄-cohomology class of ψ is represented by the last integral.
Since g is holomorphic in ζ, the summand with index k in (2.21) has exactly n − k
differentials of the form dz̄j (and k differentials of the form dζ̄j). It follows that∫

Vz

p(z, ζ) ∧ ψ(z) =

∫
Vz

Cη(z, ζ)ε∗N ∧ · · · ∧ ε∗1yĤ0
p+kωk(ζ) ∧ ĝn−k,n−k ∧ ψ(z)

=: ωk(ζ) ∧
∫
Vz

G(z, ζ) ∧ ψ(z),

where G takes values in E∗p+k. Note that G is holomorphic in ζ since g is. We will
show that

(4.8) f∗p+k+1

∫
Vz

G(z, ζ) ∧ ψ(z) = 0.

Taking (4.8) for granted, it follows that the class of ψ is in the image of the map on
cohomology induced by %k, which proves the claim.
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To prove (4.8) first note that dη ∧G = H0
p+k ∧ gn−k,n−k. By (2.15),

(4.9) f∗p+k+1H
0
p+k ∧ gn−k,n−k = H0

p+k+1fp+k+1 ∧ gn−k,n−k =

δηH
0
p+k+1 ∧ gn−k,n−k + f1(z)H1

p+k ∧ gn−k,n−k.

Since H0
p+k+1∧gn−k,n−k takes values in Λη and is of degree (N + 1, n−k) it vanishes

and thus the first term in the right-most expression in (4.9) equals

±H0
p+k+1 ∧ δηgn−k,n−k = ±H0

p+k+1 ∧ ∂̄gn−k−1,n−k−1 = ±∂̄
(
H0
p+k+1 ∧ gn−k−1,n−k−1

)
,

where we have used that ∇ηg = 0 and that H0
p+k+1 is holomorphic. Using that

H1
p+k∧gn−k,n−k and H0

p+k+1∧gn−k−1,n−k−1 take values in Λη and have degree (N, ∗)
we get that

f∗p+k+1H
0
p+k ∧ gn−k,n−k = dη ∧

(
∂̄A+ f1(z)B

)
for some smooth A and B. Hence

(4.10) f∗p+k+1

∫
Vz

G(z, ζ) ∧ ψ(z) =

∫
Vz

∂̄A ∧ ψ(z) +

∫
Vz

f1(z)B ∧ ψ(z) = 0.

The first integral vanishes by Stokes’ theorem since ψ is ∂̄-closed and G has compact
support in z since g has. The second integral vanishes since f1(z) = 0 on Vz.

If V is Cohen-Macaulay, then (4.6) is exact except for at level p and so (Bn,•
V , ∂̄)

is exact except for at level 0 where the cohomology is ωn,0V = ker (∂̄ : Bn,0
V → Bn,1

V ).
Thus, (1.4) is exact. �

5. The trace map

The basic result of this section is the following theorem. It is the key to define our
trace map.

Theorem 5.1. Let X be a reduced complex space of pure dimension n. There is a
unique map

∧ : Bn,q
X ×A 0,q′

X →Wn,q+q′

X ∩Dom ∂̄

extending the exterior product on Xreg.

The uniqueness is clear since two currents with the SEP that are equal on Xreg

are equal on X. It is moreover clear that ∧ is E0,0
X -bilinear. Indeed, if, e.g., ϕ1

and ϕ2 are sections of A 0,q′

X , ψ is a section of Bn,q
X , and ξ1 and ξ2 are sections of

E0,0
X , then ψ ∧ (ξ1ϕ1 + ξ2ϕ2), ψ ∧ ξ1ϕ, and ψ ∧ ξ2ϕ2 have the SEP by Theorem 5.1

and ψ ∧ (ξ1ϕ1 + ξ2ϕ2) = ψ ∧ ξ1ϕ1 + ψ ∧ ξ2ϕ2 on Xreg. We get bilinear pairings of

C-vector spaces, Bn,n−q
c (X)×A 0,q(X)→ C and Bn,n−q(X)×A 0,q

c (X)→ C, given
by (ψ,ϕ) 7→

∫
X ψ ∧ϕ := ψ ∧ϕ.1, where 1 here denotes the function constantly equal

to 1; we will refer to these maps as trace maps on the level of currents. We also get
trace maps on the level of cohomology :

Corollary 5.2. Let ϕ and ψ be sections of A 0,q′

X and Bn,q
X respectively. Then ∂̄(ψ ∧

ϕ) = ∂̄ψ ∧ ϕ± ψ ∧ ∂̄ϕ. Moreover, there are bilinear maps of C-vector spaces

Hq
(
A 0,•(X), ∂̄

)
×Hn−q(Bn,•

c (X), ∂̄
)
→ C,

Hq
(
A 0,•
c (X), ∂̄

)
×Hn−q(Bn,•(X), ∂̄

)
→ C,

given by ([ϕ]∂̄ , [ψ]∂̄) 7→
∫
X ψ ∧ ϕ.
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Proof. By Theorem 5.1, ∂̄(ψ∧ϕ) has the SEP; cf. Definition 4.2. By Theorem 4.4 and

[6, Theorem 1.2], respectively, ∂̄ψ is a section of Bn,q+1
X and ∂̄ϕ is a section of A 0,q′+1

X .
Thus, ∂̄ψ∧ϕ and ψ∧∂̄ϕ have the SEP by Theorem 5.1 and so ∂̄(ψ∧ϕ) = ∂̄ψ∧ϕ±ψ∧∂̄ϕ
since it holds on Xreg. The last part of the corollary immediately follows. �

Proof of Theorem 5.1. We have already noticed that if ψ|Xreg ∧ϕ|Xreg has an exten-
sion with the SEP, then it is unique. To see that such an extension exists, let V
be a relatively compact open subset of a pure n-dimensional analytic subset of some
pseudoconvex domain in some CN . Let φ = (φ1, . . . , φs) be generators for the radical
ideal sheaf over V × V associated to the diagonal ∆V ⊂ V × V . Let

Aε := χ(|φ|/ε)∂ log |φ|2

2πi
∧ (ddc log |φ|2)n−1.

Notice that if p : W → V × V is a holomorphic map such that, locally on W , p∗φ =
φ0φ

′ for a holomorphic function φ0 and a non-vanishing holomorphic tuple φ′, then

(5.1) 2πip∗Aε = χ(|φ0φ
′|/ε)

(
dφ0/φ0 + ∂|φ′|2/|φ′|2

)
∧ (ddc log |φ′|2)n−1.

Thus, in view of Section 2.1, A := limε→0Aε exists and defines an almost semi-
meromorphic current on V × V . Let

(5.2) Mε := ∂̄χ(|φ|/ε)∧ ∂ log |φ|2

2πi
∧ (ddc log |φ|2)n−1 = ∂̄Aε−χ(|φ|/ε)(ddc log |φ|2)n.

Similarly to (5.1) one checks that the limit of the last term on the right-hand side
defines an almost semi-meromorphic current. Thus, the limit M := limε→0Mε exists
and defines a pseudomeromorphic (n, n)-current on V ×V supported on ∆V . Notice
that M is the difference of an almost semi-meromorphic current and the ∂̄-image of
such a current. Hence, by Proposition 2.2, for any pseudomeromorphic current τ ,
M ∧ τ is a well-defined pseudomeromorphic current. It is well-known that M = [∆V ]
on Vreg × Vreg and so, in view of the dimension principle, M = [∆V ] on V × V ; cf.
[7, Corollary 1.3].

Let ψ ∈ Bn,q(V ) and ϕ ∈ A 0,q′(V ). The tensor product ψ(w) ∧ ϕ(z) is a
pseudomeromorphic current on V × V by Section 2.1, and so M ∧ ψ(w) ∧ ϕ(z) =
limε→0Mε ∧ ψ(w) ∧ ϕ(z) is a pseudomeromorphic currents on V × V with support
on ∆V . Notice also that since ψ and ϕ are smooth on Vreg, we have

(5.3) M ∧ ψ(w) ∧ ϕ(z) = [∆V ] ∧ ψ(w) ∧ ϕ(z) = i∗(ψ|Vreg ∧ ϕ|Vreg)

on Vreg × Vreg, where i : ∆V → V × V is the inclusion and where we have made the
identification ∆V ' V .

Lemma 5.3. The pseudomeromorphic currents M ∧ψ(w)∧ϕ(z) and ∂̄
(
M ∧ψ(w)∧

ϕ(z)
)

have the SEP with respect to ∆V .

Let g be a holomorphic function such that g|∆V = 0. Then g[∆V ] = 0 = dg∧ [∆V ]
and so, since ψ(w) ∧ ϕ(z) is smooth on Vreg × Vreg and M = [∆V ], we have

(5.4) gM ∧ ψ(w) ∧ ϕ(z) = dg ∧M ∧ ψ(w) ∧ ϕ(z) = 0

on Vreg×Vreg. In fact, by Lemma 5.3, (5.4) holds on V ×V and so, by Proposition 2.3
and Lemma 5.3 again, there is a µ ∈ W(V ) such that M ∧ψ(w)∧ϕ(z) = i∗µ. Hence,
in view of (5.3), µ is an extension of ψ|Vreg ∧ϕ|Vreg to V with the SEP. We will denote
the extension by ψ ∧ ϕ.
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It remains to see that ψ∧ϕ is in Dom ∂̄. However, ∂̄
(
M∧ψ(w)∧ϕ(z)

)
= i∗∂̄(ψ∧ϕ)

and ∂̄
(
M ∧ ψ(w) ∧ ϕ(z)

)
has the SEP with respect to ∆V by Lemma 5.3. It follows

that ∂̄(ψ ∧ ϕ) has the SEP on V , i.e., ψ ∧ ϕ is in Dom ∂̄. �

Proof of Lemma 5.3. We may assume, cf. Definition 4.1 and the end of Section 2.5,
that

ψ = ξm ∧ Ǩm

(
· · · ξ1 ∧ Ǩ1(ω ∧ ξ0) · · ·

)
, ϕ = ξ̃` ∧K`

(
· · · ξ̃1 ∧K1(ξ̃0) · · ·

)
,

where ξi and ξ̃j are smooth (0, ∗)-forms, ω =
∑

k ωk is a structure form associated

with a free resolution (2.3), and Ǩi and Kj are integral operators for (n, ∗)-forms

and (0, ∗)-forms respectively. Let ǩj(w
j−1, wj) be the integral kernel corresponding

to Ǩj and let kj(z
j , zj−1) be the integral kernel corresponding to Kj ; w

j and zj are
coordinates on V . We will assume that for each j, zj 7→ kj+1(zj+1, zj) has compact

support where zj 7→ kj(z
j , zj−1) is defined and similarly for ǩj ; possibly we will

have to multiply by a smooth cut-off function that we however will suppress. Now,
consider

(5.5) T := lim
ε→0

Mε(z
`, wm) ∧

m∧
j=1

ǩj(w
j−1, wj) ∧ ω(w0) ∧

∧̀
j=1

kj(z
j , zj−1),

which is a pseudomeromorphic current on V `+m+2 supported on {z` = wm}; cf.
Proposition 2.2.5 Notice that M(z`, wm) ∧ ψ(wm) ∧ ϕ(z`) = π∗(T ∧ ξ), where
π : V `+m+2 → Vz`×Vwm is the natural projection and ξ is a suitable smooth form on
V `+m+2. In view of the paragraph following the dimension principle in Section 2.1,
it suffices to show that T and ∂̄T have the SEP with respect to {z` = wm}. Let
h = h(z`, wm) be a germ of a holomorphic tuple in V × V that is generically non-
vanishing on the diagonal; we will consider h also as a germ of a tuple on V `+m+2

and we denote its zero-set there by H. In view of Section 2.1, what we are to show
is that 1HT = 1H ∂̄T = 0.

Let Tk be the part of T corresponding to ωk(w
0) and notice that Tk is a pseu-

domeromorphic current of bidegree (∗, n(`+m+ 1)−m− `+ k). We will show that
T and ∂̄T have the SEP by double induction over `+m and k.

Assume first that ` = m = 0. Then Tk = M(z0, w0) ∧ ωk(w0) and we know
that Tk = [∆V ] ∧ ωk(w0) for w0 ∈ Vreg since ωk(w

0) is smooth there. Hence, since
[∆V ] has the SEP with respect to ∆V , 1HTk = 0 outside of {w0 ∈ Vsing} and it
follows that supp(1HTk) ⊂ {z0 = w0 ∈ Vsing}, which has codimension ≥ n + 1
in V × V . Since 1HT0 has bidegree (∗, n), the dimension principle implies that
1HT0 = 0. By Proposition 2.5, ωk = αkωk−1, where αk is smooth outside of V k,
which has codimension ≥ k + 1 in V . Hence, supp 1HT1 ⊂ {w0 ∈ V 1}, which has
codimension ≥ n + 2 in V × V . Since 1HT1 has bidegree (∗, n + 1), the dimension
principle implies that also 1HT1 = 0. Continuing in this way, we get that 1HTk = 0.
Hence, T = M(z0, w0) ∧ ω(w0) has the SEP with respect to ∆V and arguing as
in the paragraph following Lemma 5.3 we see that T = i∗ω. Since ∂̄ω = fω by
Proposition 2.5, it follows that ∂̄T = i∗∂̄ω = i∗fω and thus, ∂̄T has the SEP with
respect to ∆V .

5In this proof V j will mean either the Cartesian product of j copies of V or the jth set in (2.4).
We hope that it will be clear from the context what we are aiming at.
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Let now ` + m = s ≥ 1 in (5.5) and assume that T and ∂̄T have the SEP with
respect to {z` = wm} for `+m ≤ s− 1. Let 1 ≤ r ≤ `; if zr−1 6= zr then kr(z

r, zr−1)
is a smooth form times some structure form ω̃(zr−1). Hence, outside of {zr = zr−1},
T is a smooth form times the tensor product of

ω̃(zr−1)
r−1∧
j=1

kj(z
j , zj−1)

and some current T̃ , where T̃ is of the form (5.5) with `+m = s−r depending on the
variables zr, . . . , z` and w0, . . . , wm. From the induction hypothesis it thus follows
that 1HT and 1H ∂̄T have supports contained in {z0 = . . . = z`}. Similarly, let
1 ≤ r ≤ m. If wr−1 6= wr then ǩr(w

r−1, wr) is a smooth form times some structure
form ω̃(wr) and so, outside of {wr−1 = wr}, T is a smooth form times the tensor
product of

r−1∧
j=1

ǩj(w
j−1, wj) ∧ ω(w0)

and a current of the form (5.5) with ` + m = s − r depending on the variables
z0, . . . , z` and wr, . . . , wm. Thus, again from the induction hypothesis, it follows that
1HT and 1H ∂̄T have supports contained in {w0 = . . . = wm}. In addition, since T
vanishes outside of {z` = wm}, we have that the supports of 1HT and 1H ∂̄T must
be contained in the diagonal ∆V = {z0 = · · · = z` = wm = · · · = w0} ⊂ V `+m+2.
Hence, we see that 1HT and 1H ∂̄T have supports contained in ∆V ∩H, which has
codimension ≥ n(s+1)+1. Since 1HT0 has bidegree (∗, n(s+1)−s) and 1H ∂̄T0 has
bidegree (∗, n(s+ 1)− s+ 1) we have 1HT0 = 1H ∂̄T0 = 0 by the dimension principle.
Since T1 = ±α1(w0)T0 and α1 is smooth outside of V 1, which has codimension ≥ 2
in V , it follows that 1HT1 and 1H ∂̄T1 have supports in ∆V ∩ {w0 ∈ V 1}, which
then has codimension ≥ n(s + 1) + 2. The dimension principle then shows that
1HT1 = 1H ∂̄T1 = 0. By induction over k, using that Tk = ±αk(w0)Tk−1 with αk
smooth outside of V k, that codimV V

k ≥ k + 1, and the dimension principle, we
obtain 1HTk = 1H ∂̄Tk = 0 for all k. �

6. Serre duality

6.1. Local duality. Let V be a pure n-dimensional analytic subset of a pseudocon-
vex domain D ⊂ CN , let D′ b D be a strictly pseudoconvex subdomain, and let
V ′ = V ∩D′. Consider the complexes

(6.1) 0→ A 0,0(V ′)
∂̄−→ A 0,1(V ′)

∂̄−→ · · · ∂̄−→ A 0,n(V ′)→ 0

(6.2) 0→ Bn,0
c (V ′)

∂̄−→ Bn,1
c (V ′)

∂̄−→ · · · ∂̄−→ Bn,n
c (V ′)→ 0.

From Corollary 5.2 we have the trace map

(6.3) Tr : H0
(
A 0,•(V ′), ∂̄

)
×Hn

(
Bn,•
c (V ′), ∂̄

)
→ C, T r([ϕ], [ψ]) =

∫
V ′
ϕψ.

By [6, Theorem 1.2] the complex (6.1) is exact except for at the level 0 where the
cohomology is O(V ′), cf. the introduction.

Theorem 6.1. The complex (6.2) is exact except for at the top level and the pairing
(6.3) makes Hn(Bn,•

c (V ′)) the topological dual of the Frechét space H0(A 0,•(V ′)) =
O(V ′); in particular (6.3) is non-degenerate.
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Proof. Let ψ ∈ Bn,q
c (V ′) be ∂̄-closed. Moreover, let g be a weight in D′′×D′, where

D′′ ⊂ D′ is a neighborhood of suppψ, such that g is holomorphic in z and has
compact support in D′ζ , cf. Section 2.4, and let k(z, ζ) and p(z, ζ) be the integral

kernels defined by (2.20) and (2.21), respectively. Since ψ has compact support in
D′′, Theorem 1.1 shows that

(6.4) ψ(ζ) = ∂̄ζ

∫
V ′z

k(z, ζ) ∧ ψ(z) +

∫
V ′z

k(z, ζ) ∧ ∂̄ψ(z) +

∫
V ′z

p(z, ζ) ∧ ψ(z),

holds on V ′. The second term on the right hand side vanishes since ∂̄ψ = 0. Since
g is holomorphic in z the kernel p has degree 0 in dz̄j and hence, also the last term

vanishes if q 6= n. The first integral on the right hand side is in Bn,q−1
c (V ′) since g

has compact support in D′ζ and so (6.2) is exact except for at level n.

To see that Hn(Bn,•
c (V ′)) is the topological dual of O(V ′), recall that the topology

on O(V ′) ∼= O(D′)/J (D′) is the quotient topology, where JV be the sheaf in D
associated with V ⊂ D. It is clear that each [ψ] ∈ Hn(Bn,•

c (V ′)) yields a continuous
linear functional on O(V ′) via (6.3). Moreover, if q = n and

∫
V ′ ϕψ = 0 for all

ϕ ∈ O(V ′) then, since p(z, ζ) is holomorphic in z by the choice of g, the last integral
on the right hand side of (6.4) vanishes and thus [ψ] = 0. Hence, Hn(Bn,•

c (V ′)) is a
subset of the topological dual of O(V ′).

To see that there is equality, let λ be a continuous linear functional on O(V ′). By
composing with the projection O(D′)→ O(D′)/J (D′) we get a continuous functional

λ̃ on O(D′). By definition of the topology on O(D′), λ̃ is carried by some compact

subset K b D′. By the Hahn-Banach theorem, λ̃ can be extended to a continuous
linear functional on C0(D′) and so it is given as integration against some measure
µ on D′ that has support in a neighborhood U(K) b D′ of K. Let g̃ be a weight
in U(K) × D′ that depends holomorphically on z ∈ U(K) and that has compact
support in D′ζ , and let p̃(z, ζ) be the integral kernel defined from g̃ as in (2.21), and

let P be the corresponding integral operator. Let f ∈ O(V ′) and define the sequence
fε(z) ∈ O(K) by

fε(z) =

∫
V ′ζ

χε(ζ)p̃(z, ζ)f(ζ),

where, as above, χε = χ(|h|/ε) and h = h(ζ) is a holomorphic tuple such that
{h = 0} = Vsing. For each z in a neighborhood in V ′ of K ∩ V ′ we have that
lim fε(z) = Pf(z) = f(z) by [6, Theorem 1.4]. We claim that fε in fact converges

uniformly in a neighborhood of K in D′ to some f̃ ∈ O(K), which then is an extension
of f to a neighborhood in D′ of K. To see this, first notice by (2.21) that p̃(z, ζ)
is a sum of terms ωk(ζ) ∧ pk(z, ζ) where pk(z, ζ) is smooth in both variables and
holomorphic for z ∈ U(K). By Proposition 2.5, the ωk are almost semi-meromorphic.
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The claim then follows from a simple instance of [18, Theorem 1]6. We now get

λ(f) = lim
ε→0

∫
z
fε(z)dµ(z) = lim

ε→0

∫
z

∫
V ′ζ

χε(ζ)p̃(z, ζ)f(ζ)dµ(z)

= lim
ε→0

∫
V ′ζ

f(ζ)χε(ζ)

∫
z
p̃(z, ζ)dµ(z)

= lim
ε→0

∫
V ′ζ

f(ζ)χε(ζ)
∑
k

ωk(ζ) ∧
∫
z
pk(z, ζ)dµ(z)

=

∫
V ′ζ

f(ζ)
∑
k

ωk(ζ) ∧
∫
z
pk(z, ζ)dµ(z).

But ζ 7→
∫
Vz
pk(z, ζ)dµ(z) is smooth and compactly supported in D′ and so λ is

given as integration against some element ψ ∈ Bn,n
c (V ′); hence λ is realized by the

cohomology class [ψ] and the theorem follows. �

Corollary 6.2. Let F → V be a vector bundle, F = O(F ) the associated locally free
O-module, and F ∗ = O(F ∗). Then the following pairing is non-degenerate

Tr : H0(V ′,F )×Hn
(
F ∗ ⊗Bn,•

c (V ′)
)
→ C, ([ϕ], [ψ]) 7→

∫
V ′
ϕψ.

By Theorem 1.2, if X is Cohen-Macaulay, then the complex (F ∗ ⊗Bn,•
V , ∂̄) is a

resolution of F ∗ ⊗ ωn,0V and so we get a non-degenerate pairing

H0(V ′,F )×Hn
c (V ′,F ∗ ⊗ ωn,0V )→ C.

6.2. Global duality. From the local duality an abstract global duality follows by a
patching argument using Čech cohomology, see [27], cf. also [11, Theorem (I)]. To see
that this abstract global duality is realized by Theorem 1.3 we will make this patching
argument explicit using a perhaps non-standard formalism for Čech cohomology; cf.
[23, Section 7.3]

Let F be a sheaf on X and let V = {Vj} be a locally finite covering of X. We let

Ck(V,F ) be the group of formal sums∑
i0···ik

fi0···ikVi0 ∧ · · · ∧ Vik , fi0···ik ∈ F (Vi0 ∩ · · · ∩ Vik)

with the suggestive computation rules, e.g., f12V1∧V2+f21V2∧V1 = (f12−f21)V1∧V2.
Each element of Ck(V,F ) thus has a unique representation of the form∑

i0<···<ik

fi0···ikVi0 ∧ · · · ∧ Vik

that we will abbreviate as
∑′
|I|=k+1 fIVI . The coboundary operator δ : Ck(V,F )→

Ck+1(V,F ) can in this formalism be taken to be the formal wedge product

δ(
′∑

|I|=k+1

fIVI) = (
′∑

|I|=k+1

fIVI) ∧ (
∑
j

Vj).

6Take p = 0, q = 1, and µ = 1 in this theorem.
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If V is a Leray covering for F , then Hk(C•(V,F ), δ) ∼= Hk(X,F ). Indeed, let
(F •, d) be a flabby resolution of F . Then Hk(X,F ) = Hk(F •(X), d) and apply-
ing standard homological algebra to the double complex C•(V,F •) one shows that

Hk(C•(V,F ), δ) ' Hk(F •(X), d). If F is fine, i.e., a E0,0
X -module, then the complex

(C•(V,F ), δ) is exact except for at level 0 where H0(C•(V,F ), δ) ∼= H0(X,F ).

Let G ′ be a precosheaf on X. Recall, see, e.g., [11, Section 3], that a precosheaf
of abelian groups is an assignment that to each open set V associates an abelian
group G ′(V ), together with inclusion maps iVW : G ′(V ) → G ′(W ) for V ⊂ W such

that iV
′

W = iVW i
V ′
V if V ′ ⊂ V ⊂ W . We define C−kc (V,G ′) to be the group of formal

sums ∑
i0···ik

gi0···ikV
∗
i0 ∧ · · · ∧ V

∗
ik
,

where gi0···ik ∈ G ′(Vi0 ∩ · · · ∩ Vik) and only finitely many gi0···ik are non-zero; for
k < 0 we let C−kc (V,G ′) = 0. We define a coboundary operator δ∗ : C−kc (V,G ′) →
C−k+1
c (V,G ′) by formal contraction

δ∗(
′∑

|I|=k+1

gIV
∗
I ) =

∑
j

Vjy
′∑

|I|=k+1

gIV
∗
I ,

see (6.5) and (6.6) below. If G is a sheaf (of abelian groups), then V → Gc(V ) is
a precosheaf G ′ by extending sections by 0. We will write C−kc (V,G ) in place of
C−kc (V,G ′).

Assume now that there, for every open V ⊂ X, is a map F (V ) ⊗ G ′(V ) →
F ′(V ) where F ′ and G ′ are precosheaves on X. We then define a contraction map
y : Ck(V,F )×C−`c (V,G ′)→ Ck−`c (V,F ′) by using the following computation rules.

(6.5) ViyV
∗
j =

{
1, i = j
0, i 6= j

,

(6.6) Viy(V
∗
j0 ∧ · · · ∧ V

∗
j`

) =
∑̀
m=0

(−1)mV ∗j0 ∧ · · · (ViyV
∗
jm) · · · ∧ V ∗j` ,

(Vi0 ∧ · · · ∧ Vik)yV ∗J =

{
0, k > |J |

((Vi0 ∧ · · · ∧ Vik−1
))y(VikyV

∗
J ), k ≤ |J | .

If F ′ and G ′ are sheaves we define in a similar way also the contraction y : C−kc (V,G ′)×
C`(V,F )→ C`−k(V,F ′). If g = gIV

∗
I and f = fJVJ , then gyf = gIfJV

∗
I yVJ , where

gIfJ is the extension to
⋂
i∈J\I Vi by 0; this is well-defined since gIfJ is 0 in a neigh-

borhood of the boundary of
⋂
j∈J Vj in

⋂
i∈J\I Vi.

Lemma 6.3. If G is a fine sheaf, then

H−k(C•c (V,G ), δ∗) =

{
0, k 6= 0

H0
c (X,G ), k = 0

.

Proof. Let {χj} be a smooth partition of unity subordinate to V and let χ =∑
j χjV

∗
j . Since δ∗χ =

∑
χj = 1 we have

δ∗(χ ∧ g) = δ∗(χ) · g − χ ∧ δ∗(g) = g − χ ∧ δ∗(g)
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for g ∈ C−kc (V,G ). Hence, if g is δ∗-closed, then g is δ∗-exact. It follows that the
complex

· · · δ∗−→ C−1
c (V,G )

δ∗−→ C0
c (V,G )

δ∗−→ H0
c (X,G )→ 0

is exact and so the lemma follows. �

—

Let X be a paracompact reduced complex space of pure dimension n. Let ℵ be
the precosheaf on X defined by

ℵ(V ) = Hn(Bn,•
c (V ), ∂̄),

iVW : ℵ(V )→ ℵ(W ), iVW ([ψ]) = [ψ̃],

where ψ ∈ Bn,n
c (V ) and ψ̃ is the extension of ψ by 0.7 Let V = {Vj} be a suitable

locally finite Leray covering of X and consider the complexes

(6.7) 0→ C0(V,OX)
δ−→ C1(V,OX)

δ−→ · · ·

(6.8) · · · δ∗−→ C−1
c (V,ℵ)

δ∗−→ C0
c (V,ℵ)→ 0.

By Theorem 6.1 we have non-degenerate pairings

Tr : Ck(V,OX)× C−kc (V,ℵ)→ C, T r(f, g) =

∫
X
fyg,

induced by the trace map (6.3); in fact, Theorem 6.1 shows that these pairings
make the complex (6.8) the topological dual of the complex of Frechét spaces (6.7).
Moreover, if f ∈ Ck−1(V,OX) and g ∈ C−kc (V,ℵ) we have

Tr(δf, g) =

∫
X

(δf)yg =

∫
X

(
f ∧

∑
j

Vj
)
yg =

∫
X
fy
(
(
∑
j

Vj)yg
)

(6.9)

=

∫
X
fy(δ∗g) = Tr(f, δ∗g).

Hence, we get a well-defined pairing on cohomology level

(6.10) Tr : Hk (C•(V,OX))×H−k (C•c (V,ℵ))→ C, T r([f ], [g]) =

∫
X
fyg.

Since V is a Leray covering we have

(6.11) Hk (C•(V,OX)) ∼= Hk(X,OX) ∼= Hk
(
A 0,•(X)

)
,

and these isomorphisms induce canonical topologies onHk(X,OX) andHk
(
A 0,•(X)

)
;

cf. [27, Lemma 1]. To understand H−k (C•c (V,ℵ)), consider the double complex

K−i,j := C−ic (V,Bn,j
X ),

where the map K−i,j → K−i+1,j is the coboundary operator δ∗ and the map K−i,j →
K−i,j+1 is ∂̄. We have that K−i,j = 0 if i < 0 or j < 0 or j > n. Moreover, the “rows”
K−i,• are, by Theorem 6.1, exact except for at the nth level where the cohomology is
C−ic (V,ℵ); the “columns”K•,j are exact except for at level 0 where the cohomology is

Bn,j
c (X) by Lemma 6.3 since the sheaf Bn,j

X is fine. By standard homological algebra
(e.g., a spectral sequence argument) it follows that

7In view of Theorem 6.1 and [11, Proposition 8 (a)], ℵ is in fact a cosheaf.
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(6.12) H−k (C•c (V,ℵ)) ∼= Hn−k (Bn,•
c (X), ∂̄

)
,

cf. also the proof of Theorem 1.3 below. The vector space C−kc (V,ℵ) has a natural
topology since it is the topological dual of the Frechét space Ck(V,OX); therefore
(6.12) gives a natural topology on Hn−k(Bn,•

c (X)).

Lemma 6.4. Assume that Hk(X,OX) and Hk+1(X,OX), considered as topological
vector spaces, are Hausdorff. Then the pairing (6.10) is non-degenerate.

Proof. Since (6.8) is the topological dual of (6.7) it follows (see, e.g., [27, Lemma 2])
that the topological dual of

(6.13) Ker
(
δ : Ck(V,OX)→ Ck+1(V,OX)

)
/Im

(
δ : Ck−1(V,OX)→ Ck(V,OX)

)
equals
(6.14)

Ker
(
δ∗ : C−kc (V, ωn,nX )→ C−k+1

c (V, ωn,nX )
)
/Im

(
δ∗ : C−k−1

c (V, ωn,nX )→ C−kc (V, ωn,nX )
)
.

Since Hk(X,OX) and Hk+1(X,OX) are Hausdorff it follows that the images of
δ : Ck−1 → Ck and δ : Ck → Ck+1 are closed. Since the image of the latter map
is closed it follows from the open mapping theorem and the Hahn-Banach theorem
that also the image of δ∗ : C−k−1

c → C−kc is closed. The images of δ and δ∗ in (6.13)
and (6.14) are thus closed and so the closure signs may be removed. Hence, (6.10)
makes H−k(C•c (V, ωn,nX )) the topological dual of Hk(X,OX). �

Remark 6.5. If X is compact the Cartan-Serre theorem says that the cohomology of
coherent sheaves on X is finite dimensional, in particular Hausdorff. In the compact
case the pairing (6.10) is thus always non-degenerate. The pairing (6.10) is also
always non-degenerate if X is holomorphically convex since then, by [26, Lemma II.1],
Hk(X,S ) is Hausdorff for any coherent sheaf S .

If X is q-convex it follows from the Andreotti-Grauert theorem that for any co-
herent sheaf S , Hk(X,S ) is Hausdorff for k ≥ q. Hence, in this case, (6.10) is
non-degenerate for k ≥ q.

Proof of Theorem 1.3. For notational convenience we assume that F = OX . By
Lemma 6.4 we know that (6.10) is non-degenerate. In view of the Dolbeault isomor-
phisms (6.11) and (6.12) we get an induced non-degenerate pairing

Tr : Hk
(
A 0,•(X)

)
×Hn−k (Bn,•

c (X))→ C.

It remains to see that this induced trace map is realized by ([ϕ], [ψ]) 7→
∫
X ϕ∧ψ; for

this we will make (6.11) and (6.12) explicit.
Let {χj} be a partition of unity subordinate to V, and let χ =

∑
j χjV

∗
j . We will

use the convention that forms commute with all V ∗i and Vj , i.e., if ξ is a differential
form then

ξV ∗I = V ∗I ξ, V ∗I y(ξVJ) = ξV ∗I yVJ .

Moreover, we let ∂̄(ξV ∗I ) = ∂̄ξV ∗I . We now let

Tk,j : Ck(V,OX)→ Ck−j−1(V,A 0,j
X ), Tk,j(f) = (χ ∧ (∂̄χ)j)yf,



26 JEAN RUPPENTHAL & HÅKAN SAMUELSSON KALM & ELIZABETH WULCAN

where we put C−1(V,A 0,k
X ) = A 0,k(X) and C`(V,A 0,k

X ) = 0 for ` < −1.8 Using that
χyV = 1 it is straightforward to verify that

(6.15) Tk,j(δf̃) = δTk−1,j(f̃) + (−1)k−j ∂̄Tk−1,j−1(f̃), f̃ ∈ Ck−1(V,OX).

It follows that if f ∈ Ck(V,OX) is δ-closed then Tk,k(f) is ∂̄-closed and if f is δ-exact
then Tk,k(f) is ∂̄-exact. Thus Tk,k induces a map

Dol : Hk(C•(V,OX))→ Hk(A 0,•(X)), Dol([f ]δ) = [Tk,k(f)]∂̄ ;

this is a realization of the composed isomorphism (6.11).
To make (6.12) explicit, let [g] ∈ C−kc (V,ℵ), where g ∈ C−kc (V,Bn,n

X ), be δ∗-

closed. This means that there is a τn−1 ∈ C−k+1
c (V,Bn,n−1

X ) such that δ∗g = ∂̄τn−1.
Hence, ∂̄δ∗τn−1 = δ∗∂̄τn−1 = δ∗δ∗g = 0 and so by Theorem 6.1 there is a τn−2 ∈
C−k+2
c (V,Bn,n−2

X ) such that δ∗τn−1 = ∂̄τn−2. Continuing in this way we obtain,

for all j, τn−j ∈ C−k+j
c (V,Bn,n−j

X ) such that δ∗τn−j = ∂̄τn−j−1. It follows that

δ∗τn−k ∈ Bn,n−k
c (X), cf. the proof of Lemma 6.3, and that it is ∂̄-closed. One can

verify that if [g] ∈ C−kc (V,ℵ) is δ∗-exact then δ∗τn−k is ∂̄-exact and so we get a
well-defined map

Dol∗ : H−k(C•c (V,ℵ))→ Hn−k(Bn,•
c (X)), Dol∗([g]∂̄) = [δ∗τn−k]∂̄ ;

this is a realization of the isomorphism (6.12).
Let now f ∈ Ck(V,OX) be δ-closed and let [g] ∈ C−kc (V,ℵ) be δ∗-closed. One

checks that δTk,0(f) = (−1)kf and thus, by (6.15), we have

δTk,j(f) =

{
(−1)k−j ∂̄Tk,j−1(f), 1 ≤ j ≤ k
(−1)kf, j = 0

.

Using this and the computation in (6.9) we get∫
X
fyg = (−1)k

∫
X
δTk,0(f)yg = (−1)k

∫
X
Tk,0(f)yδ∗g = (−1)k

∫
X
Tk,0(f)y∂̄τn−1

= (−1)k+1

∫
X
∂̄Tk,0(f)yτn−1 = (−1)2k

∫
X
δTk,1(f)yτn−1

= (−1)2k

∫
X
Tk,1(f)yδ∗τn−1 = · · · = (−1)k(k+1)

∫
X
Tk,k(f)yδ∗τn−k

=

∫
X

Dol([f ]) ∧Dol∗([g]).

�

7. Compatibility with the cup product

Assume that X is compact and Cohen-Macaulay. In view of [6, Theorem 1.2] and
Theorem 1.2 we have that

(7.1) Hk(X,OX) ∼= Hk
(
A 0,•(X), ∂̄

)
and Hk(X,ωn,0X ) ∼= Hk

(
Bn,•(X), ∂̄

)
,

cf. the introduction. Now we make these Dolbeault isomorphisms explicit in a slightly
different way than in the previous section: We adopt in this section the standard

8In fact, the image of Tk,j is contained in Ck−j−1(V, E0,jX ).
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definition of Čech cochain groups so that now

Cp(V,F ) :=
∏

α0 6=α1 6=···6=αp

F (Vα0 ∩ · · · ∩ Vαp)

for a sheaf F on X and a locally finite open cover V = {Vα}.
Let V be a Leray covering and let {χα} be a smooth partition of unity subordinate

to V. Following [16, Chapter IV, §6], given Čech cocycles c ∈ Cp(V,OX) and c′ ∈
Cq(V, ωn,0X ) we define Čech cochains f ∈ C0(V,A 0,p

X ) and f ′ ∈ C0(V,Bn,q
X ) by

fα =
∑

ν0,...,νp−1

∂̄χν0 ∧ · · · ∧ ∂̄χνp−1 · cν0···νp−1α in Vα,

f ′α =
∑

ν0,...,νq−1

∂̄χν0 ∧ · · · ∧ ∂̄χνq−1 ∧ c′ν0···νq−1α in Vα.

In fact, f and f ′ are cocycles and define ∂̄-closed global sections

(7.2) ϕ =
∑
νp

χνpfνp =
∑

ν0,...,νp

χνp ∂̄χν0 ∧ · · · ∧ ∂̄χνp−1 · cν0···νp ∈ A 0,p(X),

(7.3) ϕ′ =
∑
νq

χνqf
′
νq =

∑
ν0,...,νq

χνq ∂̄χν0 ∧ · · · ∧ ∂̄χνq−1 ∧ c′ν0···νq ∈ Bn,q(X).

The Dolbeault isomorphisms (7.1) are then realized by

Hp(X,OX)
'−→ Hp(A 0,•(X)), [c] 7→ [ϕ], and

Hq(X,ωn,0X )
'−→ Hq(Bn,•(X)), [c′] 7→ [ϕ′],

respectively.
We can now show that the cup product is compatible with our trace map on the

level of cohomology.

Proposition 7.1. The following diagram commutes.

Hp(X,OX)×Hq(X,ωn,0X )
∪−→ Hp+q(X,ωn,0X )

↓ ↓
Hp(A 0,•(X))×Hq(Bn,•(X))

∧−→ Hp+q(Bn,•(X)),

where the vertical mappings are the Dolbeault isomorphisms.

Proof. Let V = {Vα} be a Leray covering of X. Let [c] ∈ Hp(X,OX) and [c′] ∈
Hq(X,ωn,0X ), where c ∈ Cp(V,OX) and c′ ∈ Cq(V, ωn,0X ) are cocycles. Then c ∪ c′ ∈
Cp+q(V, ωn,0X ), defined by

(c ∪ c′)α0···αp+q = cα0···αp · c′αp···αp+q in Vα0 ∩ · · · ∩ Vαp+q ,

is a cocycle representing [c]∪[c′] ∈ Ȟp+q(X,ωn,0X ). The image of [c]∪[c′] inHp+q(Bn,•(X))
is the cohomology class defined by the ∂̄-closed current

(7.4)
∑

ν0,...,νp+q

χνp+q ∂̄χν0 ∧ · · · ∧ ∂̄χνp+q−1 ∧ cν0···νp · c′νp···νp+q ∈ Bn,p+q(X).

The images of [c] and [c′] in Dolbeault cohomology are, respectively, the coho-
mology classes of the ∂̄-closed currents ϕ and ϕ′ defined by (7.2) and (7.3). Notice
that

ϕ|Vνp =
∑

ν0,...,νp−1

∂̄χν0 ∧ · · · ∧ ∂̄χνp−1 · cν0···νp−1νp .
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Therefore, ϕ ∧ ϕ′ is given by (7.4) as well. �

Notice that Hn(X,ωn,0X ) ' C (e.g. as it is the dual of H0(X,OX)) and any two
realizations of this isomorphism are the same up to a multiplicative constant. In the
compact Cohen-Macaulay case it thus follows from Proposition 7.1 that the duality
of this paper, up to a multiplicative constant, is the same as the abstractly defined
duality in complex and algebraic geometry.
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