EXPLICIT SERRE DUALITY ON COMPLEX SPACES

JEAN RUPPENTHAL & HAKAN SAMUELSSON KALM & ELIZABETH WULCAN

ABSTRACT. In this paper we use recently developed calculus of residue currents
together with integral formulas to give a new explicit analytic realization, as well as
a new analytic proof, of Serre duality on any reduced pure n-dimensional paracom-
pact complex space X. At the core of the paper is the introduction of certain fine
sheaves 57 of currents on X of bidegree (n, ¢), such that the Dolbeault complex
(#%°, 9) becomes, in a certain sense, a dualizing complex. In particular, if X is
Cohen-Macaulay then (%%, 0) is an explicit fine resolution of the Grothendieck
dualizing sheaf.

1. INTRODUCTION

Let X be a complex n-dimensional manifold and let ' — X be a complex vector
bundle. Let £%4(X, F) denote the space of smooth F-valued (0, ¢)-forms on X and
let £%(X, F*) denote the space of smooth compactly supported (n, q)-forms on X
with values in the dual vector bundle F*. Serre duality, [29], can be formulated
analytically as follows: There is a non-degenerate pairing

(1.1) H (EM(X,F),0) x H" 1 (EM*(X,F*),d) = C,

(15 H/ww,

provided that H1(£%*(X, F),d) and Hq+1(50 *(X,F),0) are Hausdorff considered as
topological vector spaces. If we set . := O(F) and F* .= O(F*) and let 2% denote
the sheaf of holomorphic n-forms on X, then one can, via the Dolbeault isomorphism,
rephrase Serre duality more algebraically: There is a non-degenerate pairing

(1.2) HY(X,.7)x H™ X, F* @ Q%) — C,

realized by the cup product, provided that HY(X,.#) and H4"(X,.%) are Hausdorff.
In this formulation Serre duality has been generalized to complex spaces, see, e.g.,
Hartshorne [19], [20], and Conrad [15] for the algebraic setting and Ramis-Ruget
[27] and Andreotti-Kas [11] for the analytic. In fact, if X is a pure n-dimensional
paracompact complex space that in addition is Cohen-Macaulay, then again there is
a perfect pairing (1.2) if we construe 2% as the Grothendieck dualizing sheaf that
we will get back to shortly. If X is not Cohen-Macaulay things get more involved
and H. (X, 7* ® 2%) is replaced by Ext, 9(X;.#,K?*), where K*® is the dualizing
complex in the sense of Ramis-Ruget [27], that is a certain complex of &x-modules
with coherent cohomology.
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To our knowledge there is no such explicit analytic realization of Serre duality as
(1.1) in the case of singular spaces. In fact, verbatim the pairing (1.1) cannot realize
Serre duality in general since the Dolbeault complex (S?(", 0)! in general does not
provide a resolution of Ox. In this paper we replace the sheaves of smooth forms by
certain fine sheaves of currents &%)(()’q and #y"" 7 that are smooth on X,., and such
that (1.1) with £%* and £™* replaced by 27** and %™*, respectively, indeed realizes
Serre duality.

We will say that a complex (2%,0) of fine sheaves is a dualizing Dolbeault com-
plex for a coherent sheaf .7 if (2%,6) has coherent cohomology and if there is
a non-degenerate pairing H4(X,.7) x H" 1(22(X),0) — C. The relation to the
Ramis-Ruget dualizing complex is not completely clear to us, but we still find this
terminology convenient. For instance, (93?{", 0) is a dualizing Dolbeault complex for
Ox.

At this point it is appropriate to mention that Ruget in [28] shows, using Coleff-
Herrera residue theory, that there is an injective morphism K% — €y’*, where ¢5"*
is the sheaf of germs of currents on X of bidegree (n,e).

Let X be a reduced complex space of pure dimension n. Recall that every point
in X has a neighborhood V' that can be embedded into some pseudoconvex domain
D c CV,i:V — D, and that 0y = Op/Jyv, where Jy is the radical ideal sheaf
in D defining i(V'). Similarily, a (p, ¢)-form ¢ on V,¢4 is said to be smooth on V' if
there is a smooth (p, ¢)-form ¢ in D such that ¢ = i*@ on V4. It is well known that
the so defined smooth forms on V' define an intrinsic sheaf £{¢ on X. The currents
of bidegree (p,q) on X are defined as the dual of the space of compactly supported
smooth (n—p, n—q)-forms on X. More concretely, given a local embeddingi: V' — D,
for any (p, q)-current pon V', i := i,u is a current of bidegree (p+ N —n,q+ N —n)
in D with the property that fi.§ = 0 for every test form £ in D such that i*{|y,,, = 0.
Conversely, if i is a current in D with this property, then it defines a current on V
(with a shift in bidegrees). We will often suggestively write [ u A€ for the action of
the current p on the test form €.

A current p on X is said to have the standard extension property (SEP) with
respect to a subvariety Z C X if for all open U C X, x(|h|/€)puly — plu as e — 0,
where 1|y denotes the restriction of p to U, x is a smooth regularization of the
characteristic function of [1,00) C R, and h is any holomorphic tuple that does not
vanish identically on any irreducible component of Z NU. If Z = X we simply say
that p has the SEP on X. In particular, two currents with the SEP on X are equal
on X if and only if they are equal on X.,.

We will say that a current g on X has principal value-type singularities if p is
locally integrable outside a hypersurface and has the SEP on X. Notice that if y has
principal value-type singularities and h is a generically non-vanishing holomorphic
tuple such that p is locally integrable outside {h = 0}, then the action of p on a test
form £ can be computed as
fimy f x([hl/e)u A&,

e—0

where the integral now is an honest integral of an integrable form on the manifold
Xreg-

1See below for the definition of ERY; the sheaf of smooth (p, g)-forms on X.
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By using integral formulas and residue theory, Andersson and the second author
introduced in [6] fine sheaves d)g’q (i.e., modules over 59(’0) of (0, g)-currents with
the SEP on X, containing £2%, and coinciding with Egéfeq on X,cg, such that the
associated Dolbeault complex yields a resolution of Oy, see [6, Theorem 1.2]. Notice
that it follows that H?(«/%*(X),0) ~ H(X,Ox). Moreover, by a standard con-
struction it then follows that each cohomology class in H?(«7%*(X), 0) has a smooth
representative; cf. Section 7 below. Similar to the construction of the .o/-sheaves in
[6] we introduce our sheaves #Y? of (n,q)-currents and show that these currents
have the SEP on X, that £y C #'y?, and that #Y? coincides with £y on Xi.¢g; cf.
Proposition 4.3. Moreover, by Theorem 4.4, 0: ,%n 4 — BY 2+ where of course 9 is
defined by duality: [ O NE ==+ Jun 0¢ for currents p and test forms £ on X. By
adapting the constructions in [6] to the setting of (n,q)-forms we get the following
semi-global homotopy formula for 0.

Theorem 1.1. Let V' be a pure n-dimensional analytic subset of a pseudoconvex
domain D C CN, let D' € D, and put V! =V N D'. There are integral operators

A BV = BNV, P B V) = BV,
such that if v € B™4(V), then the homotopy formula
= 0X Y+ K () + Py
holds on V'.

The integral operators # and & are given by kernels k(z,¢) and p(z,¢) that are
respectively integrable and smooth on Reg(V,) X Reg(VC’) and that have principal
value-type singularities at the singular locus of V' x V. In particular, one can compute

1 and P as
AP(Q) =1lim [ x(|h(2)|/)k(z,O)Np(2),  PP(C) = lg%/v x(|h(2)[/€)p(z, )Np(z),

e—0 V.

where x is as above, h is a holomorphic tuple such that {h = 0} = V3,4, and where
the limit is understood in the sense of currents. We use our integral operators to
prove the following result.

Theorem 1.2. Let X be a reduced complex space of pure dimension n. The coho-

mology sheaves wy! := H#1( B, ) of the sheaf complex
(1.3) 0—>@§50—>%§51i>~-i>%§5"—>0

are coherent. If X 1is C’Ohen—Macaulay, then
(1.4) 0wl 0 2y gnt Oy O g g
18 exact.

In fact, our proof of Theorem 1.2 shows that if V C X is identified with an
analytic codimension s subset of a pseudoconvex domain D C CV, then w@’q =
Ext"T(Op ) Tv, 25), where 25 is the canonical sheaf on D. Hence, we get a con-
crete analytic realization of these &z7-sheaves.

The sheaf wg’o of d-closed currents in %’3’0 is in fact equal to the sheaf of O-closed
meromorphic currents on V in the sense of Henkin-Passare [21, Definition 2|, cf.
[6, Example 2.8]. This sheaf was introduced earlier by Barlet in a different way in

[12]; cf. also [21, Remark 5]. In case X is Cohen-Macaulay &« (0p/Jv, 2¥) is by



4 JEAN RUPPENTHAL & HAKAN SAMUELSSON KALM & ELIZABETH WULCAN

definition the Grothendieck dualizing sheaf. Thus, (1.4) can be viewed as a concrete
analytic fine resolution of the Grothendieck dualizing sheaf in the Cohen-Macaulay
case.

Let ¢ and v be sections of szf)g’q and ,%g(’q/ respectively. Since ¢ and 1) then are
smooth on the regular part of X, the exterior product ¢|x,., A ¥|x,., is a smooth
(n,q+¢')-form on X, In Theorem 5.1 we show that ¢|x,., A ¥|x,., has a natural
extension across Xging as a current with principal value-type singularities; we denote
this current by ¢ A ¢. Moreover, it turns out that the Leibniz rule d(¢ A ¢) =
dp A + (—1)%p A Otp holds. Now, if ¢ =n — g and ¥ (or ¢) has compact support,
then [ A4 (ie., the action of ¢ A ¢ on 1) gives us a complex number. Since the
Leibniz rule holds we thus get a pairing, a trace map, on cohomology level:

Tr: HY (o/%*(X),0) x H" 1 (#)*(X),0) — C,

Tr(lelg, [¥]5) = /X o N,

where .27%9(X) denotes the global sections of d)g’q and %."%(X) denotes the global
sections of Y with compact support. It causes no problems to insert a locally free
sheaf: If F' — X is a vector bundle, .# = @(F') the associated locally free sheaf, and
F* = O(F*) the dual sheaf, then the trace map gives a pairing .# ® #%4(X) x .F*®
B 1(X) — C.

Theorem 1.3. Let X be a paracompact reduced complex space of pure dimension

n and Z a locally free sheaf on X. If HY(X,.Z) and H 1 (X,.F), considered as
topological vector spaces, are Hausdorff (e.g., finite dimensional), then the pairing

HY (7 © o/%(X),8) x H" (F* © B"*(X),d) = C, ([@],[¢])H/}(¢A1/J

s non-degenerate.

Since the «7-cohomology has smooth representatives, it follows that if X is compact
and v is a smooth O-closed (n,q)-form on X, then there is a u € %™ 1(X) (in
particular v is smooth on X,.4) such that Ou = v if and only if fX p A1 =0 for all
smooth 0-closed (0,n — ¢)-forms ¢.

Notice also that, by [6, Theorem 1.2], the complex (% ®sz%§-", 0) is a fine resolution
of % and so, via the Dolbeault isomorphism, Theorem 1.3 gives us a non-degenerate
pairing

HYX,7)x H"1(F* @ #7*(X),0) — C.
The complex (F* @ By°, 0) is thus a concrete analytic dualizing Dolbeault complex
for #. If X is Cohen-Macaulay, then (F* ® #%°,0) is, by Theorem 1.2 above,
a fine resolution of the sheaf .#* ® w?(’o and so Theorem 1.3 yields in this case a
non-degenerate pairing

HY(X,7) x H (X, 7* @ wy’) = C.

In Section 7 we show that this pairing also can be realized as the cup product in
Cech cohomology.

Remark 1.4. By [27, Théoréme 2] there is another non-degenerate pairing

HI(X,7)x Ext 1(X;.7,K%) —» C
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if HY(X,.Z) and HI™ (X, %) are Hausdorff. In view of this we believe that one can
show that, under the same assumption, the pairing

HY(F @ 42%(X),0) x H" 1 (F* @ #"*(X),0) = C, ([¢],[¥]) — / o AP
X
is non-degenerate but we do not pursue this question in this paper.

Acknowledgment: We would like to thank Mats Andersson for valuable discus-
sions and comments that have simplified some proofs significantly. We would also
like to thank the referee for many important comments.

2. PRELIMINARIES

Our considerations here are local or semi-global so let V' be a pure n-dimensional
analytic subset of a pseudoconvex domain D C CV. Throughout we let kK = N —n
denote the codimension of V.

2.1. Pseudomeromorphic currents on a complex space. In C, the principal
value current 1/z™ can be defined, e.g., as the limit as ¢ — 0 in the sense of currents
of x(|h(z)|/€)/z™, where x is a smooth regularization of the characteristic function
of [1,00) C R and h is a holomorphic function vanishing at z = 0, or as the value at
A = 0 of the analytic continuation of the current-valued function \ ~— |h(2)|?*/2™.
Regularizations of the form x(|h|/€)u of a current p occur frequently in this paper
and throughout x will denote a smooth regularization of the characteristic func-
tion of [1,00) C R. The residue current 9(1/2™) can be computed as the limit of
Ox(|h(2)|/€)/2™ or as the value at A = 0 of X ~ 9|h(z)[>}/2z™. Since tensor products
of currents are well-defined we can form the current

5 1 5 1 (2)
(21) T:a mi /\/\8 My A Myt 1 Mn
2 2r 2.1 " 2n
in C?, where my, ..., m, are positive integers, m,,1, ..., m, are nonnegative integers,

and 7 is a smooth compactly supported form. Notice that 7 is anti-commuting in
the residue factors 9(1/ z;-nj ) and commuting in the principal value factors 1/z,"*. A
current of the form (2.1) is called an elementary pseudomeromorphic current and we
say that a current g on V' is pseudomeromorphic, u € PM(V), if it is a locally finite
sum of pushforwards m,7 = 7} - - - 7l7 under maps
verm, Ly T yo iy,

where each 77 is either a modification, a simple projection V7 = VJi=1 x Z — Vi—1,
or an open inclusion, and 7 is an elementary pseudomeromorphic current on V*.
The sheaf of pseudomeromorphic currents on V is denoted PMy . Since the class
of elementary currents is closed under 0 and 0 commutes with push-forwards it
follows that PMy is closed under 9. Pseudomeromorphic currents were originally
introduced in [9] but with a more restrictive definition; simple projections were not
allowed. In this paper we adopt the definition of pseudomeromorphic currents in [6].

Example 2.1. Let f € (V) be generically non-vanishing and let a be a smooth
form on V. Then a/f is a semi-meromorphic form on V' and it defines a semi-
meromorphic current, also denoted «/f, on V' by

. 16
(22) e~ tim [ x(hl/0% e
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where £ is a test form on V and h € (V) is generically non-vanishing and vanishes on
{f = 0}. That (2.2) indeed gives a well-defined current is proved in [22]; the existence
of the limit in (2.2) relies on Hironaka’s theorem on resolution of singularities. Let
7: V — V be a smooth modification such that {7*f = 0} is a normal crossings
divisor. Locally on V one can thus choose coordinates so that 7*f is a monomial.
One can then show that the semi-meromorphic current o/ f is the push-forward under
7 of elementary pseudomeromorphic currents (2.1) with » = 0; hence, o/ f € PM(V).

The (0, 1)-current d(1/f) € PM(V) is the residue current of f. Since the action
of 1/ f on test forms is given by (2.2) with a = 1 it follows from Stokes’ theorem that

1, [ Al

O

One crucial property of pseudomeromorphic currents is the following, see, e.g., [6,
Proposition 2.3].

Dimension principle. Let p € PM(V) and assume that p has support on the
subvariety Z C V. If dimV — dimZ > q and p has bidegree (x,q), then u = 0.

Pseudomeromorphic currents can be “restricted” to analytic subsets. In fact, fol-
lowing [9], if u € PM(V) and Z C V is an analytic subset, then uly z has a natural
pseudomeromorphic extension to V' denoted 1y, zu. Thus, 1zu := p— 1y\zu is a
pseudomeromorphic current on V' with support on Z. In [9], 1y\zp is defined as
|h|?* 11| x=0, where h is a holomorphic tuple such that {h = 0} = Z, but it can also be
defined as lim._,o x(|h|/€)p; cf. [10] and [24, Lemma 6]. It follows that if p = m,7,
then 1zp = W*(lﬂ.—l( Z)T). Notice that a pseudomeromorphic current p has the SEP
if and only if 1z = 0 for all germs of analytic sets Z with positive codimension.
We will denote by Wy the subsheaf of PMy of currents with the SEP. It is closed
under multiplication by smooth forms and if 7: V' — V is either a modification or a
simple projection then 7, : W(V) — W(V).

A natural subclass of W(V') is the class of almost semi-meromorphic currents on
Vi a current p on V is said to be almost semi-meromorphic if there is a smooth
modification 7: V — V and a semi-meromorphic current i on V such that m.ji =
u, see [6]. Notice that almost semi-meromorphic currents are generically smooth
and have principal value-type singularities. Let 4 be an almost semi-meromorphic
current. Following [10], we let ZSS(u) (the Zariski-singular support of u) be the
smallest Zariski-closed set outside of which p is smooth. The following result can be
found in [10]; the last part is [6, Proposition 2.7].

Proposition 2.2. Let a be an almost semi-meromorphic current on V and let p €
PM(V). Then there is a unique pseudomeromorphic current aAp on'V that coincides
with a A\ p outside of ZSS(a) and such that 1z5ga A p = 0. If p € W(V), then
aNpeWV).

If p € PM(V,) and v € PM (W) then we will denote the current (p®1)A(1®v) on
V. x W¢ by u(2) Av((), or sometimes pAv if there is no risk of confusion, and refer to
it as the tensor product of p and v. From [10] we have that pu(z) Av(¢) € PM(V xW)
and that p(z) Av(Q) e WV x W) if p € W(V) and v € W(W).

We will also have use for the following slight variation of [5, Theorem 1.1 (ii)].
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Proposition 2.3. Let Z C V be a pure dimensional analytic subset and let J; C Oy
be the ideal sheaf of holomorphic functions vanishing on Z. Assume that 7 € PM(V)
has the SEP with respect to Z and that ht = dh A7 =0 for all h € Jz. Then there
is a current p € PM(Z) with the SEP such that v,y = 7, where v: Z — V is the
inclusion.

Proof. Let i: V < D be the inclusion. By [5, Theorem 1.1 (i)] we have that i,7 €
PM(D). It is straightforward to verify that i,7 has the SEP with respect to Z
considered now as a subset of D and that hi,m = dh Ai,7 = 0 for all h € Jz, where
we now consider Jz as the ideal sheaf of Z in D. Hence, it is sufficient to show the
proposition when V' is smooth. To this end, we will see that there is a current u on
Z such that v, = 7; then the proposition follows from [5, Theorem 1.1 (ii)].

The existence of such a p is equivalent to that 7.£ = 0 for all test forms £ such that
L*¢ =0on Z.4. By, eg., [6, Proposition 2.3] and the assumption on 7 it follows that
ht =dh A7 =hr =dh AT =0 for every h € Jz. Using this it is straightforward to
check that if x € Z,.4 and £ is a smooth form such that :*¢ = 0 in a neighborhood
of x, then £ A 7 =0 in a neighborhood of x. Thus, if g is a holomorphic tuple in V
such that {g = 0} = Zsng, then x(|g|/€)7.£ = 0 for any test form £ such that .*¢ =0
on Zyeg. Since 7 has the SEP with respect to Z it follows that 7.{ = 0 for all test
forms & such that t*§ = 0 on Z,.. O

2.2. Residue currents. We briefly recall the the construction in [8] of a residue
current associated to a generically exact complex of Hermitian vector bundles.

Let Jy be the radical ideal sheaf in D associated with V' C D. Possibly after
shrinking D somewhat there is a free resolution

(2.3) 0= OBy I - 2 om) 25 0(By)

of Op/Jv, where Ej, are trivial vector bundles, Fy is the trivial line bundle, f; are
holomorphic mappings, and m < N. The resolution (2.3) induces a complex of vector
bundles

0= By In o  2op Y Ry
that is pointwise exact outside V. For r > 1, let V" be the set where fiir: Exyr —
FEy+r—1 does not have optimal rank?, and let V0 := Vsing. Then

(2.4) eVl cvhkc..cvicvlav

By the uniqueness of minimal free resolutions, these sets are in fact independent of
the choice of resolution (2.3) of Oy = Op/Jv, i.e., they are invariants of that sheaf,
and they somehow measure the singularities of V. Since V has pure dimension it
follows from [17, Corollary 20.14] that

dimV"<n—r, r>0.

Hence, V™ = () and so fy has optimal rank everywhere; we may thus assume that
m < N —1in (2.3). Recall that V' is Cohen-Macaulay if and only if there a resolution
(2.3) with m = k of Oy, see, e.g., [17, Chapter 18]. Notice that V" = () for r > 1 if
and only if V' is Cohen-Macaulay.

2For j < K, the set where f; does not have optimal rank is V.
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Assuming V has positive codimension, given Hermitian metrics on the FE;, fol-
lowing [8], one can construct a smooth form u = >, uy in D\ V, where vy, is a
(0, k — 1)-form taking values in Ej, such that

(2.5) fiur =1, figiuppr =0up, k=1,...,m—1, Ou, =0 inD\V.

The form u has an extension as an almost semimeromorphic current

(2.6) lim x(|F|/€)u = U = é Uk,

where F' is a holomorphic tuple in D vanishing on V and Uy is a (0,k — 1)-current
taking values in FEj; one should think of U as a generalization of the meromorphic
current 1/f in D when V = f~1(0) is a hypersurface.* The residue current R =
> i Ry associated with V' is then defined by

(2.7) Ry =0Uy — fos iUy, k=1,....,m—1, Ry, = 0U,,.

Hence, Ry is a pseudomeromorphic (0, k)-current in D with values in Ej, and from
(2.5) it follows that R has support on V. By the dimension principle, thus R =
R, + -+ Ry,,. Notice that if V' is Cohen-Macaulay and (2.3) ends at level x, then
R = R, and OR = 0. By [8, Theorem 1.1] we have that if h € p then

(2.8) hR =0 if and only if h e Jy.

Example 2.4. Let V = f~1(0) be a hypersurface in D. Then 0 — O(E) N O(Ey)
is a resolution of &/(f), where E; and Ej are auxiliary trivial line bundles. The
associated current U then becomes (1/f) ® e1, where e; is a holomorphic frame for
E1, and the associated residue current R is 9(1/f) ® e1.

Let g1,...,9x € O(D) be a regular sequence. Then the Koszul complex associated
to the g; is a free resolution of &p/(g1,...,9x). The associated residue current R
then becomes the Coleff-Herrera product

=1 =1
O—ANA---NO—,
n 9k
introduced in [14], times an auxiliary frame element, see [2, Theorem 1.7]. O

2.3. Structure forms of a complex space. Assume first that V is a reduced
hypersurface, i.e., V = f~1(0) ¢ D ¢ CN, N = n + 1, where f € ¢(D) and df # 0
on Vyeg. Let ' be a meromorphic (n,0)-form in D C C2*! such that

df N\’ =2midzy A+~ Ndzpy1 on Vreg-

Then w := *w’, where i: V < D is the inclusion, is a meromorphic form on V'
that is uniquely determined by f; w is the Poincaré residue of the meromorphic form
2midz1 A+ - - ANdzp+1/ f(z). For brevity we will sometimes write dz for dz; A--- Adzy.
Leray’s residue formula can be formulated as

(2.9) /5} NdznE = lig[l)/vxqm/e)w A,

3In [9] U was originally defined as the analytic continuation to A = 0 of |F|**u. However, in view

of [10, Section 4] this definition coincides with (2.6), see also [24, Lemma 6].
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where ¢ is a (0,n)-test form in D, the left hand side is the action of 9(1/f) on dz A ¢
and h is a holomorphic tuple such that {h = 0} = Vgpg. If we consider w as a
meromorphic current on V' we can rephrase (2.9) as

(2.10) a} Adz = iw.

Assume now that V <5 D ¢ CV isan arbitrary pure n-dimensional analytic subset.
From Section 2.2 we have, given a free resolution (2.3) of ¢p/Jy and a choice of
Hermitian metrics on the involved bundles £, the associated residue current 12 that
plays the role of d(1/f). By the following result, which is an abbreviated version of
[6, Proposition 3.3], there is an almost semi-meromorphic current w on V' such that
R A dz = i,w; such a current will be called a structure form of V.

Proposition 2.5. Let (2.3) be a Hermitian free resolution of Op/Jyv in D and let R
be the associated residue current. Then there is a unique almost semi-meromorphic
current

W=wo+tws+- "+ wWp-1
on V, where w, is smooth on V,eq, has bidegree (n,r), and takes values in E. .|y,
such that
(2.11) RAdzy N+ Ndzy = iaw.

Moreover,
felvwo =0,  fotrlvwr =0wr—1, 721,
in the sense of currents on V', and there are (0,1)-forms oy, k > 1, that are smooth
outside V¥ and that take values in Hom(Eyx _1|v, Exik|v), such that
wE = apwi—1, k>1.
It is sometimes useful to reformulate (2.11) suggestively as
(2.12) RAdzi AN---Ndzy =w A [V],

where [V] is the current of integration along V.
The following result will be useful for us when defining our dualizing complex.

Proposition 2.6 (Lemma 3.5 in [6]). If ¢ is a smooth (n,q)-form on V, then there
is a smooth (0, q)-form ¢' on V with values in Ejly such that ¢ = wo A’

2.4. Koppelman formulas in C". We recall some basic constructions from [1] and
[3]. Let D € CV be a domain (not necessarily pseudoconvex at this point), let k(z, ¢)
be an integrable (N, N — 1)-form in D x D, and let p(z, () be a smooth (N, N)-form
in D x D. Assume that k& and p satisfy the equation of currents

(2.13) Ok(z,) = [A7] = p(2, )
in D x D, where [AP] is the current of integration along the diagonal. Applying this

current equation to test forms ¥ (z) A () it is straightforward to verify that for any
compactly supported (p, q)-form ¢ in D one has the following Koppelman formula

o) =0: [ B0 Ap@)+ [ K ndpO + [ b0 A
D¢ D¢ D¢
In [1] Andersson introduced a very flexible method of producing solutions to (2.13).
Let n = (n1,...,nn) be a holomorphic tuple in D x D that defines the diagonal and let
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A;; be the exterior algebra spanned by 75 (D x D) and the (1,0)-forms dn, ..., dny.
On forms with values in A,, interior multiplication with 27i ) n;0/0n;, denoted oy,
is defined; put V,, =9, — 0.

Let s be a smooth (1,0)-form in A, such that |s| < |n| and |n> < |6,s| and
let B = Z,i,vzl s A (0s)*=1/(5,s)*. Tt is proved in [1] that then V,B = 1 — [AP].
Identifying terms of top degree we see that OBy y_1 = [AP] and we have found a
solution to (2.13). For instance, if we take s = 9| — z|?> and n = ¢ — 2, then the
resulting B is sometimes called the full Bochner-Martinelli form and the term of top
degree is the classical Bochner-Martinelli kernel.

A smooth section g(z,¢) = goo + -+ + gn,n of A, defined for z € D; C D and
¢ € Dy C D, such that V,g = 0 and goo|apnp = 1, where D’ := Dy N Do, is called
a weight in Dy x Do. It follows that V, (g A B) =g — [AP] and, identifying terms of
bidegree (N, N — 1), we get that
(214) 8(9 A\ B)N,N—l = [AD] — gN,N
in D’ x D'. Hence (g A B)n,ny—1 and gy n give a solution to (2.13) in D’ x D".

If D is pseudoconvex and K is a holomorphically convex compact subset, then one
can find a weight g in D’ x D for some neighborhood D’ C D of K such that z —
g(z,¢) is holomorphic in D’, which in particular means that there are no differentials
of the form dz;, and ¢ — g(z, () has compact support in D; see, e.g., Example 2 in

[3].

2.5. Koppelman formulas for (0,¢)-forms on a complex space. We briefly
recall from [6] the construction of Koppelman formulas for (0, ¢)-forms on V' C D.
The basic idea is to use the currents U and R discussed in Section 2.2 to construct a
weight that will yield an integral formula of division/interpolation type in the same
spirit as in, e.g., [13, 25].

Let (2.3) be a resolution of &p/Jy, where as before [Jy is the sheaf in D associated
to V <5 D. One can find, see [3, Proposition 5.3], holomorphic A,-valued Hefer
morphisms H} : Ej, — E; of bidegree (k — ¢,0) such that Hf = I, and

(2.15) 5, Hf = H{_yfu(C) — foa(=)HLT, k> L.

Let F' be a holomorpic tuple in D such that {F' = 0} =V, let U = x(|F|/€)u,
and let

R :=1-Y fUf+0U",

so that R =} ;o Iy, where Rf =1 — x(|F|/¢) and R} = Ox(|F|/e) Au for k > 1.
Then lim,_,o U¢ = U and lim_,o R = R, cf. (2.6) and (2.7), and moreover

N N
(2.16) v =Y HPRL(O) + fi(2) Y HUE(Q).
k=0 k=1

is a weight in D’ x D’ for € > 0. Let g be an arbitrary weight in D’ x D’. Then v A g
is again a weight in D’ x D’ and we get

(2.17) I AgAB)nN-1=[AP] = (v Agnw

in the current sense in D’ x D', cf. (2.14). Let us proceed formally and, also, let
us temporarily assume that V' is Cohen-Macaulay and that (2.3) ends at level &, so
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that R is O-closed. Then, multiplying (2.17) with R(z) A dz and using (2.8) so that
fi(z)R(z) = 0, we get that

(2.18)

O (R(z) Ndz A (HR(C) Ag A B)n.n-1) = R(2)AdzA[AP]=R(2)AdzA(HR(C)AG) N N,

where HR® = Y"1 HYRS, cf. (2.16). In view of (2.12) we have R(2)AdzA[AP] = wA
[AV], where [AV] is the integration current along the diagonal AV € V' xV C Dx D,
and formally letting ¢ — 0 in (2.18) we thus get

(219) 3(w(2)AIVIAHR(QAGAB) -1 ) = wAIAY]—w(2) AIVIACHR(O)Ag)x v

To see what this means we will use (2.12). Notice first that, since H, R, g, and B
takes values in A, one can factor out dn = dm A---Adny from (HR(()AgAB)N N-1
and (HR(C) A g)n,v. After making these factorization in (2.19) we may replace dn
by Cy(z,¢)d(, where Cp(z,¢) = N'det(dn;/Ck), since w(z) A [V.] has full degree in
dz;. More precisely, let €1,...,en be a basis for an auxiliary trivial complex vector
bundle over D x D and replace all occurrences of dn; in H, g, and B by €;. Denote

the resulting forms by H, g, and B respectively and let

(2.20) k(z,¢) = Cy(z,Q)ey A - A€ Z k(O A GA B)nnk

(221) p(z, C) = Cn( C) A 61—‘ Z +kwk /\ gnfk,nfk'

Notice that k and p have bidegrees (n,n — 1) and (n,n) respectively. In view of
(2.12) we can replace (HRA g A B)nn—1 and (HR A g)n,n with [Ve] A k(2,() and
Vel A p(z, Q) respectively in (2.19). It follows that

é(w(z) N Ek(z, C)) =wA [AV] —w(z) Ap(z,Q)

holds in the current sense at least on V¢ X V;cq. The formal computations above
can be made rigorous, see [6, Section 5], and combined with Proposition 2.6 we get
Proposition 2.7 below; notice that w = wy and Ow = 0 since we are assuming that V
is Cohen-Macaulay and that (2.3) ends at level &.

The following result will be the starting point of the next section and it holds
without any assumption about Cohen-Macaulay.

Proposition 2.7 (Lemma 5.3 in [6]). With k(z,() and p(z,() defined by (2.20) and
(2.21) respectively we have

5]{‘(25, C) = [AV] - p(Z, C)
in the sense of currents on Vieg X Vieg.

Remark 2.8. In [6] it is assumed that g is a weight in D’ x D, where D’ € D and
¢ +— g(z,¢) has compact support in D, but the proof goes through for any weight.

The integral operators # and £ for forms in W%¢ introduced in [6] are defined
as follows. Let g in (2.20) and (2.21) be a weight in D’ x D, where D' € D and { —
g(z, ¢) has compact support in D, cf. Section 2.4, and let u € W%4(D). Since w and B
are almost semi-meromorphic k(z,() and p(z,() are also almost semi-meromorphic
and it follows from Proposition 2.2 that k(z,{) A u(¢) and p(z,{) A p(¢) are in



12 JEAN RUPPENTHAL & HAKAN SAMUELSSON KALM & ELIZABETH WULCAN

W(V'x V), where V! = D'NV. Let 7: V] x V; — V be the natural projection onto
V/. Tt follows that

H () =T (k(2,¢) A p(Q)),
Pu(z) =7 (p(z,¢) A (),

are in W(V/). The sheaves JZ{‘S’. are then morally defined to be the smallest sheaves
that contain 5‘0/" and are closed under operators J# and under multiplication with

5?;'. More precisely, the stalk ;2%‘9’;] consists of those germs of currents which can be
written as a finite sum of of terms

gm/\%m("'él/\%(ft))"')v

where &; are smooth (0, )-forms and .#; are integral operators at x of the above
form; cf. [6, Definition 7.1].

3. KOPPELMAN FORMULAS FOR (7, q)-FORMS

Let V be a pure n-dimensional analytic subset of a pseudoconvex domain D C CN
and let w be a structure form on V. Let g be a weight in D x D', where D' C D
and let k(z,¢) and p(z,() be the kernels defined respectively in (2.20) and (2.21).
Since k and p are almost semi-meromorphic it follows from Proposition 2.2 that if
w=p(z) e WHi(V), then k(z,{) A u(z) and p(z, () A pu(z) are well-defined currents
in W(V x V). Assume that z — g(z,() has compact support in D or that p has
compact support in V. Let m: V; x V/ — V! be the natural projection, where, as
above, V! = D' NV, and define

(3.1) H (€)= m (k(2,€) A p(2))

(3:2) PuC) = (p(2,0) A u(2)).

It follows that .# 1 and & are well-defined currents in W(V{). Notice that Puis of
the form ) w, A&, where &, is a smooth (0, *)-form (with values in an appropriate
bundle) in general, and holomorphic if the weight g(z, {) is chosen holomorphic in (;
cf. (2.21). It is natural to write

A u(() = / K20 Ap(z), Pu(Q) = / p(2,C) A l2).

z z

We have the following analogue of Proposition 6.3 in [6].

Proposition 3.1. Let p(z) € W™(V) and assume that o € WL (V). Let A
and & be as above. Then

(3.3) p=0Xp+ A (0u)+ Pu

in the sense of currents on V!

reg-

Proof. If ¢ = ¢(C) is a (0,n — g)-test form on V., it follows, cf. the beginning of
Section 2.4, from Proposition 2.7 that

B4 w0 =0. [ MO+ [ K000+ [ 90800
¢

! !
Ve Ve
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for z € V/,,. By [6, Lemma 6.1]* the first two terms on the right hand side are
smooth on V’. The last term is smooth V' since z — p(z, () is smooth. Assume that
z +— ¢(z, () has compact support in D. Then so have z — k(z,¢) and z — p(z, ().
Thus each term in the right hand side of (3.4) is a test form in z, and so pu acts
on each term. Thus (3.3) follows in this case. If u has compact support (3.3) holds
without the assumption that z — g(z, () has compact support.

For the general case, let h = h(z) be a holomorphic tuple such that {h = 0} = Vg
and let xe = x(]h|/€). Then the proposition holds for x.u (since k and p have
compact support in z). Since k(z,{) A u(z) and p(z,¢{) A p(z) are in W(V' x V)
it follows that .2 (Xelt) — ¥ p and that @(Xeu) — P in the sense of currents,
and consequently 0.7 (Xept) — O 11 in the current sense. It remains to see that
lime_0 . (D(xep)) = H# (Op). In fact, since by assumption du € W(V) it follows
that ¢ (xeOp) — # (Ou) and so
(3.5) lim 2 (D(xep)) = A (Op) + lim A (Dxe A )

e—0 e—0
it also follows that
(3.6) Oxe A b= O(Xet) — XeOp — Op — Op = 0.
Now, if ¢ is in a compact subset of V., and e is sufficiently small, then k(z, () AOX(2)
is a smooth form times w = w((). Since p(z) Aw(() is just a tensor product it follows
from (3.6) that Oxc(2) A u(2) Aw(¢) — 0. Hence, # (Oxc A p) — 0 as a current on

V! . and so by (3.5) we have lim._,o % (9(xep)) = # (Op). O

reg

4. THE DUALIZING DOLBEAULT COMPLEX OF %ggq-CURRENTS

Let X be a reduced complex space of pure dimension n. We define our sheaves
HA° in a way similar to the definition of & 0"; see the end of Section 2.5. In a moral
sense @T@}’q then becomes the smallest sheaf that contains @qg;’q and that is closed

under integral operators ¥ and exterior products with elements of @qé'?(’q.

Definition 4.1. We say that an (n, ¢)-current ¢ on an open set V' C X is a section
of B, € B™1(V), if, for every x € V, the germ 9, can be written as a finite sum
of terms

(4.1) Em N o (- &N (WNAE) ),

where §; are smooth (0, x)-forms, %7] are integral operators at = given by (3.1) with
kernels of the form (2.20), and w is a structure form at x.

Notice that w takes values in some bundle ©;E; so we let {y take values in &;E7
to make w A & scalar valued.

It is clear that ¢ preserves ©,%y?. Notice that we allow m = 0 in the definition
above so that #Y* contains all currents of the form w A &y, where & is smooth with
values in @;E7. Since Py is of the form w A & for a smooth &, also &2 preserves
B ABY.

Recall that if o € W™*(V), then ¢ u € W*(V"), where V" is a relatively compact
subset of V. Since w A & € W™ it follows that Z'y? is a subsheaf of Wy, In fact,
by Proposition 4.3 below we can say more.

4The proof goes through also in our setting, i.e., when g not necessarily has compact support in
D¢ but ¢(¢) has.
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Definition 4.2. A current u € ®, Wy is said to be in the domain of 9, u € Dom 9,
if Op € VY.

Assume that g € Wy? is smooth on X, let h be a holomorphic tuple such that
{h = 0} = Xsing, and, as above, let xe = x(|h[/€). Then 9(xepn) — O since p has
the SEP. In view of the first equality in (3.6) it follows that du has the SEP if and

only if Oxe A u — 0 as € — 0; this last condition can be interpreted as a “boundary
condition” on p at Xgipng.

Proposition 4.3. Let X be a reduced complex space of pure dimension n. Then
1 7,4 J— n,q
©) 2y x,., = X" |x,.y
(ii) E¥T C B! C Domd.

To prove (i) we need to prove that if u € W(V') is smooth in a neighborhood of a
given point = € V., then J 1u(2) is smooth in a neighborhood of 2. This is proved
in the same way as part (i) of Lemma 6.1 in [6]. The proof (of the second inclusion)
of (i7) is similar to the proof that Jaf)g’q C Dom d in [6], see Section 7 and Lemmas 6.4

and 4.1 in [6]. We include a proof for the reader’s convenience.

Proof of (ii). Let 1 be a smooth (n,¢)-form on X and let w = ) w, be a structure
form. Then, by Proposition 2.6, there is smooth (0, g)-form £ (with values in the
appropriate bundle) such that 1) = wy A € and so Ey? C By

To prove the second inclusion of (ii) we may assume that p is of the form (4.1).
Let kj(wj_l,wj), 7 =1,...,m, be the integral kernel corresponding to e/”i}j; wl are
coordinates on V for each j. We define an almost semi-meromorphic current 7' on
V™ +l (the m + 1-fold Cartesian product) by

(4.2) T:= 7\ Ky (w? ™ w?) A w(w?),
j=1

and we let T, be the term of T' corresponding to w,. Notice that . (§ AT) = p
for a suitable smooth (0, *)-form & on V™l where 7: V"™t — V,m is the natural
projection. We claim that

(4.3) lim Ox(|h(w™)|/€) AT = 0

for all 7, where h is a holomorphic tuple such that {h = 0} = V4. Taking this for
granted, ~ ~

lim dxe A p = 7 (lim Ox(|h(w™)|/e) NEAT) =0,

e—0 e—0

and thus 1 € Dom 0, cf. the discussion after Definition 4.2.

We will prove that (4.3) holds for all by double induction over m and r. If m =0
then T' = w(w) and, since dw, = fr11|ywr41 by (2.5), it follows that T has the
SEP, i.e., lim. o dx(|h|/€) AT = 0.

Assume that (4.3) holds for m < k — 1 and all ». The left hand side of (4.3),
with m = k, defines a pseudomeromorphic current 7, of bidegree (x,kn — k +r + 1)
since each k; has bidegree (x,n — 1) and clearly supp7. C Sing(Viym) x V™. If
wl # w1 then kj(w’~1, w’) is a smooth form times some structure form @(w?).
Thus T', with m = k, is a smooth form times the tensor product of two currents, each
of which is of the form (4.2) with m < k. By the induction hypothesis, it follows
that (4.3), with m = k, holds outside {w’ = w’/~!} for all j. Hence, 7, has support
in {w! = -+ = w*} N (Sing(Vym) x V™), which has codimension at least kn + 1 in
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Vk+1. Since 79 has bidegree (*,kn — k + 1), k > 1, it follows from the dimension
principle that 79 = 0.

By Proposition 2.5, there is a (0, 1)-form a; such that w; = ajwp and «; is smooth
outside V! (cf. (2.4)) which has codimension at least 2 in V. Since 71 = a3 (w®)7o
outside V1, and 79 = 0 it follows that 71 has support in {w! = -+ = w*}N(Vl x V™).
This set has codimension at least kn +2 in V™! and 7, has bidegree (x, kn —k + 2)
so the dimension principle shows that 7 = 0. Continuing in this way we get that
7, = 0 for all r and hence, (4.3) holds with m = k. O

Theorem 4.4. Let X be a reduced complex space of pure dimension n. Then
0: B — B

Proof. Let ¢ be a germ of a current in #y? at some point z; we may assume that

b =Em NS (-G AT AE) ),

see Definition 4.1.

We will prove the theorem by induction over m. Assume first that m = 0 so that
¥ = w A &o; recall that §y takes values in @;FE7 so that v is scalar valued. Then, by
Proposition 2.5, we have that

3¢zgw/\&)iw/\é&):fw/\&)iw/\éfo:w/\f*éoiw/\g&),

where f = ©)'_, fptr|v and f* is the transpose of f. Hence, 0 is in %’;?qﬂ. Assume
now that 0¢’ € @, A, where

V=&t A1 (G AN KW AE) )

Then ¢/ € Dom 0 C Wx and by Proposition 4.3 v’ is smooth on Xreg- Thus, from
Proposition 3.1 it follows that

(4.4) W = 0K + Ko (OV) + Pt

in the current sense on V.4, where V' is some neighborhood of z. By the induction
hypothesis, 9’ € @q%?gq and since %, and &2, preserve @q%’}’q and furthermore
BBy C Domd it follows that every term of (4.4) has the SEP. Thus, (4.4) holds

in fact on V. Finally, notice that ¢ = &, A £t and so, since ¢/, H#,,(9¢'), and
@mw, all are in @q%},q’ it follows that 5¢ IS e@;’q—i_l‘ 0

Proof of Theorem 1.1. Choose a weight g in D x D', where D’ € D, such that z —
9(z, () has compact support in D, cf. Section 2.4. Let k(z, () and p(z, {) be the kernels
defined by (2.20) and (2.21), respectively, and let # and & be the associated integral
operators.

Let ¢ € #™(V'). By Proposition 3.1,

(4.5) Y = 0H Y+ H () + Py

holds on V... Since # and P map @,B"V) to @©,B™I(V') it follows from
Theorem 4.4 that every term of (4.5) has the SEP. Hence, (4.5) holds on V’ and the

theorem follows. O
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Proof of Theorem 1.2. Let V be a pure n-dimensional analytic subset of a pseudo-
convex domain D C (CN, let Jy be the sheaf in D defined by V, let i: V — D be
the inclusion, and, as above, let Kk = N — n be the codimension of V' in D. Let (2.3)
be a free resolution of &p/Jy in (possibly a slightly smaller domain still denoted)
D and let w =) w, be an associated structure form.

Dualizing the complex (2.3) and tensoring with the invertible sheaf 25 gives the
complex

(4.6) 0= O(EY) 90, 2N T I (B ) 0, QN - 0.

It is well-known that the cohomology sheaves of (4.6) are isomorphic to &#*(0p/Jv, 25)
and that &% (0p/Jy, 28) = 0 for k < x. Notice that if V is Cohen-Macaulay, i.e.,
if we can take m = s = codim V' in (2.3), then &% (0p/Fy, 25) = 0 for k # k.

We define mappings ox: O(E;;_ ;) ® 25 — %"r}k by letting px(hdz) =0 for k < 0
and gx(hdz) = wy - h for k > 0; here we let %’3’]‘7 =0 for k < 0and O(E;)®@QY =0
for k > m. We get a map

(47) Qe (ﬁ(E:+o) @ ‘ng f:+o) — ('@Xn/’.a 5)
which is a morphism of complexes since if h € O(E} ), then, by Proposition 2.5,

*

5Qk(hd2) = Ouwy, - h = Jrtkr1Wre1 - h = wggt - f:+k+1h = Qk—i-l(fn—i—k—i-lh)'

Hence, (4.7) induces a map on cohomology. We claim that g, in fact is a quasi-
isomorphism, i.e., that g, induces an isomorphism on cohomology level. Given the
claim it follows that J#* (%y7°) is coherent since the corresponding cohomology sheaf
of (O(EfLe) ® 0N, fiia) is & (Op ) Jy, 2N ), which is coherent.

To prove the claim, recall first that i.wr = Ry A dz. Thus, by [4, Theorem 7.1]
the mapping on cohomology is injective. For the surjectivity, choose a weight ¢ in
D x D', where D' @ D, such that g is holomorphic in ¢ and has compact support
in D,, cf. Section 2.4, let k(z,() and p(z, () be the integral kernels defined by (2.20)
and (2.21), respectively, and let .# and & be the corresponding integral operators.
Let ¢ € Z™F(V) be d-closed. By Theorem 1.1 we get

WO =8 [ K=o Av() + / p(2,¢) A(2)

Vz Vz

in V. N D’. Hence, the 0-cohomology class of v is represented by the last integral.
Since g is holomorphic in ¢, the summand with index k in (2.21) has exactly n — k
differentials of the form dz; (and k differentials of the form d(;). It follows that

/ p(2,0) Ah(z) = /V Col22 Q)i A+ A €faF0, 10k () A Gt A (2)

::wk(C)/\ G(Z,C)/\/I,Z)(Z)a

\Z
where G takes values in E,,. Note that G is holomorphic in ¢ since g is. We will
show that
(1) o [ 60 At =0,

Taking (4.8) for granted, it follows that the class of v is in the image of the map on
cohomology induced by ok, which proves the claim.
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To prove (4.8) first note that dn A G = Hg())+k A gn—kn—k- By (2.15),

(4.9) f;+k+1H ke N In—kn—k = Hz?—l—k—l—lfp—l—k—l—l N Gn—kn—k =
SnHp s 11 A Gtk + F1(2)Hy g A Gn—ioin—k-

Since H? piki1/NIn—kn—k takes values in A, and is of degree (N 4+1,n—k) it vanishes
and thus the first term in the right-most expression in (4.9) equals

£H) i1 A Oyn—in—k = £H) i1 A Ogn—j—1n—k—1 = ZO(Hy) 41 A Gn—k—1n—k—1)

where we have used that V5,9 = 0 and that HO ikl 18 holomorphic. Using that
H Ak NIn—kn—k and H p+k+1 A Gn—k—1,n—k—1 take values in A, and have degree (N, )
We get that

Frvkir H) g A G-tk = dn A (DA + f1(2)B)
for some smooth A and B. Hence

(4.10) +,m/ G(z,O) A(z /8Amp /f1 VB AY(z) =

The first integral vanishes by Stokes’ theorem since v is d-closed and G has compact
support in z since g has. The second integral vanishes since f1(z) =0 on V.

If V is Cohen-Macaulay, then (4.6) is exact except for at level p and so (%;/°,0)

is exact except for at level 0 where the cohomology is wi?’ = ker (9: Bp° — BY").
Thus, (1.4) is exact. O

5. THE TRACE MAP

The basic result of this section is the following theorem. It is the key to define our
trace map.

Theorem 5.1. Let X be a reduced complex space of pure dimension n. There is a
unique map

N B x f;zf)o(’q/ — W;L(’(qu N Dom O

extending the exterior product on Xj.eq.

The uniqueness is clear since two currents with the SEP that are equal on X4
are equal on X. It is moreover clear that A is 500 bilinear. Indeed, if, e.g., ¢1
and o are sections of &7y 04 . ¥ is a section of AY?, and & and & are sections of
59(0, then ¥ A (&101 + &2p2), ¥ A &1, and ¥ A €202 have the SEP by Theorem 5.1
and P A (11 + Eap2) = Y A &1 + ¥ Ao on Xpeg. We get bilinear pairings of
C-vector spaces, By (X)) x #%(X) — C and Z"" (X)) x (X)) — C, given
by (¢, @)+ [ v YA =1 Aep.l, where 1 here denotes the function constantly equal
to 1; we will refer to these maps as trace maps on the level of currents. We also get
trace maps on the level of cohomology:

Corollary 5.2. Let ¢ and ¢ be sections of ;z/)g’ql and %}’q respectively. Then 9(¢ A
©) =0 Ao £ AJdp. Moreover, there are bilinear maps of C-vector spaces

H(/™*(X),0) x H"9(#2*(X),0) — C,
H(,"*(X),0) x H" 9(#™*(X),0) — C,
given by ([¢l5, [W5) = [x ¥ A g
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Proof. By Theorem 5.1, d(1)A¢) has the SEP; cf. Definition 4.2. By Theorem 4.4 and

[6, Theorem 1.2], respectively, 0 is a section of %’"’qﬂ and Oy is a section of %)g’qurl.

Thus, 01Ap and 1AOp have the SEP by Theorem 5 1 and so O(1Ap) = OPApEYAIp
since it holds on X,.4. The last part of the corollary immediately follows. O

Proof of Theorem 5.1. We have already noticed that if ¢|x,., A ¢|x,., has an exten-
sion with the SEP, then it is unique. To see that such an extension exists, let V'
be a relatively compact open subset of a pure n-dimensional analytic subset of some

pseudoconvex domain in some CV. Let ¢ = (1, ..., 0s) be generators for the radical
ideal sheaf over V x V associated to the diagonal AV C V x V. Let
alog !¢!2

x(|p] /€)== A (dd“log |p[*)" .

Notice that if p: W -V x V is a holomorphlc map such that, locally on W, p*¢ =
0@’ for a holomorphic function ¢y and a non-vanishing holomorphic tuple ¢’, then

(5.1)  2mip"Ac = x(I¢od'|/€) (dbo/do + 01/ /|¢']*) A (dd°log |¢'|*)"~".

Thus, in view of Section 2.1, A := lim._,o A exists and defines an almost semi-
meromorphic current on V' x V. Let

2
(5.2) M. = Ox(16l/) A B L A (aatog [02) = DA~ (16l /) (d 1og [0
Similarly to (5.1) one checks that the limit of the last term on the right-hand side
defines an almost semi-meromorphic current. Thus, the limit M := lim._,o M, exists
and defines a pseudomeromorphic (n,n)-current on V x V supported on AV. Notice
that M is the difference of an almost semi-meromorphic current and the d-image of
such a current. Hence, by Proposition 2.2, for any pseudomeromorphic current 7,
M AT is a well-defined pseudomeromorphic current. It is well-known that M = [AY]
on Vieg X Vieg and so, in view of the dimension principle, M = [AY] on V x V; cf.
[7, Corollary 1.3].

Let v € #™4(V) and ¢ € &% (V). The tensor product 9(w) A ¢(z) is a
pseudomeromorphic current on V' x V' by Section 2.1, and so M A ¢(w) A ¢(z) =
lime_,0 M A p(w) A ¢(2) is a pseudomeromorphic currents on V' x V' with support
on AY. Notice also that since ¥ and ¢ are smooth on Vieg, we have

(5:3) M Ap(w) Ap(z) = [AV]Ap(w) Ap(2) = i (Plv,eg A DlVie)

on Vypeg X Vieg, where i: AV — V x V is the inclusion and where we have made the
identification AY ~ V.

Lemma 5.3. The pseudomeromorphic currents M Ap(w) Ap(z) and O(M Ap(w) A
©(z)) have the SEP with respect to AV

Let g be a holomorphic function such that g|sv = 0. Then g[AY] =0 = dgA[AY]
and so, since 1 (w) A ¢(z) is smooth on Vyey X Ve and M = [AY], we have

(5.4) GM A (w) A () = dg A M Ah(w) A p(z) = 0

on Vyeg X Vyeg. In fact, by Lemma 5.3, (5.4) holds on V' x V" and so, by Proposition 2.3
and Lemma 5.3 again, there is a u € W(V') such that M A (w) Ay(z) = i.pu. Hence,
in view of (5.3), p is an extension of [y, Ap|y,., to V with the SEP. We will denote
the extension by 1 A .
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It remains to see that 1Ay is in Dom 8. However, d(M A (w)Ap(2)) = i.0(YAp)
and 9(M A p(w) A ¢(2)) has the SEP with respect to AV by Lemma 5.3. It follows
that 9(1) A ) has the SEP on V, i.e., ¥ A ¢ is in Dom . OJ

Proof of Lemma 5.3. We may assume, cf. Definition 4.1 and the end of Section 2.5,
that

B G N (N AR &) ) = En (G AAG) ).

where & and &; are smooth (0, %)-forms, w = 3", wy is a structure form associated
with a free resolution (2.3), and % and .#; are integral operators for (n,*)-forms
and (0, x)-forms respectively. Let I%j (wi=1,w’) be the integral kernel corresponding
to Ji? and let £; (27, 2771) be the integral kernel corresponding to s w? and 27 are
coordinates on V. We will assume that for each j, 27 — k:j+1(zj +1 27) has compact
support where 27 — k;(27,2771) is defined and similarly for /;:j; possibly we will
have to multiply by a smooth cut-off function that we however will suppress. Now,
consider

(5.5) T := lim Mc( /\k (w1, ki (2, 2070),

>
I>-

which is a pseudomeromorphic current on V™+2 supported on {z¢ = w™}; cf.

Proposition 2.2.5 Notice that M (2%, w™) A ¥(w™) A p(2Y) = m(T A £), where
o Vemt2 Ve x Vyym is the natural projection and ¢ is a suitable smooth form on
V™2 In view of the paragraph following the dimension principle in Section 2.1,
it suffices to show that 7' and 9T have the SEP with respect to {2 = w™}. Let
h = h(zf,w™) be a germ of a holomorphic tuple in V' x V that is generically non-
vanishing on the diagonal; we will consider h also as a germ of a tuple on V¢+m+2
and we denote its zero-set there by H. In view of Section 2.1, what we are to show
is that 15T = 150T = 0.

Let Ty be the part of T corresponding to wy(w®) and notice that T}, is a pseu-
domeromorphic current of bidegree (x,n(£+m+1) —m — £+ k). We will show that
T and 0T have the SEP by double induction over ¢ + m and k.

Assume first that £ = m = 0. Then T}, = M (2%, w°) A wp(w®) and we know
that T = [AY] A wg(wP) for w® € V¢4 since wy(w®) is smooth there. Hence, since
[AY] has the SEP with respect to AV, 15T}, = 0 outside of {w® € Viing} and it
follows that supp(1yTy) C {2° = w® € Viing}, which has codimension > n + 1
in V x V. Since 15Ty has bidegree (x,n), the dimension principle implies that
157y = 0. By Proposition 2.5, wp = apwi_1, where oy is smooth outside of vk
which has codimension > k + 1 in V. Hence, supp 157} C {w® € V1}, which has
codimension > n 42 in V x V. Since 157 has bidegree (x,n + 1), the dimension
principle implies that also 1 HT 1 = 0. Continuing in this way, we get that 157 = 0.
Hence, T = M (2°,w°) A w(w®) has the SEP with respect to AV and arguing as
in the paragraph following Lemma 5.3 we see that T = i,w. Since dw = fw by
Proposition 2.5, it follows that OT = i,0w = ix fw and thus, OT has the SEP with
respect to AV

SIn this proof V7 will mean either the Cartesian product of j copies of V or the j*® set in (2.4).
We hope that it will be clear from the context what we are aiming at.
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Let now £ +m = s > 1 in (5.5) and assume that T and 9T have the SEP with
respect to {z¢ = w™} for £+ m < s—1. Let 1 <7 < £;if 271 # 2" then k,(2", 2" 1)
is a smooth form times some structure form ©(2"~1). Hence, outside of {z" = 2" 71},
T is a smooth form times the tensor product of

r—1
S WA
j=1

and some current T', where T is of the form (5.5) with £+m = s —7 depending on the
variables 2", ..., 2" and w?,...,w™. From the induction hypothesis it thus follows
that 157 and 1507 have supports contained in {20 = ... = z¢}. Similarly, let
1 <7 <m. Ifw~!#w then k.(w"™',w") is a smooth form times some structure
form @(w") and so, outside of {w"! = w"}, T is a smooth form times the tensor
product of

r—1
N ki@ = w?) Aw(w®)
Jj=1

and a current of the form (5.5) with £ +m = s — r depending on the variables
20, ..., z%and w",...,w™. Thus, again from the induction hypothesis, it follows that
15T and 150T have supports contained in {w® = ... = w™}. In addition, since T
vanishes outside of {ze = w™}, we have that the supports of 157 and 1 gOT must
be contained in the diagonal AV = {20 = ... = 2 = w™ = ... = w0} Cc V™2,
Hence, we see that 157 and 1507 have supports contained in AV N H, which has
codimension > n(s+ 1)+ 1. Since 15Ty has bidegree (*,n(s+1) —s) and 159Tp has
bidegree (*,1(s+1) —s+1) we have 15Ty = 1591y = 0 by the dimension principle.
Since Ty = +a;(w®)Ty and oy is smooth outside of V!, which has codimension > 2
in V, it follows that 157} and 150T) have supports in AV N {w® € V'}, which
then has codimension > n(s + 1) + 2. The dimension principle then shows that
15Ty = 1507y = 0. By induction over k, using that T}, = Fay(w®)Ti_1 with oy
smooth outside of V¥ that codimy V¥ > k + 1, and the dimension principle, we
obtain 157}, = 1507, = 0 for all k. O

6. SERRE DUALITY

6.1. Local duality. Let V be a pure n-dimensional analytic subset of a pseudocon-
vex domain D C CV, let D’ € D be a strictly pseudoconvex subdomain, and let
V' =V N D'. Consider the complexes

(6.1) 0 W) L @ (V) Ly Ly (V) 0

(6.2) 0— 2O L (v L L grn(v) -0,
From Corollary 5.2 we have the trace map
(6.3)  Tr: HY (o/%%(V"),0) x H" (#2°(V"),0) > C, Tr(lg], [¥]) = / 0.
V/
By [6, Theorem 1.2] the complex (6.1) is exact except for at the level 0 where the

cohomology is & (V'), cf. the introduction.

Theorem 6.1. The complex (6.2) is exact except for at the top level and the pairing
(6.3) makes H"(%:* (V")) the topological dual of the Frechét space H(/%*(V')) =
O(V"); in particular (6.3) is non-degenerate.
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Proof. Let 1 € B.7(V') be O-closed. Moreover, let g be a weight in D” x D', where
D" c D’ is a neighborhood of supp, such that ¢ is holomorphic in z and has
compact support in D/C’ cf. Section 2.4, and let k(z,() and p(z,({) be the integral

kernels defined by (2.20) and (2.21), respectively. Since 1 has compact support in
D", Theorem 1.1 shows that

04 wO=0 [ o)A+ [ b AT+ [ pe 0 nue)

z

holds on V’. The second term on the right hand side vanishes since 0y = 0. Since
g is holomorphic in z the kernel p has degree 0 in dz; and hence, also the last term
vanishes if ¢ # n. The first integral on the right hand side is in 2271 (V’) since ¢
has compact support in D/C and so (6.2) is exact except for at level n.

To see that H™(%."*(V")) is the topological dual of &(V’), recall that the topology
on O(V') = 0(D")/J(D') is the quotient topology, where [Jy be the sheaf in D
associated with V' C D. Tt is clear that each [¢p] € H"(%."*(V')) yields a continuous
linear functional on (V') via (6.3). Moreover, if ¢ = n and [, ¢tp = 0 for all
p € O(V') then, since p(z, () is holomorphic in z by the choice of g, the last integral
on the right hand side of (6.4) vanishes and thus [1)] = 0. Hence, H"(%."*(V")) is a
subset of the topological dual of (V).

To see that there is equality, let A be a continuous linear functional on ¢(V’). By
composing with the projection &(D’) — ¢'(D’)/J(D’) we get a continuous functional
A on @(D'). By definition of the topology on @(D’), X is carried by some compact
subset K € D’. By the Hahn-Banach theorem, A can be extended to a continuous
linear functional on C°(D’) and so it is given as integration against some measure
w on D’ that has support in a neighborhood U(K) € D’ of K. Let g be a weight
in U(K) x D" that depends holomorphically on z € U(K) and that has compact
support in D’ and let p(z, () be the integral kernel defined from g as in (2.21), and
let & be the corresponding integral operator. Let f € &'(V') and define the sequence
fe(2) € O(K) by

i) = [ 0 05,

¢

where, as above, x. = x(|h|/€¢) and h = h(({) is a holomorphic tuple such that
{h = 0} = Viing. For each z in a neighborhood in V' of K NV’ we have that
lim f(z) = Zf(z) = f(z) by [6, Theorem 1.4]. We claim that fe in fact converges
uniformly in a neighborhood of K in D’ to some f € ¢(K), which then is an extension
of f to a neighborhood in D’ of K. To see this, first notice by (2.21) that p(z,()
is a sum of terms wg(¢) A pi(z,() where pi(z,() is smooth in both variables and
holomorphic for z € U(K). By Proposition 2.5, the wy are almost semi-meromorphic.
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The claim then follows from a simple instance of [18, Theorem 1]%. We now get

A =t [ fedntz) = [ / X O F(Qdn(z)

e—0

— dim [ AOxe(O) / Bz, C)du(2)

e—0 Vl

=ty [ HOO Een© I [ il Otz
= Zwk /pk z,Q)dp(z).

But ¢ — sz pk(z,()du(z) is smooth and compactly supported in D’ and so \ is
given as integration against some element 1) € %" (V'); hence \ is realized by the
cohomology class [¢] and the theorem follows. O

Corollary 6.2. Let F — V be a vector bundle, # = O(F') the associated locally free
O-module, and F* = O(F*). Then the following pairing is non-degenerate

Tr: HO(V',.Z) x H*(F* @ B*(V')) - C, (g}, [¥]) —~ e

By Theorem 1.2, if X is Cohen-Macaulay, then the complex (#* ® %’(}",5) is a
resolution of #* ® w@’o and so we get a non-degenerate pairing

HO(V',.Z) x HY(V', Z* @ wi’) — C.

6.2. Global duality. From the local duality an abstract global duality follows by a
patching argument using Cech cohomology, see [27], cf. also [11, Theorem (I)]. To see
that this abstract global duality is realized by Theorem 1.3 we will make this patching
argument explicit using a perhaps non-standard formalism for Cech cohomology; cf.
[23, Section 7.3]

Let .# be a sheaf on X and let V = {V;} be a locally finite covering of X. We let
C*(V,.F) be the group of formal sums

do-+ik
with the suggestive computation rules, e.g., fiaViAVa+ fo1 VoAV = (fia— fo1)ViAVa.
Each element of C*(V,.#) thus has a unique representation of the form
10<-<ip

that we will abbreviate as Z\,I|:k+1 f1Vr. The coboundary operator §: C¥(V, .F) —
C*+1(V,.#) can in this formalism be taken to be the formal wedge product

Z Vi) = Z frVr) A (Zvj)-

[I|=k+1 |T|=k+1

6Take p=0,¢g=1, and g =1 in this theorem.
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If V is a Leray covering for .#, then H*(C*(V,.%),0) = H*(X,.#). Indeed, let
(Z*,d) be a flabby resolution of .#. Then H*(X,.7) = H*(#*(X),d) and apply-
ing standard homological algebra to the double complex C*(V,.%*) one shows that
HK(C*(V, F),6) ~ HF(F*(X),d). If F is fine, i.e., a Eggo—module, then the complex
(C*(V,.F),6) is exact except for at level 0 where H*(C*(V,.F),8) = H)(X, 7).
Let ¥’ be a precosheaf on X. Recall, see, e.g., [11, Section 3], that a precosheaf

of abelian groups is an assignment that to each open set V' associates an abelian
group ¢'(V), together with inclusion maps i}j,: 4'(V) — 4'(W) for V.C W such
that iy, = iy iy, if V! C V. C W. We define C-*(V,%4") to be the group of formal
sums

Z Giowwix Vig N+ A Vi

10" Tk
where giy..i, € 9'(Viy N---NV;,) and only finitely many g;,..;, are non-zero; for
k < 0 we let C;%(V,94') = 0. We define a coboundary operator 6*: C;¥(V,9') —
CF1(V,94") by formal contraction

!/ /
SO aVi) =Y Vin Y aiVi,
|I|=k+1 J [I|=k+1

see (6.5) and (6.6) below. If ¢4 is a sheaf (of abelian groups), then V' — %.(V) is
a precosheaf &’ by extending sections by 0. We will write C-%(V,%) in place of
CkW, 9.

Assume now that there, for every open V C X, is a map ZF(V) @ 4'(V) —
F'(V) where ' and ¢’ are precosheaves on X. We then define a contraction map
2 CEV,.F) x CTHV,9") — CF=Y(V,.Z") by using the following computation rules.

(6.5) V;_J‘/j —{ 0 itj
¢

(66) ViV A AV = STV A (VV ) AV
m=0

. 0 k> |J|
Vig Ao AV, )2VF = ’ x :
W 055 ={ (e, E2 D
If #' and ¢4’ are sheaves we define in a similar way also the contraction 1: C;%(V,%") x
CYWV, 7)) = CF(V, F'). If g = g/V} and f = f;Vy, then guf = g1 f;V; 2V, where
grf7 is the extension to ﬂieJ\I V; by 0; this is well-defined since gy f; is 0 in a neigh-
borhood of the boundary of ;¢ ; Vj in (e p\ s Vi

Lemma 6.3. If ¥4 is a fine sheaf, then

0, k#0

H’“(C’C'(V,%),(S*):{ HX.9), k=0 -

Proof. Let {x;} be a smooth partition of unity subordinate to V and let x =
> Xx;V;. Since 6*x = > x; = 1 we have

F(xNg) =0 (x)-9g—xN(9)=9g—xN5(9)
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for g € C7F(V,%4). Hence, if g is §*-closed, then g is §*-exact. It follows that the
complex

et w,g) S 0w, g) S HY(X,9) - 0

is exact and so the lemma follows. O

Let X be a paracompact reduced complex space of pure dimension n. Let X be
the precosheaf on X defined by

(V) = H"(#:*(V),9),
i ROV) = RW), iy ([¥]) = [¥],

where ¢ € Z."™ (V) and 1) is the extension of 1 by 0.7 Let V = {V;} be a suitable
locally finite Leray covering of X and consider the complexes

(6.7) 0= OOV, 0x) -5 ', 0%) % -
(6.8) S e R 2 OV, R) 0.

By Theorem 6.1 we have non-degenerate pairings
Tr: CE(V,0x) x CF(V,R) = C, Tr(f,g) = / fag,
X

induced by the trace map (6.3); in fact, Theorem 6.1 shows that these pairings
make the complex (6.8) the topological dual of the complex of Frechét spaces (6.7).
Moreover, if f € CK=1(V, 0x) and g € C-%(V,R) we have

©9) 1069 = [60a= [ (7A3 V)= [ (S Vio)

= /X fa(0*g) =Tr(f,0%9g).
Hence, we get a well-defined pairing on cohomology level
(6.10)  Tr: H*(C*(V,0x)) x H " (C2(V,R)) = C, Tr([f],[g]) = / fag.
X

Since V is a Leray covering we have
(6.11) HE (C*(V,0x)) = H¥(X, 0x) 2 H* (o/°°(X)),

and these isomorphisms induce canonical topologies on H*(X, Ox) and H* («/%*(X));
cf. [27, Lemma 1]. To understand H % (C2(V,R)), consider the double complex
K79 = G 27,
where the map K4 — K‘”l"j is the coboundary operator 6* and the map K4 —
K*"’JH is 0. We have that K=" =0ifi < 0or j < 0or j > n. Moreover, the “rows”
K™"* are, by Theorem 6.1, exact except for at the n*® level where the cohomology is
c, ’(V, N); the “columns” K*7 are exact except for at level 0 where the cohomology is
. (X) by Lemma 6.3 since the sheaf %’ is fine. By standard homological algebra
(e.g., a spectral sequence argument) it follows that

In view of Theorem 6.1 and [11, Proposition 8 (a)], N is in fact a cosheaf.



EXPLICIT SERRE DUALITY 25

(6.12) H™*(Co(v,N) = H"F (#74(X),0) ,

cf. also the proof of Theorem 1.3 below. The vector space C*(V,R) has a natural
topology since it is the topological dual of the Frechét space C*(V, Ox); therefore
(6.12) gives a natural topology on H"*(%:*(X)).

Lemma 6.4. Assume that H*(X, Ox) and H**1(X, 0x), considered as topological
vector spaces, are Hausdorff. Then the pairing (6.10) is non-degenerate.

Proof. Since (6.8) is the topological dual of (6.7) it follows (see, e.g., [27, Lemma 2])
that the topological dual of

(6.13)  Ker(s: C*(V,0x) — C*(V,0x)) /Im(5: Ck-1(V, Ox) — CH(V, Ox))

equals
(6.14)

Ker(8": CH(V, ") — O (V™) m (5 1V, 05) — CeF (Vi ).

Since H¥(X,0x) and H¥T1(X,0x) are Hausdorff it follows that the images of
§: C*=1 — C* and §: C* — CF*! are closed. Since the image of the latter map
is closed it follows from the open mapping theorem and the Hahn-Banach theorem
that also the image of §*: C- %=1 — C-* is closed. The images of § and §* in (6.13)
and (6.14) are thus closed and so the closure signs may be removed. Hence, (6.10)
makes H*(C2(V,wy")) the topological dual of H*(X, Ox). O

Remark 6.5. If X is compact the Cartan-Serre theorem says that the cohomology of
coherent sheaves on X is finite dimensional, in particular Hausdorff. In the compact
case the pairing (6.10) is thus always non-degenerate. The pairing (6.10) is also
always non-degenerate if X is holomorphically convex since then, by [26, Lemma II.1],
H*(X,.#) is Hausdorff for any coherent sheaf .7.

If X is g-convex it follows from the Andreotti-Grauert theorem that for any co-
herent sheaf ., H¥(X,.#) is Hausdorff for k¥ > ¢. Hence, in this case, (6.10) is
non-degenerate for k > q.

Proof of Theorem 1.3. For notational convenience we assume that # = Ox. By
Lemma 6.4 we know that (6.10) is non-degenerate. In view of the Dolbeault isomor-
phisms (6.11) and (6.12) we get an induced non-degenerate pairing

Tr: H* (o/%%(X)) x H" % (#2*(X)) — C.

It remains to see that this induced trace map is realized by ([¢], [¢)]) — [ ¢ A1; for
this we will make (6.11) and (6.12) explicit.

Let {x;} be a partition of unity subordinate to V, and let x = _, x;V;". We will
use the convention that forms commute with all V;* and Vj, i.e., if £ is a differential
form then

Vi =Vre Via(€Vy) =¢viavy.
Moreover, we let d(EV}) = 0V, We now let

Thj: CH(V, 0x) = CPIV,ay?), Tii(f) = (x A (Ox))4f,
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where we put C~(V, M)?k) = %k (X) and C*(V, ;af)(gk) =0 for £ < —1.% Using that
x2V =1 it is straightforward to verify that

(615)  Tig(8f) = 0Th-14(F) + (~1)* 70Tj-15-1(f),  f e C"H(V, Ox).

It follows that if f € C*(V, Ox) is 0-closed then T}, (f) is O-closed and if f is d-exact
then Ty, ,(f) is O-exact. Thus T}, ;, induces a map

Dol: HE(C*(V, Ox)) — HF(«/™*(X)), Dol([f]s) = [Thr(f)l5:

this is a realization of the composed isomorphism (6.11).

To make (6.12) explicit, let [g] € C.¥(V,N), where g € C;7*(V, ZY"), be 6*
closed. This means that there is a 7"~ 1 € Co#1(V, %" ') such that §*g = dr" .
Hence, 06*7"~! = §*0r"! = §*6*g = 0 and so by Theorem 6.1 there is a 772 €
CoH2(V, %" ?) such that §*7"~1 = 9772, Continuing in this way we obtain,
for all j, 777 € C’;HJ(V,%?(’n*j) such that 6*7" 7 = 9r" =1 It follows that
§* =k ¢ B F(X), cf. the proof of Lemma 6.3, and that it is O-closed. One can
verify that if [g] € C7F(V,R) is *-exact then 6*7"* is J-exact and so we get a
well-defined map

Dol*: H=F(C2(V,R)) — H" *(#7* (X)), Dol*([g]5) = [0*7"¥]5;

this is a realization of the isomorphism (6.12).
Let now f € C*(V, 0x) be d-closed and let [g] € C:%(V,R) be §*-closed. One
checks that 0T} o(f) = (—1)*f and thus, by (6.15), we have

5T (f) = { (I f), 1S5k

Using this and the computation in (6.9) we get

/XfJg = (—1)k/X5Tk,o(f)J£]= (_1)k/XTk;,0(f)—‘5*9: (—1)k/XTk7o(f)J57n_l
= (—l)kJrl/XaTk’o(f)_lTn1:(—1)2k/)(5Tk’1(f)JTn1
= (_1)2k/XTk,1(f)J6*7—n_l == <—1)k(k+l)/XTk,k(f)J(s*Tn_k
= [ Dol(is) A Dol (lg).

7. COMPATIBILITY WITH THE CUP PRODUCT

Assume that X is compact and Cohen-Macaulay. In view of [6, Theorem 1.2] and
Theorem 1.2 we have that

(7.1)  HNX,0x) = H* («/°*(X),d) and H*X,w}’) = H* (#™*(X),d),

cf. the introduction. Now we make these Dolbeault isomorphisms explicit in a slightly
different way than in the previous section: We adopt in this section the standard

8In fact, the image of Ty,; is contained in C*~9~1(V, £%7).
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definition of Cech cochain groups so that now
CPW,F)= |  FVayn:--NVa,)
agFanFEFap
for a sheaf .# on X and a locally finite open cover V = {V}.
Let V be a Leray covering and let {x,} be a smooth partition of unity subordinate
to V. Following [16, Chapter IV, §6], given Cech cocycles ¢ € CP(V, Ox) and ¢ €
CU(V,w") we define Cech cochains f € CO(V, e7y?) and f' € CO(V, B%) by

fa = Z 5)(1/0 JANCERVA 5Xl/p_1 *Cuyvpia in Vg,

vQ,--sVp—1
r 3 3 / .
fo = E Xy N+ NOXyyy A Cupevgra D Va.
VO, Vg—1

In fact, f and f’ are cocycles and define O-closed global sections

(7.2) o= le,pf,,p = Z Xunguo A A 5)(”?71 “Cygvy € 42%0”’(X),

Vo, Vp

(7.3) ¢ = nyqf,ﬁq = Z XvgOXvo A+ A DXy A Chynyy € BHI(X).

Vg VQ,...,Vq

The Dolbeault isomorphisms (7.1) are then realized by
HP(X,0x) — HP(/°%(X)), [~ [¢], and

H(X,wy’) = HI(B™ (X)), []~[¢],
respectively.
We can now show that the cup product is compatible with our trace map on the
level of cohomology.

Proposition 7.1. The following diagram commutes.
HP(X,0x) x HI(X,w¥%) 5  HPH(X, W)
A 1
HP(/9%(X)) x HI(#m(X)) 5 HPH(gm (X)),

where the vertical mappings are the Dolbeault isomorphisms.
Proof. Let V = {V,} be a Leray covering of X. Let [c] € HP(X,Ox) and [¢] €
HY(X, w0, where ¢ € CP(V, Ox) and ¢ € CU(V,wh") are cocycles. Then cU ¢ €
Crra(V, w0, defined by

/ . ’ .
(U )agaprq = Cagap  Capayyy, 1 Vag N N Vo,

is a cocycle representing [c]U[c] € HPT9(X, w¥?). The image of [¢JU[¢/] in HPT9(#™*(X))
is the cohomology class defined by the d-closed current
(7.4) Z XvpraOXvo N A 5Xup+q71 A Cygepy * ch,.,Verq € BPHIX).
Y0,---;Vp4q
The images of [c] and [¢/] in Dolbeault cohomology are, respectively, the coho-

mology classes of the d-closed currents ¢ and ¢’ defined by (7.2) and (7.3). Notice
that

@’Vup = Z Oy A=+ A 59(1/,771 “Cugevp_1vp:

V0, sVp—1
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Therefore, ¢ A ¢’ is given by (7.4) as well. O

Notice that H"(X, w_?(’o) ~ C (e.g. as it is the dual of HY(X,0x)) and any two
realizations of this isomorphism are the same up to a multiplicative constant. In the
compact Cohen-Macaulay case it thus follows from Proposition 7.1 that the duality
of this paper, up to a multiplicative constant, is the same as the abstractly defined
duality in complex and algebraic geometry.
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