
ON WEIGHTED BOCHNER-MARTINELLIRESIDUE CURRENTSELIZABETH WULCANAbstrat. We study the weighted Bohner-Martinelli residue ur-rent Rp(f) assoiated with a sequene f = (f1, . . . , fm) of holomor-phi germs at 0 ∈ C
n, whose ommon zero set equals the origin,and p = (p1, . . . , pm) ∈ Nm. Our main results are a desriptionof Rp(f) in terms of the Rees valuations of the ideal generatedby (fp1

1
, . . . , fpm

m
) and an expliit desription of Rp(f) when f ismonomial. For a monomial sequene f we show that Rp(f) isindependent of p if and only if f is a regular sequene.1. IntrodutionLet f = (f1, . . . , fm) be a sequene of germs of holomorphi fun-tions at 0 ∈ C

n, suh that V (f) := {f1 = . . . = fm = 0} = {0}.If f is a regular sequene, that is, m = n, then there is a anon-ial residue (urrent) assoiated with f - the Grothendiek residueRes( •
f1···fm

), see [12℄, and its urrent avatar the Cole�-Herrera prod-ut RCH(f) = ∂̄[1/f1] ∧ · · · ∧ ∂̄[1/fm], introdued in [9℄. In [19℄Passare-Tsikh-Yger onstruted residue urrents based on the Bohner-Martinelli kernel as a natural generalization of the Cole�-Herrera prod-ut. This idea is further developed in [6℄, where Berenstein-Yger intro-dued weighted Bohner-Martinelli residue urrents.Let p = (p1, . . . , pm) ∈ N
m and let f p denote the sequene (f p1

1 , . . . , f pm
m );here N denotes the natural numbers 1, 2, . . .. For eah ordered multi-index I = {i1, . . . , in} ⊆ {1, . . . , m} let(1.1)

Rp
I(f) = ∂̄|f p|2λ∧cn
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∧′
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2(piq−1))

|f p|2n

∣

∣

∣

∣

λ=0

,where cn = (−1)n(n−1)/2(n−1)!, |f p|2 = |f p1

1 |2+ . . .+ |f pm
m |2, ∧′ denotesinreasing order in q in the wedge produt, and α|λ=0 denotes the ana-lyti ontinuation of the form α to λ = 0. Moreover, let Rp(f) denotethe vetor-valued urrent with entries Rp

I(f); we will refer to this asthe Bohner-Martinelli residue urrent of weight p assoiated with f .Then Rp(f) is a well-de�ned (0, n)-urrent with support at the originDate: August 1, 2011.The author was partially supported by the Swedish Researh Counil and NSFgrant DMS-0901073. 1



2 ELIZABETH WULCANand gRp
I(f) = 0 if g is a holomorphi funtion that vanishes at theorigin. It follows that the oe�ients of the Rp

I(f) are just �nite sumsof holomorphi derivatives at the origin. If p = (1, . . . , 1), then Rp(f) isthe Bohner-Martinelli residue urrent assoiated with f , introduedin [19℄; we denote it by R(f) and its entries by RI(f). Note that, infat,(1.2) Rp
I(f) = f

pi1
−1

i1
· · · f

pin−1
in RI(f

p).Indeed, the sequene f p in the fator ∂̄|f p|2λ in (1.1) an be replaedby any sequene of funtions that vanish at the origin.Let On
0 be the loal ring of germs of holomorphi funtions at 0 ∈

Cn. Given a germ of a urrent µ at 0 ∈ Cn, let annµ denote the(holomorphi) annihilator ideal of µ, that is, annµ = {h ∈ On
0 , hµ =

0}. Our �rst result onerns annRp(f). Let a(f) denote the idealgenerated by the fi in On
0 . Reall that h ∈ On

0 is in the integral losureof a(f), denoted by a(f), if |h| ≤ C|f |, for some onstant C. Moreover,reall that a(f) is a omplete intersetion ideal if it an be generatedby n = odimV (f) funtions. Note that this ondition is slightlyweaker than that f is a regular sequene. Also, reall that, given ideals
a, b ⊆ On

0 , the olon ideal a : b is the ideal a : b = {h ∈ On
0 : hb ⊆ a}.We also provide a haraterization of the non-vanishing entries of

Rp(f). Let π : X → (Cn, 0) be a log-resolution of a(f), see [16,Def. 9.1.12℄. Following [15℄ we say that a multi-index I = {i1, . . . , in} isessential with respet to f if there is an exeptional prime E ⊆ π−1(0)of X suh that the mapping [fi1 ◦ π : . . . : fin ◦ π] : E → CPn−1 is sur-jetive and moreover ordE(fik) ≤ ordE(fℓ) for 1 ≤ k ≤ n, 1 ≤ ℓ ≤ m,see Setion 2 and also [15, Setion 3℄ for details. The valuations ordEthat satisfy this are preisely the Rees valuations of a(f). We say that
I is p-essential if it is essential with respet to f p. For h ∈ On

0 , let (h)denote the ideal generated by h.Theorem A. Suppose that f is a sequene of germs of holomorphifuntions at 0 ∈ Cn, suh that V (f) = {0}. Let Rp(f) be the or-responding Bohner-Martinelli residue urrent of weight p. Then theentry Rp
I(f) 6≡ 0 if and only if I is p-essential. Moreover(1.3) ⋂

I p−essential a(f p)n : (f
pi1

−1

i1
· · · f

pin−1
in ) ⊆ annRp(f) ⊆ a(f).The left inlusion in (1.3) is strit whenever n ≥ 2. If the right inlu-sion is an equality, then a(f) is a omplete intersetion ideal.The new results in Theorem A are the haraterization of the non-vanishing entries and the last two statements. Berenstein-Yger [6℄showed that a(f p)n : (f

pi1

i1
· · ·f

pin

in ) ⊆ annRp
I(f), and it is easy to seefrom Andersson's onstrution of residue urrents in [1℄ that the rightinlusion in (1.3) holds. In fat, Berenstein-Yger de�ned urrents Rp

I(f)



ON WEIGHTED BOCHNER-MARTINELLI RESIDUE CURRENTS 3also when dim V (f) > 0. The inlusions in (1.3) hold true also in thisase, and one an replae the leftmost ideal by ⋂

I={i1,...,iµ}
a(f p)µ : (f

pi1
−1

i1
· · · f

piµ−1

iµ
),where µ = min(m, n).Also, forR(f) = R(1,...,1)(f) Theorem A was proved in parts in [19℄, [1℄,and [15℄. If f is a regular sequene, then the only entry R{1,...,m}(f)of R(f) oinides with the Cole�-Herrera produt RCH(f), whose an-nihilator ideal is preisely a(f), see [10, 18℄. This should be omparedto [12, Chapter 5.1℄ where Res( •

f1···fm
) is de�ned using the Bohner-Martinelli kernel. The idea of regarding (omplete intersetion) idealsof holomorphi funtions as the annihilator ideals of ertain residueurrents is entral for many appliations, see, for example, [7℄. For p =

(1, . . . , 1), the inlusions (1.3) read a(f)n ⊆ annR(f) ⊆ a(f), whihgives a diret proof of the Briançon-Skoda Theorem [8℄: a(f)n ⊆ a(f).For other appliations of Bohner-Martinelli residue urrents, see forexample [3℄, [4℄, and [22℄.Weighted Bohner-Martinelli residue urrents were introdued in [6℄as a tool to onstrut Green urrents but also as a natural extensionof Bohner-Martinelli residue urrents in the spirit of Lipman [17℄;the urrents have been further studied in [5℄ and [24℄. In the mono-graph [17℄ not only the residue Res( •
f1···fm

) assoiated with a sequene
f plays a role but also residues of the form Res(f

p1−1

1
···fpm−1

m •

f
p1

1
···fpm

m
). Theurrents Rp(f) an thus be seen as analogues of these residues. If fis a regular sequene, then Res(f

p1−1

1
···fpm−1

m •

f
p1

1
···fpm

m
) = Res( •

f1···fm
), whih inurrent language reads(1.4) f p1−1

1 · · · f pm−1
m RCH(f p) = RCH(f).It follows that Rp(f) is independent of p if f is a regular sequene. Ingeneral, however, Rp(f) depends in an essential way on p; the set ofnon-vanishing entries as well as annRp(f) depend on p, see Setions 4and 5. Proposition 5.1 asserts that if f is monomial, then Rp is inde-pendent of p if and only if f is a regular sequene. This motivates thefollowing question.Question B. Suppose that f = (f1, . . . , fm) is a sequene of germs ofholomorphi funtions at 0 ∈ Cn. Let Rp(f) be the Bohner-Martinelliresidue urrent of weight p. Is it true that Rp(f) is independent of p ifand only if f is a regular sequene?Question B ould be asked also for annRp(f): is it true that annRp(f)is independent of p if and only if f is a regular sequene?Lemma 1.2 in [6℄ asserts that(1.5) ∑

I={i1,...,in}⊆{1,...,m}

Rp
I(f) ∧ dfin ∧ · · · ∧ dfi1/(2πi)n = ep(f)[0],



4 ELIZABETH WULCANwhere ep(f) is a positive number; in fat eah term in (1.5) is a positiveurrent with support at the origin, see Lemma 3.1. Andersson [2℄showed that e(1,...,1)(f) is the Hilbert-Samuel multipliity of the ideal
a(f). In general ep(f) depends on p, see Example 4.4, but it an alsohappen that ep(f) is independent of p even if annRp(f) and Rp(f) varywith p, as shown in Example 5.5.In general it is hard to ompute Rp(f), as well as annRp(f) and
ep(f). However, if the fj are monomials we an give an expliit desrip-tion of Rp(f) based on [23, Thm. 3.1℄. For A = {a1, . . . , am} ⊆ Z

n,let zA denote the sequene of monomials za1

, . . . , zam , where zaj

=

z
aj
1

1 · · · zaj
n

n if aj = (aj
1, . . . , a

j
n). Moreover, for p ∈ Nm, let pA denotethe set pA = {p1a

1, . . . , pmam} ⊆ Zn. Given a holomorphi funtion
g we will use the notation ∂̄[1/g] for the value at λ = 0 of ∂̄|g|2λ/g, apriori de�ned for Re λ >> 0, and analogously by [1/g] we will mean
|g|2λ/g|λ=0, that is, the prinipal value of 1/g.Theorem C. Suppose that zA is a sequene of germs of holomorphimonomials at 0 ∈ Cn, suh that V (zA) = {0}. Let Rp(zA) be theorresponding Bohner-Martinelli residue urrent of weight p. Then(1.6) Rp

I(z
A) = sgn (AI)CI ∂̄

[

1

z
αI

1

1

]

∧ · · · ∧ ∂̄

[

1

z
αI

n
n

]

;here sgn (AI) is the sign of the determinant of the matrix with rows
ai1 , . . . , ain, CI > 0 if I is p-essential and CI = 0 otherwise, and
(αI

1 , . . . , αI
n) = αI =

∑

j∈I aj.In partiular, Theorem C implies thatannRp(zA) =
⋂

I p-essential(zαI

1

1 , . . . , zαI
n

n ).In Setion 2 we provide some bakground on Rees valuations, whereasthe proof of Theorem A oupies Setion 3. In Setion 4 we fous onthe ase when f is monomial; we prove Theorem C and ompute theoe�ients CI in some speial ases. Finally, in Setion 5 we disussQuestion B and some related questions.2. Rees valuations and essential multi-indiesLet f = (f1, . . . , fm) be a sequene of germs of holomorphi funtionsat 0 ∈ C
n, suh that V (f) = {0}. The Rees valuations of a(f) arede�ned in terms of the normalized blowup ν : X+ → (Cn, 0) of a(f),see [13, Ch.II.7℄. Sine V (a) = {0}, ν is an isomorphism outside 0 ∈ Cnand ν−1(0) is the union of �nitely many prime divisors E ⊆ X+. TheRees valuations of a(f) are then the assoiated divisorial valuationsordE on On
0 : ordE(g) is the order of vanishing of ν∗g along E.



ON WEIGHTED BOCHNER-MARTINELLI RESIDUE CURRENTS 5Let π : X → (Cn, 0) be a log-resolution of a(f), see [16, Def. 9.1.12℄.Then, in fat, a divisorial valuation ordE is a Rees valuation of a(f)if and only if the image of the prime divisor E ⊆ π−1(0) under therational mapping Ψ = [f1 ◦ π : . . . : fm ◦ π] : X 99K CPm−1 is of(maximal) dimension n − 1, see [20, p. 332℄.Consider a multi-index I = {i1, . . . , in} ⊆ {1, . . . , m}. Let πI :
CPm−1 \ WI → CPn−1, where WI := {wi1 = . . . = win = 0} ⊆ CPn,be the projetion [w1 : . . . : wm] 7→ [wi1 : . . . : win ]. Following [15℄we say that I is essential with respet to E (and the sequene f) if
Ψ(E) 6⊆ WI and the mapping πI ◦ Ψ : E 99K CPn−1 is surjetive; inpartiular, ordE(fi1) = . . . = ordE(fin) = ordE(a). Moreover we saythat I is essential (with respet to f) if I is essential with respet to atleast one exeptional prime. Furthermore we say that I is p-essentialwith respet to E (and f) if I is essential with respet to the divisor
E and the sequene f p, and that I is p-essential (with respet to f) if
I is essential with respet to the sequene f p.Observe that if I is p-essential with respet to E, then ordE mustbe a Rees valuation of a(f p). Conversely, if ordE is a Rees valuation of
a(f p), then there exists at least one multi-index I, whih is p-essentialwith respet to E. However, note that I an be p-essential with respetto more than one divisor E, and onversely there an be several multi-indies that are p-essential with respet to a given E.Reall that the integral losure of a ⊆ On

0 an be de�ned in termsof the Rees valuations of a. Indeed, h ∈ On
0 is in a if and only ifordE(h) ≥ ordE(a) for all Rees valuations ordE of a, see for example [16,Ex. 9.6.8℄.Given a sequene f and a multi-index I = {i1, . . . , in}, let fI denotethe sequene (fi1 , . . . , fin).3. Proof of Theorem AThe proof of Theorem A is very muh inspired by and based on (theproofs of) Theorems A and B in [15℄ and it also uses Andersson's on-strution of residue urrents in [1℄. The following result is Theorem Band Lemma 4.3 in [15℄.Lemma 3.1. RI(f) 6≡ 0 if and only if I is essential with respet to f .Moreover RI(f) ∧ dfin ∧ · · · ∧ dfi1/(2πi)n is a positive urrent and itsmass is stritly positive if and only if I is essential.We �rst prove that Rp

I(f) 6≡ 0 preisely if I is p-essential. If I is not
p-essential, then RI(f

p) = 0 by Lemma 3.1, and hene in light of (1.2)
Rp

I(f) = 0. For the onverse, note that(3.1) Rp
I(f) ∧ dfin ∧ · · · ∧ dfi1 =

1

pi1 · · · pin

RI(f
p) ∧ df

pin

in
∧ · · · ∧ df

pi1

i1



6 ELIZABETH WULCANby (1.2). Lemma 3.1 asserts that the right hand side of (3.1) is non-vanishing if I is essential with respet to f p. Thus Rp
I(f) 6≡ 0 if I is

p-essential.The inlusion annRp(f) ⊆ a(f) follows from Andersson's onstru-tion of global Bohner-Martinelli residue urrents based on the Koszulomplex in [1℄. We provide (a sketh of) a proof for ompleteness.We identify the sequene f = (f1, . . . , fm) with a holomorphi setionof the dual bundle V ∗ of a trivial rank m vetor bundle V over someneighborhood U of 0 ∈ C
n, endowed with the trivial metri. If {ei}

m
i=1is a global holomorphi frame for V and {e∗i }

m
i=1 is the dual frame, wean write f =

∑m
i=1 fie

∗
i . Let sp be the setion sp =

∑m
i=1 f̄i|fi|

2(pi−1)ei,and let
up =

∑

ℓ

sp ∧ (∂̄sp)ℓ−1

|f p|2ℓ
.Then up is a setion of Λ(V ⊕T ∗

0,1(U)) (where ej ∧dz̄i = −dz̄i∧ej), thatis learly well-de�ned and smooth outside V (f) = {0}, and moreover
∂̄|f p|2λ ∧ up, has an analyti ontinuation as a urrent to Reλ > −ǫ,see [1℄. Note that the ein ∧ . . . ∧ ei1-oe�ient of R(up) := ∂̄|f |2λ ∧
up|λ=0 is just the urrent Rp

I(f), and thus in partiular, annR(up) =annRp(f). Let ∇ = δf − ∂̄ : Λ(V ⊕ T ∗
0,1(U)) → Λ(V ⊕ T ∗

0,1(U)); here
δf denotes interior multipliation by f . Observe that ∇up = 1 outside
V (f). In [1℄ it was proved if u is any setion of Λ(V ⊕ T ∗

0,1(U)) thatis smooth and satis�es ∇u = 1 outside V (f), then the orrespondingurrent R(u) := ∂̄|f |2λ ∧ u|λ=0 satis�es that annR(u) ⊆ a(f). Weonlude that annRp(f) ⊆ a(f).Given a sequene of germs g1, . . . , gn ∈ On
0 , let Ja(g) denote theJaobian determinant Ja(g) =

∣

∣

∣

∂gi

∂zj

∣

∣

∣

1≤i,j≤n
. Note that dfin ∧ · · · ∧

dfi1 = ±Ja(fI)dzn ∧ · · · ∧ dz1. Thus in light of (3.1) and Lemma 3.1,Ja(fI) ∈ annRp
I(f) if and only if Rp

I(f) ≡ 0. Given this we an showthat annRp(f) = a(f) implies that a(f) is a omplete intersetion idealby following the proof of Theorem A in [15, Setion 5℄.It remains to prove that the right inlusion in (1.3) is strit when
n ≥ 2. Given a multi-index I = {i1, . . . , in}, let P (I) =

∑n
j=1

1
pij

. Piktwo multi-indies I and J , suh that P (I) ≥ P (J ). We laim thatthen Rp
J (f)∧ dfin ∧ · · · ∧ dfi1 either vanishes or is a positive pointmassat the origin.Let π : X → (Cn, 0) be a log-resolution of a(f p). Then RJ (f p) is thepush-forward of a urrent R̃ on X, whih has support on the exeptionalprimes with respet to whom J is essential. More preisely, R̃ an bedeomposed as R̃ =

∑

R̃E , where the sum is over the exeptionalprimes E ⊆ X, suh that J is essential with respet to E, and R̃E hassupport on E, see [15, Setion 6℄.



ON WEIGHTED BOCHNER-MARTINELLI RESIDUE CURRENTS 7Let E1 be an exeptional prime, suh that J is essential with respetto E1. Then we an hoose loal oordinates σ on X, so that E1 =
{σ1 = 0} and R̃E1

is of the form ∂̄[1/σna1

1 ] ∧ [1/(σna2

2 · · ·σnan
n )] ∧ β,where β is a smooth form and aj = ordEj

(f p), where Ej = {σj = 0}.Observe that for 1 ≤ ℓ ≤ m, π∗f pℓ

ℓ is divisible by σ
aj

j and so π∗fℓ isdivisible by σ
⌈aj/pℓ⌉
j . It follows that

π∗(f
pj1

−1

j1
· · · f

pjn−1
jn

)R̃E1
= ∂̄[1/σb1

1 ] ∧ [1/(σb2
2 · · ·σbn

n )] ∧ β,where bj ≤ ajP (J ). A omputation following [15, p. 2130℄ yields that
π∗(dfin ∧ · · · ∧ dfi1) = σc1−1

1 (σc2
2 · · ·σcn

n γ + σ1δ)dσ1 ∧ · · · ∧ dσn,where cj ≥ ajP (I) and γ and δ are holomorphi funtions. Sine, byassumption, P (I) ≥ P (J ), π∗(f
pj1

−1

j1
· · · f

pjn−1
jn

)R̃E1
∧π∗(dfin∧· · ·∧dfi1)is of the form ∂̄[1/σ1] ∧ dσ1 ∧ β̃ = 2πi[E1] ∧ β̃, where β̃ is a smoothform. Hene

Rp
J (f) ∧ dfin ∧ · · · ∧ dfi1 =

∑

E

π∗

(

π∗(f
pj1

−1

j1
· · · f

pjn−1
jn

)R̃E ∧ π∗(dfin ∧ · · · ∧ dfi1)
)is a non-negative point mass at 0 and the laim is proved.Now pik a p-essential multi-index I, for whih P (I) = maxJ p-essential P (J ).Then the non-vanishing entries of Rp(f)∧dfin ∧· · ·∧dfi1 are just point-masses at the origin; in partiular, Ja(fI)m ⊆ annRp(f), where mdenotes the maximal ideal in On

0 . Let E be an exeptional prime, suhthat I is p-essential with respet to E. A diret omputation gives thatordE(df
pi1

i1
∧ . . . ∧ df

pin

in ) = n ordE(f p) − 1 and ordE(dz1 ∧ . . . ∧ dzn) ≥
∑n

i=1 ordE(zi) − 1. Note that ordE(zk) ≥ 1 for 1 ≤ k ≤ n. Sine
df

pi1

i1
∧ · · · ∧ df

pin

in
= pi1 · · · pinf

pi1
−1

i1
· · · f

pin−1
in

Ja(fI)dz1 ∧ · · · ∧ dzn itfollows thatordE(zkf
pi1

−1

i1
· · · f

pin−1
in Ja(fI)) ≤ n ordE(f p) − n + 1 =ordE(a(f p)n) − n + 1for 1 ≤ k ≤ n. Here we have used that a is the set of all h ∈ On

0 ,that satisfy ordE(h) ≥ ordE(a) for all Rees valuations ordE of a, seeSetion 2. Hene, if n ≥ 2, there are elements, for example zkJa(fI),in annRp(f) that are not in a(f p)n : (f
pi1

−1

i1
· · ·f

pin−1
in ). This provesthat the �rst inlusion in (1.3) is strit for n ≥ 2 and onludes theproof of Theorem A. 4. The monomial aseLet zA = (za1

, . . . , zam

) be a sequene of germs of monomials in On
0 .Reall that the Newton polyhedron NP(A) is de�ned as the onvexhull in Rn of the set of exponents of monomials in a(zA). The Rees
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a
1a

2

a
3

= q3a
3

a
4

q1a
1

q2a
2

q4a
4

r1a
1

r2a
2

r3a
3

r4a
4

Figure 1. The Newton polytopes of the sequenes zA(light grey), zqA (medium grey), and zrA (dark grey) inExample 4.1.valuations of a(zA) are monomial and in one-to-one orrespondenewith the ompat faets (faes of dimension n − 1) of NP(A). Morepreisely, the faet τ with normal vetor ρ = (ρ1, . . . , ρn) orrespondsto the monomial valuation ordτ (z
a1

1 · · · zan
n ) = ρ1a1 + · · · + ρnan, seefor example [14, Thm. 10.3.5℄. Given a multi-index I = {i1, . . . , in},let AI denote the set {ai1 , . . . , ain} ⊆ A so that zAI is the sequene

zai1 , . . . , zain . Moreover, let det(AI) denote the determinant of the ma-trix with rows ai1 , . . . , ain . It follows that a multi-index I is essentialwith respet to Eτ preisely if AI is ontained in τ and det(AI) 6= 0;here Eτ denotes the exeptional prime assoiated with τ . This meansthat I is p-essential if and only if pAI := {pi1a
i1 , . . . , pinain} is on-tained in a faet of NP(pA) and det(AI) 6= 0.Observe that if V (zA) = {0}, then zA is regular preisely if m = nand zaj is of the form z

bj

j (possibly after reordering the variables).Moreover, reall that the integral losure of a(zA) is the monomial idealgenerated by monomials with exponents in NP(A), see for example [20℄.Let us illustrate Theorem C with some examples.Example 4.1. Let zA be the sequene of monomials zA = (za1

, . . . , za4

) =
(z5

1 , z
4
1z2, z

2
1z

2
2 , z

3
2). Then NP(A) has just one ompat faet and so

a(zA) has exatly one Rees valuation, whih is the monomial valuationordE given by ordE(zb1
1 zb2

2 ) = 3b1 + 5b2. Moreover the only essentialmulti-index with respet to zA is {1, 4} and so Theorem C asserts that
R(zA) = Rp(zA), where p = (1, 1, 1, 1), has one non-vanishing entry
R{1,4}(z

A) = C{1,4}∂̄
[

1
z5

1

]

∧ ∂̄
[

1
z3

2

] and annR(zA) = (z5
1 , z

3
2).
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p q rFigure 2. The exponent sets of the ideals a(zA)(light grey), annRp(zA) (medium grey) and ⋂

(zA)2 :

(z(pi1
−1)ai1 z(pi2

−1)ai2 ) (dark grey) for weights p, q, and rin Example 4.1.Let q = (2, 2, 1, 3). Then NP(qA) has two ompat faets, so that
a(zqA) = (z10

1 , z8
1z

2
2 , z

2
1z

2
2 , z

9
2) has two Rees valuations: ordE1

(zb1
1 zb2

2 ) =
b1 + 4b2 and ordE2

(zb1
1 zb2

2 ) = 7b1 + 2b2. Moreover there are two q-essential multi-indies, {1, 3} and {3, 4}, orresponding to E1 and E2,respetively. It follows from Theorem C that annRq(zA) = (z7
1 , z

2
2) ∩

(z2
1 , z

5
2) = (z7

1 , z
2
1z

2
2 , z

5
2). Note that annRp 6⊆ annRq and annRq 6⊆annRp, whih illustrates that in general no relation between the weights

p and q is re�eted in the relation between annRp(zA) and annRq(zA).One an hek that by varying the weight p one gets all together 9di�erent annihilator ideals. Let us onsider one more example. Let
r = (3, 3, 4, 5). Then NP(rA) has one ompat faet, so that a(zrA) hasone Rees valuation. However, there are three r-essential multi-indies,
{1, 2}, {1, 4}, and {2, 4}, and annRr(zA) = (z9

1 , z2)∩ (z5
1 , z

3
2)∩ (z4

1 , z
4
2).In Figure 1 we have drawn NP(pA) and also marked the elements in

pA, for the weights p, q, and r.Note that z(q1−1)a1

z(q3−1)a3

= z5
1 and z(q3−1)a3

z(q4−1)a4

= z6
2 . It followsthat for the weight q the leftmost ideal in (1.3) is given by

(z15
1 , z11

1 z2, z
7
1z

2
2 , z

3
1z

3
2 , z

2
1z

5
2 , z1z

9
2 , z

12
2 ) and so ones sees diretly that theleft inlusion in (1.3) is strit in this ase. In Figure 2 the three idealsin (1.3) are depited for weights p, q, and r. Note that annRp(zA) isstritly inluded in a(zA) is all three ases. Also note that a(zA)2 6⊆annRr(zA), whih shows that it is not true in general that a(f)n ⊆annRp(f).

�Example 4.2. Let zA = (z, z2). Then a(zA) is just the maximal ideal
m ⊆ O1

0. Note that sine n = 1 there is a unique Rees valuationassoiated with a(zA), namely the order of vanishing at the origin.For j ∈ N, let pj = (j, 1). Then R(zA) = Rp1

(zA) =
(

∂̄ [1/z] , 0
),

Rp2

(zA) =
(

∂̄ [1/z] , ∂̄ [1/z2]
), and Rpj

(zA) =
(

0, ∂̄ [1/z2]
) for j ≥ 3. Itfollows that annR = m, whereas annRpj

= m
2 for j ≥ 2. �



10 ELIZABETH WULCANExample 4.2 shows that in general Rp(f), as well as annRp(f), de-pends in an essential way on the partiular sequene f and not onlyon the ideal a(f). Theorem A in [15℄ asserts that annR(f) = a(f) ifand only if a(f) is a omplete intersetion ideal. Theorem A says thatthe only if-diretion of this statement holds for any p, whereas Exam-ple 4.2 shows that the if-diretion fails in general. Moreover, in themonomial ase R(f) only depends on a(f) and not on the partiularsequene f . Question D in [15℄ asks whether it is always true (as longas V (f) = {0}) that annR(f) only depends on a(f).4.1. Proof of Theorem C. Theorem 3.1 in [23℄ states that if I isessential with respet to zA, then RI(f) is of the form (1.6), where CIis a nonzero onstant. Thus, using (1.2) and (1.4), we onlude thatthe entries of Rp(f) are of the form (1.6).Assume that I is p-essential. Then by Lemma 3.1, (3.1) times
1/(2πi)n has stritly positive mass. Note that dzain

∧ · · · ∧ dzai1 =

det(AI)z
αI

1
−1

1 · · · z
αI

n−1
n dzn ∧ · · · ∧ dz1. Sine ∂̄

[

1
z

]

∧ dz = 2πi[0], it fol-lows that the left hand side of (3.1) is equal to (2πi)nCI | det(AI)|[0],and so CI ≥ 0.4.2. The oe�ients CI. Given a sequene of monomials zA one an�nd a log-resolution XA → (Cn, 0) of a(zA), where XA is a tori varietyonstruted from (the normal fan of) NP(A), see [7, p. 82℄. In [23℄we omputed R(zA) as the push-forward of a ertain urrent on XA.Assume that I is essential with respet to Eτ , where τ is a faet ofNP(A). Aording to [23, p. 381℄, the oe�ient CI is of the form
CI = ± 1

(2πi)n−1 (n − 1)!DI, where I is an integral of the form
I =

∫

∏n−1
j=1 |tj|

2(cj1+...+cjn−1)

∑ℓ
k=1

∏n−1
j=1 |tj|

2cjk

dt̄1 ∧ · · · ∧ dt̄n−1 ∧ dtn−1 ∧ · · · ∧ dt1,for some n ≤ ℓ ≤ m and {cjk}1≤j≤n−1,1≤k≤ℓ, and D is the determinantof the matrix with entries {djk}1≤j,k≤n, where djk = cjk if j ≤ n − 1and dnk = 1. The terms in the denominator orrespond to the aj ∈ Athat lie in τ ; in partiular, CI depends only on τ ∩A. (Assuming that
I = {1, . . . , n} and that {a1, . . . , aℓ} are the exponents in τ , then, inthe terminology of [23℄, cjk = ρj · (bk − a0).) In general the integral Iis hard to ompute; ompare to (5.1).Assume that ℓ = n and that cjk = 0 unless j = k, possibly afterrearranging the variables tj . Then

I =

∫

∏n−1
j=1 |tj|

2(cj−1)

(1 +
∑n−1

j=1 |tj|
2cj )n

dt̄1 ∧ · · · ∧ dt̄n−1 ∧ dtn−1 ∧ · · · ∧ dt1,



ON WEIGHTED BOCHNER-MARTINELLI RESIDUE CURRENTS 11where cj just denotes cjj. A diret omputation gives that
∫

|s|2(N−1)

(1 + |s|2N)p
ds̄ ∧ ds = 2πi

1

p − 1

1

N
,whih implies that I = (2πi)n−1

(n−1)!
1

c1···cn−1
. Moreover D = c1 · · · cn−1, andsine CI ≥ 0, we onlude that CI = 1.The assumption that ℓ = n is satis�ed preisely if I is the uniquemulti-index that is essential with respet to a ertain Rees valuation.The assumption that cjk = 0 for j 6= k is for example satis�ed if thenormal fan of NP(A) is regular, see [11℄. It is also satis�ed if n = 2.Given a faet τ of NP(A), let det(τ) be the normalized volume, thatis, n! times the Eulidean volume, of the onvex hull of τ and the originin Rn. If τ is simpliial with verties b1, . . . , bn, then det(τ) is just (theabsolute value of) the determinant of the matrix with rows b1, . . . , bn.For n = 2 we have the following desription of the oe�ients CI :(4.1) ∑

AI⊆τ

| det(AI)|CI = det(τ).To prove this, reall that if V (zA) = {0}, then the Hilbert-Samuel mul-tipliity e(zA) of a(zA) equals the normalized volume Vol(Rn
+ \NP(A))of the omplement in Rn

+ of NP(A), see for example [21℄. Observe thatVol(Rn
+ \ NP(A)) =

∑

det(τ), where the sum runs over the faets τof NP(A). Now (4.1) follows in light of (1.5) and the fat that if I isessential with respet to Eτ , then CI depends only on aj ∈ A ∩ τ .Question 4.3. Does (4.1) hold also when n > 2?Example 4.4. Let zA and p, q, and r be as in Example 4.1, and let
s = (2, 1, 1, 2). From [2℄ we know that ep(zA) is the Hilbert-Samuelmultipliity of a(zA). Sine there is only one essential multi-index withrespet to zA we an also ompute this diretly from (4.1). Indeed
C{1,4} = 1 and so ep(zA) = | det(A{1,4})| = 15.Moreover, reall that a(zqA) has two Rees valuations and that thereis one q-essential multi-index assoiated with eah divisor: {1, 3} and
{3, 4}. Hene C{1,3} = C{3,4} = 1 and so eq(zA) = | det(A{1,3})| +
| det(A{3,4})| = 10 + 6 = 16, that is, the normalized area of the onvexhull of a1 = (5, 0), a3 = (2, 2), and a4 = (0, 3). Similarly a(zsA) hasthree Rees valuations and there is one s-essential multi-index for eahvaluation; it follows that es(zA) = 17, see Figure 3.Finally a(zrA) has one Rees valuation, but there are three r-essentialmulti-indies. From (4.1) we know that C{1,2}| det(A{1,2})|+C{1,4}| det(A{1,4})|+
C{2,4}| det(A{2,4})| = | det(A{1,4})|, whih means 5C{1,2} + 15C{1,4} +
12C{2,4} = 15. However, we annot say more; in partiular, we annotdetermine er(zA).

�
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p q sFigure 3. The multipliities ep(zA), eq(zA), and es(zA)in Example 4.4.5. Disussion of Question BTheorem C allows us to give an a�rmative answer to Question B inthe monomial ase. Reall that if a(f) is a omplete intersetion ideal,then a(f) is, in fat, generated by n of the fj . This follows for examplefrom Nakayama's Lemma.Proposition 5.1. Suppose that zA = (zaj

)m
j=1 is a sequene of germsof holomorphi monomials at 0 ∈ Cn, suh that V (zA) = {0}. Then

Rp(zA) is independent of p if and only if zA is a regular sequene.Moreover, annRp(zA) is independent of p if and only if for eah I =
{i1, . . . , in} ⊆ {1, . . . , m}, either zAI generates a(zA) or det(AI) = 0.Note that the ondition that either zAI generates a(zA) or det(AI) =
0 is equivalent to that a(zA) is a omplete intersetion ideal, generatedby say zb1

1 , . . . , zbn
n , and that moreover, for 1 ≤ j ≤ m, zaj is equal to

zbk

k for some 1 ≤ k ≤ n.Proof. First, note that the if-diretions of the statements in Proposi-tion 5.1 follow immediately from Theorem C. Thus we need to provethe only if-diretions.Let I be a multi-index de�ned by that zaij is of the form z
bj

j , where bjis the smallest number suh that z
bj

j is among the entries of zA. Withoutloss of generality we may assume that I = {1, . . . , n}. Choose p ∈ Nm,so that pi = 1 if i ≤ n and pi >> 1 otherwise. Then I is the unique
p-essential multi-index.Assume that m > n and hoose j, suh that n < j ≤ m. Moreover,hoose q ∈ Nm suh that aj lies in the one of the ompat faets ofNP(qA). For example, let q be de�ned by qi = |a1| + . . . + |ai−1| +
|ai+1| + . . . + |am|, where |aℓ| = aℓ

1 + . . . + aℓ
n. Then j is ontained ina q-essential multi-index, say J . It follows that Rq

J (zA) 6= 0, whereas
Rp

J (zA) = 0. Hene Rp(zA) 6= Rq(zA) and we have proved the �rst partof Proposition 5.1.Next, assume that there is an aj ∈ A suh that zA is not equal toany of zb1
1 , . . . , zbn

n . Sine V (zA) = {0}, at least one of the entries of ajis positive, say aj
k > 0. Let J = {1, . . . , k − 1, k + 1, . . . , n, j}. Then

det(AJ ) 6= 0, whih means that we an �nd a weight q suh that Jis q-essential; for instane we an take q as above. By assumption,
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aj

k > bk or aj
i > 0 for some i 6= k. In both ases, for some ℓ, the

ℓth entry of ∑

j∈J aj is stritly larger than the ℓth entry of ∑

j∈I ajand thus annRq
J (zA) 6⊇ annRp

I(z
A). This proves the seond part ofProposition 5.1. �Observe that a neessary ondition for Question B to be true wouldbe that the set of p-essential multi-indies is independent of p if andonly if f is a regular sequene. As we saw in the above proof this is trueif f is monomial, but we do not know if it holds in general. When f ismonomial, the essential multi-indies are rather speial. For example, amulti-index an be essential with respet to at most one Rees valuation,whih is not the ase in general. Indeed, if m = n, then I = {1, . . . , n}is essential with respet to all Rees valuations (and there an be morethan one Rees valuation). The following example illustrates anotherphenomenon, whih does not our in the monomial ase.Example 5.2. Let f = (z4

1 − z4
2 , z

2
1z2, z1z

2
2). Then a(f) has three Reesvaluations, namely the monomial valuations ordE1

(zb1
1 zb2

2 ) = b1 + b2,ordE2
(zb1

1 zb2
2 ) = 2b1 + b2, ordE3

(zb1
1 zb2

2 ) = b1 + 2b2, and {2, 3}, {1, 3}and {1, 2} are the unique essential multi-indies with respet to ordE1
,ordE2

, and ordE3
, respetively. Note that this situation annot happenif fj are all monomials.Let q = (1, 2, 2). Then a(f q) = (z4

1 − z4
2 , z

4
1z

2
2 , z

2
1z

4
2) has four Reesvaluations, ordE1

, . . . , ordE4
. To see this, note that after blowing upthe origin one, the strit transform of a(f q) has support at four points

x1, . . . , x4. The divisor Ej is obtained by further blowing up xj twie.A omputation yields that {1, 2} and {1, 3} are both q-essential withrespet to Ej for 1 ≤ j ≤ 4, whereas {2, 3} is not q-essential. Hene
R(f) 6= Rq(f). �Note that det(AI) = 0 is equivalent to that dzai1 ∧· · ·∧dzain vanishesidentially, whih in turn implies that I is not p-essential for any p ∈
Nm. This motivates the following version of Question B.Question B'. Is it true that annRp(f) is independent of p if andonly if for any I = {i1, . . . , in}, either fI generates a(f) or the form
dfi1 ∧ · · · ∧ dfin vanishes identially.Let us mention some partial answers to Question B'. Theorem Cin [15℄ asserts that if a(f) is a omplete intersetion ideal, then RI(f)is a onstant times the Cole�-Herrera produt RCH(fI) if fI generates
a(f) and 0 otherwise. Using this and (1.4) one an hek that annRp(f)is independent of p if a(f) is a omplete intersetion ideal, generatedby say f1, . . . , fn, and moreover for j > n, fj is equal to (a onstanttimes) one of the fk for 1 ≤ k ≤ n; ompare this to (the disussionright after) Proposition 5.1.



14 ELIZABETH WULCANExample 5.3. Let f = (z1, z2, z1 + z2). Then a(f) is just the maximalideal in O2
0, whih is learly a omplete intersetion ideal, and thus byTheorem C in [15℄, annR(f) = a(f). Note that any hoie of fi and fjgenerate a(f), so f satis�es the ondition in Question B'.Let p = (3, 3, 3). Observe that a(f p) = (z3

1 , z
3
2, z

2
1z2 + z1z

2
2) is not aomplete intersetion ideal. A omputation yields that

R{1,3}(f
p) = A1∂̄[1/z5

1 ]∧∂̄[1/z2]+A2∂̄[1/z4
1 ]∧∂̄[1/z2

2 ]+A3∂̄[1/z3
1 ]∧∂̄[1/z3

2 ],for some onstants A1, A2, and A3. It follows that Rp
{1,3}(f) = (A1 +

2A2 + A3)∂̄[1/z1] ∧ ∂̄[1/z2]. In fat, also the other entries of Rp are ofthis form and so annRp = a(f). �Note that if there is a subsequene fI = (fi1 , . . . , fin) of f suh that
V (fI) = {0}, then by hoosing pj = 1 if j ∈ I and pj >> 1 for j /∈ I,the only non-vanishing entry of Rp(f) is Rp

I(f), whih is a onstanttimes RCH(fI). Thus, given that there exists suh an fI , annRp(f) isnot independent of p as soon as, for example, there is another multi-index J , suh that V (fJ ) = {0}, or as soon as annR(f) is not aomplete intersetion ideal. One an, however, not always �nd suh an
fI , as the following example shows.Example 5.4. Let f = (f1, f2, f3) = (z1z2, z1(z1 +z2), z2(z1 +z2)). Then
V (fI) is a line through the origin for all I = {i1, i2}; in partiular,
V (fI) 6= {0}. Moreover, a(f) is the (monomial) ideal m

2, where mis the maximal ideal in O2
0. Thus the only Rees valuation of a(f) isthe order of vanishing at the origin and so R(f) an be omputed byblowing up the origin one. Note that all multi-indies I = {i1, i2} areessential. Let Rℓ,k denote the urrent ∂̄[1/zℓ

1] ∧ ∂̄[1/zk
2 ], and let(5.1) Cj =

1

2πi

∫

|t|2jdt̄ ∧ dt

(|t|2 + |1 + t|2 + |t(1 + t)|2)2
.Then, a omputation yields that R{1,2}(f) = −C0R

3,1, R{1,3}(f) =
2C2R

1,3, and R{2,3}(f) = C0R
3,1 + 2C1R

2,2 + C2R
1,3. It follows thatannR(f) = m

3.Let p = (2, 1, 1). Then a(f p) has two Rees valuations, ordE1
andordE2

, where E1 is the exeptional divisor obtained by blowing up theorigin one, whereas E2 is obtained by further blowing up a point on
E1 twie. Moreover, {2, 3} is essential with respet to E1 and {1, 2}and {1, 3} are essential with respet to E2. A omputation gives that
Rp

{1,2}(f) = Rp
{1,3}(f) = −1/2(R3,1 − R2,2 + R1,3) and Rp

{2,3}(f) =

A3,1R3,1 + A2,2R2,2 + A1,3R1,3, where Ai,j > 0.Note that Rp
I(f) 6= RI(f), as well as annRp

I(f) 6= annRI(f), for,at least, I = {1, 2}, {1, 3}. Moreover, note that annR(f) is stritlyinluded in annRp(f). Indeed, (A2,2 + A1,3)z2
1 + (A1,3 − A3,1)z1z2 −

(A3,1 + A2,2)z2
2 ∈ annRp(f) \ annR(f). �



ON WEIGHTED BOCHNER-MARTINELLI RESIDUE CURRENTS 155.1. Related questions. Question B ould be posed also for the ur-rents (1.5). The following example shows that ep(f) does not neessar-ily vary with p even if Rp(f) and annRp(f) do.Example 5.5. Let zA = (z2
1 , z1z2, z

2
2). Then by varying p there arethree di�erent possibilities of p-essential multi-indies. First, all threemulti-indies I = {i1, i2} ould be p-essential, whih for example isthe ase for p = (1, 1, 1). Next, for p = (1, 2, 1), {1, 3} is the only p-essential multi-index, and for p = (2, 1, 1), the p-essential multi-indiesare {1, 2} and {2, 3}. In the �rst situation, by [2℄, ep(zA) is the Hilbert-Samuel multipliity of a(zA), whih is equal to Vol(Rn

+ \ NP(A)) =
| det(A{1,3})| = 4. In light of (4.1) it is not hard to hek that this isholds true also if p is another weight suh that all I are p-essential.In the latter two ases, by Setion 4.2, the oe�ients CI are all 1,when I is p-essential. It follows that ep = | det(A{1,3})| = 4 and ep =
| det(A{1,3})| + | det(A{2,3})| = 2 + 2, respetively, so in fat ep(zA) isindependent of p. �One an also ask in what sense Rp

I(f) and annRp
I(f) depend on p,one I is p-essential. In the monomial ase annRp

I(f) is �x as long as
I is essential but the oe�ient CI in (1.6) vary in general. Indeed,in Example 5.5 above, in the �rst ase, for p = (1, 1, 1), CI are allstritly between 0 and 1, whereas in the latter ases they are either
0 or 1. In general, also annRp

I(f) varies with p, see Example 5.4above. Computations, suh as in Example 5.4, suggest that in generalthere may be in�nitely many di�erent annihilator ideals annRp
I(f) andannRp(f) as p varies over Nm. This ontrasts the monomial ase, wherethere are always �nitely many di�erent ideals annRp(f).Referenes[1℄ M. Andersson:Residue urrents and ideals of holomorphi funtions., Bull.Si. Math. 128 (2004), no. 6 481�512.[2℄ M. Andersson: Residues of holomorphi setions and Lelong urrents, Ark.Mat. 43 (2005), no. 2, 201�219.[3℄ M. Andersson & E. Götmark: Expliit representation of membership inpolynomial ideals, Math. Ann. 349 (2011), no. 2, 345�365.[4℄ M. Andersson & H. Samuelsson & J. Sznajdman: On the Briançon-Skoda theorem on a singular variety, Ann. Inst. Fourier 60 (2010), no. 2,417�432.[5℄ C. Berenstein & A. Vidras & A. Yger: Analyti residues along alge-brai yles, J. Complexity 21 (2005), no. 1, 5�42.[6℄ C. Berenstein & A. Yger: Analyti residue theory in the non-ompleteintersetion ase, J. Reine Angew. Math. 527 (2000), 203�235.[7℄ C. A. Berenstein & R. Gay & A. Vidras & A. Yger: Residue ur-rents and Bezout identities, Progress in Mathematis 114 Birkhäuser Yerlag(1993).[8℄ J. Briançon, H. Skoda : Sur la l�ture intégrale d'un idéal de germes defontions holomorphes en un point de Cn, C. R. Aad. Si. Paris Sér. A 278(1974) 949�951.
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