HOMEWORK, COMPLEX ANALYTIC VARIETIES 2016-2017

- 1, due Feb 10th: Do the details in the first step in Demailly's proof of the strong Noetherian property, Theorem 3.22, i.e., prove that is enough to assume that $\mathcal{F} = \mathcal{O}_M$.
- **2**, due Feb 17th: Let A be the cusp in \mathbb{C}^2 , defined by $A = \{z^3 w^2 = 0\}$. Let x = (a, b) be a point on A. Show that (w b)/(z a) is a unit in $\mathcal{O}_{A,x}$ if and only if x is not the origin in \mathbb{C}^2 .
- **3**, due Feb 17th: Show that two equivalent definitions of analytic morphisms given in the very beginning of Section 5 in Demailly are equivalent. Show at least one direction, for the other you may have a look at de Jong Pfister, Theorem 3.4.21.
- 4, due Feb 24th: Given a complex space X, show that the family \mathcal{F} of irreducible analytic subsets $Z \subset X$, where
 - Z is an irreducible component of X,
 - Z is an irreducible component of Z'_{sing} , where $Z' \in \mathcal{F}$, or
 - Z is an irreducible component of a finite intersection $\bigcap Z_j$, where $Z_j \in \mathcal{F}$,

is locally finite.

- 5, due March 3rd: Let $A \subset \Omega \subset \mathbf{C}^n$ be an analytic set. Given an \mathcal{O}_A -module \mathcal{S} , let $\tilde{\mathcal{S}}$ be the extension of \mathcal{S} to Ω defined by $\tilde{\mathcal{S}}(U) = \mathcal{S}(A \cap U)$. Show that \mathcal{S} is coherent over \mathcal{O}_A if and only if $\tilde{\mathcal{S}}$ is coherent over \mathcal{O}_{Ω} .
- 6, due March 3rd: In the proof of Proposition 6.1 in Demailly, prove the statement: By construction $\pi(A_k) \subset \Delta'$ is contained in the set B_k defined by some Weierstrass polynomials in the variables z_{p_k+1}, \ldots, z_p and $\operatorname{codim}_{\Delta'} B_k = p - p_k \geq 2$.
- 7, due March 10th: Prove Corollary 6.3 in Demailly. Note that there is a typo in Demailly. The statement should be: If f_1, \ldots, f_p are holomorphic functions on an irreducible complex space X, then all irreducible components of $f_1^{-1}(0) \cap \cdots \cap f_p^{-1}(0)$ have codimension $\leq p$.
- 8, due March 10th: Exercise 11.11 in Demailly.
- 9, due March 17th: Exercise 11.3.c in Demailly.
- 10, due March 17th: Let \mathcal{F} be the sheaf defined in the proof of Theorem 7.5 in Demailly. Show that $\mathcal{F} \neq \tilde{\mathcal{O}}_X$ in general.

Date: March 7, 2017.