Measures everywhere
Applications

Sergei Zuyev

University of Strathclyde, Glasgow, U.K.

© S. Zuyev Applications. 25th Finnish Summer School on Probability Theory, Turku, June 2 — 6, 2003



Applications already considered

Estimation of mixture distribution
Generalisations of Kiefer-Wolfowitz theorem in optimal design
Russo’s Formula and Gamma-type results in stochastic geometry

Numeric integration of functions and Approximation of convex bodies
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Clustering

Data points y; € X,
1<j<n

Ward criterion:  find clusters’
centres: X = (X1,...,Tk)
minimising

S: S: pQ(xivyj)

Li Yj chi (X>

—centers x;

— observation points ¥y ;

Note: the objective function is non-convex w.r.t. 1, ..., T (k-means)!
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Poissonisation

Cluster centres: Poisson process 11, with intensity y with (1(X) = k&

E, Z Z pQ(Iiv yj)

| i€l y;~Cy, (1)

Note: The objective function is strictly convex w.r.t. !
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Redwood data

Data and level sets for optimal 1 for
total mass n = 20, 50, 100
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Telecommunications example

e Daughter points = subscribers (or demand).
e Cluster centers = local exchanges (stations)

Problem: Find density 1 of stations minimising the average connections

cost of subscribers to the stations:

E“Z Z pﬁ(wiayj>'

[1  High intensity solution:  Density of stations p,,(x) o q(x)d/(d+ﬁ),
where q is the density of the demand (d = 2 typically)
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Optimal placement of stations

Gradient function Gradient & Measure

0.0 02 0.4 0.6 0.8 1.0
Subscribers & stations’ density

1‘."

0.0 02 04
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Monte Carlo integration

Aim: calculate [ f(y)dy, X C R4

/X F)dy ~ [f(U) + -
1

Varl,

where (X /f 2dy — /f dy

Stratification: split X into k£ sub-regions and

sample n/k points from every sub-region
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Find optimal stratification

Variance (stratified case): is k/n times F'(II) = > | 11 o(Cy, (11)).

High intensity solution:

pu(@) o ||grad f|| ¥/
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Optimal random search

(How to catch a random set using Poisson traps?)

e Y C X is arandom closed set in-
depentednt of 11.

e Maximise trapping probability
P, {Y NII # 0}
° ZM( ) = Eu[e_“(y) ]I:EEY]
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Example: X ={0,1,2,...}
Y = {£} geometrically distributed random singleton: P{¢ = {i}} = pq’
If ({i}) = m;, then (maximisation!)

=u 1 € suppu,
<u Vi

7

'Dq

Thus m; = — log(u/(pq")) on supp p and hence supp y is finite as

otherwise m; become negative.

0 Eg.ifp=¢g=0.5anda = pu(X) =1, then
supp i = {0, 1} with mg = 0.847,m; = 0.153,
trapping probability is 0.3211

[1  Compare:
0.5 = trapping probability using the fixed trap at O (not Poisson).

But trapping probability given II(X) > 0is 0.3211/(1 — e~ 1) = 0.5009.
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Catching a random ball

X CRY Y =b,(&) random ball of radius p at z € X

¢ and p are independent and have continuous densities

Bap(e)n(#) o —pe(@)bad "

p,(0)(d+ 1)['(1 + 1/d) N P, (0)(d +2)T'(1 4 2/d)
(ap(x)bg)tT1/d (ap(z)bg)tt2/d

High intensity solution:
p(x) o< (pe(x))4/(4HE+1) \where k is the first non-zero pgﬂ) (0).
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Design of materials

Boolean model:

== U (zi + =)

X; EHM

II Poisson process with intensity

measure [,

= is a typical grain (e.g., b¢ (0)).
Minimise the expected uncovered volume (convex function!):

Y(p) =EVol(X \ Z) = / e~ Er@=Z0)qr s min
X

Gradient:

d(az,,u) — _F [/ e—Eu(y—Eo)dy]
Eo—l—ic
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Measures maximising the expected covered area in X = |0, 1]2 with the

fixed total mass a. The typical grain is a ball of radius 7.
(@)a = 10, r = 0.1;
(b) a = 50, r = 0.1;
(c) a = 10, r is exponentially distributed with mean 0.1;
d)a= 10,7 = 0.3.
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Other quantities
[ weighted volume EQ(=N X))

[ Predetermined volume E Vol(EN X ) = v

Solve f(u) = v or, equivalently, minimise

[1  Entropy of the uncovered phase

_ /X(1 ~ r(2))log(1 — r(x))da

where r(z) = P{z € E}.
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Functionally graded materials (FGM)

= is a Boolean model in
X x [0, 1]. The last coordinate

(height) is used for grading

0 X

Expected uncovered volume at height ¢ is called density profile

a(t, 1) = B, VOL(E* N (X x {t}))

:/Xexp{—E,u((a;,t)—Eo)}dx.
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Design of FGM

Assume: p = dx X v(dt) is homogeneous on X and =y = B¢ (0)
Aim: Given h(t), design FGM (measure 1) such that

q(t, ) = h(t), te€l0,1] or

) = / (a(t, 1) — h(£))?v(dt) — min

q(t, jt) = exp {— /01 9(s, t)V(dS)}

g(s,t) = bg E {max(ﬁZ — (s —1)?, ())d/Q]
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Target density profiles A (solid lines) and the calculated density profiles

q(t, A) (dashed lines) for optimal measures with a total mass 50.

@d=1,h(t) =t

() d = 2, h(t) = t>;
©d=1,h(t) =t/3

(d) The optimal v for the case (a).
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Some subjects non-covered in the course

Infinite mass measures

Second order necessary conditions for inf

Specific constraints, e. g. class of absolutely continuous measures
P-design measures

Sequential Gamma-type results

Hitting properties of stopping sets

Projected gradient descent

Other applications
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