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Numeric approach

Optimal 1 can rarely be obtained explicitly.

Steepest descent: Move from p to 4 + 1), where 1) minimises
D(3)(u))[n] over [[n]| = e.

Difficulty: & + 1 must also satisfy all the constraints. For a fixed mass
problem this implies n(X) = 0, thus it + 1 may not be a probability

measure even for very small €!
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Not really steepest descent

Common approach for probability measures: add ‘optimally’ a positive
measure and rescale the result to unit mass. Specifically, move from u to

(1 —&)u + ev, where v € M, minimises

~

Dy()lv] = lim ¢t~ (1 =t + tv) — ().

t|0

But Dty (p)[v] = Dp(p)[v — pl. As a result:

e the direction given by D is not the true steepest descent;

e convergence is slower and not evident.

© S. Zuyev Numerical optimisation. 25th Finnish Summer School on Probability Theory, Turku, June 2 — 6, 2003



True steepest descent
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Theorem 1. If the only constraint is 11(X ) = a, then the minimum of
D () [n] over all ||n|| < e suchthat & + 1 > 0 is achieved on a signed

measure 71 such that 77+ has total mass € /2 and concentrated on the points

of the global minima of the gradient function d(x, j); and

no= /“M(ts) + 5/N’M(s€)\M(t€)’ where

M(p)={zxe X : d(xz,n) >p}, and

te = inf{p: u(M(p)) <e/2},
se =sup{p: u(M(p)) = ¢€/2}.

The factor €’ is chosen in such a way that
(M (te)) +e'u(M(s:) \ M(t:)) =¢€/2.
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Algorithm

Realised in R/Splus library mefista . Convergence follows from the

conventional steepest descent theory.

Procedure go0.steep
Data. Initial measure (.
Step 0. Compute y «— ().
Step 1. Compute d < d(x, u). Ifis.optim  (u, d), stop.

Otherwise, choose the step size €.
Step 2. Compute pq «— take.step (&, i, d).

Step 3. Ify1 «— Y(p1) <y, then u «— p1;y < y1; and go to Step 2.
Otherwise, go to Step 1.
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Checking optimality

Procedure 1S.0ptim
Data. Measure u, gradient function d, tolerance tol
tolerance of the support supp.tol 2.
Step 1. Compute support S of 1t up to tolerance supp.tol

Step 2. If max,cg d(x) — mind(xz) <tol return TRUE
otherwise return FALSE

2We may wish to ignore atoms of a very small mass
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Taking a step

Procedure take.step
Data. Step size £, measure i, gradient function d(x, ).
Step 0. Assign to each point x € X the mass u({x}).

Step 1. Find the global minima of d(x, ;+) and add the total mass £/2 to one of

these points or spread it somehow (e. g. uniformly) over these points.

Step 2. Find t. and s, from (1) and (2) and assign mass 0 to all the points of the
set M (t.), decrease the total mass of the point M (s.) \ M (t.) by value
e/2 — pu(M(t:)) and return the obtained measure.

© S. Zuyev Numerical optimisation. 25th Finnish Summer School on Probability Theory, Turku, June 2 — 6, 2003



Armijo method for the step size

It defines the new step size to be 3¢, the integer m is such that

wM+m»—WMSa/ﬁ@memm

wu+%%n—wmy>q/w%memwm

where 0 < o < 1 and 7, is the steepest descent measure with the total

variation 3™¢.

© S. Zuyev Numerical optimisation. 25th Finnish Summer School on Probability Theory, Turku, June 2 — 6, 2003



Comparison with rescaling method

[1 Itis atrue steepest descent. All the convergence results and

properties are inherited from a general descent theory.

[1  Faster to run.

Example: cubic regression through the origin.

y(z) = Bix + Pox? + Pz’ + odw(x), = € [0,1].

Find D-optimal design measure ,u(d.r) minimising the generalised variance:

det || cov(@,gj)ﬂ =o*det M~ (),

where

M(p) = / F@)T (@) p(de), f(z) = (2,2% 07,

is the corresponding information matrix.
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Giradient function
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Figure 1: The firstinteration in AQ — classical renormalisation algorithm (as described

in Atkinson & Donev) and A1 — true steepest descent algorithm
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Optimisation under linear constraints

Consider the problem (1) — inf, u € M under finite number of linear

constraints:

Hi(w) = [ hi(o)u(do) = ai, i=1.....k.

where a = (aq, ..., ax) is a given vector.

Definition: Vectors wq, ..., Wy are called affinely independent if

wo — W1, ..., W1 — Wi are linearly independent.
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General form of the Increment measure

Theorem 2. The minimum of D) (u)[n] over all ) € Th, ng—1(a) (1)

such that ||n|| < € is achieved on a signed measure n = n* — ™, where
n™t has at most k atoms and = = Zf;l t; 4| B, forsome 0 < t; <1
witht; 4+ - - - + tx11 = 1 and some measurable sets 3; such that vectors

H(ulp,)*t=1,...,k+ 1, are affinely independent.

Caution: Finding the optimal 1) here is equivalent to solving a Linear

Programming Problem: not efficient. Need faster approximate solutions.

2| (*) = u( e N B) is the restriction of  onto B.
In Theorem 1, By = M (t:z), Bo = M(s:) \ M(t:)andt; =e/2 — &', to = £'.
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Realisation in library medea

Move from the current measure p to i + 1, where n = v — ~yu for some

~ > 0 which has similar meaning to the step size.

Due to Theorem 2, the positive part v = nT = > §,.. of the steepest
increment measure has at most k atoms. The masses p1, . . ., pi located
at points x1, ..., X, may be chosen so that to minimise the directional
derivative D1)(p)[n]. To satisfy the constraints

H(p+v—vyu) =a=(ay,...,ar)weimpose

k
H(v) = ijh(:cj) = ~a, or
j=1

H(zi,...,xp)p' =~a'
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pT :fyH(ajl,...,:Ek)_laT. (4)

Since 7 = v — 7y, the directional derivative D1)(14)|n] is minimised if v

minimises

k
Dip(p)[v] = ijd(l’j, )

= yd(xl, . ,CCk)H(SIjl, . .. ,ajk)_laT ,

where d(x1,...,x) = (d(x1,p1),...,d(xk, p)) are the values of the

gradient function of 1) at the support points of v.
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Realisation in library medea

Procedure go0.steep
Data. Initial measure L.

Step 0. Compute y <«— w(,u) and for each k-tuple (x1,...,x)) compute
H(zy.... o) "aT.

Step 1. Compute d «— d(x, ). Ifis.optim  (u,d), stop. Otherwise, choose

the step size €.
Step 2. Compute i1 < take.step (e, u, d).

Step 3. Ify1 < (1) < f, update u, y and go to Step 2. Otherwise, Step 1.

© S. Zuyev Numerical optimisation. 25th Finnish Summer School on Probability Theory, Turku, June 2 — 6, 2003

16



Numerical examples
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Figure 2: Optimal design measure in cubic regression through origin and with fixed

barycentre = 0.7
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