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Abstract

With their flexibility and ability to capture complex, non-linear dependencies
in data, artificial neural networks, ANNs, have obtained state of the art perfor-
mance in a large number of disciplines. Due to their many parameters ANNs
are however difficult to interpret. This thesis, that is based on two research
papers, investigates how ANNs can be regularized with the lasso penalty to
eliminate redundant parameters, resulting in clean-cut, interpretable network
architectures.

In Paper I, we use a one hidden layer, feedforward neural network regularized
with adaptive lasso to obtain a sparse network architecture. We then inter-
pret this architecture as a data driven non-parametric additive model, as an
alternative to a model based on domain knowledge.

In Paper II, we develop a lasso penalty between nodes in non-adjacent layers
in a feedforward neural network. When then apply it to an autoencoder,
to perform non-linear, sparse dimensionality reduction. We show that our
algorithm achieves a lower reconstruction error than linear models, such as
sparse principal component analysis, and higher interpretability than non-
sparse algorithms, such as autoencoders.

With this thesis we contribute to the understanding of how lasso regularization
can be used to produce ANNs with more interpretable architectures, and with
maintained flexibility.

Keywords: sparse neural networks, lasso regularization, additive models,
dimensionality reduction
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1 Introduction

Artificial neural networks (ANNs), is a very flexible model class, capable of
capturing complex, non-linear relations in data. One reason for the great
flexibility is the many parameters. Even if some parameters may be redundant,
given enough data, ANNs can still perform very well on prediction tasks. If,
however, interpretation is a major concern this plenitude of parameters might
be an obstacle.

This licentiate thesis investigates how ANNs with different versions of the
lasso penalty (to be defined in section 1.2.1) can be used to create sparse ANNs,
that are still flexible, yet more interpretable.

The rest of this chapter is structured as follows: Section 1.1 describes ANNs,
what they look like and how to fit them to data; section 1.2 describes regulariza-
tion, why it is needed, different versions and how it might affect fitting of the
model; section 1.3 describes variable importance, how a given output is affected
by a given input; and section 1.4 describes dimensionality reduction, how to
identify a low-dimensional representation that summarizes the variation of a
high-dimensional data set.

1.1 Feedforward Neural Networks

The first ANNs were proposed by McCulloch and Pitts (1943). Hebbian learn-
ing, which is a form of unsupervised learning where the data is unlabeled, was
introduced shortly thereafter (Hebb (1949)). Backpropagation (Werbos (1974)),
which is essentially the chain rule, enabled the use of multi-layered networks,
but the computing power at the time limited their usefulness. However, as
computational power increased, so did the usefulness of ANNs, and from
around 2010, with the publications of Hinton et al. (2006) and Krizhevsky et al.
(2012), they have provided state of the art performance in a large variety of
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2 1. Introduction

tasks, see e.g. Abiodun et al. (2018) for a review.

Although ANNs exist in many flavours with different architectures, such
as convolutional neural networks (LeCun et al. (1989)) and recurrent neural
networks (Hochreiter and Schmidhuber (1997)), this thesis focuses on the
simplest architecture, the feedforward neural network. In the following, we see
how it can be thought of as a generalization of linear regression, before looking
at how to infer its parameters to fit the model to data.

1.1.1 Network Architecture

For x,θ ∈ Rp, linear regression can be written as

E[y] = θ0 + θ1x1 + θ2x2 + · · · θpxp = θ0 · 1 + θ�x

and drawn as a graph with the y and x’s as node values and the θ’s as link
weights, as sketched in Figure 1.1a.

Logistic regression, sketched in Figure 1.1b, is very similar to linear regression,
but with addition of the non-linear sigmoid function, σ(x) = 1/(1 + e−x):

E[y] = σ(θ0 + θ1x1 + θ2x2 + · · · θpxp) = σ(θ0 · 1 + θ�x).

Another modification to standard linear regression is multivariate linear regres-
sion; instead of a θ-vector in Rp, we get a Θ-matrix in Rq×p and for i ∈ {1, . . . q}

E[yi] = θi0 + θi1x1 + θi2x2 + · · · θipxp, E[y] = θ0 +Θ · x

as sketched in Figure 1.1c.

A feedforward neural network can be thought of as multiple instances of
logistic and multivariate regression stacked on each other, so that the input
of each sigmoid function is a linear combination of outputs of other sigmoid
functions, as sketched in Figure 1.1d. For some reason when discussing neural
networks, the names of the parameter often differ from those used in linear
and logistic regression; instead of θ0, b, as in bias, is used, and instead of Θ, W ,
as in weights. For a feedforward neural network with L+ 1 layers including
the x- and the y-layers, the equation then becomes

E[y] = σ(WL · σ(WL−1 · σ(. . . σ(W1 · x+ b1) . . . ) + bL−1) + bL)

where the sigmoid functions, that are often called the activation functions, are
taken element-wise.

1.1. Feedforward Neural Networks 3
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Figure 1.1: Network representations of linear regression, logistic regression, multivari-
ate linear regression and a feedforward neural network. In the figures all layers have
four nodes, and there are two hidden layer in the neural network, but there is nothing
magic about theses numbers. In the two last subfigures the θ’s are omitted to enable
readability.

Finally, there is nothing that says that we need to use the sigmoid function as
activation function, or that we need to use the same activation function in each
layer. Other common choices of activation functions are the identity function,
which reduces the neural network to multivariate linear regression; tanh(x) =
(ex − e−x)/(ex + e−x), which is a scaled version of the sigmoid function with
range [−1, 1] instead of [0, 1]; and the rectified linear unit, ReLu(x) = max(0, x).

1.1.2 Network Training

Fitting a model to data, something that is often referred to as training the
model, is an optimization problem in terms of the difference between true
value, y, and the model value, ŷ(x). This difference is often referred to as the
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4 1. Introduction

loss, or the risk, denoted by L and is to be minimized with respect to the model
parameters:

min
{Wi}L

i=1,{bi}L
i=1

L(y, ŷ(x)).

Common choices of loss function are the squared difference,

L(y, ŷ(x)) :=
∑
i

(yi − ŷi(xi))
2,

for regression and the cross entropy,

L(y, ŷ(x)) :=
∑
i

yi log(ŷi(xi)),

for classification, where yi ∈ {0, 1}.

Using backpropagation it is straight forward, but tedious, to express ∂L
∂θ for

all elements θ in all weight matrices and bias vectors, which means that the
optimization problem can be solved by setting the derivative to zero for all pa-
rameters. One of the simplest algorithms for finding the zeros of the derivative
is gradient descent, which was suggested by Cauchy in 1847. It is an iterative
algorithm, where in each iteration every parameter is updated a small step, α,
called the learning rate, in the direction of the negative gradient, i.e. downhill
in the multidimensional optimization landscape:

θt+1 = θt − α∇θL(θt;x,y)

If the problem is convex (which is typically not the case for neural networks) the
algorithm converges to the global optimum. If it is not, the algorithm converges
to some local optimum that depends on the starting point. For ANNs, it has
turned out that good results are generally obtained when the parameters are
initialized with values close to zero, but they cannot all be exactly zero, because
then many of the parameters will get the exact same gradient values and will
continue to have the same value throughout training, thus reducing the model
capacity (Bengio (2012)).

Many versions of gradient descent exist to improve training speed. Most
notable is perhaps Adam (Kingma and Ba (2014)) , that uses individual learning
rates for the different parameters and something called momentum. When
moving through the optimization landscape using momentum, the history of
the optimization path is taken into account, limiting the response to sudden
changes of direction. One can think of it as a ball rolling downhill; once the
ball has gained speed, it is not too prone to respond to minor slope changes.

1.2. Regularization 5

Another very common modification of gradient descent is stochastic gradient
descent, which is based on work by Robbins and Monro (1951). This is obtained
by evaluating the loss not on the entire training data, but on a random subset
thereof, thus inserting some randomness. In addition to faster calculations, this
results in a slightly different optimization landscape at each iteration and has
proven successful to avoid local minima.

1.2 Regularization

When estimating a parameter from data, it is of interest to know how much
the estimated parameter value, θ̂, differs from the true, unknown, value, θ.
One very common way to measure this is with the mean squared error (MSE),
E[(θ− θ̂)2], i.e. the expected squared difference. Remembering that θ̂ is random
while θ is not, the MSE can be decomposed into the variance and the bias as:

E[(θ − θ̂)2] = E[θ̂2]−E[θ̂]2 + E[θ̂]2︸ ︷︷ ︸
=0

−2E[θ̂]θ + θ2 = Var(θ̂) + E[θ̂ − θ]2

= Var(θ̂) + Bias(θ, θ̂)2.

(1.1)

Traditionally one has restricted oneself to unbiased estimators, but it becomes
more common, especially if high variance is expected to be a problem, to allow
for biased estimators, where an increase in the bias can be compensated by a
larger decrease in the variance.

The simplest example of a biased model is probably ridge regression (Hoerl
and Kennard (1970)), where, for n observations and p variables, the objective
function is given by

‖y −Xθ‖22 + λ‖θ‖22 =

n∑
i=1

(yi − θ�xi)
2 + λ

p∑
j=1

θ2j .

Here λ is called a hyper-parameter and is used to regularize the model, which
means making it less flexible, thus reducing the variance but increasing the bias.
As seen, ridge regression favours small values of the θ’s which makes sense,
since θj is the slope of xj . The smaller the slope, the less does the function
value change when changing xj , leading to a more stable behavior.

Introducing hyper-parameters, the loss becomes a function not only of the data
and the parameters, L(x,θ), but also of the hyper-parameters, L(x,θ,λ), and
parameter estimation becomes a two-step procedure: First the data is split into
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L(y, ŷ(x)).

Common choices of loss function are the squared difference,
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training, validation and testing data, xtrain, xval and xtest. Then, for some fixed
value of λi, i ∈ {1, . . . I}, the model is optimized by minimizing L(xtrain,θ,λi),

θ∗
i = argmin

θ

L(xtrain,θ,λi).

The optimal λi is determined by evaluating the model on the previously unseen
validation data:

λ∗ = argmin
λi,i∈{1,...I}

L(xval,θ
∗
i ,λi),

where θ∗
i has to be recalculated for each value of λi. Finally, in order to estimate

how well the model will do on new data, it can be evaluated on the testing
data for the optimal combination of θ and λ.

As mentioned, the role of the hyper-parameters is to reduce the complexity of
the model. If a model is allowed to be very complex it can easily fit perfectly
on the training data, but that does not mean that it will generalize well to
new data, a phenomenon known as over-fitting. On the other hand, a simpler
model may not capture all the details of the training data (which might be
sample specific), but only the more evident tendencies (which are more likely
to be present in all data realizations) and thus generalize better. This can be
thought of as a trade-off between the variance and bias in Equation 1.1. A
simple, highly regularized, model will have a higher bias and a lower variance
than a complex, non-regularized model, and somewhere in between is the
optimal trade-off.

1.2.1 Lasso Regularization

Lasso regularization was first proposed in Tibshirani (1996), and is formulated
as

‖y −Xθ‖22 + λ‖θ‖1 =

n∑
i=1

(yi − θ�xi)
2 + λ

p∑
j=1

|θj |, (1.2)

i.e. the squared l2-norm in ridge regression is replaced by the l1-norm. Just
as for ridge regression, small parameter values are encouraged, but, as a
consequence of the non-differentiability of the absolute value at zero, it can set
some parameters exactly to zero, thus eliminating them from the model. Hence
lasso can be seen as a combination of regularization and model selection.

There are several different versions of the lasso, among them the adaptive
lasso (Zou (2006)) and the group lasso (Yuan and Lin (2006)). Adaptive lasso is

1.2. Regularization 7

formulated as
n∑

i=1

(yi − θ�xi)
2 + λ

p∑
j=1

|θj |
|θ̂j |γ

, (1.3)

where θ̂j is the ridge estimate of θj and γ > 0 is a new hyper-parameter. Hence,
each parameter is assigned an individual penalty, and parameters with ridge
estimates close to zero are penalized harder than parameters with large ridge
estimates.

The group lasso is formulated as follows:

‖y −Xθ‖22 + λ

G∑
k=1

‖θk‖2 =

n∑
i=1

(yi − θ�xi)
2 + λ

G∑
k=1

√∑
j∈gk

θ2j , (1.4)

where each parameter is assigned to one of G groups, gk contains the indices
of group k and θk denotes a sub-vector of θ, including the elements that are
represented in gk. The parameters in a group are penalized together, either all
parameters in the group are included in the model, or none is.

1.2.2 Proximal Gradient Descent

Because of the non-uniqueness of the derivative of the absolute value at zero,
gradient descent will not produce exact zeros if used for optimizing Equations
1.2 to 1.4. Instead proximal gradient descent (Rockafellar (1976)) has to be used.
If the objective function f can be decomposed into f(θ) = g(θ) + h(θ), where
g is differentiable and h is not, a standard gradient descent step followed by a
proximal gradient descent step is defined as

θt+1 = proxαh(θt − α∇g(θt)).

Here, prox is the proximal operator for h, defined as

proxαh(θ) := argmin
x

1

2α
‖x− θ‖22 + h(x),

and α is the learning rate just as before. The proximal operators for ridge
regression, lasso and group lasso are stated in Equation 1.5. Note that the
proximal operator for adaptive lasso is the same as for standard lasso with
λi = λ/|θ̂i|γ .
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Ridge: proxαλ‖·‖2
2
(θi) =

θi
1 + αλ

Lasso: proxαλ‖·‖1
(θi) = sign(θi) ·max(0, |θi| − αλ)

= θi ·max

(
0, 1− αλ

|θi|

)

Group Lasso: proxαλ
∑

k ‖·‖2
(θi) = θi ·max


0, 1− αλ√∑

θj∈gi
θ2j




(1.5)

where gi is the group that θi belongs to. It should be noted that since the
squared l2-norm is differentiable, standard gradient descent can be used, so in
that case there is no need to use proximal gradient descent.

As seen, for lasso, if |θi| < αλ, applying the proximal operator will result in
an exact zero, while for ridge, if θi �= 0, applying the proximal operator can
only result in a very small value, but never an exact zero. Furthermore, if
there is one group for each θi, the proximal operators for lasso and group lasso
coincide.

1.3 Variable Importance and Interpretability

Variable importance is the process of inferring how important a specific input
variable is for the prediction of a specific output variable, where he importance
of input xj for output yi is sometimes denoted as I(yi, xj). Because of the
complexity of ANNs, it is often difficult to determine how an input value
propagates through the network and due to the non-linearity, the importance
of one variable usually depends on its own, and other variables’, values in a
non-trivial way.

One of the most straight forward ways to estimate the importance of a variable,
and which is totally model agnostic, is to perturb its value while keeping all
other inputs fixed, either successively varying it, as done by Lek et al. (1996),
or by adding noise, as in Scardi and Harding Jr (1999).

Treating an ANN less as a black box, there are methods that look at the network
weights, such as Olden and Jackson (2002), which looks at the products of
the weight matrices, and Garson (1991), which uses the absolute values of the
weights to associate the output weights with the input neurons.

1.4. Dimensionality Reduction 9

Even more sophisticated are derivative based methods, where I(yi, xj) is
a function of ∂yi

∂xj
. These include saliency maps (Simonyan et al. (2014)),

with I(yi, xj) :=
∣∣∣ ∂yi

∂xj

∣∣∣; gradient times input (Shrikumar et al. (2016)), with

I(yi, xj) :=
∂yi

∂xj
· xj ; and integrated gradient (Sundararajan et al. (2017)), which

integrates ∂yi

∂x̃j
between xj and a baseline x̄j (which is often zero).

Lasso regularization can be thought of as providing some sort of variable
importance, by eliminating model parameters so that I(yi, xj) is either equal to,
or distinct from, zero, regardless of the data. This is of course limited, since it
only tells whether there is a connection or not, not how strong it is. On the other
hand, when drawing the model as a graph, as in Figure 1.1, if some parameters,
i.e. some links, are zero, this will make the graph sparser and (hopefully) more
interpretable.

1.4 Dimensionality Reduction

Often when a data set contains many variables, or dimensions, some of them
represent approximately the same type of information, e.g. both the weight
and the height of a person are measures of its size, and can be expected to be
correlated. To increase the interpretability and decrease the size of the data, it
is sometimes desirable to reduce its dimensionality, by combining the original
dimensions into fewer, so called latent, dimensions in such a way that as much
information as possible is conserved.

1.4.1 Principal Component Analysis

The most widely used dimensionality reduction algorithm is probably Principal
Component Analysis (PCA, Pearson (1901)). This is a linear technique where
the data matrix is rotated so that the first principal axis is the direction along
which the variance of the data is maximized, the second axis the direction along
which the yet unexplained variance is maximized and so on. These directions
correspond to the eigenvectors of the sample covariance matrix, ordered by the
size of their eigenvalues. Once these eigenvectors are found, dimensionality
reduction is done by simply discarding as many vectors as desired, starting
with the ones corresponding to the smallest eigenvalues.

One potential drawback of PCA is that all original dimensions are represented
in all latent dimension, which complicates interpretability. A solution to this is
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Figure 1.2: Autoencoder mapping from 4 two 2 dimensions. Original dimensions are
denoted by x and latent dimensions by z.

sparse PCA (Zou et al. (2006)), which uses lasso regularization to ensure that
each original dimension is connected only to a subset of the latent dimensions.

1.4.2 Autoencoders

Another potential drawback of PCA is that it is linear and thus can capture only
linear dependencies. A more flexible dimensionality reduction algorithm is the
neural network based autoencoder (Kramer (1991)). The architecture of this
network is hour glass shaped as sketched in Figure 1.2, with the same number
of dimensions (nodes) in the input and output layers, and a smaller number of
nodes in the middle layer. Then the same data is given as input and output,
so that the network just reconstructs the input, but via a low-dimensional
representation.

2 Summary of Papers

2.1 Paper I

We investigated how adaptive lasso could be used to increase the interpretabil-
ity of a neural network by eliminating less important links. We found that
when using one hidden layer and one output node, it could be used for non-
parametric additive modelling, as sketched in Figure 2.1a, where the network
corresponds to

E[y] = f1(x1) + f2(x1, x2) + f3(x2, x3) + f4(x2, x3, x4)

where f1 is realized by the hidden nodes h1 and h2, f2 by h3, f3 by h4 and h5,
and f4 by h6.

We applied the algorithm to a data set with air pollution in the U.K., pre-
sented in Wood et al. (2017), and compared it to the model suggested by the
authors, where the functions were manually selected. We concluded that our
algorithm selected similar functions with the same predictive performance.
Replacing adaptive lasso with standard lasso resulted in functions with more
input variables, thus being less interpretable. From the 11 available covariates,
the most complex function selected when using adaptive lasso contained three
covariates, while the corresponding number for standard lasso was nine.

11
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Figure 2.1: Sketches of network architectures produced in the two papers. Figure 2.1a
shows a neural network with one hidden layer, regularized with adaptive lasso. The
four subfunctions are color coded to increase readability. In Figure 2.1b a path lasso
regularized autoencoder is sketched. The z-nodes are connected only to a subset of the
x-nodes and vice versa.

2.2 Paper II

In this paper we developed something we called path lasso, which builds
on group lasso and penalizes the number of connected nodes in two non-
adjacent layers. The sketch in Figure 2.1b shows that the only node in the third
layer connected to node x1 is z1. We then showed how the penalty on a path,
consisting of multiple links between two nodes, can be translated to individual
penalties on the links using non-negative matrix factorization.

We applied path lasso to an autoencoder as sketched in Figure 2.1b to obtain
non-linear, sparse dimensionality reduction. Compared to sparse PCA our al-
gorithm is more flexible, which allows it to use the latent space more efficiently
and compared to a standard autoencoder it is more interpretable since each
latent dimension is a function only of a subset of the original dimensions.

We tested the path lasso penalized autoencoder on synthetic, text and image
data.
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Figure 2.1: Sketches of network architectures produced in the two papers. Figure 2.1a
shows a neural network with one hidden layer, regularized with adaptive lasso. The
four subfunctions are color coded to increase readability. In Figure 2.1b a path lasso
regularized autoencoder is sketched. The z-nodes are connected only to a subset of the
x-nodes and vice versa.

2.2 Paper II

In this paper we developed something we called path lasso, which builds
on group lasso and penalizes the number of connected nodes in two non-
adjacent layers. The sketch in Figure 2.1b shows that the only node in the third
layer connected to node x1 is z1. We then showed how the penalty on a path,
consisting of multiple links between two nodes, can be translated to individual
penalties on the links using non-negative matrix factorization.

We applied path lasso to an autoencoder as sketched in Figure 2.1b to obtain
non-linear, sparse dimensionality reduction. Compared to sparse PCA our al-
gorithm is more flexible, which allows it to use the latent space more efficiently
and compared to a standard autoencoder it is more interpretable since each
latent dimension is a function only of a subset of the original dimensions.

We tested the path lasso penalized autoencoder on synthetic, text and image
data.
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ABSTRACT

Neural networks excel in terms of predictive performance, with little or no need for manual screening
of variables or guided definition of network architecture. However, these flexible and data adaptive
models are often difficult to interpret. Here, we propose a new method for enhancing interpretability,
that builds on proximal gradient descent and adaptive lasso, PrAda-net. In contrast to other lasso-
based algorithms, PrAda-net penalizes all network links individually and, by removing links with
smaller weights, automatically adjusts the size of the neural network to capture the complexity of the
underlying data generative model, thus increasing interpretability. In addition, the compact network
obtained by PrAda-net can be used to identify relevant dependencies in the data, making it suitable for
non-parametric statistical modelling with automatic model selection. We demonstrate PrAda-net on
simulated data, where we compare the test error performance, variable importance and variable subset
identification properties of PrAda-net to other lasso-based approaches. We also apply Prada-net
to the massive U.K. black smoke data set, to demonstrate the capability of using Prada-net as an
alternative to generalized additive models (GAMs), which often require domain knowledge to select
the functional forms of the additive components. Prada-net, in contrast, requires no such pre-selection
while still resulting in interpretable additive components.

1 Introduction

Generalized additive models, GAMs ([1]), combine the flexibility of non-parametric and semi-parametric modeling
with the interpretability of generalized linear models. In GAMs, the univariate response variable is modeled as a sum of
smooth functions of one or several covariates, where the functions may be parametric (e.g. polynomials), non-parametric
(e.g. splines), or combinations of the two. For example, in

E[y] = f1(x1) + f2(x2) + f3(x3) + f1,2(x1, x2), (1)

the response, y, is modelled as a sum of one bivariate and three univariate functions. These functions need to be
estimated and since they can be chosen from a large class, GAMs become very flexible and capable of capturing
complex, non-linear relations in the data.

Neural networks also have the capacity to learn complex dependencies from data and can capture non-linear relationships
between input and output variables, as well as interactions between variables. Contrary to GAMs though, the results do
not easily transfer to an interpretable model, since there will be links between all inputs and outputs through the inner
layers. However, in all statistical models, some parameters contribute more to the prediction than others, and there
is reason to believe that if the less important links are removed from the network architecture, a GAM-like structure
would appear, as sketched in Figure 1.
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Figure 1: Desired architecture for an interpretable neural network representing E[y] = f1(x1) + f2(x2) + f3(x3) +
f1,2(x1, x2). The circles represent single nodes and the squares represent combinations of nodes.

A popular approach to eliminate parameters from a model is l1-penalization, hereon after referred to as lasso ([2]),
which, together with its extensions such as the group lasso ([3]) and the adaptive lasso ([4]), has been used in neural
networks to reduce complexity and increase interpretability. Group lasso is used to penalize all the weights in a
predefined group, typically all the inputs or outputs from a node or, in the case of convolutional neural networks, a
channel ([5], [6], [7], [8], [9], [10]). An alternative to group lasso is to add extra parameters that are multiplied to
all the weights in a group and then apply standard lasso to these parameters ([11], [12], [13], [14]). Adaptive lasso,
where each parameter is assigned a unique penalty, has been used in [15] and [16] to improve estimation stability, but
without focus on interpretability. Works cited above that focus on interpretability are [9], where Granger causality
between time series is restrained; [10], where multiple decoders are connected only to a subset of the latent variables
generated by variational autoencoders; and, most relevant for our work, [13], Distillation Guided Routing (DGR) and
[14], Explainable Neural Networks (xNN).

In DGR, unimportant channels in a trained convolutional neural network are removed by multiplying the outputs
from each channel with a lasso penalized parameter, balancing removal of channels with maintained performance.
Since DGR removes entire channels, it can never remove unimportant links from important nodes. In Figure 1 this
corresponds to penalizing only the weights between the f ’s and y.

In xNN, parallel neural networks with lasso penalized inputs are used to model each function in an additive model.
xNN removes individual links, but only between the inputs and the, still black-box, parallel networks. In Figure 1, each
f -box would correspond to a neural network of pre-defined capacity, where the inputs of the functions are chosen by
the model, but where function complexities are pre-defined.

Here, we propose PrAda-net, a novel method that combines adaptive lasso for individual penalties of network parameters
with proximal gradient descent. PrAda-net addresses two problems with lasso regularization of neural networks. First,
lasso penalizes all model parameters equally, yet it is reasonable to assume that in an overparameterized neural
network some weights contribute more to the final result than others, and should ideally be penalized less. Second,
gradient descent algorithms cannot handle the non-differentiability of the lasso penalty at zero, something that has
to be circumvented, e.g. by defining ∂|x|

∂x

∣∣∣
x=0

:= 0 or by using some smooth approximation, such as |x| ≈
√
x2 + ε.

However, such approximations result in no parameters set exactly to zero, introducing the need for thresholding, which
requires tuning as well.

PrAda-net can be thought of as a generalization of xNN, where the number of hidden nodes to realize a function is
adaptively chosen, depending on the function complexity. Therefore, it both improves the interpretability and reduces
the number of parameters. Compared to DGR, PrAda-net penalizes not only the outputs, but also the inputs, of the
functions, resulting in a clear-cut identification of functional components.

The rest of this paper is structured as follows: In Section 2, we present the PrAda-net algorithm. In Section, 3 we
illustrate the method on simulated data, comparing the predictive and interpretable performance of PrAda-net to that
of standard lasso and DGR. We also apply PrAda-net to U.K. black smoke data. We compare the model components
automatically selected by PrAda-net to the large-scale generalized additive model recently presented in [17]. We show
how the method is able to automatically select the network complexity to generate a concise, interpretable architecture,
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thus making it suitable for non-parametric additive modelling. Finally, in Section 4, we discuss our findings and possible
future directions for research.

2 Method

In this paper the following notation will be used: The input nodes of a neural network will be denoted by the vector x,
with elements xi, and the single output node will be denoted by y. Functions realized by hidden nodes of the network
will be denoted by fi(x|θ) where θ denotes the vector of network parameters, which will interchangeably will be
referred to as parameters, weights and links. Usually, θ will be implicit, writing only fi(x). A hat over a parameter or a
function, e.g. ŷ, means that this is the reconstructed parameter or function inferred by the network; when it is clear from
the context, the hat will be omitted.

As sketched in Figure 1, the architecture of a sparse neural network can be interpreted as an additive model, where each
function is defined as the set of hidden nodes connected to the same set of input nodes. In order to use lasso to obtain
such an architecture, the two limitations stated above have to be overcome. First, lasso penalizes all parameters equally,
while ideally, if the true model were known, one would want a very small penalty on the true model parameters, and a
large penalty on parameters that should not be included. It was shown in [4] that under certain conditions, standard
lasso is not consistent and as a remedy the adaptive lasso was proposed. In adaptive lasso, each parameter obtains an
individual penalty based on its ordinary least square (OLS) estimate, penalizing parameters with small OLS values
more.

Second, lasso regularized models trained with gradient descent do not obtain explicit zeroes, which is a consequence of
the non-uniqueness of the derivative of the lasso penalty at zero. Proximal gradient descent ([18]), on the other hand,
leverages on this non-uniqueness and obtains exact zeros. Like standard gradient descent, proximal gradient descent
is an iterative method, with the difference that the non-differentiable parts of the objective function are handled in an
additional, proximal, step. If the objective function, f(x), can be decomposed into f(x) = g(x) + h(x), where g
is differentiable (typically a reconstruction error) and h is not (typically a lasso regularization term), then a standard
gradient descent step followed by a proximal gradient descent step is defined as

xt+1 = proxαh(x
t − α∇g(xt))

where α is a step size and prox is the proximal operator, that depends on h. In the case of lasso with penalty
parameter λ, when h(x) = λ||x||1 = λ

∑
i |xi|, the proximal operator decomposes component-wise and is, with

zi := (xi − α∇g(xi)) denoting the output of the standard gradient descent step,

proxαh(zi) = sign(zi) · max(|zi| − αλ, 0).

I.e., each zi is additively shrunk towards zero, and once it changes sign it is set to exactly zero.

2.1 The PrAda-net Algorithm

PrAda-net builds on the assumption that once a neural network is trained, even if all nodes in two subsequent layers are
connected, some of the weights are more important than others, and that these important weights are larger in absolute
value then the less important ones. Thus, adding an adaptive lasso penalty, i.e. an individual penalty based on the
current value of the weight, and continue training will penalize the small, unimportant, weights more than the important
ones, ideally setting all unimportant weights to zero, while penalizing the important weights less, thus reducing bias.
Applying this will change the objective function as below.

argmin
θ

f(x|θ) =⇒ argmin
θ

(
f(x|θ) + λ

∑
i

|θi|
|θ̂i|γ

)
(2)

where θ̂i denotes the value of the weight just before adding the penalty and γ > 0 is a tunable parameter, that we here
set to 2 which is common practice in adaptive lasso.

In order to get exact zeros one would like to use proximal gradient descent for this phase of the training. However, this
algorithm is not compatible with momentum based optimization algorithms, such as Adam ([19]). Furthermore, the
choice of the step size α, is not as obvious as in Adam, where the default parameters have shown to work very well in
most cases. We circumvent these issues by training PrAda-net in three stages: In the first stage, the network is trained
without lasso penalty with a standard optimizer until convergence or some other stopping criterion. In the second stage,
the adaptive lasso penalty is turned on, using the same optimizer as in the first stage with ∂|θ|

∂θ

∣∣∣
θ=0

:= 0, thus obtaining
some weights close to, but distinct from, zero. Before the third stage the adaptive lasso penalty is updated based on the

3



current weight values and then proximal gradient descent is used. Even with small values of α and λ (10−5 was used
for both α and λ), small weights will be heavily penalized and proximal gradient descent converges in relatively few
iterations. PrAda-net is summarized in Algorithm 1.

Algorithm 1 PrAda-net

1: Train the neural network until convergence or other stopping criterion, with optimizer of choice.
2: Add an adaptive lasso penalty to each weight according to Equation 2. Continue training with the chosen optimizer

and ∂|θ|
∂θ

∣∣∣
θ=0

:= 0.
3: Update the adaptive lasso penalty. Continue training with proximal gradient descent.

2.2 Identifying Linear Functions

As activation function for the hidden nodes, tanh was used, which, as can be seen from its Maclaurin expansion
tanh(x) = x + O(x3), is almost linear if the absolute value of x is small. For x1 close to zero, tanh(x1 + x2) ≈
x1 + tanh(x2), and therefore, if the output is linear in some input variable (x1 in this example), no separate hidden
node is needed to model this linear function. Instead, the function can be incorporated into some other node, thus
increasing compactness but decreasing interpretability. In order to identify which nodes that contain linear functions,
the following postprocessing step was added: For each identified function, the partial derivatives with respect to all its
inputs were calculated and, if for some input, the derivative was close to constant, i.e. with variance lower than some
σ2

max, that input is removed from the function and into a new, linear, function, realized by a new node. We consistently
used σ2

max = 0.01.

2.3 Choosing the Lasso Penalty Parameter

Choosing the optimal regularization parameter, λ∗, is a trade off between interpretability and model performance. When
performance is the sole priority, the optimal regularization is often chosen so that it minimizes the mean test error
across multiple splits of the data into training and test sets (cross-validation). Here, we are willing to sacrifice some
performance to gain interpretability and use a similar approach as in standard lasso regression packages ([20]). We
thus choose our λ∗ as the largest one of those whose resulting mean test error is within two standard deviations of the
minimum test error across all λ. Figure 2c in Section 3.1 illustrates this.

3 Experiments

All experiments in this section were done on neural networks with one hidden layer with tanh as activation function,
and one output node with a linear activation function. The mean squared error was used as loss function and the Adam
optimizer was used in the two first stages of the PrAda-net algorithm. The data was randomly split into 90 % training
and 10 % testing data. When choosing λ∗, 20 random splits of the data were made for each λ value. In order to escape
suboptimal minima, five different initializations were used for each training. All computations were done on a NVIDIA
V100, 32GB, GPU.

Three experiments were performed. In the first experiment, synthetic data was generated from the first four Legendre
polynomials; in the second experiment, we used a data set with black smoke levels in the U.K. recently analyzed by
using a large-scale generalized additive model in [17]; and in the third experiment synthetic data was generated from
the model inferred by PrAda-net on the U.K. black smoke data.

3.1 Legendre Polynomials

Our first experiment was done on the sum of the first four Legendre polynomials, which are orthogonal on the interval
[−1, 1] and are given by

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(34x4 − 30x2 + 3).

(3)
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Table 1: Legendre polynomials: Mean and one standard deviation of test error and estimated variable importance
( 1
|X |

∑
X

∣∣∣∂f(x)∂xi

∣∣∣) together with the true asymptotic variable importance ( 12
∫ 1

−1
|∂Pi(xi)

∂xi
|dxi).

True Var.Imp.
1
2

∫ 1

−1
|∂Pi(xi)

∂xi
|dxi

PrAda-net Standard Lasso DGR

Test error - 0.04 ± 0.02 0.13 ± 0.03 0.16 ± 0.03
x1 1 0.75 ± 0.33 0.69 ± 0.43 0.63 ± 0.09
x2 1.5 1.26 ± 0.09 1.21 ± 0.05 0.65 ± 0.12
x3 1.89 1.42 ± 0.16 0.96 ± 0.11 0.32 ± 0.12
x4 2.23 1.72 ± 0.3 0.43 ± 0.24 0.25 ± 0.08
x5 0 0.0 ± 0.0 0.01 ± 0.01 0.07 ± 0.04

For the simulations, five random variables, x1, . . . x5, were generated from U [−1, 1], each with 1000 realizations,
resulting in a 1000× 5 x-matrix, from which a 1000× 1 y-matrix was created according to

y = P1(x1) + P2(x2) + P3(x3) + P4(x4) + ε (4)

where ε ∼ N (0, 0.12) is added noise. Note that y is independent of x5. A neural network with five input nodes and 50
hidden nodes was trained by applying Algorithm 1 with λ∗ chosen as explained in Section 2.3.

The results are shown in Figure 2. As seen in 2a, out of the original 50 hidden nodes, only 10 are used in the final
architecture and the hidden units are split into four different functions, each with only one xi as input. Figure 2b shows
the reconstructed P̂i(x)’s (left-most panels) and also how the model decomposes each P̂i(x) into a sum of up to four
subfunctions, each represented by one node in the hidden layer. Figure 2c demonstrates the penalty parameter selection
for this simulation.

We compared the test error and the variable importance, measured using saliency maps ([21]) for PrAda-net, standard
lasso and DGR. To make standard lasso more competitive, we did not apply lasso regularization from the start. Instead,
we utilized the PrAda-net algorithm with the same penalty for all links, i.e. γ = 0 in Equation 2. DGR was adapted to
feedforward regression networks by looking at nodes instead of channels and by using the squared error instead of the
cross-entropy loss.

For saliency maps, the importance of variable i, evaluated at x, is defined as Ii(x) :=
∣∣∣∂f(x)∂xi

∣∣∣, which in our case

reduces to Ii(x) =
∣∣∣∂Pi(xi)

∂xi

∣∣∣. Since for non-linear functions the value of the derivative depends on x, in order to

get a global importance measure, we averaged over all x’s in the test set X , Ii := 1
|X |

∑
X Ii(x). This can be seen

as a Monte Carlo integral, meaning that as |X | → ∞, Ii → 1
2

∫ 1

−1
|∂Pi(xi)

∂xi
|dxi, where 1

2 is the probability density
function of the uniform distribution that xi is sampled from. Thus, for large sample sizes, the true value of the variable
importance is given by the analytical integral.

50 runs with different noise realizations were performed with PrAda-net penalized with λ∗, and the other two models
penalized to equal complexity. In the case of standard lasso, the regularization was chosen to obtain the same number
of parameters in both models, while for DGR this would be an unfair comparison, since penalization is done at node
level. Instead, for DGR, regularization was chosen to have the same number of nodes as PrAda-net, allowing it to use
many more parameters than PrAda-net and standard lasso.

The results are summarized in Table 1. PrAda-net outperforms both lasso and DGR, both in terms of test error and
variable importance. This effect is especially notable for the higher order functions. PrAda-net is also the only model
that correctly identifies the noise variable as such.

We also investigated how well the algorithms could identify the four different functions in the true model. In this
comparison, DGR was left out since all input nodes are connected to all nodes in the hidden layer, resulting in only
f(x1, x2, x3, x4, x5) being identified. Standard lasso was penalized with two different strengths, one to get the same
number of parameters as for PrAda-net and one to get the same number of functions.

Table 2 shows that PrAda-net is able to identify the true functions in the model as well as their complexity, measured
in number of nodes. That is, PrAda-net assigns more nodes to the higher order polynomials. The true functions are
identified much more often by PrAda-net than by standard lasso. Standard lasso with the same complexity erroneously
includes higher-order interaction terms (e.g. f(x1, x2, x3)) rather than increasing the presence or function complexity
of the main effect terms (e.g. f(x2)). Standard lasso with the same number of functions successfully identifies f1(x1)
and f2(x2) but fails to identify f3(x3) and f4(x4).
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Figure 2: Identifying the sum of the four first Legendre polynomials. 2a shows the inferred reduced neural network,
with the hidden nodes and links color coded according to the identified functions. In 2b, the leftmost column shows,
from top to bottom, P̂1(x1), P̂2(x2), P̂3(x3) and P̂4(x4), while the other columns show their decompositions into the
subfunctions realized by single hidden nodes. 2c shows, the mean ± two standard deviations of the test error obtained
by 20 bootstrap runs for each λ. λ∗ is chosen as the value where the lower interval intersects the lowest mean value.
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Figure 2: Identifying the sum of the four first Legendre polynomials. 2a shows the inferred reduced neural network,
with the hidden nodes and links color coded according to the identified functions. In 2b, the leftmost column shows,
from top to bottom, P̂1(x1), P̂2(x2), P̂3(x3) and P̂4(x4), while the other columns show their decompositions into the
subfunctions realized by single hidden nodes. 2c shows, the mean ± two standard deviations of the test error obtained
by 20 bootstrap runs for each λ. λ∗ is chosen as the value where the lower interval intersects the lowest mean value.
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Table 2: Legendre polynomials: Presence (proportion of simulations where function is identified) and average complexity
of functions across 50 simulation runs. The true model components (main effects) in bold. Complexity of identified
functions is measured in number of nodes.

PrAda-net Standard Lasso Standard Lasso
(same number (same complexity)
(of functions)

Function Presence Comp- Presence Comp- Presence Comp-
lexity lexity lexity

f(x1) 1.0 1.0 1.0 1.72 0.12 1.0
f(x1, x2) - - - - 0.12 1.17
f(x1, x2, x3) - - - - 0.14 1.0
f(x1, x2, x3, x4) - - - - 0.82 1.46
f(x1, x2, x3, x4, x5) - - - - 0.44 1.0
f(x1, x2, x3, x5) - - - - 0.02 1.0
f(x1, x3) - - - - 0.96 1.06
f(x1, x3, x4) - - - - 0.64 1.25
f(x1, x3, x4, x5) - - - - 0.06 1.0
f(x1, x4) - - - - 0.42 1.0
f(x2) 1.0 1.96 0.92 2.0 0.14 1.14
f(x2, x3) - - 0.08 2.0 0.02 1.0
f(x2, x3, x4) - - - - 0.04 1.0
f(x2, x3, x5) - - - - 0.02 1.0
f(x2, x4) 0.04 1.0 - - 0.08 1.0
f(x2, x5) - - - - 0.02 1.0
f(x3) 1.0 2.62 0.1 1.6 0.2 1.6
f(x3, x4) 0.04 1.0 0.02 1.0 0.1 1.2
f(x4) 1.0 3.98 0.06 1.0 0.96 1.83

3.2 Black Smoke Data

To illustrate the usefulness of PrAda-net on real, large-scale data with a complex structure, we applied it to the U.K.
black smoke network daily data set, recently presented in [17] and available on the author’s homepage2. The data set,
collected over four decades, is massive, comprising 10 million observations of air pollution data (daily concentration of
black smoke particulates in µgm−3) measured at more than 2000 monitoring stations. In addition to the pollution data,
bs, the following eleven covariates are available: year, y; day of year, doy; day of week, dow; location as kilometers
east, e and north, n; height, h; cubic root transformed rainfall, r; daily minimum and maximum temperature T0 and T1;
and mean temperatures the previous two days, T̄1 and T̄2.

In [17], the authors first perform a separate spatial modeling and then a separate temporal modeling of the data to propose
some candidate model components. In a final modeling step, the components are combined through a generalized
additive modeling approach, including interactions between the proposed model components. Specifically, the log
transformed black smoke level is modelled as a sum of fourteen functions, each containing up to three of the eleven
covariates. In addition to these functions, the model includes an offset for each station site type k (rural, industrial,
commercial, city/town center or mixed), αk; a station specific random effect, b; and a time correlation model for the
error term following an AR process, e. The final model is given by

log(bs) = f1(y) + f2(doy) + f3(dow) + f4(y, doy) + f5(y, dow) + f6(doy, dow)
+ f7(n, e) + f8(n, e, y) + f9(n, e, doy) + f10(n, e, dow) + f11(h)

+ f12(T0, T1) + f13(T̄1, T̄2) + f14(r) + αk + b+ e.

(5)

For functional forms, cubic splines were used for the temporal components, thin-plate splines for the spatial components
and tensor product smoothers for the interactions. In summary, this analysis builds on a substantial and non-trivial
preliminary screening and modeling of the data.

In contrast, our approach is to let PrAda-net with 100 hidden nodes automatically decide which functions to use. To
make the results reasonably comparable we use a penalization parameter for PrAda-net to obtain, approximately, the
same number of functions as in Equation 5. Note, however, that this generally produces slightly fewer functions for

2https://www.maths.ed.ac.uk/~swood34/data/black_smoke.RData
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PrAda-net than the model in [17] since we do not post-process to combine functions that are decomposed into main
and interaction terms by PrAda-net. E.g. the single function f(e, n) in [17] is decomposed into two main effects, f(e)
and f(n), and one interaction effect, f(e, n), by PrAda-net (see Equation 6 and Table 3) and is thus realized by three
functions. It is non-trivial to conduct such post-processing for all possible main and higher order interactions so we
elect to choose a conservative model for PrAda-net.

We ran PrAda-net for 20 different random splits of the data which resulted in, in total, 52 different functions, 6 of
which contained more than three covariates, see Table 3. The medoid model, where the distance between models was
measured by the Jaccard distance between the set of included functions, is given by

log(bs)PrAda = f1(y)︸ ︷︷ ︸
10

+ f2(doy)︸ ︷︷ ︸
4

+ f3(dow)︸ ︷︷ ︸
2

+ f4(T0)︸ ︷︷ ︸
1

+ f5(T1)︸ ︷︷ ︸
2

+ f6(T̄2)︸ ︷︷ ︸
1

+ f7(r)︸ ︷︷ ︸
1

+ f8(e)︸ ︷︷ ︸
3

+ f9(n)︸ ︷︷ ︸
8

+ f10(h)︸ ︷︷ ︸
2

+ f11(doy, T1)︸ ︷︷ ︸
2

+ f12(e, n)︸ ︷︷ ︸
12

+ f13(e, h)︸ ︷︷ ︸
1

+ f14(n, h)︸ ︷︷ ︸
1

+ f15(T0, T1, T̄1)︸ ︷︷ ︸
1

+ f16(e, n, h)︸ ︷︷ ︸
3

+αk + b+ e

(6)

where the number under a function denotes its complexity, measured in the number of hidden nodes used to realize it.
Six of the sixteen functions in the PrAda-net medoid model overlap with the manually selected functions in [17]. Most
notably, the pre-identified interaction terms between temporal covariates and between temporal and spatial covariates
are not selected by PrAda-net, which, on the other hand, selects a more complex spatial interaction, f16(e, n, h).

For standard lasso, the 20 data splits resulted in 143 different functions, 103 of which contained more than 3 covariates,
see Table 3, with medoid function

log(bs)Lasso = f1(dow)︸ ︷︷ ︸
2

+ f2(e)︸ ︷︷ ︸
1

+ f3(n)︸ ︷︷ ︸
1

+ f4(h)︸ ︷︷ ︸
1

+ f5(doy, T̄2)︸ ︷︷ ︸
1

+ f6(e, n)︸ ︷︷ ︸
1

+ f7(r, h)︸ ︷︷ ︸
1

+ f8(n, h)︸ ︷︷ ︸
1

+ f9(y, r, e)︸ ︷︷ ︸
1

+ f10(y, e, n)︸ ︷︷ ︸
1

+ f11(y, doy, T1, r)︸ ︷︷ ︸
1

+ f12(y, T1, T̄1, r)︸ ︷︷ ︸
1

+ f13(y, e, n, h)︸ ︷︷ ︸
1

+ f14(T0, T̄1, T̄2, h)︸ ︷︷ ︸
1

+ f15(T1, r, n, h)︸ ︷︷ ︸
1

+ f16(T0, T1, e, n, h)︸ ︷︷ ︸
1

+ f17(y, doy, T0, T1, r, h)︸ ︷︷ ︸
1

+ f18(y, dow, T̄1, r, n, h)︸ ︷︷ ︸
1

+ αk + b+ e.

(7)

Compared to standard lasso, PrAda-net has higher precision, i.e. it detects fewer unique functions more frequently,
indicating a more stable selection performance. This is confirmed by the medoid model being more similar to the
other models for PrAda-net than for standard lasso. The average Jaccard similarity of the PrAda-net medoid model is
0.63, compared with 0.18 for standard lasso. PrAda-net also identifies functions containing fewer covariates (order
of interaction) thus resulting in more interpretable models compared to standard lasso. All the 2 · 20 models had an
explained variance of R2 ≈ 0.79, which is the same as reported by [17].

3.3 Synthetic Black Smoke Data

To test PrAda-net on a more complex model than the synthetic data in Section 3.1, we generated data from the PrAda-net
medoid model for the black smoke data. 10000 data points were sampled, according to N (0,ΣS), where ΣS is the
Spearman rank correlation matrix of the variables in the black smoke data set, resulting in a 10000× 11 x-matrix, from
which a 10000× 1 y-matrix was created according to Equation 6, without αk, b, and e and with added noise distributed
as N (0, 0.12). 50 simulations, with different noise realizations, were performed using a hidden layer with 100 units.
For PrAda-net, λ∗ was chosen as described in Section 2.3 and for standard lasso, the regularization strength was chosen
to obtain the same number of functions as for PrAda-net. The results are summarized in Table 4, where all functions
present in more than 20 % of the simulations are shown and functions present in more than 50 % of the simulations are
marked bold.

PrAda-net identifies 14 of the 16 true model components together with 4 false positives, the corresponding numbers for
standard lasso are 6 and 17, respectively. There is a tendency that more complex functions, i.e. functions consisting
of more than one hidden node, are more easily identified. Except for f5(T1) and f10(h), PrAda-net identifies all the
functions realized by more than one hidden node in 100 % of the simulations; for both algorithms all the falsely included
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Table 3: Identified functions in 20 bootstrap runs using PrAda-net and standard lasso. Only the functions present in
more than half of the runs are shown.

PrAda-net Standard lasso
Identified functions

in total 52 143

Functions with more
than 3 covariates 6 103

Most frequent functions
with frequencies

f(doy) 1.0 f(e, n) 0.8
f(y) 1.0 f(dow) 0.8
f(T1) 1.0 f(n) 0.7
f(n) 1.0 f(n, h) 0.6
f(e) 1.0 f(h) 0.55
f(e, n, h) 1.0 f(e) 0.55
f(e, n) 1.0
f(dow) 0.95
f(h) 0.9
f(n, h) 0.85
f(e, h) 0.8
f(T0) 0.75
f(doy, T1) 0.6
f(T̄2) 0.55

Table 4: Presence and average complexity of functions across 50 simulation runs for PrAda-net (left) and standard lasso
(right), with true model components above the line and falsely included components below. Only functions present in
more than 20 % of the runs are presented, functions present in more than 50 % of the runs are bold.

PrAda-net

Function Pres-
ence

Comp-
lexity

f(y) 1.0 5.06
f(doy) 1.0 20.92
f(dow) 1.0 2.9
f(e) 1.0 2.36
f(n) 1.0 3.0
f(doy, T1) 1.0 2.22
f(e, n) 1.0 13.44
f(n, h) 1.0 1.18
f(e, n, h) 1.0 2.22
f(T1) 0.98 1.27
f(T0) 0.94 1.23
f(e, h) 0.72 1.44
f(h) 0.48 1.04
f(r) 0.22 1.0
f(doy, T̄1) 0.4 1.05
f(doy, e) 0.3 1.07
f(dow, e) 0.24 1.17
f(T1, T̄1) 0.2 1.0

Standard lasso

Function Pres-
ence

Comp-
lexity

f(y) 1.0 15.8
f(e, n) 1.0 4.16
f(e, n, h) 0.96 1.27
f(doy) 0.82 1.76
f(n) 0.82 1.37
f(h) 0.56 1.0
f(dow, e, h) 0.7 1.2
f(T0, e, n, h) 0.58 1.03
f(doy, T1, T̄2, e, h) 0.52 1.27
f(doy, T0, T1, T̄2, r, e, n, h) 0.52 1.0
f(dow, e) 0.44 1.05
f(doy, T0, T1, T̄1, T̄2, r, e, n, h) 0.34 1.18
f(doy, T0, T1, e, h) 0.32 1.0
f(doy, dow, e, h) 0.3 1.07
f(doy, T1, T̄2, e) 0.3 1.0
f(doy, T̄1, e, h) 0.3 1.0
f(doy, T0, T1, T̄1, T̄2, h) 0.3 1.0
f(doy, T0, T1, T̄2, e, h) 0.3 1.2
f(T0, T1, T̄1, T̄2, r, e, n, h) 0.26 1.0
f(T1, n) 0.24 1.0
f(T0, e, n) 0.24 1.0
f(doy, T0, T1, T̄1, T̄2, r, e, h) 0.24 1.0
f(doy, T1, e, h) 0.22 1.0
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Figure 3: PrAda-net: Comparison of true (red and dotted) and the mean ± two standard deviations of the identified
functions (blue). For the multi-dimensional functions, in each plot all but one of the input variables are kept fixed. The
first row shows the total dependency of the covariate, including all functions, while the rest of the rows show the most
frequently identified functions.

functions also have a complexity close to one node. Apart from f(doy), PrAda-net seems to be closer to the true
complexity than standard lasso.

In Figures 3 and 4, the means and standard deviations for the most frequently identified functions are plotted together
with the true functions. Since the intercept can be realized in any function, all functions were translated to have zero
mean. For functions depending on more than one covariate, all covariates except one were fixed at ±1 to be able
to plot in one dimension. For PrAda-net we see that for total the contribution of a covariate, the true and identified
functions coincide very well (first row). This is also true for most identified functions with a few exceptions. However,
the differences between true and identified functions seem to be balanced by those of other functions including the
same covariate. See e.g. f(doy) and f(doy|T1), where, for small values of doy, the true f(doy) is much larger than the
estimated function, while the true f(doy|T1) is much smaller than the estimated function.

Standard lasso exhibits poor overlap with the true model components, even in terms of total contribution. The functions
identified by standard lasso align poorly with the true model components.
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Figure 3: PrAda-net: Comparison of true (red and dotted) and the mean ± two standard deviations of the identified
functions (blue). For the multi-dimensional functions, in each plot all but one of the input variables are kept fixed. The
first row shows the total dependency of the covariate, including all functions, while the rest of the rows show the most
frequently identified functions.

functions also have a complexity close to one node. Apart from f(doy), PrAda-net seems to be closer to the true
complexity than standard lasso.

In Figures 3 and 4, the means and standard deviations for the most frequently identified functions are plotted together
with the true functions. Since the intercept can be realized in any function, all functions were translated to have zero
mean. For functions depending on more than one covariate, all covariates except one were fixed at ±1 to be able
to plot in one dimension. For PrAda-net we see that for total the contribution of a covariate, the true and identified
functions coincide very well (first row). This is also true for most identified functions with a few exceptions. However,
the differences between true and identified functions seem to be balanced by those of other functions including the
same covariate. See e.g. f(doy) and f(doy|T1), where, for small values of doy, the true f(doy) is much larger than the
estimated function, while the true f(doy|T1) is much smaller than the estimated function.

Standard lasso exhibits poor overlap with the true model components, even in terms of total contribution. The functions
identified by standard lasso align poorly with the true model components.
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Figure 4: Standard lasso: Comparison of true (red and dotted) and the mean ± two standard deviations of the identified
functions (blue). For the multi-dimensional functions, in each plot all but one of the input variables are kept fixed. The
first row shows the total dependency of the covariate, including all functions, while the rest of the rows show the most
frequently identified functions.

4 Conclusions and Discussion

We proposed a simple neural network prediction model based on proximal gradient descent and adaptive lasso, PrAda-
net. PrAda-net was found to improve on lasso penalized neural networks both in terms of test error performance and in
terms of generating interpretable models. For additive models, PrAda-net was able to identify the function components
of the models as well as to express the function complexity by using multiple hidden nodes. PrAda-net was also found
to be superior to lasso and DGR in terms of capturing variable importance. We illustrated that PrAda-net can be used
as an alternative to generalized additive models, to analyze complex data sets with temporal and spatial covariates,
reducing the need for manually intensive preprocessing and screening of massive data.

Even if there is no limitation to the depth of the network PrAda-net can be applied to, we only used one hidden layer
in this paper, thereby loosing the possibility of making the network even more compact. However, according to the
universal approximation theorem ([22]) this does not limit the complexity of the functions that can be modelled. It
would, however, be interesting to apply PrAda-net to deeper networks with regularization penalties constructed to
guarantee an ordering of main to higher order effects in the layers, where structural constraints may be needed to
generate interpretable networks from more complex architectures.
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Figure 4: Standard lasso: Comparison of true (red and dotted) and the mean ± two standard deviations of the identified
functions (blue). For the multi-dimensional functions, in each plot all but one of the input variables are kept fixed. The
first row shows the total dependency of the covariate, including all functions, while the rest of the rows show the most
frequently identified functions.

4 Conclusions and Discussion

We proposed a simple neural network prediction model based on proximal gradient descent and adaptive lasso, PrAda-
net. PrAda-net was found to improve on lasso penalized neural networks both in terms of test error performance and in
terms of generating interpretable models. For additive models, PrAda-net was able to identify the function components
of the models as well as to express the function complexity by using multiple hidden nodes. PrAda-net was also found
to be superior to lasso and DGR in terms of capturing variable importance. We illustrated that PrAda-net can be used
as an alternative to generalized additive models, to analyze complex data sets with temporal and spatial covariates,
reducing the need for manually intensive preprocessing and screening of massive data.

Even if there is no limitation to the depth of the network PrAda-net can be applied to, we only used one hidden layer
in this paper, thereby loosing the possibility of making the network even more compact. However, according to the
universal approximation theorem ([22]) this does not limit the complexity of the functions that can be modelled. It
would, however, be interesting to apply PrAda-net to deeper networks with regularization penalties constructed to
guarantee an ordering of main to higher order effects in the layers, where structural constraints may be needed to
generate interpretable networks from more complex architectures.
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ABSTRACT

Dimensionality reduction is often used to explore and analyze complex and high-dimensional data.
The purpose of the dimensionality reduction can be to create a latent low-dimensional space for
visualization, to pre-process data for predictive modeling, or for clustering. For complex data,
linear dimensionality reduction techniques like PCA may not be able to summarize the data with a
low-dimensional latent space. Non-linear dimension techniques, like kernel-PCA and autoencoders,
while sufficiently flexible to capture complex structure, suffer from loss of interpretability, since each
latent variable is dependent of all input dimensions. Here we present path lasso which we apply
to an autoencoder for a structured regularization in order to enhance interpretability. Specifically,
we penalize each path through the encoder from an input to a latent variable, thus restricting how
many input variables are represented in each latent dimension. The path lasso algorithm uses a
group lasso penalty and non-negative matrix factorization to construct a sparse, non-linear latent
representation. We compare the path lasso regularized autoencoder to PCA, sparse PCA, autoencoders
and sparse autoencoders on real and simulated data sets. We show that the algorithm exhibits much
lower reconstruction errors than sparse PCA and parameter-wise lasso regularized autoencoders
for low-dimensional representations. Moreover, path lasso representations provide a more accurate
reconstruction match, i.e. preserved relative distance between objects in the original and reconstructed
spaces.

1 Introduction

Dimensionality reduction is a key component in data compression, data visualization and feature extraction. One of the
most widely used techniques is principal component analysis (PCA), that uses the eigendecomposition of the sample
covariance matrix to construct latent dimensions as linear combinations of the original dimensions. The interpretability
of the latent representation is increased if each latent dimension consists only of a subset of the original dimensions, as
in sparse PCA ([1]). Since the introduction of sparse PCA, several variants have been presented, such as non-negative
sparse PCA ([2]), where the loadings are all non-negative; multilinear sparse PCA ([3]), that operates on tensors instead
of vectors; and robust PCA ([4], [5]), that is less affected by outliers.

While more interpretable than standard PCA, sparse PCA and its variants are still linear and therefore cannot capture
more complex relations in the data. Furthermore, they have limitations on how efficiently they make use of the latent
dimensions, something that is especially important when the number of latent dimensions is small. Several non-linear
generalizations of PCA exist, the most important ones being kernel PCA ([6]) and autoencoders ([7]). In kernel PCA, a
kernel function is used to implicitly and non-linearly map the data to a space with higher dimensionality than dx (the
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original dimensionality) in which linear PCA is performed. Autoencoders use an hourglass shaped neural network
with dx input and output nodes and dz (the latent dimensionality) nodes in the middle layer. The same data is used
both as input and output, so the goal of the autoencoder is to reconstruct the original data from a lower dimensional
representation, that is found in the middle layer.

Although there do exist several algorithms for sparse kernel PCA, see [8], [9], [10] and [11], as well as for sparse
autoencoders (e.g. [12]), the terminology might be a little confusing, since the algorithms are sparse in a different
sense than sparse PCA. Instead of being sparse in the sense original to latent dimensions, they are sparse in the sense
observations to latent dimensions, which means that each observation is active only in a subset of the latent dimensions
(and vice versa, each latent dimension depends only on a subset of the data). To further illustrate this, we look at
the linear case, with dx and dz as before and n being the number of observations. For Z ∈ Rn×dz , X ∈ Rn×dx and
W ∈ Rdx×dz , the latent representation Z is obtained from the original representation X as

Z = X ·W. (1)

Then sparsity in the sense original to latent dimensions means that W is sparse, while sparsity in the sense observations
to latent dimensions means that Z is sparse. A third notion of sparsity is feature selection, where only a subset of the
original dimension are included in the model. This corresponds to entire rows of W being zero, allowing the remaining
rows to be dense.

The sparse autoencoder generalizes Equation 1 to Z = Enc(X), where Enc is the non-linear encoder and, to produce
a sparse Z, it includes a constraint on how frequently a latent unit is allowed to be non-zero, where frequency is
measured among observations. This means that the architecture of the encoder might still be dense, in contrast to
sparsity corresponding to a sparse W , which requires a sparse architecture.

Neural networks with sparse architectures are usually obtained using different versions of lasso, or l1-, regularization
([13]), and there are numerous examples of these. In [14], group lasso ([15]) is used to remove all the links to or from a
node, while in [16] group lasso is combined with exclusive lasso ([17]) on filters in convolutional neural networks to, on
one hand, totally eliminate some filters (using group lasso) and, on the other hand, make filters as different as possible
(using exclusive lasso). Lasso regularized autoencoders include [18], with a linear encoder and a lasso regularized
decoder; [19], with a lasso regularized encoder and a linear decoder; and [20], which uses group lasso and variational
autoencoders to split the original dimensions into pre-defined groups and then uses one decoder per group, with a shared
latent space.

In this paper we propose path lasso, that uses group lasso regularization to eliminate all connections between two nodes
in two non-adjacent layers of a fully connected feedforward neural network. We apply path lasso in combination with
exclusive lasso to an autoencoder to introduce sparsity between original and latent variables, obtaining a non-linear,
sparse dimensionality reduction in the same sense as in sparse PCA. Path lasso forces each latent dimension to be a
function only of a subset of the original dimensions, while exclusive lasso encourages these subsets to differ. To the
best of our knowledge this is the first non-linear dimensionality reduction algorithm that is sparse in this sense.

The rest of this paper is organized as follows: In Section 2 we introduce the path lasso penalty and the path lasso
penalized autoencoder. In Section 3 we do experiments on real and simulated data sets, comparing path lasso to
PCA, autoencoders, sparse autoencoders, sparse PCA and an autoencoder with parameter-wise l1-regularization. We
show that, for a given sparsity, path lasso results in a lower reconstruction error and is better at reconstruction match,
i.e. retaining relative positioning of objects in the reconstructed space as in the original space. We conclude with a
discussion in Section 4.

2 Method

This section is structured in the following way: Sections 2.1 and 2.2 present short reviews of different flavours of the
lasso algorithm and of proximal gradient descent, while Sections 2.3 to 2.6 describe different aspects of path lasso.
Section 2.3 and 2.4 describe how paths between nodes in two non-adjacent layers are defined and penalized, and how
the path penalties are transformed to individual link penalties. Section 2.5 describes different ways to accelerate training
and Section 2.6 describes how we use path lasso in an autoencoder.

2.1 Review of Lasso Penalties

The lasso algorithm, when applied, sets some of the model parameters equal to zero, eliminating them from the model.
There are different versions of the lasso, four of which are used in this paper. Here follows a short summary to these.
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(Standard) Lasso applies an l1-penalty to all the parameters in the parameter vector θ ∈ Rd, and is defined as

λ‖θ‖1 = λ

d∑
i=1

|θi|,

where λ > 0 is the regularization strength. Due to the non-differentiability of the absolute value at zero, some of the θ’s
are set to exactly zero and thus eliminated from the model.

Adaptive Lasso applies an individual l1-penalty to all the parameters in the parameter vector θ ∈ Rd, and is defined as

d∑
i=1

λi|θi|,

where λi :=
λ

|θ̂R
i |γ

for some γ > 0, and θ̂R
i is the ridge regression estimate of θi. The idea is that important parameters

will have larger values of θ̂R
i and thus be penalized less than unimportant parameters.

Group Lasso penalizes pre-defined groups of parameters together, which means that either all, or none, of the parameters
in the group are set to zero. The group lasso penalty for a group g ∈ G is defined as

λ‖θg‖2 = λ

√∑
i∈g

θ2i ,

where G = {g1, . . . gG} is a disjoint partition of the index set {1, . . . , d}, i.e. each g is a set of indices defining a
group, and, for a given θ ∈ Rd, θg is a d-dimensional vector with components equal to θ for indices within g and zero
otherwise. The total group lasso penalty is then taken as the sum of the penalties over the different groups. As seen, for
a given group g √∑

i∈g

θ2i = 0 ⇐⇒ θi = 0 ∀i ∈ g.

The Exclusive Lasso can be seen as the opposite of the group lasso. Again, the parameters are split into pre-defined
groups, but now the goal is instead to impose a similar number of non-zero parameters in every group. With g as before,
its exclusive lasso penalty defined as

λ‖θg‖21 = λ


∑

i∈g

|θi|




2

,

and, again, the total penalty is defined as the sum over the groups. Since the number of mixed terms in the squared sum
grows with the number of elements in the sum, the total number of mixed terms over all the groups is minimized when
the non-zero elements are evenly distributed among the groups.

2.2 Review of Proximal Gradient Descent

The reason that some parameters in lasso penalized models are set exactly to zero, is that the derivative of the absolute
value is not unique at zero: ∂|θ|

∂θ

∣∣∣
θ=0

∈ [−1, 1]. Gradient descent methods are unable to use this non-uniqueness and
as a consequence no parameters are set exactly to zero. Proximal gradient descent ([21]) on the other hand takes the
non-uniqueness into account, resulting in exact zeros.

If the objective function, f(θ), can be decomposed into f(θ) = g(θ) + h(θ), where g is differentiable (typically a
reconstruction error) and h is not (typically a lasso regularization term), then a standard gradient descent step, followed
by a proximal gradient descent step, is defined as

θt+1 = proxαh(θ
t − α∇g(θt)),

where α > 0 is a step size and prox is the proximal operator that depends on h.

For lasso, with h(θ) = λ||θ||1 =
∑

i λ|θi|, the proximal operator decomposes component-wise and is, with (x)+ :=
max(x, 0),

proxαh(θi) = sign(θi) · (|θi| − αλ)+ = θi ·
(
1− αλ

|θi|

)+

.
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Figure 1: Illustration of two of the 33 (where the exponent is the number of inner layers and the base is their width)
possible paths between node one in layer one and node two in layer five. Each arrow denotes a link, which corresponds
to an element in a weight matrix.

I.e., each θ is additively shrunk towards zero, and once it changes sign it becomes exactly zero.

For group lasso, with h(θ) = λ
∑

g∈G ||θg||2 = λ
∑

g∈G

√∑
θi∈g θ

2
i , where θg are the θ’s that belong to group g and

G is the set of all groups, the proximal operator for θi is

proxαh(θi) = θi ·


1− αλ√∑

θj∈gi
θ2j




+

,

where gi is the group that θi belongs to. Thus all members of the group are penalized equally and set to zero at the
exact same time. One can note that if each group consists of only one θ, the proximal operator for group lasso coincides
with the proximal operator for standard lasso.

2.3 Path Penalties

Let {ol}Ll=0, ol ∈ Rdl , denote the outputs of L+1 consecutive layers in a fully connected feedforward neural network,
where the first and last layers are also denoted by x and y, respectively, i.e. x := o0 and y := oL. Then y depends on
x as

y = ΦL(WLΦL−1(WL−1ΦL−2(. . .Φ1(W1x+ b1) . . . ) + bL−1) + bL), (2)
where {Wl}Ll=1, Wl ∈ Rdl×dl−1 , are the weight matrices, {bl}Ll=1, bl ∈ Rdl , the bias vectors, and {Φl}Ll=1 the (not
necessarily identical) element-wise activation functions. Thinking of Equation 2 as a graph, each weight matrix element,
wl

i1i2
:= (Wl)i1i2 , corresponds to a link between two nodes in two adjacent layers. By combining links from multiple

weight matrices, paths between nodes in non-adjacent layers can be constructed. Between a given node in layer x, xi0 ,
and a node in layer y, yiL , there are in total

∏L−1
l=1 dl paths, each consisting of L links, see Figure 1 for an illustration.

A path is broken if at least one of its links has value zero and to disconnect the two nodes, all paths between them need
to be broken. Just as in [22], we define the value of a path as the product of its absolute valued links,

pkiLi0 := |wL
iLikL−1

| · |wL−1
ikL−1i

k
L−2

| · . . . |w1
ik1 i0

|, k = 1, 2, . . . ,

L−1∏
l=1

dk,

where each k corresponds to a unique combination of the indices i1 to iL−1, which is indicated by the superscript k.
With this definition, a broken path, where at least one link is zero, has the value zero. We further define a group of paths
so that all paths connecting xi0 to yiL form one group; then if all paths in the group are zero, the nodes are disconnected.

In order to to use the group lasso to set all paths between two nodes to zero simultaneously, we define the matrix

WGL :=

√√√√ L∏
l=1

(Wl)2 =
√
(WL)2 · (WL−1)2 · . . . (W1)2, (3)

where the square and the square root are taken element-wise. The following Lemma describes the connection between
this matrix and the groups of all paths between two nodes in non-adjacent layers.
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Lemma 1. The element (iL, i0) in WGL is the group lasso penalty on the group consisting of all paths between nodes
xi0 and yiL , i.e.

(WGL)iLi0
=

√∑
k

(pkiLi0
)2

For a proof, see Appendix A.

Applying Lemma 1 to the proximal step for the k-th path connecting xi0 and yiL , we get

pkiLi0 ·


1− αλ√∑

k(p
k
iLi0

)2




+

= pkiLi0 ·
(
1− αλ

(WGL)iLi0

)+

. (4)

We call each element in WGL a connection, i.e. (WGL)iLi0 is the strength of the connection between nodes xi0 and yiL
and if it is zero, meaning that all paths between the nodes are broken, then the nodes are disconnected. Theorem 1 gives
a theoretical justification for this definition of connections, stating that if there is no connection between xi0 and yiL ,
then the derivative of yiL with respect to xi0 is zero, regardless of the value of x.

Theorem 1. Let the vector y depend on the vector x as stated in Equation 2 and let WGL be the path group lasso
matrix defined in Equation 3. Then, if all weights and activations are bounded,

(WGL)iLi0 = 0 =⇒ ∂yiL
∂xi0

=

(
∂y

∂x

)

iLi0

= 0 ∀x ∈ Rd0 .

For a proof, see Appendix A.

2.4 From Paths to Links

Equation 4 describes how all paths between two nodes in the networks are penalized towards zero, but it does not tell
how this penalization affects the individual links. The following theorem describes how the penalized paths can be
translated to penalized links.

Theorem 2. The group lasso penalties on the paths can be transformed to standard lasso penalties on the links by first
solving the matrix equation

L∏
l=1

|Wl| �
(
1− αλ

WGL

)+

=
L∏

l=1

W̃l, (5)

with respect to W̃l, and then set (Wl)
t+1 := sign((Wl)

t)� W̃l.
Then (wl

ij)
t+1 = sign((wl

ij)
t) · w̃l

ij =: sign((wl
ij)

t) · (|(wl
ij)

t| − αλl
ij)

+ for some λl
ij > 0, which is the proximal

operator for standard lasso.
The absolute value, sign and division are taken element-wise and � denotes element-wise multiplication.

The proof, which is presented in Appendix A, contains a step where the paths in each group are summed over. This step
transforms the system of non-linear equations from one equation per path to one equation per connection, i.e. from∏L

l=0 dl to d0 · dL equations, and to a form can be solved efficiently using non-negative matrix factorization, NMF, with
the extra requirement that w̃l

ilil−1
≤ |wl

ilil−1
|, or equivalently λl

ilil−1
≥ 0. We describe this algorithm in Appendix B.

The reduced number of equations leads to an undetermined system (unless the hidden layers are very narrow). Therefore,
all equations can hold, although there might be more than one solution. Since we are interested in a solution that lies
close to the unpenalized weight matrices, we use |Wl| as the seed for each W̃l in the matrix factorization.

An optimization step using proximal gradient descent on paths is summarized in Algorithm 1.

2.5 Accelerating the Algorithm

The matrix factorization step in Equation 5 is the bottle neck of Algorithm 1 and to increase its speed, three approaches
are used: Substitution, parallelization and Boolean matrix factorization.
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Algorithm 1 Proximal Path Lasso Step

1: Update all weights and biases using gradient descent:
θt+

1
2 ← θt − α∇f(θt), for all elements θ in {Wl}Ll=l and {bl}Ll=l.

2: Construct the group lasso penalty matrix:

WGL ←
√∏L

l=1(W
t+ 1

2

l )2

3: Penalize paths and translate the penalty to penalized links by solving Equation 5, using modified non-negative
matrix factorization:{
W̃ t+1

l

}L

l=1
← NMF

(∏L
l=1 |W

t+ 1
2

l | �
(
1− αλ

WGL

)+
)

4: Restore signs:
W t+1

l ← sign(W̃ t
l )� W̃ t+1

l

2.5.1 Substitution

By first applying an off-the-shelf optimization method to f(θ) = g(θ) + λWGL, where g(θ) is the reconstruction error,
we obtain a solution where some of the paths have very small values, although non-zero. We then, as in adaptive lasso,
use this solution to initialize a second optimization stage, using proximal gradient descent, with individual penalties for
each connection. The penalties depend on the magnitude of the connection after the first stage:

λiL,i0 :=
λ

((ŴGL)iLi0)
γ

(6)

where ŴGL is the value of WGL after the first optimization stage and γ > 0. Throughout this paper, γ = 2 was used.
Choosing a relatively small value of λ, connections that are not close to zero after the first stage will be left more or less
unpenalized, while connections close to zero will be penalized hard. Another advantage of this two stage procedure is
that we are able to further increase the speed in the first stage by leveraging on momentum based optimization methods,
which are not available for proximal gradient descent.

2.5.2 Parallelization

In general, the larger the weight matrices, the more time consuming is the factorization of the penalized path matrix
into penalized weight matrices. By splitting the weight matrices into blocks, the factorization can instead be done in
parallel for smaller sub-matrices. In the simplest example, three layers are split into two parts each. This corresponds to
two weight matrices, whose rows and columns are both split into two blocks each, and is shown in Equation 7 below.
Let A ∈ (R≥0)

d3×d2 and B ∈ (R≥0)
d2×d1 denote the absolute valued weight matrices and let C +D ∈ (R≥0)

d3×d1

denote the penalized path matrix, where the sum of the paths in (C +D)ij is split into Cij , containing the sum of some
of the paths, and Dij containing the sum of the remaining paths. Which paths belong to C and which belong to D
depends on how A and B are split. Then, the factorization of C +D into A · B can be divided into 23 = 8 smaller
factorizations which can be solved in parallel, i.e.

[
C11 +D11 C12 +D12

C21 +D21 C22 +D22

]
=

[
A11 A12

A21 A22

]
·
[

B11 B12

B21 B22

]

can be split into [
C11 C12

C21 C22

]
=

[
A11 0
A21 0

]
·
[

B11 B12

0 0

]
=

[
A11 ·B11 A11 ·B12

A21 ·B11 A21 ·B12

]

[
D11 D12

D21 D22

]
=

[
0 A12

0 A22

]
·
[

0 0
B21 B22

]
=

[
A12 ·B21 A12 ·B22

A22 ·B21 A22 ·B22

]

or equivalently
C11 = A11 ·B11, C12 = A11 ·B12, C21 = A21 ·B11, C22 = A21 ·B12

D11 = A12 ·B21, D12 = A12 ·B22, D21 = A22 ·B21, D22 = A22 ·B22.

(7)

Here, Aij ∈ (R≥0)
d3i×d2j , Bij ∈ (R≥0)

d2i×d1j and Cij , Dij ∈ (R≥0)
d3i×d1j , where i, j ∈ {1, 2} and dki+dkj = dk

for k = 1, 2, 3, are all block matrices. This results in two, potentially different, solutions for each Aij and Bij , that
need to be aggregated. To be conservative, and set a link to zero only when it is zero in both solutions, we use the
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maximum value element-wise for aggregation:

(Aij)kl = max
n∈{1,2}

(An
ij)kl

where An
ij is the n-th solution of Aij . Remember that all elements in all matrices are non-negative.

This generalizes trivially to more layers and splits and the number of equations is always the product of the splits over
all the layers.

2.5.3 Boolean Matrix Factorization

Another way to speed up the computations is early stopping of the matrix factorization. This may however lead to some
of the elements on the right hand side in Equation 5 being very close, but not equal, to zero, introducing the need to
threshold. We determine the optimal threshold value using Boolean matrix multiplication, which differs from ordinary
matrix multiplication in the following way:

• All elements are in {0, 1}.
• Instead of ordinary sum, Boolean sum (or Boolean or), ∨, is used: 0∨ 0 = 0, 0∨ 1 = 1, 1∨ 0 = 1, 1∨ 1 = 1.

We define a Boolean matrix for each matrix in Equation 5 as:

Bij := I



(

L∏
l=1

|Wl| �
(
1− αλ

WGL

)+
)

ij

> 0




(Bl)ij(τ) := I
[
(W̃l)ij > τ

]
, τ ≥ 0

where I[·] is the indicator function which equals 1 when its argument is true and 0 otherwise. Thus, in the matrix on the
left hand side in Equation 5, zero elements become zeros and all other elements become ones, while for the matrices on
the right hand side, we use a threshold to decide which elements should be set to zero. In the first case, an element of
one means that there is an non-zero connection, while in the second case it means that there is an non-zero link. If
B =

∨L
l=1 Bl, where

∨
denotes Boolean matrix multiplication, then the matrix factorization was successful in the

sense that all connections in WGL are represented by appropriate links in the weight matrices. Each differing element
means that either two nodes are disconnected in WGL but not in {W̃l}Ll=1 or vice versa. To minimize this quantity,
we minimize

∑
|B −

∨L
l=1 Bl(τ)|, with the absolute value taken element-wise, with respect to τ , and then threshold

{W̃l}Ll=1 using the resulting τ :

τ = argmin
τ≥0

∑
all elements

∣∣∣∣∣I
[

L∏
l=1

|Wl| �
(
1− αλ

WGL

)+

> 0

]
−

L∨
l=1

I[W̃l > τ ]

∣∣∣∣∣
W̃l ← W̃l � I[W̃l > τ ]

Since the objective function is piecewise constant and thus hard to optimize, we simply evaluate it for 20 logarithmically
spaced values of τ ∈ [10−10, 1] and pick the best one.

2.6 Path Lasso for Dimensionality Reduction

For dimensionality reduction, path lasso was used together with an autoencoder with one hidden layer, with tanh
activation, in the encoder and decoder respectively, trained with l2-loss. The path penalties were applied between the
input and latent variables, and between the latent and output variables. For a given observation, the original input is
denoted by x ∈ Rdx , the reconstructed output by x̂ ∈ Rdx and the latent representation by z ∈ Rdz , where dz < dx.

To enforce the encoder and the decoder to be symmetric, the group lasso groups were defined as all paths connecting xi

and zj and all paths connecting zj and x̂i, i.e. WGL :=
√
(W2)2 · (W1)2 + ((W4)2 · (W3)2)�, where (W1,W2) and

(W3,W4) are the weight matrices of the encoder and the decoder. This means that if an input is disconnected to a latent
variable, so is the corresponding output.

Since training a neural network is a non-convex optimization problem, with multiple local optima, how and when the
regularization is added might affect which optimum is found. If a too high penalty is added too early during training, the
risk of getting stuck in a bad local optimum is larger than if the regularization is added later. To mitigate this, similarly
to in adaptive lasso, we first trained the network without path regularization to obtain individual penalties for each
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connection during the path lasso stage. To encourage the algorithm to make equal use of the latent dimensions, we
added an exclusive lasso penalty to the elements in WGL, with as many groups as there are latent dimensions, each group
being defined as the connections to a given latent dimension. This was trained without proximal methods analogously
to in 2.5.1.

In a second stage, we added path regularization with an individual penalty for each connection, where the penalties
depended on the magnitude of the connection just after the first training stage, again using Equation 6, to penalize
unimportant connections harder than important ones. Then in a third stage we applied proximal gradient descent to
obtain exact zeros. Finally, to improve performance, we again used an of-the-shelf optimizer, but now with the links set
to zero in the previous stage kept to zero. This is summarized in Algorithm 2.

Algorithm 2 Path Lasso for Dimensionality Reduction

1: Train the neural network with optimizer of choice and an exclusive lasso penalty over the latent dimensions.
2: Add an individual path lasso penalty to each connection. Continue training with the same optimizer.
3: Update the individual penalties. Continue training with proximal gradient descent, Algorithm 1.
4: Continue training with optimizer from steps 1 and 2, without regularization, but with zeros kept fixed.

3 Experiments

In order to evaluate path lasso for dimensionality reduction we applied it to three different datasets, one synthetic
consisting of Gaussian clusters on a hypercube, one with text documents from newsgroup posts, and one with images
of faces. In each experiment, 20 % of the data was set aside for testing and the remaining 80 % was split 90-10 into
training and validation data; all visualizations were made using the testing data.

In addition to path lasso, we used a standard autoencoder, a sparse autoencoder, an autoencoder with parameter-wise
l1-regularization and thresholding (hereafter referred to as standard lasso), PCA and sparse PCA. It should however be
noted that the sparse autoencoder is sparse in terms of observations to latent dimensions, and not in terms of original to
latent dimensions, as we are interested in, see the text associated to Equation 1 for details. The standard autoencoder
and PCA are of course not sparse in any sense. Since these three algorithms are not as relevant to us as the "truly"
sparse algorithms, we omit them in some of the comparisons.

The following measures were calculated on the testing data:

• Reconstruction error as explained variance (R2).

• Fraction of correctly identified reconstructions. A reconstructed observation is considered correctly identified if
it is closer to its own original observation than any of the other ones, measured in l2-distance, i.e. dl2(x̂i, xi) <
dl2(x̂i, xj), i �= j. This is hereafter referred to as reconstruction match.

3.1 Synthetic Data Set

Sixteen clusters were generated in R4, centered at each of the sixteen vertices in the hypercube {0, 1}4. For cluster i,
100 data points were sampled according to Xi ∼ N (µi, 0.01 · I4), where I4 is the identity matrix and µi is one of the
sixteen vertices in {0, 1}4. The four dimensional data set was reduced down to two dimensions using the six different
algorithms. For the four autoencoder based algorithms, the number of nodes in the five layers of the autoencoder were 4,
50, 2, 50 and 4, respectively. The three sparse algorithms (in the sense original to latent dimensions) were penalized so
that four of the original eight connections remained. The experiment was performed twice, with and without N (0, 0.32)
distributed noise added.

Ten different splits of the data into training and validation sets were done. For each split three different optimization
seeds were used and the seed resulting in the best R2 value was chosen. The results are presented in Table 1, where the
p-values come from the one-sided paired t-test, that tests whether the value of the algorithm is better than that of path
lasso. P-values smaller than 1 % are marked in bold. With noise added, path lasso performs significantly better than the
other algorithms both in terms of R2 and reconstruction match. Without noise path lasso still performs better than the
dense algorithms in terms of reconstruction match, while all the four non-linear methods perform very well in terms of
R2.

The results with the best R2 values are plotted in Figure 2, where clusters that are diagonal to each other (e.g. (0, 1, 0, 0)
and (1, 0, 1, 1)) are plotted using the same color, but with different markers - circles or crosses. For the three sparse
algorithms, path lasso, standard lasso and sparse PCA, each of the two latent dimensions becomes a combination of two
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Table 1: Number of remaining connections, explained variance, reconstruction match and p-value for six different
algorithms when reducing 16 clusters from four to two dimensions with (bottom) and without (top) added noise.
P-values are for the one-sided paired t-test, that tests whether the value of the algorithm is better than that of path lasso,
with p-values smaller than 1 % marked in bold. For the three sparse algorithms, the number of connections is always
four, by construction; for three the dense algorithms it is always eight.

Algorithm Connections R2 Reconstruction Match
Value p-value Value p-value

Path Lasso 4 0.98± 0.0013 - 0.37± 0.015 -
Standard Lasso 4 0.98± 0.002 0.17 0.36± 0.022 0.069
Sparse PCA 4 0.48± 0.0018 7 · 10−23 0.067± 0.019 1.9 · 10−11

Autoencoder 8 0.98± 0.0026 0.034 0.35± 0.013 0.00092
Sparse Autoencoder 8 0.98± 0.00027 0.58 0.34± 0.0076 0.00011
PCA 8 0.48± 0.0014 2.2 · 10−23 0.067± 0.015 1.2 · 10−12

Path Lasso 4 0.89± 0.017 - 0.38± 0.038 -
Standard Lasso 4 0.58± 0.097 3.7 · 10−7 0.11± 0.03 7.6 · 10−9

Sparse PCA 4 0.50± 0.0016 6.1 · 10−14 0.11± 0.0061 1.4 · 10−9

Autoencoder 8 0.86± 0.011 0.00065 0.33± 0.014 0.0029
Sparse Autoencoder 8 0.85± 0.0038 9.2 · 10−5 0.30± 0.015 6.2 · 10−5

PCA 8 0.50± 0.0043 8.3 · 10−14 0.12± 0.0088 1.1 · 10−9

of the original four dimensions, which can be seen in the axis aligned data in the plots. The linear algorithms, PCA and
sparse PCA, are not able to fully separate the sixteen clusters, but the four non-linear algorithms, based an autoencoders,
are.

3.2 Text - 20 Newsgroup Dataset

To test the algorithm on text data, the 20 newsgroups data set2, was used. Out of the original 20 categories, the
following 4 were selected: soc.religion.christian, sci.space, comp.windows.x and rec.sport.hockey,
which resulted in 31225 documents. Then, for each word the tf-idf score was calculated, and the 100 words with the
highest score were kept, resulting in a 31225× 100 data matrix. In two experiments, the 100 dimensional data set was
mapped down to four and two dimensions using path lasso, standard lasso and sparse PCA. For the two autoencoder
based algorithms, the layer widths were 100, 50, 4 (2), 50 and 100 nodes. In each of the three cases the penalties were
set to obtain (approximately) the same sparsity.

The latent spaces are shown in Figure 3. In the 4D case, standard lasso only uses one latent dimension and is incapable
of distinguishing between the categories, sparse PCA maps one category to each latent dimension, while path lasso has
a tendency to map two categories to each latent dimension, one to the positive and one to the negative axis. This is
further accentuated when compressing to only two dimensions. While path lasso is able to identify all four categories,
sparse PCA only identifies two of them. Standard lasso still only uses one dimension and is not able to identify any
categories at all. The use of only one latent dimension by standard lasso can probably be attributed to the flexibility of
the autoencoder, and without the structure in the penalty imposed by path lasso, there is less incentive to fully utilize the
latent space. The same tendency is visible in Figure 4c.

To see which original dimensions (words) contribute to which latent dimensions, the non-zero elements of WGL can
be used, but since all elements in this matrix are non-negative, it gives no information about the sign. Instead the
corresponding signed matrix was created according to W2 ·W1+(W4 ·W3)

�. The signed words in the latent dimensions
are presented in Table 2. The assignment of words to the 8 (4) latent half-axes done by path lasso and sparse PCA is
consistent with the results in Figure 3. Path lasso also seems to identify a subcategory of comp.windows.x related to
e-mails.

In Table 3, remaining connections, explained variance and reconstruction match is presented. We conclude that path
lasso performs best both in terms of explained variance and reconstruction match.

2Available at http://qwone.com/~jason/20Newsgroups/
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Table 2: Positive and negative words in the four and two latent dimension, with sign calculated as sign(W2 ·W1 +(W4 ·
W3)

�).
Path lasso Path lasso Standard lasso Standard lasso Sparse PCA Sparse PCA
Negative Positive Negative Positive Negative Positive

Dimension
1 of 4

game, team,
year, hockey,
play, games,
players, sea-
son, best,
nhl

know, does,
window,
use, need,
want, server,
program,
motif, using,
windows,
application,
widget

- - god, don,
think, peo-
ple, does,
good, jesus,
say, believe,
church, things,
question, said,
christians, true,
christian, bible,
come, world,
point, christ,
faith, life

-

Dimension
2 of 4

space - - - game, good,
team, year,
hockey, play,
games, players,
season, better,
best, nhl

use

Dimension
3 of 4

thanks, edu,
work, mail, hi,
actually, list

god, don,
think, people,
jesus, say, be-
lieve, church,
christians,
christian, bible,
christ, faith,
life

- - - window,
use, prob-
lem, server,
program,
motif, using,
windows,
application,
widget

Dimension
4 of 4

- people, new,
going, lot

god, like,
know, don,
think, space,
does, time,
window,
thanks, use,
jesus, way, say,
believe, need,
want, problem,
edu, server,
right, church,
program, mo-
tif, let, using,
work, nasa,
christians, true,
bible, help,
mail, used,
christ, sun, hi,
life, actually

just, people,
good, team,
new, did,
hockey, make,
going, better,
probably, lot

- space, nasa,
earth

Dimension
1 of 2

team, hockey,
better, proba-
bly

space - - god, people,
jesus, believe,
bible, christ,
faith, life

-

Dimension
2 of 2

window, hi god, church - people, good,
team, new, did,
hockey, make,
going, better,
probably, lot

- window, appli-
cation
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PCA Sparse PCA PCA, Noise Sparse PCA, Noise

Figure 2: Reducing 16 clusters from four to two dimension with and without noise, using six different algorithms.
Clusters that are diagonal to each other have the same color, but different markers.

Table 3: Number of remaining connections, explained variance and reconstruction match for the three algorithms on the
newsgroup data.

Dimensions Algorithm Connections R2 Reconstruction
Match

4 Path Lasso 49 0.2 0.029
4 Standard Lasso 51 0.015 0.0021
4 Sparse PCA 49 0.11 0.017
2 Path Lasso 9 0.13 0.019
2 Standard Lasso 11 0.015 0.0021
2 Sparse PCA 10 0.028 0.0084
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(a) Latent 4D space for the newsgroup data
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(b) Latent 2D space for the newsgroup data

Figure 3: Latent spaces of the news data, when compressed down to 4 and to 2 latent dimensions. In 3a the y-axis value
is just a random number, added to increase readability.
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Table 4: Number of remaining connections, explained variance and reconstruction match for the four algorithms on the
image data.

Algorithm Connections R2 Reconstruction Match
Autoencoder 15000 0.73 0.66
Path Lasso 14923 0.72 0.7
Standard Lasso 14936 0.7 0.55
Sparse PCA 14923 -0.24 0.16
Path Lasso 3770 0.57 0.21
Standard Lasso 3771 0.44 0.025
Sparse PCA 3770 -1.2 0.1

3.3 Images - AT&T Face Database

We also tested the algorithm on the AT&T face database ([23]), which contains 400 grayscale images of faces. The
images were compressed to a size of 60 × 50 pixels, after which the 3000 dimensional images where reduced to 5
dimensions. Both the encoder and the decoder had 1000 units wide hidden layers, and to assure that a pixel that was
disconnected from all the latent dimensions got a value of zero, no bias parameters were used.

Each algorithm was penalized to obtain (approximately) the same number of connections, at two different sparsity levels.
One low, with almost all of the 5 · 3000 = 15000 connections kept to be able to compare to a dense, l2-regularized
autoencoder; and one high, with only a fourth of the connections kept, to compare the algorithms at more extreme
sparsity levels.

The results are summarized in Table 4. Path lasso and standard lasso do much better than sparse PCA in terms of
reconstruction, and at low sparsity they are on par with the dense autoencoder. For reconstruction match, path lasso
outperforms the other two algorithms, and at low sparsity even does better than the fully connected autoencoder.

The five eigenfaces - calculated as Dec(ei), where Dec is the decoder and ei is the i-th standard basis vector in R5, are
shown in the left column of Figure 4. For PCA, the decoder function corresponds to multiplication with the loadings
matrix, whose i-th column is the i-th eigenface. A pixel with value zero is colored red. Sparse PCA distributes its
non-zero pixels more evenly among the latent dimensions, while again standard lasso does not utilize all 5 latent
dimensions. The right column shows the reconstruction of some of the images in the test set, using the four different
algorithms. The reconstructed images using path lasso look more diversified than for the other sparse algorithms,
something that is in line with the superior reconstruction match of path lasso.

4 Conclusions

We proposed path lasso, that creates structured sparsity in feedforward neural networks, by using a group lasso penalty
to remove all connections between two nodes in two non-adjacent layers. We applied path lasso to an autoencoder to
obtain sparse, non-linear dimensionality reduction, and showed that this non-linearity makes path lasso much more
flexible than sparse PCA, leading to a lower reconstruction error and a higher reconstruction match. Thanks to its higher
flexibility path lasso is also able to use the latent space more efficiently, something that proved essential when the latent
dimensions were few. Compared to an autoencoder with individually lasso penalized links, path lasso did better in
terms of reconstruction, reconstruction match and interpretation of the latent space. In addition, at low sparsity levels
path lasso resulted in a better reconstruction match than the standard autoencoder.

Using path lasso for non-linear, sparse dimensionality reduction, flexibility and interpretability can be combined in a
new way, enabling compression to fewer dimensions, with preserved interpretability. In this paper, we used the path
lasso penalty in an autoencoder. However, path lasso can be used in many other types of feedforward neural networks
with applications including non-linear, sparse multivariate regression, and non-linear, sparse network models. This
investigation is left for future work.
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Autoencoder Path Lasso Standard Lasso Sparse PCA

(a) Eigenfaces at low sparsity

Original Autoencoder Path Lasso Standard Lasso Sparse PCA

(b) Reconstruction of test faces at low sparsity

Autoencoder Standard Lasso Sparse PCA

(c) Eigenfaces at high sparsity

Original Path Lasso Standard Lasso Sparse PCA

(d) Reconstruction of test faces at high sparsity

Figure 4: Eigenfaces and examples of reconstructions of test faces at small and large penalization. Zeros are indicated
with red. The results of the dense autoencoder are presented together with the low sparsity results.
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A Proofs

Proof of Lemma 1. Using the definition of matrix multiplication, with k running over all paths connecting xi0 and yiL ,
we obtain √∑

k

(pkiLi0
)2 =

√√√√
dL−1∑

iL−1=1

dL−2∑
iL−2=1

· · ·
d1∑

i1=1

(|wL
iLiL−1

| · |wL−1
iL−1iL−2

| · . . . |w1
i1i0

|)2

=

√√√√
dL−1∑

iL−1=1

dL−2∑
iL−2=1

· · ·
d1∑

i1=1

(wL
iLiL−1

)2 · (wL−1
iL−1iL−2

)2 · . . . (w1
i1i0

)2

=
(√

(WL)2 · (WL−1)2 · . . . (W1)2
)
iLi0

= (WGL)iLi0 .

To prove Theorem 1 we begin with the following lemma:

Lemma 2. Let {Ak}nk=1 be a set of arbitrary matrices and {Dk}nk=1 a set of diagonal matrices, where all elements in
Ak and Dk are bounded. Let f ≥ 0 an element-wise function where f(x) = 0 if and only if x = 0. Let the dimensions
of the matrices be such that the matrix multiplications below make sense. Then

(f(A1) · f(A2) · . . . f(An))ij = 0 =⇒ (D1 ·A1 ·D2 ·A2 ·D2 · . . . Dn ·An)ij .

Proof. Denote akij := (Ak)ij and dkij := (Dk)ij . Then for the left hand side

(f(A1) · f(A2) · . . . f(An))ij =
∑
k1

∑
k2

· · ·
∑
kn−1

f(a1ik1
) · f(a2k1k2

) · . . . f(ankn−1j)

and for the right hand side

(D1 ·A1 ·D2 ·A2 · . . . Dn ·An)ij =
∑
k1

∑
k2

· · ·
∑
kn−1

a1ik1
· a2k1k2

· . . . ankn−1j · d
1
ii · d2k1k1

· . . . dnkn−1kn−1
.

By the definition of f , f(a1ik1
) ·f(a2k1k2

) · . . . f(ankn−1j
) ≥ 0 with equality only if at least one of a1ik1

, a2k1k2
, . . . ankn−1j

is zero, which implies that a1ik1
· a2k1k2

· . . . ankn−1j
= 0.

The sum ∑
k1

∑
k2

· · ·
∑
kn−1

f(a1ik1
) · f(a2k1k2

) · . . . f(ankn−1j)

is zero if and only if all its terms are zero, which means that

a1ik1
· a2k1k2

· . . . ankn−1j = 0

for all combinations of indices summed over. Multiplying with some constant less than infinity does not change that
fact, so

f(a1ik1
) · f(a2k1k2

) · . . . f(ankn−1j) = 0 =⇒ a1ik1
· a2k1k2

· . . . ankn−1j · d
1
ii · d2k1k1

· . . . dnkn−1kn−1
= 0.

Finally summing only zeros we get

0 =
∑
k1

∑
k2

· · ·
∑
kn−1

a1ik1
· a2k1k2

· . . . ankn−1j · d
1
ii · d2k1k1

· . . . dnkn−1kn−1
= (D1 ·A1 ·D2 ·A2 · . . . Dn ·An)ij

Proof of Theorem 1. With {ol}Ll=0 (where o0 = x and oL = y) denoting the outputs and {il}Ll=1 the inputs of the
activation functions {Φl}Ll=1, we can express Equation 2 recursively for 1 ≤ l ≤ L as

il = Wlol−1 + bl
ol = Φk(il)
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Applying the chain rule we get

∂y

∂x
=

∂oL

∂o0
=

∂oL

∂iL
· ∂iL
∂oL−1

· ∂oL−1

∂iL−1
· ∂iL−1

∂oL−2
· . . . ∂o1

∂i1
· ∂i1
∂o0

, (8)

where ∂ol

∂il
is a diagonal matrix, since Φl is an element-wise operator, and ∂il

∂ol−1
= Wl. We can now apply Lemma 2

with f(x) = x2 to Equation 8 to get

(WGL)iLi0 = 0 ⇐⇒ ((WL)
2 · (WL−1)

2 · . . . (W1)
2)iLi0 = 0

=⇒ 0 =

(
∂oL

∂iL
·WL · ∂oL−1

∂iL−1
·WL−1 · . . .

∂o1

∂i1
·W1

)

iLi0

=

(
∂y

∂x

)

iLi0

where the equivalence comes from the definition of WGL and the implication from Lemma 2.

Proof of Theorem 2. Assuming the penalized path can be written as a product of penalized links, we get the following
equation for the k-th path between nodes i0 and iL, in total

∏L
l=0 dk equations:

pkiLi0 ·
(
1− αλ

(WGL)iLi0

)+

= |wL
iLikL−1

| · |wL−1
ikL−1i

k
L−2

| · . . . |w1
ik1 i0

| ·
(
1− αλ

(WGL)iLi0

)+

= sign(wL
iLikL−1

) · (|wL
iLikL−1

| − αλL
iLikL−1

)+ · . . . sign(w1
ik1 i0

) · (|w1
ik1 i0

| − αλ1
ik1 i0

)+

=: sign(wL
iLikL−1

) · w̃L
iLikL−1

· . . . sign(w1
ik1 i0

) · w̃1
ik1 i0

.

(9)

Here, the second equality is our assumption, λl
ikl i

k
l−1

∈ [0, |wl
ikl i

k
l−1

|/α] is a, possibly unique, penalty for the weight

wl
ikl i

k
l−1

and w̃l
ikl i

k
l−1

:= (|wl
ikl i

k
l−1

| − αλl
ikl i

k
l−1

)+. The superscript k on the indices marks that different paths go through
different nodes in the inner layers.

Taking absolute values of all equations and summing over the equations where the paths belong to the same connection,
i.e. they have the same value for i0 and iL and thus the same path penalty, we obtain, for a given combination of i0 and
iL 


dL−1∑

iL−1=1

· · ·
d1∑

i1=1

|wL
iLiL−1

| · . . . |w1
i1i0 |


 ·

(
1− αλ

(WGL)iLi0

)+

=

dL−1∑
iL−1=1

· · ·
d1∑

i1=1

w̃L
iLiL−1

· . . . w̃1
i1i0 (10)

which, using the definition of matrix multiplication can be written as
(

L∏
l=1

|Wl| �
(
1− αλ

(WGL)iLi0

)+
)

iLi0

=

(
L∏

l=1

W̃l

)

iLi0

.

Thus, solving Equation 5 results in the absolute values of links that are shifted towards zero in such a way that when
multiplied into paths, the paths have the correct penalization. The only thing left to do is to restore the signs of the
links.

B Modified Non-Negative Matrix Factorization

We solve the non-negative matrix factorization problem in Equation 5 with coordinate descent, using a modified version
of the solver in python’s scikit-learn module ([24]), which in turn is based on [25] and [26]. The aim is to minimize
||V −W ·

∏I
i=1 Mi ·H||2F for I ∈ N0, keeping each entry in W , Mi and H between zero and its seed.

Since coordinate descent updates each matrix separately, keeping the others fixed, we always have W ·
∏I

i=1 Mi ·H =

W̃ · M̃ · H̃ , where the three matrices on the right hand side are products of the matrices of the left hand side. Thus we
need update rules for W̃ and M̃ , since we can use the same algorithm for W̃ and H̃ by taking transpose. In [26] the
case for two matrices is described, i.e. I = 0. Our contribution is the update rule for M̃ (and trivially adding the upper
constraint on the solution).

18



B.1 Update Rule for W̃

For W̃ ∈ (R+)di×dr we want to solve, adding the possibility to add element-wise l1- and l2-penalties:

min
W̃ : 0≤W̃ir≤(W̃0)ir

1

2
||V − W̃ H̃||2F +

∑
i,r

(
λ1W̃ir +

λ2

2
W̃ 2

ir

)

where W̃0 is the seed. We update each element W̃ir by adding sEir, for an optimal s, where Eir is a matrix with all
zeros, except element (i, r), which is 1. Defining

gW̃ir (s) :=
1

2

∑
j

(Vij − ((W̃ + sEir)H̃)ij)
2 + λ1(W̃ir + s) +

λ2

2
(W̃ir + s)2

we get

gW̃ir (s) =
1

2

∑
j

(Vij − ((W̃ + sEir)H̃)ij)
2 + λ1(W̃ir + s) +

λ2

2
(W̃ir + s)2

=
1

2

∑
j

(Vij − (W̃ H̃)ij − sH̃rj)
2 + λ1(W̃ir + s) +

λ2

2
(W̃ir + s)2

(gW̃ir )
′(s) =

∑
j

(−VijH̃rj + (W̃ H̃)ijH̃rj + 2sH̃2
rj) + λ1 + λ2(W̃ir + s)

(gW̃ir )
′′(s) =

∑
j

(2H̃2
rj) + λ2

(gW̃ir )
′(0) =

∑
i,j

(−Vij(H̃
�)jr + (W̃ H̃)ij(H̃

�)jr) + λ1 + λ2W̃ir = (−V H̃� + W̃ H̃H̃�)ir + λ1 + λ2W̃ir

(gW̃ir )
′′(0) =

∑
j

H̃rj(H̃
�)jr + λ2 = (H̃H̃�)rr + λ2.

Since gW̃ir (s) is quadratic in s, its Taylor expansion only contains terms up to and including s2:

gW̃ir (s) = gW̃ir (0) + (gW̃ir )
′(0) · s+ 1

2
(gW̃ir )

′′(0) · s2

which is minimized at

s∗ = − (gW̃ir )
′(0)

(gW̃ir )
′′(0)

=
(V H̃� − W̃ H̃H̃�)ir − λ1 − λ2W̃ir

(H̃H̃�)rr + λ2

and, to make sure W̃ir ∈ [0, W̃ 0
ir]:

(W̃ir)
t+1 = max((W̃0)ir,min(0, (W̃ir)

t + s∗)).

B.2 Update Rule for M̃

For M ∈ (R+)dp×dr the corresponding equations become

min
M̃ : 0≤M̃pr≤(M̃0)pr

1

2
||V − W̃M̃H̃||2F +

∑
p,r

(
λ1M̃pr +

λ2

2
M̃2

pr

)
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gM̃pr (s) :=
1

2

∑
i,j

(Vij − (W̃ (M̃ + sEpr)H̃)ij)
2 + λ1(M̃pr + s) +

λ2

2
(M̃pr + s)2

=
1

2

∑
i,j

(Vij − (W̃M̃H̃)ij − sW̃ipH̃rj)
2 + λ1(M̃pr + s) +

λ2

2
(M̃pr + s)2

(gM̃pr )
′(s) =

∑
i,j

(−VijW̃ipH̃rj + (W̃M̃H̃)ijW̃ipH̃rj + 2sW̃ 2
ipH̃

2
rj) + λ1 + λ2(M̃pr + s)

(gM̃pr )
′′(s) =

∑
i,j

(2W̃ipH̃
2
rj) + λ2

(gM̃pr )
′(0) =

∑
i,j

(−VijW̃ipH̃rj + (W̃M̃H̃)ijW̃ipH̃rj) + λ1 + λ2M̃pr

= (−W̃�V H̃� + W̃�W̃M̃H̃H̃�)pr + λ1 + λ2M̃pr

(gM̃pr )
′′(0) =

∑
i

(W̃�)piW̃ip

∑
j

H̃rj(H̃
�)jr + λ2 = (W̃�W̃ )pp(H̃H̃�)rr + λ2

s∗ =
(W̃�V H̃� − W̃�W̃M̃H̃H̃�)pr − λ1 − λ2M̃pr

(W̃�W̃ )pp(H̃H̃�)rr + λ2

(M̃pr)
t+1 = max((M̃0)pr,min(0, (M̃ir)

t + s∗)).
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