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Abstract

We consider nearest neighbor weighted random walks on the d-dimensional
box [n]d that are governed by some function g : [0, 1] → [0,∞), by which
we mean that standing at x, a neighbor y of x is picked at random and the
walk then moves there with probability (1/2)g(n−1y)/(g(n−1y)+g(n−1x)).
We do this for g of the form fmn for some function f which assumed to be
analytically well-behaved and where mn → ∞ as n → ∞. This class of
walks covers an abundance of interesting special cases, e.g., the mean-field
Potts model, posterior collapsed Gibbs sampling for Latent Dirichlet allo-
cation and certain Bayesian posteriors for models in nuclear physics. The
following are among the results of this paper:

• If f is unimodal with negative definite Hessian at its global maximum,
then the mixing time of the random walk is O(n log n).

• If f is multimodal, then the mixing time is exponential in n, but we
show that there is a simulated annealing scheme governed by fK

for an increasing sequence of K that mixes in time O(n2). Using a
varying step size that decreases with K, this can be taken down to
O(n log n).
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• If the process is studied on a general graph rather than the d-dimensional
box, a simulated annealing scheme expressed in terms of conductances
of the underlying network, works similarly.

Several examples are given, including the ones mentioned above.

AMS Subject classification : 60J10
Key words and phrases: mixing time, MCMC, Gibbs sampler, topic model, Potts
model
Short title: Rapid mixing and efficient simulated annealing

1 Introduction
Markov chain Monte Carlo (MCMC) is a powerful tool for sampling from a given
probability distribution on a very large state space, where direct sampling is diffi-
cult, in part because of the size of the state space and in part because of normaliz-
ing constants that are difficult to compute.

In machine learning in particular, MCMC algorithms are very common for
sampling from posterior distributions of Bayesian probabilistic models. The pos-
terior distribution given observed data turns out to be difficult to sample from for
the reasons just mentioned. One then designs an (irreducible aperiodic) Markov
chain whose stationary distribution is precisely the targeted posterior. This is usu-
ally fairly easy since the posterior is usually easy to compute up to the normalizing
constant (the denominator in Bayes formula). A particularly popular choice is to
use Metropolis-Hastings sampling (of which Gibbs sampling is a special case).

An all too common problem with these MCMC algorithms is that the target
distribution contains several modes such that it is extremely hard for the MCMC
to move between the modes. This may for example result in that one can get
stuck for a virtually infinite time in a relatively small mode containing a negligible
probability mass in the target distribution.

Our driving force will be a class of probability distributions on the d-dimensional
boxBd

n = {0, 1/n, 2/n, . . . , 1}d that exhibit this problem and show that a very fast
and very simple simulated annealing scheme yet provides convergence to the true
distribution within the order of n2 steps. Furthermore, combining simulated an-
nealing with a varying step size, this can even be taken down to order n log n.
This class comprises an abundance of interesting examples, of which we will in-
clude the mean field Ising model with a nonzero external field, collapsed Gibbs
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sampling for Latent Dirichlet allocation and a model of nuclear physics; calibra-
tion data corresponding to the 3S1 phase shifts from an analysis of neutron-proton
scattering cross sections [17].

Let g : [0, 1]d → (0,∞] be a bounded function. We want to sample from the
probability distribution π on Bd, given by

π(s) =
g(s)∑

u∈Bd
n
g(u)

.

Consider the following natural Metropolis hastings algorithm; standing in vertex
u, a vertex v among the 2d neighbors of u is chosen uniformly at random and a
move to v is proposed and then accepted with probability (1/2)g(v)/(g(u)+g(v)).
If u is on the boundary of the box, the algorithm still proposes moves in directions
that lead out of the box, but such a move is of course not accepted; this feature can
be achieved by for each boundary vertex u adding one loop (u, u) for each direc-
tion leading out of the box and thereby making Bd

n regular (i.e. all vertices have
the same degree). We will refer to this MCMC algorithm as the weighted random
walk onBd

n “governed by g” or “according to g”. The factor 1/2 in the acceptance
probability is there in order to make the algorithm lazy, i.e. it can be described as,
for each time step, flipping a fair coin to decide to either move according to a
given Markov transition matrix or to stay put. Lazy chains are convenient to work
with, as they never exhibit periodicity behavior. In particular the transition matrix
of a lazy reversible Markov chain has only nonnegative eigenvalues. The natural
discretization of a continuous time Markov chain is always a lazy discrete time
chain and results for the continuous time chain typically carry over.

In this paper, the function g = gn will be of the form g(x) = f(x)mn ,
mn → ∞, where f has continuous partial derivatives up to order 3 and a unique
global maximum in the interior of [0, 1]d. For simplicity we take mn = n as the
generalization will be obvious. We further assume that f has at most finitely many
stationary points and that the Hessian is negative definite at the global maximum.
(Many of these conditions can be relaxed; this will be pointed out later.) As a
stepping stone and of independent interest, attention will also be paid to weighted
random walks on graphs where asymptotically all the mass of the stationary dis-
tribution is concentrated to a single vertex.

The problem with mixing appears when there are other local maxima than
the global maximum. It is easy to see that in such a case, starting from a state
corresponding to a local but not global maximum, there is a vanishing probability
that the MCMC will leave that mode within less than a time which is exponential
in n.
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In such situations a common method to overcome is to use simulated anneal-
ing (SA). Originally SA was designed to find a global optimum (of g in this case),
but in the MCMC situation we just modify it so that we stop at a nonzero tem-
perature. The idea is to replace the original MCMC with a time inhomogeneous
Markov chain, where at time t, the state of the chain is updated according to
gn,t = fβt(n), where β1(n), β2(n), . . . are hopefully chosen so that convergence is
sped up considerably. Typically the βt = βt(n):s are much smaller than n for a
long time, but will be raised to n at the end of the process. According to standard
language, we sometimes refer to the βt:s as inverse temperatures. SA is usually
heuristic and few formal studies have been made. Woodard et. al. [18] makes a
valuable general analysis, but produce results that for the given situation are nei-
ther as strong nor as concrete as the ones presented here. There have also been a
handful of studies of the closely related simulated tempering algorithm, see [2],
[8], [15], where the idea is to move back and forth between different tempera-
tures. Results there are partly applicable to our situation and show that mixing in
polynomial time can be possible, albeit of fairly high power.

Remarks on notation.

• Many statements in this paper are made in terms of asymptotics as n→∞.
We will use the standard O-notation. Let f, g : Z+ → R+. Then we write
f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0 and we write f(n) = O(g(n))
when there is a constant Q <∞ such that f(n) ≤ Qg(n) for all n. Writing
f(n) = ω(g(n)) is taken to mean that g(n) = o(f(n)) and f(n) = Ω(g(n))
means that g(n) = O(f(n)). If f(n) = O(g(n)) and f(n) = Ω(g(n)), then
we write f(n) = Θ(g(n)).

• IfA(n) is a sequence of events (where eachA(n) is defined on a probability
space that is naturally associated with n), then we say that A(n) occurs whp
(with high probability) if P (A(n)) = 1− o(1), i.e. if limn→∞ P(A(n)) = 1.

• In many situations below, equalities or inequalities will be valid for some
constant, but where the particular value of that constant is not important.
In those cases, such constants will be denoted by the generic letter Q (in-
stead of writing ”constant” in the equations). This means that the value of
Q sometimes varies between instances where it appears, even within the
same array of equations/inequalities. Sometimes constants depend on some
parameter θ, in which case we generically denote them Qθ.
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Recall some definitions. For a signed measure ρ on a finite space S, the total
variation norm is given by

‖ν‖TV =
1

2

∑
s∈S

|ν(s)|.

For two probability measures µ and ν, we get

‖ν − µ‖TV =
1

2

∑
s∈S

|µ(s)− ν(s)| = max{µ(A)− ν(A) : A ⊆ S}.

For a probability measure π and 1 ≤ p < ∞, the Lp-norm of ρ with respect to π
is given by

‖ρ‖p = Eπ
[(

ρ(X)

π(X)

)p]1/p
,

where the subscript means that X is chosen according to π. If ν is a probability
measure on S, then the Lp-distance between ν and π with reference to π is given
by the L2-norm of ν − π with respect to π. In other words

‖ν − π‖p = E
[(

ν(X)

π(X)
− 1

)p]1/p
.

By Schwarz inequality ‖ν−π‖p is increasing in p. Also ‖ν−π‖TV = 1
2
‖ν−µ‖1.

Hence in particular

‖ν − π‖TV ≤
1

2
‖ν − π‖2.

Let X = {Xt} be an aperiodic irreducible Markov chain on S with stationary
distribution π. For ε > 0, the ε-mixing time of X is defined as

τmix(ε) = min{t : ‖P(Xt ∈ ·)− π‖TV < ε}.

The relaxation time of a reversible Markov chainX is τ2(X) := 1/(1−λ2), where
λ2 is the second largest eigenvalue of the transition matrix. If X is also lazy, then
the L2 contraction property (Lemma 3.26 of [1]) states that

‖P(Xt ∈ ·)− π‖2 ≤ e−t/τ2‖P(X0 ∈ ·)− π‖2.

At some points, we are going to make use of the correspondence between
electric networks and random walks on weighted graphs (for reference see [7]). A
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graph G = (V,E) is said to be weighted if each edge e = (u, v) ∈ E is assigned a
weightw(e). We say that the Markov chainX0, X1, . . . is a weighted random walk
on G if P(Xt+1 = v|Xt = u) = w(u, v)/w(u), where w(u) =

∑
z:(u,z)∈E w(u, z).

There is valuable information to be found on this Markov chain by regarding G as
an electric network with each edge e regarded as a resistor with conductance w(e)
and hence resistance 1/w(e). For u, v ∈ V , denote by R(u, v) = RG(u, v) the
effective resistance between u and v in this electric network. Let m = m(G) =∑

e∈E w(e) be the total conductance of the graph. For each vertex v, let Tv be
the first time that X visits v, i.e. Tv = min{t : Xt = v}. For vertices u, v, write
H(u, v) = HG(u, v) = Eu[Tv] for the hitting time of v from u. The index u to the
expectation refers to conditioning on X0 = u. The commute time between u and
v is given by C(u, v) = CG(u, v) = HG(u, v) +HG(v, u). Two well known facts
follow.

• For each u, v ∈ V , C(u, v) = 2mR(u, v),

• Inserting an electrical source of 1 volt at u and v with potential 1 at u and 0
at v, we have for any z ∈ V that Pz(Tu < Tv) equals the potential at z. In
the case V = Bn, this means that for z ∈ [u, v],

Pz(Tu < Tv) =
R(z, v)

R(u, v)
.

For two weighted random walks, X and X̄ on the same graph (but with differ-
ent weights), one can relate the two relaxation times; by ([1], Lemma 3.29)

τ2 ≤ τ̄2 min
v∈V

w(v)

w̄(v)
max
e∈E

¯w(e)

w(e)
. (1)

Another useful property of the relaxation time is that contracting vertices of a
weighted graph can never increase it. That is, whenever a set A of vertices of a
graph G are replaced by a single vertex a, and each edge (u, v) is replaced by
an edge (u, a) of the same weight as (u, v) whenever v ∈ A (consequently every
edge within A becomes a loop at a of that weight), the new graph GA thus formed
has (Corollary 3.27 of [1])

τ2(GA) ≤ τ2(G).

Useful bounds on the mixing time of a Markov chain can sometimes be derived
from its conductance profile. Let X be a an aperiodic irreducible Markov chain
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on the finite state space S with stationary distribution π and transition matrix
[p(x, y)]. For A ⊆ S, define

Q(A,Ac) =
∑
x∈A

∑
y∈Ac

π(x)p(x, y)

and the conductance of A as

ΦA =
Q(A,Ac)

π(A)
.

The conductance profile is then the function Φ : (0,∞) given by

Φ(u) = min{Φ(A) : π(A) ≤ u}

for u ≤ 1/2 and Φ(u) = φ(1/2) for u > 1/2. Theorem 1 of [14] states that for
any γ > 0, whenever

t ≥ 1 + 4

∫ 4/γ

min(π(x),π(y))

Φ−2(u)

u
du

one has ∣∣∣∣P(Xt = y|X0 = x)

π(y)
− 1

∣∣∣∣ ≤ γ.

Let X = {Xt}∞t=0 be the Markov chain on Bd
n governed by g = fn as de-

scribed above. The following theorem is one of our main results.

Theorem 1.1 Assume that f is unimodal and has no stationary point except at
the global maximum. Then there is a constant C <∞ independent of n such that
for T = Cn log n

lim
n→∞

‖P(XT ∈ ·)− π‖TV = 0.

Proof. Assume first that d = 1. Let a be the global maximum of f . To make
things more convenient, we shall for the time being rename our states so that the
state space becomesB = {−a,−a+1/n, . . . , a−1/n, a} and f has its maximum
at 0. We also re-scale f so that f(0) = 1. By Taylor’s formula for h close to 0,
f(h) = 1 + (1/2)f ′′(0)h2 +O(h3) and f ′(h) = hf ′′(0) +O(h2).

Consider now the expected change in f under one step of X governed by
fn from state Xt = x. We assume that |x| ≥ D/

√
n for a constant D. Let
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α = α(x) = f ′(x)/f(x) and β = β(x) = −f ′′(x)/f(x). Observe that |α(x)|
is of order

√
1− f(x) and in particular |α| ≥ QD/

√
n for |x| ≥ D/

√
n. By

Taylor’s formula f(x+ 1/n) = f(x)(1 + α/n− β/(2n2) +O(n−3)). We have

E[f(Xt+1)− f(Xt)|Xt = x]

=
1

4

(
(f(x+ 1

n
)− f(x))f(x+ 1

n
)n

f(x)n + f(x+ 1
n
)n

+
(f(x− 1

n
)− f(x))f(x− 1

n
)n

f(x)n + f(x− 1
n
)n

)
=

1

4
f(x)

(
− β

2n2
+O(n−3) +

α

n

(
f(x+ 1

n
)n

f(x)n + f(x+ 1
n
)n
−

f(x− 1
n
)n

f(x)n + f(x− 1
n
)n

))
.

The third term in the last parenthesis is at least

Q
α

n

((
1 +

α

n
− β

2n2
+O(n−3)

)n
−
(

1− α

n
− β

2n2
+O(n−3)

)n)
for a constant Q depending on f . (Note that x and α(x) have opposite signs.) If
D is sufficiently large, then |x| ≥ D/

√
n implies that this expression is bounded

below by Q(α/n)(1 + α/(2n))n ≥ Qα2/(2n). Plugging in above gives

E[f(Xt+1)− f(Xt)|Xt = x] ≥ 1

4
f(x)

(
Qα2

2n
− β

2n2

)
and provided that D is sufficiently large, the right hand side is at least Qα2/n.

Now take j(x) = (1 − f(x))1|x|≥D/√n. Since 1 − f(x) is of order α(x)2, it
follows that

E[j(Xt+1)|Xt = x] ≤
(

1− Q

n

)
j(x)

for all x if we consider X as absorbed when it hits [−D/
√
n,D/

√
n]. By induc-

tion

E[j(Xt)] ≤
(

1− Q

n

)t
j(X0) ≤

(
1− Q

n

)t
.

Since the smallest possible positive value of j is of order 1/n, it follows from
Markov’s inequality that whpX will have hit [−D/

√
n,D/

√
n] within time (2/Q)n log n =

Qn log n.
Next observe that for |y| = n−2/5, π(y)/π(x) is of order exp(−n1/5) for any

x ∈ [−D/
√
n,D/

√
n]. It is well known that the expected number to y between

visits to x is π(y)/π(x). It follows that whp, once [−D/
√
n,D/

√
n] has been hit,
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X will stay in [−n−2/5, n−2/5] for a super polynomially long time and in particular
for time Cn log n for arbitrary C. During this time, we claim that X may be
analyzed as having state space [−n−2/5, n−2/5]. Note that our chain, governed by
fn, conditioned on not leaving (−y, y), does not have the same distribution as the
chain governed by fn restricted to [−y, y]. However, all paths that do not hit the
boundary of [−y, y] have the same probability relative to each other for them both.
Hence the two chains can be coupled so that they behave identically on the event
that they do not hit that boundary. Since this event occurs whp, the two processes
will have identical distributions on a set that occurs whp. Hence the claim.

An essential part of what we just showed is that if |Xt| ≥ D/
√
n for suffi-

ciently large D, then E[f(Xt+1)|Xt] is (significantly) larger than f(Xt). If |Xt|
is small (less then δ/

√
n for a small δ), then E[f(Xt+1)|Xt] < f(Xt). However,

since there is drift toward the direction in which f increases, it is easy to see from
the above computations that E[f(Xt+1)|Xt] ≥ f(Xt)− β/(4n2) for all values of
Xt.

This allows for an easy generalization to d ≥ 2; whenever Xt is outside the
box (−D/

√
n,D/

√
n)d, we have that for at least one coordinate i ∈ [d], the

conditional expected change f(Xt+1) − f(Xt) given that a move in that coordi-
nate direction is suggested, is at least Qα2

d/n for arbitrary Q if D is sufficiently
large. Here αd = f ′d(x)/f(x) and d is the direction under consideration. Since
the conditional expected change, given any other suggested direction for the next
move, is no less than −β/(4n2), we get E[f(Xt+1) − f(Xt)|Xt] ≥ Q/n. From
this it easily follows that [−D/

√
n,D
√
n]d is whp hit within time O(n log n) as

for d = 1. As for d = 1 it follows that from this time on, X whp stays within
[−y, y]d with y = n−2/5 for a super polynomial number of steps. Exactly as for
d = 1, to analyze X conditional on this, X may be analyzed as the random walk
on [−y, y]d governed by fn modulo an error of at most o(1) for any probability
statements about X .

Summing up so far, we have shown that in order to complete the proof, it
suffices to show that the random walk on [−y, y]d governed by fn and started at
some point in ∂[−D/

√
n,D/

√
n]d, mixes in Qn log n steps. To this end, note

that since all partial derivatives of f up to order 3 exist and are continuous, f is
negative definite on [−y, y]d with y = n−2/5. With this choice of y, there is a
positive constant c such that all eigenvalues, λ, of the Hessian of f at x satisfy
λ ≤ −c for all x ∈ [−y, y].

Consider again for a while d = 1. We claim that the relaxation time of the
random walk X on [−y, y] governed by fn is of order n. Assume first that f is
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symmetric about the origin. Note that for any x ∈ [−y, y], if X stands at x, the
probability that X moves to x − 1/n is at least 1/4 − o(1). By Theorem 1.2 of
[5], this entails that

τ2 ≤ Q max
z∈Bn∩[0,y]

∑
x∈Bn:z≤x≤ε

f(x)n
∑

x∈Bn:0≤x≤z

f(x)−n.

For any z, the second factor is bounded by nzf(z)−n. For the first factor, note
that for any x ∈ [0, y], we have f ′(x) = xf ′′(0) + O(x2) ≤ −βx for a constant
β = −f ′′(0) − o(1) that can be taken to be independent of x. It follows that for
any positive integer r,

f
(
z +

r

nz

)n
≤
(
f(z)− βr

n

)n
≤ f(z)n

(
1− βr

n

)n
≤ e−βrf(z)n.

Hence ∑
x∈Bn:z≤x≤y

f(x)n ≤ 1

z
f(z)n

∞∑
r=0

e−βr ≤ 1

βz
f(z)n.

Plugging into the bound on τ , gives

τ2 ≤
Q

β
n = Qn.

as desired.

Next we claim that τ2 = O(n) holds also for d ≥ 2. If the Hessian of f
is diagonal at each point and f is symmetric along each coordinate axis, then
this is an immediate consequence of the result that we just derived, as X is then
a convex combination of independent weighted random walks on [−y, y] of the
form just treated. Assume next that the Hessian is constant on [−y, y]d, but not
necessarily aligned with the coordinate axes. In other words f(x) exactly equals
1− (1/2)xTHx on [−y, y]d, where H is the Hessian. Let v1, . . . , vd be orthogonal
unit eigenvectors of H . For given L > 0 construct a d-dimensional lattice GL as
follows. For each i = 1, . . . , d and each r ∈ {−1, 1}, and draw an edge from 0 to
xr,i = rLvi. Next, for each point x = xr,i thus connected to the origin, draw an
edge from x to x+ rLvi for each r and i. Keep doing this iteratively until no new
points inside [−y, y]d can be incorporated. For each L, the weighted random walk
on GL then has relaxation time at most QLn.

Now, the vertex set of G is typically disjoint from Bd
n. To remedy this, modify

GL into a graph G̃L by moving each vertex x ∈ V (GL) to the nearest (in the
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Euclidean sense) vertex x̃ ∈ Bd
n without changing the edge structure, i.e. letting

(x̃, ỹ) ∈ E(G̃L) if and only if (x, y) ∈ E(GL). The difference between weighted
random walks governed by fn on GL and G̃L then becomes what results from
the small differences between f(x̃) and f(x). However by direct comparison (1),
τ2(G̃) ≤ Qτ2(G) ≤ QLn. Fix L sufficiently small that each vertex x ∈ Bn

d is
also a vertex of G̃. Vertices of Bn

d appear several, but a bounded, number of times
as vertices of G̃, but are here regarded as distinct vertices of G̃. Next we prune
G̃ into the graph Ḡ by contracting these multiple copies of vertices of Bd

n into a
single vertex, thereby also gluing together the loops at each such vertex to a single
loop with the added weight of the loops glued. Since Ḡ is constructed from G̃ by
contraction, τ2(Ḡ) ≤ τ2(G̃) ≤ Qn.

Now we use (2.3) and Theorem 2.1 of [6]; associate with each edge (x, y) ∈
E(Ḡ) a shortest path P (x, y) in Bd

n between x and y. Note that the length of P
is bounded by d. Write π̄ for the stationary distribution for the weighted random
walk on Ḡ. Then there are constants Q and Q′ such that for each x, Qπ(x) ≤
π̄(x) ≤ Q′π(x). Indeed, we may choose the constants so that for each (x, y) ∈
E(Ḡ) and each z ∈ P (x, y), Qπ(x) ≤ π̄(z) ≤ Q′π(x). Finally there are also
constants Q,Q′ ∈ (0, 1) such that for each vertex in Bn

d , the probability of a move
from there to any given neighbor is in (Q,Q′). The same goes for the random
walk on Ḡ. Plugging all this into Theorem 2.1 of [6] and then (2.3) of [6], we find
that τ2 ≤ Qτ2(Ḡ). Hence

τ2 ≤ Qn.

Finally, we relax the assumptions of symmetry and constant Hessian H(x).
Let f0(x) = 1− (1/2)xTH(0)x. Write πf and πf0 for the stationary probabilities
for the walks governed by f and f0 respectively and write τ f2 and τ f02 analogously
for the two relaxation times. It has just been proven that τ f02 is of order n. We
proceed to show that τ f2 is very close to τ f02 . There is a constant Q (e.g. the
maximum of the absolute values of the third order derivatives over [−y, y]d) such
that

f(x)n = (f0(x)±Q|x|3)n = f0(x)n(1±Q|x|3))n

= f0(x)n(1±Qn−6/5)n = f0(x)n(1±Qn−1/5)

from which it follows that πf (x)/πf0(x) = 1±Qn−1/5 for all x ∈ [−y, y]d.
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Next, let u be an arbitrary unit vector along one of the coordinate axes. Then

f

(
x+

1

n
u

)
= f(x) +

1

n
f ′u(x)±Q 1

n2
= f(x) +

xf ′′uu(0)

n
± Q

n2

= f(x)

(
1 +

f ′′uu(0)x

f(x)n
± Q

n2

)
.

Hence

f(x+ 1
n
u)n

f(x)n
=

(
1 +

f ′′uu(0)x

f(x)n
± Q

n2

)n
=

(
1± Q

n

)(
1 +

f ′′uu(0)x

f(x)

)
.

Analogously
f0(x+ 1

n
u)n

f0(x)n
=

(
1± Q

n

)(
1 +

f ′′uu(0)x

f0(x)

)
.

Since f(x) = (1±Qn−1/5)f0(x), we get

f(x+ 1
n
u)n

f(x)n
= (1±Qn−1/5)

f0(x+ 1
n
u)n

f0(x)n
.

Hence the transition probabilities under fn0 and fn differ by at most a factor 1 +
Qn−1/5. Along with the relation between πf and πf0 , a direct comparison via [1],
Lemma 3.29, gives

τ f2 = (1 + o(1))τ f02 .

In order to estimate the mixing time from the relaxation time, pick constantsC
and D sufficiently large that X hits [−D/

√
n,D/

√
n]d whp within time Cn log n

regardless of starting state and let T the first hitting time; we proved above that
such a D <∞ can be chosen. Let Z be the vertex that is hit at time T .

Then for t > Cn log n, any k ≤ n log n and any z ∈ [−D/
√
n,D/

√
n],

‖P(Xt ∈ ·|T = k, Z = z)− π‖TV ≤
1

2
‖P(Xt ∈ ·|T = k, Z = z)− π‖2

≤ 1

2
e−(t−k)/τ2‖µz − π‖2

≤ e−Q(t−Cn logn)/n‖µz − π‖2

where µz is the one point distribution at z. Since π(z) ≥ Qn−d/2, we have ‖µz −
π‖2 ≤ Qnd/4 and it follows that for any ε > 0, there is a constant Q such that the
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right hand side is bounded by 1/n whenever t ≥ Qn log n. Hence for any A and
t ≥ Qn log n,

P(Xt ∈ A|T = k, Z = z)− π(A) ≤ 1

n

and hence
P(Xt ∈ A)− π(A)→ 0

as n→∞.
2

Let us now turn our attention to the situation with f with more than one local
maximum. As a stepping stone towards this, we start with a simpler model.

LetG = (V,E) be a connected graph which is regular (i.e. all vertices have the
same degree, d) and let g : V → (0,∞). Consider the lazy weighted random walk
on G governed by g, i.e. the process that standing in vertex u, for each neighbor v
of u, moves to v with probability (1/(2d))g(v)/(g(u) + g(v)). A weighted graph
such that weighted random walk on it coincides with this process is most easily
constructed as follows. Define a new graph G∗ = (V ∗, E∗) by adding a vertex
in the middle of each edge and adding loops to the vertices of G. Formally let
V ∗ = V ∪ E and E∗ = {(u, (u, v)) : u ∈ V, (u, v) ∈ E} ∪ {(u, u) : u ∈ V }.
Each edge (u, (u, v)) ∈ E∗ is now given weight g(u) and each loop (u, u) is given
weight d(u)g(u), where d(u) is the degree of u. Running a weighted random walk
G∗ with these weights and observing it only on V , i.e. only every second step, we
get a process with the right properties.

The stationary distribution π of the random walk governed by g is proportional
to g. Consider the problem of sampling from π via simulated annealing of this
process. In analogy with the above, we will consider the case g = fn as n → ∞
for a function f : V → (0,∞) and without loss of generality we assume that
minv f(v) = 1. We also assume that f has a unique maximum. Write X = Xn

for the random walk governed by fn to express the dependence on nwhen needed.
Let π = πn denote the corresponding stationary distribution. As soon as there are
more than one vertex v for which f(v) > max{f(u) : u 6= v, (u, v) ∈ E}, mixing
time will be exponential in n.

Let v1 be the vertex at which f attains its maximum and let v2 be a vertex
where f attains its second largest value. Note that

πL(v1) ≥ 1− |V |
(
f(v2)

f(v1)

)L
= 1− |V | exp(−(f1 − f2)L),

13



where fi = log f(vi). This is at least 1− ε whenever

L ≥ K :=
log(|V |/ε)
f1 − f2

.

The following is well known.

Lemma 1.2 For any lazy reversible finite Markov chain {Yt} with stationary dis-
tribution π, for any t and any state s,

P(Yt = s|X0 = s) ≥ π(s).

Proof. Since the chain is lazy, all the eigenvalues of the transition matrix
P = [pij] are nonnegative. Let A = [pij

√
πi/πj]. Then A is symmetric with

the same eigenvalues as P and such that if y = [yi] is an eigenvector of P , then
x = [

√
πiyi] is the corresponding eigenvector. Now make a diagonalization of At,

translate the result back to P t and conclude that the diagonal elements ptii of P t

are πi plus a nonnegative remainder term. 2

Let ĤK(v) := max{H(u, v) : u ∈ V } and ĤK = maxv Ĥ
K(v). By Lemma

1.2, Markov’s inequality and the strong Markov property, the following holds.

Theorem 1.3 For any K, taking T = ε−1ĤK ,

‖P(XK
T ∈ ·)− πK‖TV < 1− ε.

If K sufficiently large that

f(v1)
K∑

u∈V f(u)K
> 1− ε (2)

and one takes T = ε−1ĤK(v1), then

‖P(XK
T ∈ ·)− πn‖TV < 1− 2ε.

Also, taking

K =
log(|V |/ε)
f1 − f2

is guranteed to be sufficient for (2).
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For u, v ∈ V , let distG(u, v) be the graphical distance between u and v,
i.e. the number of edges of a shortest path between u and v. We write DG =
maxu,v distG(u, v) for the diameter of G. Let R0(u, v) be the effective resis-
tance between u and v in the electric network where each edge of G is regarded
as a unit resistor and let R0 = maxu,v R0(u, v). Note the obvious inequalities
RG ≤ DG ≤ |V | − 1.

Next observe that no edge of G∗ in the electric network corresponding to the
walk governed by fK has conductance of more than f(v1)

K and resistance of
more that 1. Hence m(G∗) ≤ 2|E∗|f(v1)

K = 2d|V |f(v1)
K and RG∗(u, v) ≤ 2R0

for any vertices u, v. Here we use that |E∗| = 2|E| = d|V | and the factor of 2
in the bound for m appears from the loops that were added to G∗ to model the
laziness of the walk. We get for any v on recalling that HG = HG∗/2,

max
u

HK(u, v) ≤ max
u

CK(u, v) ≤ 2dR0|V |f(v1)
K = 2dR0|V | exp(f1K),

For v = v1, this can be improved slightly, since the walk governed by f̃K , where
f̃ is identical to f except that f̃(v1) = f(v2), has the same hitting time of v1 but
no edge of higher conductance than f(v2). Therefore we may in that case replace
f1 with f2 on the right hand side to get

ĤK ≤ 2dRG|V | exp(f2K).

Substituting in Theorem 1.3 gives

Theorem 1.4 Let
T = 2dRG(|V |ε−1)

f1
f1−f2 .

Then
‖P(XK

T ∈ ·)− πn‖TV < 1− 2ε.

Hence our ”simulated annealing scheme” thus works out by simply taking
βt = K for T units of time and then stop. Here are some important remarks.

• If G is not regular, then the results apply after first adding the necessary
number of loops to G.

• If properly reformulated, the results are still applicable if the graph G grow
with n, i.e. we consider a sequence of graphs Gn = (Vn, En), n = 1, 2, . . .,
a sequence of functions fn and for each n, the corresponding random walk
{Xn

t }∞t=0. Then Theorems 1.3 and 1.4 apply as before with the quantities
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involved now dependent on n. However, the difference between fn(v1) and
fn(v2) may decrease as n grows. This is the case e.g. in the situation con-
sidered at length above with the walk governed by the smooth function f
(where fn is f |Bd

n
). In that case, the stationary distribution is no longer

concentrated on v1 and Theorems 1.3 and 1.4 are useless as they stand.
However, they can be put to use given some more work; more on this will
follow.

• If the maximum of f is not unique, say that f is maximized at vertices z1 and
z2, the stationary distribution π puts mass 1/2− o(1) at both these vertices,
Theorem 1.3 works with H∗K = max(maxuH(u, z1),maxuH(u, z2)). The
guarantee on K still holds, with f2 being the log of the largest value of f off
z1 and z2. However the improved bound on maxuH(u, zi) does not hold
and the bound H∗K ≤ 2d|V |2 exp(f1K) must be used. Hence Theorem 1.4
holds with

T = 2dRG(|V |ε−1)
2f1−f2
f1−f2

instead.

• The situation covered by Theorem 1.3 and Theorem 1.4 is equally much
that of optimization as of mixing; asymptotically all the probability mass
of π is placed in v1 and so mixing is asymptotically the same as finding the
maximum of f .

Example. LetG = ({1, 2, 3}, {(1, 2), (2, 3)}) and f given by f(1) = 2, f(2) = 1
and f(3) = 3. Pick ε = 0.05. A sufficiently large K for having stationary prob-
ability mass for XK is given by (2/3)K = 0.05, i.e. K = log(0.05)/ log(2/3) <
7.39. The worst possible hitting time of 3 is given by starting from 1 and is
bounded by 4 · 2K < 29.39 < 671. Hence with T = (1/0.05) · 671 = 13420, the
probability of being in 3 at time T is at least 0.9.

If we instead use the general upper bound on T provided by Theorem 1.4, we
get on adding loops to 1 and 3 and get d = 2, T = 8(3/0.05)log 3/(log 3−log 2) ≈
52600. 2

Example. Let G be the n-path and f(1) = 2, f(n) = 3 and f(i) = 1, 2 ≤ i ≤
n − 1. Again take ε = 0.05. Provided that n ≥ 500, a sufficiently large K is
K = log2 n. For such K, the hitting time of n starting from 1 is bounded by 6n2

and we can take T = 120n2.
The bound on T from Theorem 1.4 becomes of order n1+log 3/(log 3−log 2) which

is about order n3.71. If we instead plug in K = log2 n in the bound for T in
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Theorem 1.4, we get a bound of order n2. Actually, there is room for taking down
K to anything larger than log3 n for sufficiently large n. However this does still
not give the right order via Theorem 1.4. 2

The bounds given onK and the time needed to sample from πK require knowl-
edge of, or at least bounds on, f1 and f2. In practice of course, these are often
unknown. Some remarks on this issue.

• Assume first that f1 and f2 are unknown but that we can give a number Q
such that f ≤ Q, but no lower bound on f1 − f2. Write q = logQ. Then
by the first part of Theorem 1.3, time 2ε−1d|V |2 exp(qK) is sufficient to
sample from πK up to a total variation error of ε.

Consider the following SA scheme. Pick a fairly large integer number S.
For each K = 1, 2, . . ., collect a sample of size S from πK . This takes
2ε−1SRG|E| exp(qK) time steps. For all K, the most probable observation
from πK is v1. This means that the samples cannot aggregate at any one
vertex other than v1. Also, eventually for sufficiently large K, samples will
aggregate at v1. Now run this for K = 1, 2, . . . until given a sample that
has, say, at least 4/5 of its observations at one given vertex. Then if S is
sufficiently large we can be very certain that that vertex is v1. If the process
stops at K = K̂, then the whole process takes time

T = 2ε−1dSRG|V |
K̂∑
K=1

exp(qK) ≤ 2ε−1dSRG|V |
exp(qK̂)

q
.

(In fact, S does not need to be very large for making the probability of
getting more than 4/5 of observations at a vertex containing less than 1/2
of the probability mass extremely unlikely.)

• If we cannot even give an upper bound on f , then we can try larger and
larger bounds in the algorithm just described. For example, for each K =
1, 2, . . . replace Q with K. This means that sample K is collected in

2ε−1dS|V |2 exp(K logK)

time steps. Then it will be unknown to us if a particular sample is distributed
according to πK , but we know that it will be eventually. However, it will in
this case not be detectable when K is sufficiently large.
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Let us now again focus on the case that was the most interesting to us at the
outset. Let f : [0, 1]d → (0,∞) be a function whose partial derivatives up to and
including order 3 are continuous and has finitely many local extrema and a unique
global maximum. Assume also that the global maximum is in the interior of the
domain and that the Hessian is negative definite there. (The last two assumptions
can be relaxed in several ways as will be apparent from the arguments to follow.)
Since the case where f is unimodal was done above, we assume that f has at least
one more local maximum than the global maximum.

We consider the weighted random walks XK governed by fK , whose sta-
tionary probabilities are πK(x) ∝ f(x)K and we want to sample from πn using
weighted random walk. We want to run the walk according to fK for some wisely
chosen K:s rather than fn in order to obtain rapid mixing. Let c ∈ (0, 1)d be
the global maximum of f and let a be a second highest local maximum. Write
Sγ = {x ∈ Bd

n : f(x) > γ}. For any given γ < f(c), we have |Sγ| = Qγn
d.

Hence for sufficiently small ε > 0,

πK(Scf(a)+ε)

πK(Sf(c)−ε)
≤ Qε

(
f(a) + ε

f(c)− ε

)K
< δ

for sufficiently large K. Hence for such a K,

πK(Sf(a)+ε) > 1− δ.

By the L2 contraction property,

‖P(Xt ∈ ·)− π‖2 ≤ e−t/τ2‖P(X0 ∈ ·)− π‖2, (3)

where τ2 is the relaxation time of X , i.e. 1/(1−λ2). For lazy simple random walk
on Bd

n, it is well known that the relaxation time is τ ∗2 := 2dn2 and that the conduc-
tance profile satisfies Φ(u) ≥ d/(nu1/d). Since minx π

K(x) ≥ 1/(ndf(c)K), we
have by comparing with standard lazy random walk on [n]d, that τ2 ≤ f(c)Kτ ∗2 ,
and hence

τ2 ≤ 2df(c)Kn2.

Since the conductances of all edges of the weighted graph corresponding to XK

are in the span [1, f(c)K ], we have the obvious relation Φ(u) ≥ f(c)−KΦ∗(u),
where Φ∗ is the conductance profile of simple lazy random walk. Hence

Φ(u) ≥ d

f(c)Knu1/d
.
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Using γ = 16f(c)2K in Theorem 1 of [14] as stated above, we find that whenever

t ≥ 16f(c)2Kn2

d2

∫ f(c)−2K/16

0

u1/d−1du,

for which it suffices that t ≥ n2, we have for any y regardless of starting state,∣∣∣∣P(Xt = y)

π(y)
− 1

∣∣∣∣ ≤ 16f(c)2K .

This gives
‖P(Xn2 ∈ ·)− π‖2 ≤ 16f(c)2K .

By (3) it follows that for

t1 = n2 + 4dKf(c)K
(

log f(c) + log

(
16f(c)

δ

))
n2,

we have
‖P(Xt1 ∈ ·)− π‖2 < 2δ.

Thus
‖P(Xt1 ∈ ·)− π‖TV < δ.

Since πK(Sf(a)+ε) > 1−δ, it follows that P(Xt1 ∈ Sf(a)+ε) > 1−2δ. This means
that if we run according to πK for time t1 and the according to πn for Qn log n
time units, we will by Theorem 1.1 have come within total variation distance 1−3δ
of πn. The following theorem summarizes

Theorem 1.5 Let d ∈ N and consider the probability distribution, π on Bd
n given

by

π(u) =
f(u)n∑
v∈Bd

n
f(v)n

where f : [0, 1]d → (0,∞) has continuous derivatives up to the third order, a
unique global maximum c which is in the interior of [0, 1]d at which the Hessian
of f is negative definite. Then for any δ > 0, there is a constant K sufficiently
large that for

T0 = 5dKf(c)Kn2 log

(
48f(c)

δ

)
and T = T0 + Qn log n, the process X = {Xt}∞t=0 given by a weighted random
walk governed by fK for t = 1, 2, . . . , T0 and governed by fn for t = T0 +
1, . . . , T satisfies

‖P(XT ∈ ·)− π‖TV < δ.
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Remarks.

(i) Many of the assumptions on f can be relaxed. For example, f does not need
to be differentiable at c; it may have a peak there instead. Another possible
change is to let the global maximum be on the boundary ofBd

n. The analysis
needs only minor modifications and in fact, convergence for a unimodal f
of these kinds is even faster and the analysis may be considerably simpler.

A third, and obvious, generalization is to restrict f to a subspace S of Bn
d

under some assumptions on S, e.g. that S be path-connected and S0 = S.

A fourth and also obvious observation is that the governing function fn may
be replaced with fmn for any mn →∞, as we claimed at the outset.

(ii) As for the simpler situation above (weighted random walk on a fixed graph
G), one may derive a bound on how large K needs to be provided that
some key information on f is available. Consider for simplicity the case
n = 1. By the above calculations for a given small δ > 0 and ε > 0,
((f(a) + ε)/(f(c) − ε))K < δ/Qε is sufficient for πK(Sf(a)+ε) > 1 − δ,
which is the desired property. Here Qε = n/|Sf(c)−ε|. Since for small h,
f(c+h) = f(c)+f ′′(c)h/2+O(h3), some manipulation and using a margin
for the error term, we can conclude that if ε is small enough,

Qε <

√
−f ′′(c)

7ε
.

This gives that

K ≥ 1

2

log(−f ′′(c))− log(7εδ2)

log f(c)− log f(a)

is sufficient provided that ε is sufficiently small.

(iii) As for the simpler situation, one will typically not know the difference be-
tween f(c) and f(a) for a second largest local maximum a. Then one can
do as sketched there; for K = 1, 2, . . ., run according to fK until conver-
gence and repeat until a sample from πK is collected. Then when samples
have started to concentrate in a smaller and smaller convex region, one can
be sure that K is sufficiently large and may then run according to fn for
Θ(n log n) steps.

(iv) It is not necessary that the global maximum is unique. Assume e.g. that
there are two global maxima c1 and c2 and that f has a negative definite
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Hessian, H(ci), there. Then f(ci + h) = f(ci) − hTi H(ci)hi + O(‖h‖32)
and from that we can see that the relation between the probability masses
around the two ci:s for πK stabilizes as K grows. Then everything goes
through as before.

In a case like this, we may have that f has no other local maxima than the
multiple global maxima. If we want to estimate how large K needs to be
(as in (ii)), we may then for f(a) use a largest local minimum a.

(v) The essential ideas of our procedure is to first find K sufficiently large for
πK to become sufficiently close to πn, then run a first stage according to
fK to achieve mixing and then finally a second stage of O(n log n) steps
according to fn. By the choice of K, what the second stage achieves is to
find where the global maximum c of f is. For that, it is not necessary to
walk on Bd

n; in principle it suffices with Bd
N for a sufficiently large fixed N

(large enough that we don’t completely fail to detect the neighborhood of
c). To be on the safe side, we can let N grow as K grows, e.g. N = K.
Then the first stage will take at most 5dK3f(c)K log(16f(c)/K) steps and
the whole procedure becomes O(n log n).

(vi) In practice, we will be faced with sampling from a random walk on Bd
n that

is governed by some function g of which we know only that g has multiple
local maxima which are sufficiently pronounced that the mixing time will
be too large for our computational capacity. Then we do not need that g has
arisen as a function of the form g = fmn , we may simply set f := g1/mn

for a suitable mn.

(vii) Another trick that may be useful in practice is to observe that since to mix in
our situation is essentially to find (a unimodal neighborhood of) the global
maximum and perform a weighted random walk from there for a short time.
Hence it will not matter if we instead of using g, use max(g,M) where
the constant M is chosen sufficiently small that the global maximum is not
“chopped off”. To find a suitable M , we may collect a uniform sample of
points in the domain of g, compute g there and then take M to be the N ’th
largest observation, whereN depends on how much risk of chopping off too
much we are prepared to take. Using this trick may be essential if the graph
of g contains moat like structures that effectively disconnect the domain.

Example. The mean-field Potts model. The mean-field Ising model, or the
Curie-Weiss model, is the probability distribution µn on the hypercube Zn2 =
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{0, 1}n given as

µn(u) ∝ exp

(
αk(u)− βk(u)(n− k(u))

n

)
, u = (u1, . . . , un) ∈ Zn2 .

Here k(u) =
∑n

r=1 ur is the number of 1’s of u and α and β are nonnegative
parameters called the external field and the inverse temperature respectively. The
coordinate values ur of u are referred to as spins.

The standard MCMC algorithm for sampling from µn is Glauber dynamics;
for each time step, pick a dimension of the hypercube uniformly at random and up-
date the spin there according to the conditional distribution given the other spins.
The most studied case is α = 0 and it is well known, see e.g. [12] and the refer-
ences therein, that there is a critical inverse temperature βc such that the mixing
time of Glauber dynamics is exponential for β > βc and of order n log n for
β < βc (and order n3/2 for β = βc). These results are valid also for α > 0.

To fit the mean-field Ising model into our framework, we note that πn(u) is
determined by k(u) and that Glauber dynamics describes a Markov chain on Zn2
that is lumpable into the equivalence classes (”lumps”) given by regarding u and v
as equivalent if k(u) = k(v). Obviously each equivalence class can be represented
by a number x ∈ Bn by taking x to be k(u)/n for any representative u of that
equivalence class. Writing (the projection on the set of equivalence classes of) µn

as a function of these representative elements of Bn, we get

µn(x) ∝
(
n

nx

)
exp

(
n(αx+ βx(1− x)

)
.

By Stirling’s formula,(
n

nx

)
=
(

1 + (12nx(1− x))−1 +O((nx(1− x))−2)
)(
x−x(1− x)−1+x

)n
.

Hence, taking

f(x) =
1

xx(1− x)1−x
exp(αx− βx(1− x)),

the probability measure
πn(x) ∝ f(x)n.

becomes virtually indistinguishable from µn. In particular ‖µn − πn‖TV → 0, so
mixing in terms of πn is equivalent to mixing in terms of µn. Plots of f can be
seen i Figures 1 and 2
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Figure 1: The function f(x) corresponding to the Ising model for α = 0 and
β = 1, 2, 3, blue, red and yellow respectively

Exponential mixing time appears exactly when f is bimodal and by our re-
sults, rapid mixing can then be achieved by picking K sufficiently large and run-
ning weighted random walk on Bn governed by fK for Cn2f(c)K steps and then
according to fn for O(n log n) steps. (Plots of f in Figures 1 and 2.)

Finally, if we want the correct distribution on Zn2 and not only on the equiva-
lence classes x ∈ Bn, we can finish off by randomly shuffling the spins or running
Glauber dynamics for n log n steps (the latter is seen by a simple coupling and a
coupon collector argument).

Of course, what we do here is not exactly simulated annealing for lumped
Glauber dynamics, partly due to the fact that observing the lumped process under
Glauber dynamics results in a time dilation of the random walk governed by fK

and partly due to the incorporation of the binomial coefficient into f . However,
none of these issues is difficult to control and the results apply to lumped Glauber
dynamics too.

Since we have good control over f in this case, we can, to get some numbers,
upper bound the constants needed in the O(n2) mixing time bounds, using the
bounds derived. Of course these are very likely to overestimate what is required in
practice by orders of magnitude. We have done the calculations for (α, β) = (0, 3)
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Figure 2: The function f(x) corresponding to the Ising model for α = 0.5 and
β = 1, 3, 5, blue, red and yellow respectively

and (α, β) = (0.5, 5). In the first case it turns out that in order to get total variation
of at most 0.1, K = 53 suffices and the runtime of the algorithm becomes at most
21400n2. If we instead go for total variation of at most 0.01, K = 80 is sufficient
and the runtime is bounded by 6.1 · 106n2.

For the second case the corresponding numbers are K = 11.7 and 7.3 · 106n2

for total variation of 0.1 and K = 17.6 and 2.3 · 109n2 for total variation of 0.01.

We have also run some experiments in Matlab for the case (α, β) = (0.5, 5)
and n = 100. Inspection of f shows that aiming for a total variation distance at
most 0.01, the mixing time starting from 0 is of order 1014 and a sample of size
100 would take order 1016 time steps. We follow the advice from Remarks (iii)
and (v) and try K larger and larger until satisfactory performance is achieved. We
choose K = 2, 4, 6, . . . and for each K we collect a sample of size 100. With
considerable margin we have b := (maxx f(x))/(minx f(x)) < 1.6. By Theorem
1.5, the mixing time on BK when governed by fK is or order O(K3bK) and we
speculate that K2bK steps is sufficient. We then finish off by running O(n log n)
steps on Bn governed by fn; we guess that n log n suffices. So, in summary, we
run random walk starting from 0 on BK governed by fK for K21.6K steps and
then continue for another n log n steps onBn and then collect a sample point. This
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is repeated 100 times for the desired sample size.
It turns out that K = 12 is quite sufficient and if we settle for total variation

of 0.05, K = 8 seems more than enough. The total number of steps required for
running the procedure up to K = k is 100(

∑
j∈{2,4,...,k} j

21.6j + 100 log(100))

which for k = 12 is approximately 5.5 · 106 and takes less than a minute and for
k = 8 is approximately 3.9 · 105 steps and takes only seconds. We also tried (the
hopeless task of) running directly on B

n governed by fn. Collecting a sample of
size 100, running for each sample point 107 time steps takes about three hours and
is nowhere near to escape from the lower mode at any run.

In Figure 3, we have plotted histograms of the results for K = 2, 4, 6, 8, 10, 12
together with the correct probability mass function in orange.

The mean-field Ising model is a special case of the mean-field q-state Potts
model. The state space is {1, 2, . . . , q}n and the probability distribution is given
by

µn(u) ∝ exp

(
q∑
i=1

αiki(u)− 1

n

∑
1≤i<j≤q

βijki(u)kj(u)

)
,

where ki(u) = |{r : ur = i}| and αi, i = 1, . . . , q and βij , 1 ≤ i < j ≤ q
are nonnegative parameters. This measure is invariant under permutations and the
projection onto the equivalence classes of vertices with the same spin is indistin-
guishable from

πn(x) = f(x)n,

for x in the q − 1-dimensional simplex {z = (z1, . . . , zq−1) ∈ Bq−1
n :

∑q−1
i=1 zi ≤

1}, where

f(x) =
1∏q

i=1 x
xi
i

exp

(
q∑
i=1

αxi −
∑

1≤i<j≤q

βijxixj

)

and where xq =
∑q−1

i=1 xi. Theorem 1.5 applies.
2

Example. Latent Dirichlet Allocation. Latent Dirichlet Allocation (LDA) is a
model used to classify documents according to their topics. It was introduced in
Blei et. al. [3] and has reached an almost iconic status in the family of probabilistic
models for text generation/classification and many variants have been developed
since.
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Figure 3: Samples of simulated annealing with K = 2, 4, 6, 8, 10, 12.
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A large corpus of documents is to be classified into topics; we want to deter-
mine for each word in each document which topic it comes from. Knowing this
we can also classify the documents according to the proportion of words of the
different topics it contains. LDA is a generative Bayesian model and the setup is
that one has a fixed number D of documents of lengths Nd a fixed set of topics
t1, t2, . . . , tK and a vocabulary that consists of a fixed set of wordsw1, w2, . . . , wV .
These are specified in advance. The number of topics is usually not large, whereas
the number of words in the vocabulary is. Next, for each document d = 1, . . . , D,
a multinomial distribution θd = (θd(1), . . . , θd(K)) over topics is chosen accord-
ing to a Dirichlet prior with a known parameter α = (α1, . . . , αK). For each
topic t a multinomial distribution φt = (φt(1), . . . , φt(V )) according to a Dirich-
let prior with parameter β = (β1, . . . , βV ) independently of each other and of the
θd:s. Given these, the corpus is then generated by for each position (or token)
j = 1, . . . , Nd in each document d, picking a topic zdj according to θd and then
picking the word at that position according to φzdj , doing this independently for
all positions. (So the LDA is a so called ”bag of words” model, i.e. it is invariant
under permutations within each document.)

Given the corpus, i.e. all the observed words, we want to make inference about
the latent quantities: the latent topics zdj and the multinomial parameters θd, d =
1, . . . , D and φt, t = 1, . . . , K. Since the model is Bayesian, this means that we
want to sample from the posterior distribution over these quantities. One standard
method is collapsed Gibbs sampling of the zdj:s; integrating over (i.e. collapsing)
the θ:s and the φ:s, the marginal distribution over the zdj:s is straightforward to
compute. In particular the conditional distribution of the topic at a given token
given the topics at all other tokens, has a simple expression. This allows for Gibbs
sampling; at each time step pick a token at random and update according to the
conditional distribution of the topic there.

Let us consider the case K = 2. (In practice K will be larger of course, e.g.
K = 50 or K = 100 are common choices, but we expect that the essentials on
mixing of the Gibbs sampler are captured by this simple special case.) For α ≡ 1,
β ≡ 1, the marginal distribution on the topics has a simple closed form expression:

µ(z) ∝
(
n..+2V−2
k..+V−1

)∏D
d=1

(
nd.

kd.

) ∏V
j=1

(
n.j

k.j

) ,
z ∈ {1, 2}n.. . Here ndj is the number of tokens with word j in document d and kdj
is the number of these tokens that are assigned topic 1. The dot-notations refer to
summing over the dotted index, e.g. k.j =

∑D
d=1 kdj is the total number of times
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that an instance of word j has been assigned topic 1. Note that nd. = Nd and
hence n.. is the total number of tokens in the corpus. For convenience, drop the
dots at n.. and write just n for the total number of tokens.

The distribution is invariant under permutations of topic assignments within
the occurrences of a given word in a given document and the projection of µ on
the resulting equivalence classes is

ν(k) ∝

(
n+2V−2
k..+V−1

)∏D
d=1

∏V
j=1

(
ndj

kdj

)∏D
d=1

(
nd.

kd.

) ∏v
j=1

(
n.j

k.j

) ,

k = (k11, . . . , kDV ) ∈ [n11]× ...× [nDV ].
For this to fit nicely into the framework of this paper, we consider the asymp-

totics as the number of documents D is kept fixed and n → ∞ in such a way
that ndj/n = αdj for αdj ≥ 0, d = 1, . . . , D, j = 1, . . . , V . Let h(x) =
(xx(1 − x)1−x)−1, x ∈ [0, 1]. Let xdj = kdj/n, let S = [0, α11] × . . . × [0, αDV ]
and let f : S → (0,∞) be given by

f(x) =
h(x..)

∏D
d=1

∏V
j=1 h(xij/αdj)

αdj∏D
d=1 h(xd./αd.)αd.

∏V
j=1 h(x.j/α.j)α.j

.

Let π be the probability measure on B := S ∩BDV
n given by

π(x) ∝ f(x)n.

Then rewriting ν as a measure on B, ν and π are asymptotically indistinguishable
in the sense that the total variation distance between them vanishes as n→∞.

Hence Gibbs sampling for LDA exhibits exponential mixing time if f has
more than one local maximum. It is not obvious from a look at f if this is the
case or not. In [10], we studied the special case D = 3, V = 3, nd. = m for all
d, α11 = 9/30, α12 = 1/30, α22 = 1/3, α33 = 1/3 and αdj = 0 for the other
(d, j):s. It turned out that local maxima can be found when (x11, x12, x22, x33)
equals (9/30, 1/30, 1/3, 0), (9/30, 0, 0, 1/3) (and the corresponding two points
given by swapping the topics); this phenomenon occurs since the model forces a
classification into two topics, when there is really three topics in the text. The first
of these is the uniquely largest and hence the posterior puts asymptotically almost
all of its mass close to that point. Figure 4 illustrates this partially by plotting
f(x11, 1/30, 1/3, x33), which has local maxima at the points (x11, x33) = (0, 0),
(3/10, 0) and (0, 1/3), i.e. the points where no words, all instances of word 1 or
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Figure 4: The function f(x, 1/30, 1/3, w)

all instances of word 3 are classified as belonging to the same topic as all instances
of word 2.

This is an example of a situation that fits into the framework, but where the
local maxima are on the boundary of the domain of the state space of the MCMC.

Remark. We believe that whenever a corpus is of a form that is ”typical”
outcome of a corpus generated by LDA with L ≤ K topics and then classified
with K topics, f does not have a finite number of isolated local maxima and that
Gibbs sampling mixes rapidly. The case D = 2, V = 2, (α11, α12, α21, α22) =
(3/20, 7/20, 3/10, 1/5) was considered in [11] and we found that f is maximized
on a whole two-dimensional surface cutting through the four-dimensional domain
and that mixing happens in O(n2) steps.

2

Example. 3S1 phase shifts from an analysis of neutron-proton scattering
cross sections. I am grateful to Christian Forssén and Andreas Ekström who
provided the data in this example.

Bayesian analysis methods are increasingly being used in theoretical nuclear
physics [17]. A specific example is the determination of parameters in a chiral
effective field theory description of the low-energy, strong interaction between
neutrons and protons (see e.g. [4], [9], [13], and references therein). In short, we
seek to find the parameter vector θ that minimizes the deviation between the model
and experimental data. In this specific case, the calibration data corresponds to the
3S1 phase shifts from an analysis of neutron-proton scattering cross sections [16]).
See, e.g. [17] for more details on the definition of the likelihood function.
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In this example a Bayesian model of the standard form with two parameters,

g(θ0, θ2) ∝ L(y; θ0, θ1)q(θ0, θ1),

is given, where the prior q is independent N(0, 5), i.e.

log q(θ0, θ1) =
1

10
(θ20 + θ21),

and L is an intractable likelihood of the form

logL(y; θ0, θ1) =
n∑
i=1

(
yi − h(xi, θ0, θ1)

σi

)2

.

Here h is some intractable function and xi is a set of covariates for observation yi.

Data consisted of log g computed on a 300× 300 grid together with a warning
that log g may look ”very odd”, but that it certainly has some pronounced peaks.
Hence it seemed prudent to act according to remarks (vi) and (vii). We collected
a sample, S, of 105 points of the domain and took M to be the 1000’the largest
value of log g on S and replaced log g with max(log g,M). Next, we observed that
maxu,v∈S(log g(u) − log g(v)) ≈ 1.86 · 105. This means that maxu(g(u)/g(v))
with the maximum taken over the whole domain is at least e186000. We hoped
that the true value is not significantly larger than that and took f = g1/(4·186000)

and then hoped that the ratio of the max and min of f is approximately e1/4.
(Computations are of course made at log-scale.)

The relaxation time for ordinary lazy random walk on B2
n is 4n2, so we hoped

that for sufficient mixing of random walk governed by fK on B2
N , 4N2eK/4 steps

is enough. We then finished off by n log n steps on B2
n according to g. We tried

running with N = K and the values of K that were tried are 5, 10, 15, 20, 30, 40.
For each K we collected a sample of size 100. This took 12 hrs to run through
with Matlab. The result of this first attempt was disappointing as no zooming in
on any region could be seen.

One possible explanation for this could be that peaks are so thin that the N :s
are simply so small that the peaks vanish on the course grids that they correspond
to, so in the next attempt, we tried to fix N = 100 (and not 300 as we considered
the problem to be too misbehaved if peaks are of no more than two pixels wide).
We ran K = 5, 10, 15, 20 and found that in this case, the algorithm indeed starts
to zoom in. In Figure 5, histograms of the samples are given.

In this example, we of course in fact have complete control of g, but on larger
grids in higher dimensions (say on B4

1000), this would not be the case and we have
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Figure 5: Samples for the 3S1 phase shifts example.

worked as if we were in that situation. In Figure 6, we have plotted log g (with
the floor at M ), from an ordinary view and from a birds perspective. The latter
reveals that peaks are indeed very thin.

2

Acknowledgment. I am very grateful to nuclear physicists Christian Forssén
and Andreas Ekström at Chalmers whose inspiration was the spark that set off this
work and who provided me with data for the 3S1 phase shifts example above.
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Figure 6: The log posterior (with floor) for the 3S1 phase shifts example. The
bird’s view on the right hand side reveals that the peaks are very thin.
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