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We give a simple proof of a generalization of Euler’s famous identity1
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1
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+
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9
+ · · · = π2

6
. (1)

First notice that an equivalent form of (1) is

1 +
1

9
+

1

25
+ · · · = π2

8
. (2)

The reason for this is that the terms occurring in (1) but not in (2) are
1/4 + 1/16 + . . . , which are 1/4 times the terms in (1). Therefore the left
hand-side of (2) is 3/4 times the left hand-side of (1), and (3/4)·π2/6 = π2/8.
Equation (2) in turn is equivalent to

∞∑
n=−∞

1

(2n− 1)2
=
π2

4
. (3)

1The essence of the proof comes from [2] and the simplified version [1]. What is new here
is the presentation that allows us to replace the trigonometry of [1] and [2] by euclidean
geometry. From a strictly mathematical point of view it is not clear whether this is an
improvement over the very brief proof in [1], but it may help in visualizing what is going
on. In any case the fact that the famous identity (1) is not that hard to prove is something
that deserves to be better known.
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In (3) we sum the inverse squares of all odd integers including the negative
ones. Since the inverse square of a negative number is equal to the inverse
square of the corresponding positive number, (3) is twice (2). Finally we can
simplify (3) by multiplying each term by 4, obtaining

∞∑
n=−∞

1

(n− 1/2)2
= π2. (4)

Equation (4) is thus equivalent to Euler’s identity (1). We are going to
prove a generalization of (4) consisting in replacing the number 1/2 by an
arbitrary real number x, with the only restriction that x cannot be an integer
since that would lead to a division by zero in one of the terms.

Theorem 1. If x is a real number which is not an integer, then

+∞∑
n=−∞

1

(n− x)2
=
( π

sin πx

)2

. (5)

Since sin(π/2) = 1, (5) specializes to (4) if x = 1/2. Let us first briefly
discuss how one might prove this identity.

Clearly there is no way of starting from the left hand-side of (5), or any
of equations (1)–(4), and arriving through purely algebraic operations at
the right hand-side. This is what makes these identities amazing. Proofs
involve computing something in two different ways, finding it to be equal
to the left hand-side through one calculation, and to the right hand-side
through another. Finding what to compute may require some creativity and
imagination, but the equations give some clues. Apart from inverse squares
they involve integers and the number π. To get all ingredients into the mix
we should compute something that involves inverse squares in a model where
some objects are counted and where there is a circle.

Inverse squares occur in physics, and we are going to exploit this by
describing a problem in terms of a physical system. The apparent brightness
of a star is proportional to the inverse square of its distance. Consider a
system of N stars of equal luminosity uniformly spaced in a common circular
orbit around their center of gravity as in Figure 1. We investigate the total
amount of light received at an arbitrary point P in the orbit. First we choose
units conveniently.

As unit of distance we choose the distance between neighboring stars
measured along the circle. Thus the perimeter of the circle is N and its
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diameter N/π. The amount of light received at any point is the sum of the
inverse squares of the distances to the stars (along straight lines). We let x
define the displacement of the point P relative to the stars in such a way
that P is at distance x to one of the stars, again measured along the circle.
We may assume without loss of generality that we measure the displacement
relative to the closest star so that |x| ≤ 1/2. We define fN(x) to be the
amount of light received at a point of displacement x in a system of N stars,
and we would like to determine fN(x) for any N and x.

P

Figure 1: A circular system of N stars. Here N = 8. The point P is an
arbitrary point on the circle.

Exact solution

Our first approach is to use euclidean geometry in order to calculate fN(x)
explicitly. As it turns out, the method works only when N is a power of 2,
but this will suffice. First consider the case N = 1. The unit of distance is the
distance of the star to itself along the circle, in other words the circumference
of the circle.

Lemma 2.

f1(x) =
( π

sin πx

)2

.
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Proof. The circumference of the circle is 1 and consequently the radius is
1/(2π). The displacement x is the distance from P to the star along the
circle, and it follows that the angular displacement α is x/r = 2πx, see
Figure 2 (left). We find as in Figure 2 (right) that the distance from P to
the star along a straight line is

2r sin
α

2
=

sin πx

π
,

and consequently

f1(x) =
( π

sin πx

)2

.

P

r = 1
2π

α = 2πx

P

r = 1
2π

r sin α
2

Figure 2: The case N = 1.

In the following we repeatedly apply a theorem which has been called the
Inverse Pythagorean Theorem2 since it relates three inverse squares in a right
triangle, rather than three squares. We phrase the theorem in terms of light
received from stars.

Proposition 3. If two stars are located at points A and B, and the point C
is such that the angle at C in the triangle ABC is right, then at the point C,
the light received from the stars at A and B together is equal to the light that

2Not to be confused with the converse of the Pythagorean theorem, which states that
whenever the three sides of a triangle satisfy a2 + b2 = c2, the angle opposite c is right.
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would be received from a star at the point X of projection of C onto the line
through A and B.
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Figure 3: Inverse Pythagorean theorem: 1
a2 + 1

b2
= 1

h2 .

Proof. Let a, b and c be the sides of the triangle ABC, and let h be the
distance from C to X. The area of the triangle ABC can be found either as
ab/2 or as ch/2. Therefore

ab = ch.

Moreover, by the Pythagorean theorem,

a2 + b2 = c2.

The amount of light received at C from A and B together is therefore equal
to

1

a2
+

1

b2
=
a2 + b2

a2b2
=

c2

(ch)2
=

1

h2
,

which is the amount of light received at C from a star at X.

Returning to the circular model of stars, we apply Proposition 3 to prove
that for fixed x, the amount of light received at P in the 2-star model is the
same as in the 1-star model!

Lemma 4.
f1(x) = f2(x).
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Figure 4: Replacing one star by two.

Proof. Let the 1-star model with displacement x be the red star R on the
smaller circle in Figure 4, and let Q be the point opposite to P on that circle.
Draw a new circle with center Q and going through P . On the new circle,
and on the diameter going through R, put two blue stars B1 and B2.

Obviously the new circle has perimeter 2, and thus the distance between
the blue stars along that circle is 1. Moreover, the angular displacement
from P to B2 in the blue system is equal to the angle PQB2 = PQR which
in turn, by the central angle theorem, is half of the angular displacement
POR in the smaller circle. Therefore the displacement in the blue system is
the same as in the red system, and f2(x) is equal the total amount of light
received from the blue stars at P .

Since PQ is a diameter in the smaller circle, the angle PRQ is right, and
similarly since B1B2 is a diameter in the larger circle, the angle B1PB2 is
right. Therefore Proposition 3 applies, showing that at P , the light received
from the blue stars together is equal to the light received from the red star.

The argument easily generalizes.

Lemma 5. For all N and x,

fN(x) = f2N(x).
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Proof. We replace each star in the N -star model by a pair of opposite stars
in the 2N -star model as in Figure 5. Again the new circle has twice the
perimeter of the old one, and therefore the distances between the blue stars
along the new circle is 1. By considering only the closest red star, it follows
in the same way as in the case N = 1 that the displacement in the new model
is the same as in the old one. Again by applying Proposition 3, it follows
that each pair of opposite blue stars give the same total amount of light at
P as the red star they replace. It follows that at P , the blue stars together
have the same apparent brightness as the red stars.

P

Figure 5: Replacing the red N -star model by the blue 2N -star model.

By repeatedly applying Lemma 5, starting from N = 1, we conclude that
fN(x) is equal to the right hand-side of (5) whenever N is a power of 2:

Proposition 6. If the number N of stars is a power of 2, then

fN(x) =
( π

sin πx

)2

.

This raises the question whether the limitation to powers of 2 is an artifact
of the proof or if the 2-powers really are special. The answer is that the
identity holds for all N , and this will follow from the analysis in the next
section.
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Asymptotical solution

Having identified fN(x) with the right hand-side of (5), what we do next is
to “estimate” fN(x) in order to show that it is close to the sum in the left
hand-side. It may seem backwards to try to estimate something when we
already know the exact value, but remember that we are trying to evaluate
the sum in (5).

We start with the 2N -star system for a fixed x, and proceed with a
sequence of operations leading to an approximate value of f2N(x).

The circle of the 2N -star system has radius r = N/π. We now delete the
N stars on the half of the circle which is most distant from P , continuing the
calculation with the remaining N stars. The error in the estimate of f2N(x)
occurring from this deletion is at most

N · 1

(N/π)2
=
π2

N
,

since we have deleted N stars, each of which was at distance at least equal
to the radius N/π (in fact the distance is at least

√
2 times the radius, but

we only need a rough bound).

P

Figure 6: After deleting the N most distant red stars, we replace the remain-
ing ones by blue stars in two sectors.
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We now replace each of the remaining N stars by two stars on the circle
of twice the radius as in Figure 6. What we then have is part of the 4N -star
system, but with only the N stars in the closest quarter and the N stars
in the most distant quarter remaining. Now we repeat the procedure: We
discard the N distant stars, this time causing an error bounded by

N · 1

(2N/π)2
=

π2

4N
,

since the new radius is 2N/π. Then we replace the remaining N stars by
2N stars on a circle twice as large. Continuing this process, we have in each
step 2N stars from the 2k(2N)-star system, the N closest to P and the N
most distant from P . The deletion of the N distant stars will cause an error
which is bounded by

π2

4kN
,

since the radius of the current circle is 2kN/π.
As k →∞, the set of N closest stars will approach the points at coordi-

nates n− x measured from P along a straight line tangent to all the circles
at P . Therefore in the limit k → ∞, the total radiation at P from the N
remaining stars will approach ∑

|n−x|<N/2

1

(n− x)2
.

The total error from all the deletions of stars will be at most

π2

N
+

π2

4N
+

π2

16N
+ · · · = π2

N
· 1

1− 1/4
=

4π2/3

N
.

Since we already know that fN(x) = f2N(x), we conclude that for every N ,

fN(x) =
∑

|n−x|<N/2

1

(n− x)2
+

θ

N
, (6)

where θ may depend on N but satisfies 0 ≤ θ ≤ 4π2/3.
In the final twist we apply equation (6) with N replaced by 2kN , although

we aready know that f2kN(x) = fN(x). We conclude that for every N ,

fN(x) = lim
k→∞

f2kN(x) = lim
k→∞

∑
|n−x|<2kN/2

1

(n− x)2
+

θ

2kN
=

∞∑
n=−∞

1

(n− x)2
.

(7)
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This calculation might seem backwards at first, since we start from a known
quantity (at least if N is a power of 2), and express it as a limit of something
we know to be constant, but the right hand-side is what we wish to evaluate.

Since we know that

f1(x) =
( π

sin πx

)2

,

we establish (5) and thereby Euler’s identity by putting N = 1 in (7).
Finally, the fact that (7) holds for every N shows that indeed fN(x) is

independent of N . This ties up the loose end left in the previous section,
showing that Proposition 6 holds without the assumption that N is a power
of 2.

Final remarks

There are quite a few proofs of the identity (1) in the literature, and references
can be found in [1]. The idea of proving (1) through exact trigonometric
identities goes back at least to Yaglom and Yaglom [2]. These identities can
be established from de Moivre’s identity and the binomial theorem. The
observation that instead they can be proved for powers of 2 by repeated
application of addition formulas for trigonometric functions has been made
by several mathematicians independently, but seems to have been published
first by J. Hofbauer [1], who also remarks that in the end it follows that they
must hold for all N . Hofbauer also remarks that the extension to general x
can be proved with the same method.

What is new in our presentation is the physical interpretation which al-
lows us to replace all trigonometric identities by classical geometry, and the
final twist where we obtain the necessary bounds on fN(x) without referring
to inequalities for trigonometric functions.
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