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Traffic jams for the travelling salesman

3OLVING�THE�STOCHASTIC�TIME
DEPENDENT�TRAVELLING�SALESMAN�PROBLEM�WITH

A�GENETIC�ALGORITHM

!BSTRACT

The standard travelling salesman problem has fixed travelling times between cities. In the case of
traffic jams, fixed travelling times can not be assumed: the travelling time is stochastic and depends
on the time of departure. In this article stochastic, time-dependent travelling times are modeled with a
lower and upper bound function and a profile, which gives the probability distribution between the
lower and upper bound. Necessary and sufficient conditions are derived under which a later time of
departure decreases the probability of arriving before a certain time both in terms of the lower and
upper bound function (for an arbitrary profile) and in terms of the parameters describing the expected
travelling time (as a function of the time of departure).

Solving the stochastic time-dependent travelling salesman problem with time frames is subject of the
second part of the article. Expressions have been derived for the goal function, using the concept of
robust solutions and a genetic algorithm has been developed to find good solutions. An Or-opt
algorithm has been combined with a new crossover-operator. The crossover-operator reduced the
calculation times, or resulted in better solutions with a slightly longer calculation time.

-ODELING�STOCHASTIC�TIME
DEPENDENT�TRAVELLING�TIMES

No model has been found in literature, which combines both aspects. The model in this article has
been based upon a time-dependent model form Ahn and Shin [1] and a stochastic modeling concept
from Kao [2]: the travelling times are described using probability functions.

In this model the travelling time 2�T	 with a time of departure T is bounded by a lower bound function
L�T	�and an upper bound function U�T	 with 0 < L�T	�<  U�T	�for each T��The travelling time’s distribution
is now defined using a profile '��	�independent of the time of departure T��This profile should be a
probability distribution defined on [0,1]. The probability function for the travelling time is described
by:

It can be proven that if travelling times follow this distribution, later departure times can result in
earlier arrival times. Obviously, later departure times should be a “disadvantage”. It can be proven
that for an arbitrary profile defined on [0,1] with a non-zero probability for each value on this
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interval, the probability of arriving before a certain time decreases if and only if for every (T���T�	�with
T����T�� : 22112211  and UTUTLTLT +<++<+  (the DECREASING
PROBABILITY
PROPERTY )

The second property, the model should have, is that the expected value of the travelling time
corresponds with the following function (I�denotes the departure city, J the city of arrival)

It can be proven that for a given probability function '��	 defined on [0,1] with a non-zero probability
for every value on this interval and an expected value EG, functions LIJ�T	�and UIJ�T	�exist, which have
the DECREASING
PROBABILITY
PROPERTY if and only if C��IJ���
�

#ALCULATING�THE�OBJECTIVE�FUNCTION

In the first section a model is described for stochastic time-dependent travelling times. As the
individual travelling times are stochastic, the total travelling time is stochastic as well. In this
research, objective functions have been used, based upon the concept of robust solutions and taking
into account time frames in the cities.

To estimate the objective value of a specific tour, the probability distribution of the arrival time in
city I�should be estimated. Three methods have been developed and tested: a Monte-Carlo method, a
method based on Erlang approximation of the arrival time distribution function and a method based
on integral approximation.

Several versions of the three methods have been tested on 15 randomly generated problems. In the
graph below both the calculation time and the relative error are shown. It can be concluded that the
strength of the Erlang method is its calculation time. If a more accurate value is needed, the Monte
Carlo method seems more appropriate than the integral approximation method.

ERL = Erlang approximation
MC-N = Monte Carlo method with sample size N
INT A-B-C = Integral approximation in A points of the distribution function with B different step sizes and C steps
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3OLVING�THE�PROBLEM�WITH�A�GENETIC�ALGORITHM

In this section, a heuristic based on genetic local search is discussed. Genetic local search is a general
approach and certain operations have to be defined. These operations are applied to a family of
solutions (instead of one solution as is the case in local search algorithms). The first operation is a
reproduction-operator, which constructs a new family or generation by selecting members from the
previous one. In general, the better a solution the large the probability that the solution survives.
Secondly a crossover is applied; the crossover constructs new solutions (‘children’) from two old
solutions (‘parents’). These new solutions are improved using a local search algorithm. The procedure
is then repeated until the pre-established number of generations has been reached.

The crossover-operator should be defined in a way that children resemble their parents, but not too
closely. In this research a new crossover has been developed, which has some resemblance to the
Order Crossover [3,4,5]. To construct a new tour from two parent tours the following steps are
executed:

1. randomly select a path in one of the parents (both the starting point and the length are random)
2. change the sequence in this path according to the sequence in the other parent
3. repeat this procedure for the other parent

The following example illustrates this principle. In the case of six cities, the parents are [1,2,3,4,5,6]
and [6,5,2,1,4,3,]. In the first parent, the path [3,4,5] is randomly selected. The first ‘child’ now is
[1,2,5,4,3,6] as the cities 3,4,5 are visited in the sequence 5,4,3 in the second parent.

The Or-opt algorithm [6] has been used to improve the members of a generation.

This algorithm has been tested for four versions of the algorithm, in which the number of generations,
the number of tours in the first generation and the survival rate for the worst solution in a generation
varied. Notice that the first version is equal to an Or-opt algorithm, which is repeated 20 times. The
algorithm has been used in combination with the Monte-Carlo method to solve 150 randomly
generated problem instances with 10 cities. The results are summarized in the table below.

�� ����
���� ��
���
���� �
���
���� �� ��� ����

NUMBER�OF�GENERATIONS � � � �

NUMBER�OF�TOURS�IN�FIRST�GENERATION �� � �� �

SURVIVAL�RATE�WORST�TOUR�IN�A
GENERATION


 ��� ��� ���

AVERAGE�RANK ���� ���� ���� ����

AVERAGE�CALCULATION�TIME ������ ������ ������ ������

There are clear differences in the performance of the different versions, although in 30 of the 150
cases all four versions found the same solution. Combining the Or-opt algorithm with a genetic
algorithm reduced the average calculation time considerably or resulted in significantly better
solutions with a slightly longer calculation time (comparing 1 – 20 – 0.3 with 3 – 12 – 0.3 using a
sign test at a significance level of 0.001).
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